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Abstract: 

This paper analyzes grading competition between instructors of elective courses 

when students shop for high course scores, the instructors maximize class size, and 

the school imposes a ceiling on mean course scores to limit grade inflation. Under 

this grading norm, we demonstrate that curriculum flexibility (more listed courses 

or less required courses) intensifies the competition: in particular, both top and 

mean realized scores increase. To tame incentives to provide excessively large scores, 

we suppose that the school additionally introduces a top-score grading norm. We 

consider three scenarios. First, the school caps top scores directly. Then, grading 

competition divides students into a concentrated group of achievers and a dispersed 

group of laggards. Second, the school normalizes the range of scores by changing the 

mean-score ceiling. Upon normalization, scores of a less flexible curriculum first-

order stochastically dominate scores of a more flexible curriculum. Hence, all 

students will prefer rigid curricula. Third, the school requires that the mean-score 

ceiling is evaluated for enrolled students instead of all students. Then, the instructors 

stop competing for students which introduces sorting inefficiencies. Overall, we 

show that addressing grade inflation through grading norms may generate 

inequalities, rigidities, and inefficiencies. 
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1 Introduction

While course instructors and students primarily care about content and quality of courses, it

is also the case that students choose courses to shop for the best grades, and some instructors

attract students through lenient grading. Indeed, there is extensive evidence of both electives

shopping on the side of students (Sabot and Wakeman-Linn, 1991; Bar, Kadiyali, and Zuss-

man, 2009) as well as grading competition between instructors, motivated by concerns about

teaching evaluations (Correa, 2001; Butcher, McEwan and Weeapana, 2014) and pressure

to enroll many students in a class when attendance is a performance metric (Angling and

Meng, 2000). Grading competition occurs and is particularly pronounced in the context of

electives that are close substitutes within a single program, but it may also exist on the level

of departments and schools when a program choice or even a field choice is involved.

For the shape of grading competition, the key is the set of grading norms that bind the

instructors. In this paper, we focus on grading competition under a mean-score ceiling (a.k.a.

a mean-preserving grading norm, a grade ceiling, or a mean-grade quota). Namely, a school

requires a mean course score for a representative sample of students to not exceed a given

ceiling, but otherwise leaves grading in the hands of the instructors. The mean-score ceiling

fully controls the incentives to increase scores across the board but otherwise leaves the shape

of the score distribution unregulated. An example of the norm in practice is the well-studied

decision of a small elite Wellesley College by which average grades in courses with at least 10

students should not exceed a B+ average (Butcher et al., 2014). Gorry (2017) documents a

similar example in a business school of a large US public university, where in 2014 an average

recommended grade was set to 2.8 in introductory courses and 3.2 in intermediate courses.

We analyze how the mean-score ceiling affects grading competition, especially when the

norm is combined with additional grading norms that regulate top scores. In particular, we

analyze how curriculum flexibility shapes grading competition. That curriculum flexibility

may have an effect on the moments of the distributions can be observed in a variety of

higher education environments, but most visibly when comparing grades across divisions.

For instance, Achen and Cournot (2009) report that most departments treat students much

better in upper-division courses, and also that upper-division grades are higher than those in

the lower divisions.

To give an illustrative example, Table 1 lists the grade distributions in the Juris Doctor

(JD) program at Pitt Law School in the year 2016.1 At Pitt Law, JD students enjoy a

large degree of latitude in designing courses of study that meet their individual goals and

interests, with only a handful of graduation requirements beyond the first year. In other

words, curriculum structures differ across classes, with more senior students having greater

flexibility. Table 1 shows that the distribution of inferred GPAs2 for the first-year students

1Source: http://law.pitt.edu/grades/distribution
2As individual GPAs are not observable, we assign students who have received an identical grade the mid-
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who face the most rigid curriculum (Class of 2018) indeed exhibits the lowest mean and the

largest variance. The median grade is B+, hence the median inferred GPA (3.31) exceeds

the mean inferred GPA for all classes. For all classes, Pearson skewness is negative, with the

absolute value growing upward for more senior classes that enjoy greater flexibility.

Table 1: The grade distributions for JD candidates at Pitt Law School,

2016

Grade A A- B+ B B- C+ C C- D F Mean Variance Skewness

Mid GPA 3.94 3.69 3.31 3.00 2.69 2.31 2.05 2.18 1.01 0.38

Class of 2018 6 21 36 22 28 16 1 0 0 0 3.08 0.22 -0.09

Class of 2017 4 22 56 46 21 2 1 0 0 0 3.18 0.13 -0.13

Class of 2016 4 25 84 39 17 5 0 0 0 0 3.22 0.12 -0.42

In fact, there are two channels through which flexibility may affect the grades: (i) a

change in the instructors’ grading scheme, and (ii) an increased self-selection into courses

that more likely award better grades. To separate the two channels, we build a model of

grading competition based on Continuous Lotto Games (Hart 2008, 2016). In the model,

students exclusively shop for good grades, and instructors only maximize enrollment. Each

student has a personal fit to an elective course, when the fit is ex ante unknown both to the

student and instructor. The instructor constructs the grading rule as a mapping from the fit

to the course score, where the average score for all potential students (or, for a representative

sample) is fixed. In the shopping period, a student costlessly attends all electives and acquires

free signals of his or her fit through interim scores. When the shopping period closes, each

student enrolls into courses with the most promising interim scores; since interim scores are

assumed to be unbiased signals of ex post course scores, the students simply pick up courses

with the highest interim scores.

In this environment, we demonstrate that the response (enrollment) rates are always linear

in interim scores and with more flexibility fall proportionally; irrespective of fit, all students

become more selective if grading competition intensifies. In addition, we document that

increasing curriculum flexibility (i.e., more courses offered, or less courses required) motivates

course instructors to offer larger maximal scores to the best students. We can also describe

the ex post scores that result from interim scores and responses. Namely, even if the interim

score distributions get more positively skewed with a more flexible curriculum (i.e., students

with a relatively low fit are now offered lower scores), we prove that self-selection is strong

enough to imply that the mean ex post score goes up with flexibility.

The gap between excessively large scores given to the best students and very low scores

given to average and below-average students are among the most unwelcome consequences of

value of the interval for the corresponding grade (Mid GPA); e.g., for A+, the individual GPAs lie in [3.876, 4],

hence we consider the inferred GPA to take the mid-interval value of 3.938. Since an observable grade is only

a coarse signal of the unobservable GPA, we must interpret the skewness of mid-GPAs cautiously.
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flexible curricula. We analyze how the mean-score ceiling can be augmented to eliminate the

excessive top scores. For this purpose, we consider adopting one of three top-score grading

norms. First, we suppose the school directly caps the exam scores. Then, in response to

the norm, the instructors divide the students into two groups, attractive students (receiving

the maximal score) and unattractive students (receiving low scores). Notice that this divi-

sion occurs even before the students self-select into the electives. In addition, unlike in the

regime with a pure mean-score ceiling, we show that this combined regulation risks matching

inefficiency. The reason is that the coarse signal of the fit that an attractive student obtains

through a capped top score is not informative enough.

Secondly, we let the school re-parameterize the mean-score ceiling. To give a straightfor-

ward lesson, we suppose the school targets a constant range of the course scores; hence, all

curricula after normalization will award exactly identical top scores. Interestingly, we demon-

strate that such normalization excessively counteracts strategic grading since the mean real-

ized score decreases in curriculum flexibility. Even more, the score distributions are ranked by

first-order stochastic dominance, and rigidity thus increases a student’s score for any percentile

of fit. In a word, after normalization, all types of students receive lower scores when the cur-

riculum becomes more flexible. Thus, if the market interprets GPAs constantly irrespective

of flexibility, all students will demand to abolish variety and install a rigid curriculum.

The third instrument explicitly targets self-selection. Namely, we suppose that the mean-

score ceiling is evaluated ex post, after the students self-select into the courses. This regulation

is excessive in a sense that it doesn’t motivate instructors to attract students with a better

fit. As a result, there is an equilibrium where the instructors are discouraged to compete,

and rather offer identical scores. Mismatches become frequent, and positive matching effects

associated with self-selection now get weaker.

Overall, the paper demonstrates that counteracting lenient grading while preserving the

instructors’ grading autonomy is a hard task. A number of tradeoffs is associated with grading

norms that target both mean and top scores. We have analyzed three specific combinations

of a mean-score and top-score grading norms, and derived unintended consequences such as

inequalities, rigidities (a loss of variety), and sorting inefficiencies.

The paper proceeds as follows: Section 2 surveys the related literature. In Section 3, we

construct the setup. Section 4 analyzes the equilibrium distribution of scores associated with

a given curriculum structure under a mean-score ceiling. Then we analyze three alternative

regimes in which a top-score grading norm enriches the mean-score grading norm. Section

5 analyzes the caps on the maximal scores. Section 6 analyzes normalization of scores to a

fixed interval. Section 7 shows that imposing the mean-score ceiling on the ex post grades

completely suppresses grading competition. In Section 8 we conclude. In Appendices A and

B, we provide proofs and specific examples. Appendix C extends the setup by the instructor’s

option to invest in his or her resources.
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2 Literature

There is large evidence that grades affect students’ choices of courses (Sabot and Wakeman-

Linn, 1991; Matos-Dı́az, 2012). In the first place, grades affect a student’s subjective feelings

of academic accomplishment (Boatright-Horowitz and Arruda, 2013). Pursuit of easy grades

is also a rational response to admissions committees that seem to not properly account for

course difficulty when evaluating transcripts (Bailey, Rosenthal and Yoon, 2016). Also, in

response to more restrictive dismissal policies, there is evidence that students more likely

enroll in leniently-graded courses (Keng, 2016). Therefore, differences in grading mechanisms

and incentives to construct lenient grading rules are of central importance to economics of

education. Understanding grading is especially important as a component of the analysis of

origins of widely documented grade inflation—-whether the improved grades can be attributed

to lenient grading, productivity growth, or improved sorting.

How is the construction of grading rules addressed in the literature? Most papers look into

centralized grading rules in the hands of school administrators. In the classic tradition, the

principals maximize social welfare (or, specifically, human capital) subject to the students’

best responses (Costrell, 1994; Betts, 1998). A typical problem is the optimal design of abso-

lute or relative grading rules to elicit effort, accounting for characteristics of the environment

such as the class size (Becker and Rosen 1992; Dubey and Geanakoplos, 2010; Andreoni and

Brownback, 2017; Paredes, 2017; Brownback, 2018). In the construction of relative grading

rules, a typical tradeoff arises between the level of overall effort and an equitable distribution

of effort among students, exactly as in other tournaments with heterogenous contestants.

In more recent literature, the school uses the informative content of grades as a tool in

competition for attractive placements. Typically, the pool of students is fixed and placement

is in the form of assortative matching between students and firms (Ostrovsky and Schwarz,

2010; Popov and Bernhardt, 2013; Boleslavsky and Cotton, 2015; Harbaugh and Rasmusen,

2018). The idea is that a school observes a true ability, and constructs the grading rule as

an optimal noise to the true ability. This literature examines the optimal signal technology

employed by a school and the resulting information content of transcripts. By analyzing an

optimal signal structure, the literature falls under a wide umbrella of Bayesian persuasion

(Kamenica and Gentzkow, 2011; Gentzkow and Kamenica, 2017).

In this paper, we adopt a decentralized perspective on grading for which we find no

predecessor in the education economics literature. Instead of having full discretion over the

grading rules, we suppose that the school constrains transcripts through a few regulations

on the basic properties of score distributions, while the grading rules remain in the hands

of individual instructors. The assumption of large discretion on the side of instructors is

particularly relevant for universities that put a large value on the autonomy of academics. In

such an environment, it is natural to analyze transcript structures resulting from the grading

competition of non-cooperative instructors.
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Our approach belongs in the family of General Lotto games that have originated from

Colonel Blotto Games (Hart, 2008). In the game, for each “battlefield” a player chooses

a distribution of a nonnegative random variable with a given expected value, which corre-

sponds to the average “allocation per battlefield”. The winner in the battlefield is a player

with the highest realization. The Lotto games have been solved in the symmetric case of

equal expectations by Myerson (1993) and Lizzeri (1999), and in the general case of unequal

expectations by Sahuguet and Persico (2006). Kovenock and Roberson (2015) generalize to

heterogenous valuations and asymmetric resources. Dziubinski (2012) covers the difference

between continuous and discrete General Lotto games.

In this literature, typically only two players compete with each other, and therefore only

one prize per battlefield is allocated. In our setting, the battlefields are represented by a

continuum of students, and we consider a more generalized case with multiple courses and

multiple prizes depending on the number of courses into which each student has to enroll. We

exploit the early results from Continuous General Lotto games, namely that the equilibrium

scores distributions for K courses and M required courses are derived analogously to the

equilibrium electoral portfolios of K candidates who compete over M votes of each voter,

when an electoral portfolio is a distribution of a fixed cake (Myerson, 1993).

In addition, we borrow and extend the analysis of the caps that restrain from the above

values of the random variables, known as Captain Lotto games (Hart, 2016). This also creates

a link between our setup and Bayesian persuasion. In particular, we will see that our setting

is equivalent to a special case of competitive Bayesian persuasion (Gentzkow and Kamenica,

2017) in which the payoff of each principal (instructor) is linear in the realization of the

random variable. This is because in the equilibrium, responses of the agents (students) are

also linear in the random variable. The identity between the principals’ problems in Captain

Lotto and in Bayesian persuasion is because the constraints on the random variable in the

Captain Lotto game and Bayesian persuasion are exactly the same (Boleslavsky and Cotton,

2018).3

3 Setup

• Curriculum: There are K ∈ N elective courses, each with a single instructor (he). Each

student (she) has to enroll into exactly M ∈ N elective courses, where 1 ≤ M ≤ K. A

curriculum (M,K) is called more flexible than curriculum (M ′,K ′) if M ≤ M ′ and K ≥
K ′. Alternatively, we speak of more intensive grading competition. In the literature,

flexibility is sometimes interpreted as a low level of educational standards since the

3In Bayesian persuasion, the principal selects a distribution of posterior probabilities. As realization of

the random variable is a probability, its maximal realization is no greater than one. By Bayes plausibility,

the expected value is equal to the prior. This is equivalent to the combination of a mean-score and top-score

constraint in our game that we will analyze in Section 5.
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standards are measured by the number of courses needed for graduation (Lillard and

DeCicca, 2001).

• Shopping period: In the shopping period, each student is allowed to costlessly visit any

elective course. Through a visit, she obtains an interim score (an offer), which is a signal

of her ex post score. For simplicity, the signal is perfect; hence, if a student enrolls in

the course, her ex post score is identical to her interim score.

• Scores: The interim (offered) score from a course k = 1, . . . ,K is a realization xk from

a random variable Xk that will be described below. For analytical convenience, we will

work with continuous instead of discrete scores, xk ∈ R
+
0 .

• Enrollment: Students are pure score-shoppers and maximize their ex post scores.4 Given

that the interim scores are perfect signals of the ex post scores, the students simply pick

up M courses with the highest signal realizations xk.

• Students: Ex ante, students are identical; hence, we will work with a representative

student.5 For each student and each course k, there is an individual fit to the subject

matter of the course k, denoted ϕk. Ex ante, for any student and any course, the fit is

uncertain, and is without loss of generality uniformly distributed on the unit interval,

ϕk ∈ [0, 1].

• Instructors: Each course instructor k chooses how to map the student’s fit ϕk into a

score. Namely, the instructor selects a random variable Xk with a probability density

function denoted fk(x) and cumulative distribution function denoted Fk(x). When

setting Xk, each instructor non-cooperatively maximizes the number of students who

enroll in his course.

• Transforming fit into score: The instructor’s distribution function Fk(x) transforms the

individual fit to the course ϕk into the interim score xk through a monotonic quantile

function F−1
k (ϕk). As a result, since the individual fit is uniformly distributed, xk is

distributed by Fk.

• Ex ante mean-score ceiling: Each distribution Fk is required to have a constant mean,

which we normalize to one,
∫∞
0 x fk(x)dx = 1. Intuitively, the school requires that each

4The assumption that the student’s value from the course is strictly increasing in the score allows us to

disregard issues associated with mapping from continuous scores to discrete grades. Among others, with flat

valuation parts we would observe an incentive for the bunching of test scores (Diamond and Persson, 2016).
5Recall the setup features identical (symmetric) instructors as well as students. Ex ante homogeneity rules

out ex ante heterogeneity in the grading standards associated with separating types of different abilities. Thus,

our paper doesn’t address the ability-channel documented by evidence on heterogeneous grading standards as in

Bailey et al. (2016). When both courses and students are heterogeneous, sorting primarily involves signaling

on the part of instructors (Herron and Markovich, 2017). Our analysis of symmetric grading competition

constitutes an initial step for a more complex analysis of asymmetric competition.
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instructor distributes a fixed amount of points to prospective students of the course.

(Later we provide a broader interpretation of the fixed resources and also analyze en-

dogenous resources.) The instructors cannot compete for students by increasing the

scores overall, but can change its distribution to encourage or discourage self-selection

of particular types of students.

• Efficiency: We will call the equilibrium efficient if each student enrolls in those courses

that give her the highest values of ϕk with probability one. For symmetric equilibria,

F1(x,K,M) = · · · = FK(x,K,M), a necessary and sufficient condition for efficiency is

that F -function is continuous in x (i.e., no mass points exist). In the absence of mass

points, the inverse function F−1 is defined and thus there exists a one-to-one mapping

between x and ϕ. Then, each student who picks M courses with the highest values of

xk effectively picks up M courses with the highest values of ϕk. In contrast, if F is

not continuous in x (hence, mass points exist), then each mass point x̂ is associated

with an interval of ϕ. Hence, a student who receives an excessive number of identical

offers from a particular mass point (such that some have to decline), eliminates some

of the offers randomly without being able to rank the offers. By eliminating the offers

randomly, efficiency is violated.

• Response rates: Let Ak ∈ {0, 1} be the (random) indicator variable denoting the decision

of a student to take the course k. We calculate the probability of k being taken by a

student conditional on her signal xk. This probability is a representative student’s

response rate, and hence also the payoff of the instructor k. We will denote the response

rate

πk(xk) := Pr(Ak = 1 | Xk = xk).

4 Equilibrium

This section derives the score distributions in a symmetric non-cooperative equilibrium. Recall

that we effectively work with two distributions, interim (offered) scores and ex post (realized)

score distributions, where the latter reflects the students’ responses.

4.1 Interim scores

In this section, we will look into a symmetric equilibrium, denoted as a collection of iden-

tical and independent distributions of interim scores, F (x,K,M) := F1(x,K,M) = · · · =
FK(x,K,M). The number of offered courses K and the number of required courses M ≤ K

are two parameters of the distribution.

To understand the structure of the equilibrium, take a course k and a representative

student. Recall that an average student’s response rate, and hence also payoff of the instructor

k, is Pr(Ak = 1 | Xk = xk). The event Ak = 1 | Xk = xk is characterized such that out

7



of K − 1 independent draws, at most M − 1 courses are more attractive than the course k.

Given than each other Xj is identically and independently distributed, the probability that

a single course is more attractive than xk is 1 − F (xk). Thus, the probability of the event

Ak = 1 | Xk = xk is the value of cumulative distribution function of a binomial distribution

with parameters M − 1, K − 1, and 1− F (x),

πk(xk) = B(M − 1,K − 1, 1− F (x)).

Having the conditional probability of course k being taken (i.e., the response rate), we

may now proceed to the unconditional probability of course k being taken by a representative

student, Pr(Ak = 1). This constitutes the expected payoff of the instructor k, denoted

Πk(X1, . . . , XK) := Pr(Ak = 1).

In a symmetric equilibrium, students spread equally across courses, and the instructor’s

expected payoff equals M
K ,

Πk(X1, . . . , Xk) =

∫ ∞

0
B(K − 1,M − 1, 1− F (x))dFk(x) =

M

K
. (1)

To obtain the equilibrium in our problem, we exploit the observation that in the symmetric

equilibrium of a General Continuous Lotto game, the student’s response rate is linear in the

random variable on its support (Myerson, 1993; Hart, 2008). With this linearity property, we

easily obtain Proposition 1. (Proofs are relegated to Appendix A.)

Proposition 1 (Interim scores). Under an ex ante mean-score ceiling, the symmetric equi-

librium interim scores distribution F (x,K,M) is characterized as a unique solution to

B(K − 1,M − 1, 1− F (x,K,M)) = x
M

K
. (2)

The equilibrium interim scores are derived in an implicit form. For a lowK or an extremely

low or high M , a closed-form solution is readily available, which is illustrated for K = 3 in

Panel (a) of Figure 1. For a larger K and an intermediate M , the probability distribution is

given by a Gauss hypergeometric function (see Appendix B.1).6 From the continuity of the

binomial function in the last argument, F -distribution doesn’t contain any mass point, and

hence the equilibrium is efficient.

Since the range of a binomial function is a unit interval, the support of the interim scores

depends on curriculum flexibility (M,K). More specifically, if more instructors compete for

6The first moment of the interim scores distribution is fixed to one, but what is known about the other

properties of the distribution? Above all, Myerson (1993) numerically computes standard deviations for K ≤ 8

and shows that the standard deviation is increasing in curriculum flexibility. Not all statistics are monotonic in

curriculum flexibility, though. While the maximum (100th percentile) is decreasing in the number of required

courses, the median (50th percentile) may decrease but also increase in the number of required courses, as

Appendix B.2 illustrates.
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Figure 1: Scores densities for K = 3 and M = 1, 2
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students, instructors offer larger premia to the students with the best fit for the subject.

Exactly the same effect occurs when the students have to collect less credits and therefore

reject more offers. Formally, the support of X is x ∈ [0, K
M ]. Corollary 1 to Proposition 1

summarizes. (In Appendix C, we also demonstrate that the result remains unchanged if the

supply is not fixed and the advisors may increase their resources at a cost.)

Corollary 1 (Top scores). Under a mean-score grading norm, curriculum flexibility increases

top scores.

How to interpret excessive scores in cases when the course scores are naturally bounded

from above (e.g., by the value of 100)? One way is to interpret the offered scores more broadly

than just plain test scores; we may think of extra bonuses in the form of special services that

instructors provide to the best fitting students. These extra services may serve as the margin

at which the most promising students are attracted to a class. Examples are promises to serve

as thesis advisors, extra attention in classes and office hours, or explicit promises to write

recommendation letters for graduate schools. As long as the instructors have an (ex ante)

fixed supply of these extra services, the mean-score requirement is satisfied. Alternatively,

interim scores exceeding natural bounds may be provided in the form of signals that effort

needed for a good test score can be low, and thus effort can be saved.

4.2 Ex post scores

In this section, we derive the ex post scores distribution and examine how the ex post scores

depend on curriculum flexibility. To begin, we derive the distribution using that the response

rate is linear in x in the equilibrium.

Proposition 2 (Ex post scores). Under an ex ante mean-score ceiling, the density of the ex

post scores, denoted g(x,K,M), is in a symmetric equilibrium

g(x,K,M) = xf(x,K,M). (3)

Flexibility affects the ex post scores through two channels: offers and responses. The

former is captured in the change of the interim scores distribution, F (x,K,M). The latter is

captured in the change of the response rate, πk(xk). To analyze the latter, see that

πk(xk) =







xk
M
K if xk ∈ [0, K

M ],

1 if xk > K
M .

(4)

By the inspection of (4), we observe that flexibility makes students more selective across

the board. Namely, higher flexibility (K ≥ K ′ and M ≤ M ′) implies that a representa-

tive student who responded with a probability π′ will now respond with a lower probability
K′

K
M
M ′ π′ < π′; the drop in the response rate is proportional, and the proportion is identical

irrespective of which particular score is offered.
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The response rate πk is a useful measure of self-selection, but reflects only the side of

students. A measure that captures both sides (offers and responses) is the difference between

the post mean (average realized score) and the ex ante mean (average offered score, here equal

to one). To get this measure of self-selection, express first variance of the interim scores,

σ2 :=

∫ ∞

0
(x− 1)2dF (x,K,M) =

∫ ∞

0
x2dF (x,K,M)− 1.

Clearly, the variance of the interim scores σ2 exactly measures the self-selection of average

realized grades. Simply put, the ex post mean exceeds the ex ante mean by the ex ante

variance σ2,
∫ ∞

0
xdG(x,K,M) =

∫ ∞

0
x2dF (x,K,M) = 1 + σ2.

Since ex ante variance is increasing in flexibility (Myerson 1993, p. 861), and the interim

mean is fixed by the mean-score constraint, we conclude that the ex post mean is increasing

if the curriculum becomes more flexible. This also helps us to derive the student’s ex ante

preferences over flexibility: If the students are risk-neutral over the scores and market values of

scores are exogenous to the curriculum structure, then the students prefer as flexible curricula

as possible.

To shed light on the differences between interim and ex post scores, Figure 1 in Panel (c)

illustrates the ex post distributions for K = 3; these ex post distributions are comparable

with the corresponding interim distributions in Panel (a). In addition, Example B.3 in the

Appendix demonstrates that self-selection can be strong enough such that the initially pos-

itively skewed distribution changes into a negatively skewed distribution; interestingly, the

switch occurs whenever only a single course has to be taken.

5 Top-score caps

The key lesson of the previous section is that more competitive curricula motivate instructors

to provide larger maximal scores. Excessive top scores can be regulated directly, namely by

imposing a cap on scores. For example, Princeton University recommended in 2004 that no

department give more than 35% A grades overall, only to have it reversed 10 years later (Lehr,

2016).

5.1 A Captain Lotto game

To analyze grading competition in the presence of caps that bind the values of the random

variables from above, we borrow lessons from a bilateral Captain Lotto game in Hart (2016).

For a special case of two players (i.e., a curriculum (M,K) = (1, 2)), Hart (2016, Proofs to

Proposition 1 and Theorem 2) shows that the symmetric equilibrium strategy is a lottery over

the (uniform) distribution from the unrestricted game truncated to an interval [0, t] and a

11



Dirac measure on the point of the cap c, where 0 < t < c. To construct this strategy (i.e., an

i.i.d. random variable Xk) intuitively, suppose a player decides to use the distribution F (x)

from the unrestricted case. Then, however, the probability mass 1 − F (c) remains unused.

This mass is optimally shifted to the atom of x = c; yet, the resource constraint (in our case

the mean-score constraint) is now relaxed, and to make it binding, additional mass from the

interval [0, c) can be shifted into x = c. Optimally, only mass from the upper part of the

interval is shifted, hence intermediate offers on an interval (t, c) are no longer offered.

In our paper, we extend this result to any feasible curriculum structure (M,K). The main

difference is that the underlying distribution from the unrestricted game, in our case denoted

F (x,K,M), is not necessarily uniform. Proposition 3 derives a unique threshold value for

the empty interval and proves that the truncation described above indeed survives in the

equilibrium.7

Proposition 3. In the presence of an ex ante mean-score ceiling and a binding cap on the

scores, 1 ≤ c < K
M , a symmetric equilibrium cumulative distribution of the offers is as follows:

F̂ (x,K,M) =



















F (x,K,M) if x ∈ [0, t],

F (t,K,M) if x ∈ (t, c),

1 if x ∈ [c,∞),

where the threshold t ∈ [0, c) is given as a unique solution to

∫ t

0
x dF (x) + (1− F (t))c = 1. (5)

Notice that the existence of the empty interval, xk ∈ (t, c), is self-fulfilling immediately. An

instructor who sets his offer in an empty interval knows that all other offers are situated below

or above the empty interval. Hence, increasing his offer within this interval cannot change

any student’s decision, and the response rate is constant. This motivates the instructor to

move the offer away from the empty interval.

Additionally, notice that the existence of the cap has no effect on the responses to the

offers that are given in the equilibrium. Thus, in the equilibrium, caps change only behavior of

instructors but not of students. Formally, for any xk on a support of Xk (i.e., xk ∈ [0, t]∪{c}),
the response rate remains linear in xk, πk(xk) = B(K − 1,M − 1, 1− F (xk)) = xk

M
K . Thus,

like in the unrestricted case, the equilibrium looks such that the response rate to the given

offers is linear in the offers. Differences are only for offers that are actually not given in the

equilibrium; students are now less responsive to the intermediate offers and more responsive

to forbidden offers. Figure 2 illustrates.

7If the cap is extremely binding, c < 1, then the resource constraint is loose for any admissible distribution.

In such a case, the equilibrium distribution obviously degenerates to the atom at x = c, and the equilibrium

threshold is in a corner, t = 0.
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(a) A non-binding cap (b) A binding cap

Figure 2: The students’ response rate

5.2 Realized scores

How does the top-score norm change the shape of the distribution of realized offers, denoted

Ĝ(x,K,M)? As response rates are invariant to the top-score norm, all effects are due to a

change in the offers, F̂ (x,K,M). In other words, the cap affects the distribution of realized

scores in the similar way like the distribution of offers,

Ĝ(x,K,M) =



















G(x,K,M) if x ∈ [0, t],

G(t,K,M) if x ∈ (t, c),

1 if x ∈ [c,∞),

We can now check how a cap affects (i) the interval of unused scores (empty interval), (ii)

the share of top achievers, and (iii) the average realized score. First, with a more restrictive

cap, the empty interval begins with a lower threshold and hence extra intermediate scores

are no longer present. In a word, a restriction on the top scores translates into a restriction

on the intermediate scores.8 Second, a more restrictive cap (a lower c and accordingly also a

lower t) increases the share of the top achievers, which is

[1− F (t)]c
M

K
=

[

1−
∫ t

0
x dF (x)

]

M

K
= [1−G(t)]

M

K
.

Third, in line with intuition, a more restrictive cap depresses a realized mean score. To

see why, we use that the threshold t is non-decreasing in c, hence the realized mean is also

non-decreasing in c. (Formally, it is increasing whenever the cap is binding and constant

when the cap is non-binding.) The realized mean is, using the definition of the threshold in

(5),

8That the threshold t is non-decreasing in c is given by the implicit-function theorem imposed on (5).
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∫ ∞

0
x dĜ(x) =

∫ t

0
x2dF (x) + F (c)(1− F (t))c =

∫ t

0
(x+ F (c))x dF (x).

5.3 Summary

To summarize, we may draw three lessons from the existence of the top-score caps. First,

binding caps motivate instructors to submit highly compressed offers to students with the

highest level of fit. The lower the cap, the larger the share of students who receive such top

offers. By concentrating offers at the top, caps resemble rigid curricula, and caps and rigidity

reinforce each other as complements. Second, caps may reduce informative value of top scores

as the most fitting courses are indistinguishable to the students. At the top, a matching

inefficiency occurs whenever a student receives at least M +1 top offers and consequently has

to randomly eliminate some of the redundant top offers. Third, and perhaps most importantly,

caps promote inequality in the following sense: The instructors split the students into two

disjoint groups, where the share of ‘top achievers’ who are separated from the rest of the pack

increases with a more restrictive cap. A more restrictive cap also motivates the instructors

to abolish many intermediate scores and thus ‘laggards’ are offered lower scores on average.

6 Normalized mean-score ceiling

An indirect way to regulate the excessive top scores is to normalize the scores. This is

achieved by tightening the mean-score grading norm, i.e., by lowering the ceiling for the

mean. Formally, in this section we suppose that the school maintains the mean-score norm

but reduces the mean-score ceiling such that all scores, including the excessive scores, exactly

fall into a pre-determined range. How such normalization (or re-parametrization) affects the

interim and ex post scores is illustrated in Panels (b) and (d) of Figure 1.

If re-parametrization occurs ex post based on the observed distributions, there is nat-

ural concern about the manipulability of the scheme by individual instructors. However,

manipulability is negligible if a single instructor has a negligible effect on the inputs used

for re-parametrization. For instance, the re-parametrization procedure may use the median

values of the top scores of instructors instead of the maximum of top scores; then, a single in-

structor’s deviation from a symmetric equilibrium profile has no effect on re-parametrization.

6.1 Normalized interim scores

In the first step, we focus on the normalized interim scores. The score distributionsH(y,K,M)

are trivially obtained by normalizing the distribution F (x,K,M) with a support x ∈ [0, K
M ]

into a distribution H(y,K,M) with a normalized support y ∈ [0, 1] such that y = M
K x,

H(y,K,M) := F
(

y K
M ,K,M

)

.
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Our key result is that the normalized H-distributions can be ranked by first-order stochas-

tic dominance with respect to K and M . Namely, Proposition 4 shows that the score distri-

bution for a less flexible curriculum first-order stochastically dominates the distribution with

a more flexible curriculum.

Proposition 4 (Rigidity increases offers). Let (M ′,K ′) be a less flexible curriculum than

(M,K). Then, for any y ∈ (0, 1),

H(y,K ′,M ′) < H(y,K,M).

This dominance property can be alternatively stated as the property of the quantile (in-

verse distribution) function to H-distribution function. Namely, for any percentile p ∈ [0, 1],

let Y (p,K,M) be the quantile in the normalized distribution satisfyingH(Y (p,K,M),K,M) =

p. When inserted into the implicit solution in (2), the quantile is

Y (p,K,M) = B(M − 1,K − 1, 1− p).

Exploiting well-known properties of the binomial cumulative distribution function, we

observe that for any percentile p, an increase in flexibility decreases the respective quantile

Y (p,K,M). We demonstrate for an increase from K to K + 1 and for a decrease from M to

M − 1:

Y (p,K,M)− Y (p,K + 1,M) = B(K,M, p)−B(K − 1,M, p) < 0

Y (p,K,M − 1)− Y (p,K,M) = B(K,M − 1, p)−B(K,M, p) < 0

In other words, the H-distribution function moves to the left with an increase in flexibility.

As the H-distribution function is non-decreasing y, it implies that it moves up with flexibility.

6.2 Normalized ex post scores

Importantly, the first-order dominance relation in Proposition 4 extends to the ex post (real-

ized) scores. We know that the distribution of ex post scores G(x) is such that g(x) = xf(x);

recall G(x,K,M) denotes the distribution parameterized by K and M . Like for the interim

scores, this distribution characterizes a cumulative distribution of normalized scores, denoted

R(y,K,M), and its probability density function, r(y,K,M), again such that y = xM
K :

R(y,K,M) := G
(

y K
M ,K,M

)

.

Proposition 5 (Rigidity increases scores). Let (M ′,K ′) be a less flexible curriculum than

(M,K). Then, for any y ∈ (0, 1),

R(y,K ′,M ′) < R(y,K,M).
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By Proposition 5, any percentile of the distribution R(y,K,M) is decreasing in flexibility.

For example, if ỹ(K,M) denotes the median percentile, R(ỹ(K,M),K,M) = 1
2 , then ỹ(K,M)

is decreasing in K and increasing in M . In contrast, Appendix B.2 shows that the median

of the initial (non-normalized) distribution G(x,K,M), denoted x̃(K,M), may decrease but

also increase in flexibility.

6.3 Students’ preferences over normalized curricula

The dominance property has clear implications for students’ preferences over curricula. If the

students’ valuations of realized scores are exogenous to the curriculum structure, then having

a more flexible normalized curriculum implies lower scores. Given the dominance property,

this effect holds ex post for all types of students, irrespective of the levels of fit. This reverts

the observation from the baseline case in which students with linear valuations always benefit

from more flexible curricula; here, the result generalizes beyond shape of the valuation as the

preference holds both ex ante and ex post.

The assumption that the valuations of scores are exogenous is obviously simplifying as

firms in the long term account for changes in score distribution, hence the market valuation

at least partly offsets the normalization. Still, grading rules are often imperfectly observable

(Zubrickas, 2015). Also, there is evidence that students perceive re-parameterizations such

as decreases in the grade ceiling costly. For example, Gorry (2017) observes a drop in the

students’ satisfaction, manifested in worse teaching evaluations, after a grade ceiling dropped.

So far, we have assumed that a student who assesses various curricula maximizes the

received scores (or the average of the received scores if the curricula differ in the number of

course requirements). From that perspective, a high ‘fit’ to a course is just instrumental to

receiving a high score. In addition to the market valuation of the high scores, we may consider

broader benefits of a high fit; for instance, a student consumes higher intrinsic benefits, or

exerts less effort if the fit is high. These extra benefits imply that the average realized fit

is part of a students objective. As the average realized fit increases with a larger K (a

richer menu) and a lower M (higher selection), the existence of these extra benefits sway the

preferences back towards curriculum flexibility.

7 Ex post mean-score ceiling

Among potentially unwelcome consequences of flexibility is the pronounced selectivity of the

students; we know that all students decrease their response rates if a curriculum becomes

more flexible, and the drop (measure proportionally) is identical at each level of the offer. As

a consequence, the mean ex post score even deviates more from the mean interim score. In

this section we analyze a radical policy through which a school, concerned about the score-

inflating effects of self-selection, eliminates the self-selection bias of the mean-score norm

altogether.
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To eliminate the self-selection biases altogether, the grading norm now has to apply to the

self-selected groups of students, namely it must be evaluated ex post. In this section, we show

that, as a consequence, the instructors no longer compete. As a result, all positive informative

effect of scores resulting from benefits of sorting are wiped out. Specifically, Proposition 6

demonstrates that a symmetric equilibrium in pure strategies (i.e., an identical exam score

offered to all electives shoppers) is an equilibrium with the ex post mean constraint. For

completeness, we check that this profile is not an equilibrium with the ex ante mean constraint.

We will obtain the result clearly in a discrete setting, for any support of scores that is

sufficiently fine-grained. Formally, an exam score is a non-negative integer, x ∈ N0. The ex

ante constraint in a discrete setting writes
∑

x∈N0
xf(x) ≤ z; the ex post constraint writes

∑

x∈N0
xg(x) ≤ z. We let the required ex post mean score z ∈ N to be very large, z ≫ 0, so

that the support grid is fine enough. Next, let F z be a degenerate cumulative distribution

function that offers an identical z to all students,

fz(x) =







1 if x = z,

0 if x 6= z.

Notice that for both constraints, only a single strategy profile is admissible, symmetric

(F1 = · · · = FK), and in pure strategies, namely F z := F1 = · · · = FK . Proposition 6 checks

whether this profile is an equilibrium profile under the ex post constraint and the ex ante

constraint.

Proposition 6 (Lack of competition). Awarding identical scores, (F z, . . . , F z), is an equilib-

rium strategy profile under the ex post mean-score ceiling but not under the ex ante mean-score

ceiling.

Intuitively, when instructors offer non-discriminative scores and thus avoid competing

with each other, students spread equally and some offers are rejected. If an instructor slightly

increases her offers to many students, she receives positive responses to those offers with

certainty. This greatly boosts class size. The ex ante mean constraint is now slightly exceeded;

to compensate, it is sufficient for the instructor to give to a few students a very low offer.

For the ex post constraint, however, this compensation procedure is not feasible as low offers

are never accepted, and therefore do not enter the ex post scores distribution. Therefore, the

instructor is locked to the average; she cannot propose larger scores without violating the ex

post mean.

8 Conclusions

High educational standards can be maintained and enforced only through appropriate grading

practices. However, grading in higher education institutions is to a great extent the respon-

sibility of individual instructors, and their objectives may differ from the maintenance of
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standards. For elective courses in particular, instructors are motivated to engage in grading

competition whenever class size or students’ satisfaction serve as the instructors’ performance

indicators.

To curb lenient grading associated with grading competition, schools tend to adopt var-

ious grading norms, among which the most widely analyzed is a constraint on the average

grades. In this paper, we theoretically analyze how this grading norm combined with other

grading norms may influence grading, and thus the enforcement of educational standards.

Our framework cleanly identifies the effects of grading norms on the distribution of grades

that abstract from the effects on effort; how the grading norms affect the effort has been stud-

ied extensively elsewhere (Becker and Rosen, 1992; Dubey and Geanakoplos, 2010; Andreoni

and Brownback, 2017; Paredes, 2017; Brownback, 2018).

Technically, we apply Continuous General Lotto games into a setting with ex ante ho-

mogenous students and suppose the school regulates the mean course score. In addition, we

suppose that the school doesn’t punish favorable self-selection as it calculates the mean for

a representative sample of students. We primarily investigate the effects of having a more

intensive grading competition. With a more flexible curriculum, the gap in scores widens; the

best students will receive higher scores whereas worse students will receive lower scores. In a

word, inequality increases.

The very large scores awarded to the best students and the score inequality are two

major concerns associated with flexibility. We analyze three scenarios of how the incentive

to provide excessive scores is counteracted while the mean-score norm is preserved. All

scenarios illustrate that the complex regulation of both mean and top scores comes at a cost.

By imposing caps on the scores, the top course scores are less informative for both students

and employers, and moreover the students get separated into two disjoint groups; a new kind

of inequality emerges in the class. If the mean ceiling is lower for more flexible curricula, all

types of students receive lower scores and thus will demand rigid curricula even at the cost

of low variety. If favorable self-selection is eliminated by imposing the mean-score norm on

the self-selected students, sorting of students into courses is distorted,

In particular, our analysis uncovers an inequality-promoting channel associated with grad-

ing standards. In the literature, grading standards are often measured by how restrictive a

school is on average (Betts and Grogger 2003; Figlio and Lucas 2004). In our model, this

restriction is directly captured by the level of the mean ceiling. In the absence of the cap

on the scores, higher standards (a more stringent mean-score restriction) decrease received

scores proportionally, hence inequality is not affected. Yet, if the scores are capped from

above, the drops at the top are less pronounced, and inequality grows. This result reveals an

inequality-promoting channel that works independently on the channel on effort, and corre-

sponds to observations that exogenously measured achievement rises more for students near

the top of the achievement distribution rather than for the students near the bottom (Betts

and Grogger, 2003).
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Our approach also suggests that admissible signal technologies of the schools may be effec-

tively limited by the existence of decentralized grading practices; noise to ability always has

to have a specific equilibrium structure, where the structure depends on the grading norms

as well as curriculum structure. Thus, the literature on the optimal signal technology in the

context of educational markets (Ostrovsky and Schwarz, 2010; Popov and Bernhardt, 2013;

Boleslavsky and Cotton, 2015; Harbaugh and Rasmusen, 2018) may benefit from incorporat-

ing lessons from decentralized grading explicitly into the analysis.

In terms of policy consequences, we essentially illustrate that addressing grade inflation

through grading norms generates nuanced effects on scores and grade distribution. In partic-

ular, we observe unintended consequences of grading norms in terms of inequality (division

of the class into two separate groups, achievers and laggards), rigidity (strategic support of

rigid curricula that more often give relatively high scores), and inefficiency (inefficient sorting

of students into courses).
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A Proofs

A.1 Proof of Proposition 1

Proof. Any admissible Fk(x) is restrained by the mean-ceilibg policy that normalizes the

average signal to be exactly one. We multiply this constraint by M
K , and insert it into the

objective in into (7),

∫ ∞

0
x
M

K
dFk(x)dx =

M

K
=

∫ ∞

0
B(M − 1,K − 1, 1− F (x))dFk(x). (6)

The only solution which yields B(M − 1,K − 1, 1 − F (x)) linear in x (as in Myerson,

1993, or Hart, 2008) is B(M − 1,K − 1, 1 − F (x,K,M)) = xM
K . It is immediate to see

that the distribution in (2) is indeed the equilibrium solution. From the linearity of the

conditional probability, notice that B(M − 1,K − 1, 1−F (x,K,M)) = xM
K if x ∈ [0, K

M ], and

B(M −1,K−1, 1−F (x,K,M)) = 1 < xM
K if x > K

M . Therefore, if the instructor deviates to

another Fk(x) that complies with the grade means restriction,
∫∞
0 xdFk(x) = 1, her expected

payoff cannot increase,

Πk(X1, . . . , XK) =

∫ ∞

0
B(M − 1,K − 1, 1− F (x))dFk(x) ≤

∫ ∞

0
x
M

K
dFk(x) =

M

K
. (7)

A.2 Proof of Proposition 2

Proof. To obtain the distribution of ex post scores, denoted G(x,K,M), recall Ak ∈ {0, 1}
is the random indicator variable denoting the decision to take the course k. Probability of

taking the course conditional on Xk = x is Pr(Ak = 1|Xk = x) = B(K − 1,M − 1, 1−F (x)).

The joint probability is Pr(Ak = 1∩Xk = x) = B(M − 1,K − 1, 1−F (x))f(x). We use that

the marginal density of Ak = 1 is the expected payoff, Pr(Ak = 1) = Πk(X1, . . . , XK) = M
K .

Then, the conditional probability of Xk = x on Ak = 1 is

g(x) = Pr(Xk = x|Ak = 1) =
Pr(Ak = 1 ∩Xk = x)

Pr(Ak = 1)
= B(M−1,K−1, 1−F (x))f(x)

K

M
= xf(x).

A.3 Proof of Proposition 3

Proof. First, see that t is a unique solution, because LHS of (5) is decreasing in t for t < c (i.e.,

its derivative is f(t)(t− c) < 0), while RHS is constant in t. Notice also that the distribution

is defined only for c ≥ 1; if c < 1, then we don’t have a single-crossing as LHS evaluated at
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t = 0 is below RHS. For c < 1, the equilibrium distribution is degenerate, F̂ (x,K,M) = 0 if

x < c and F̂ (x,K,M) = 1 if x ≥ c.

Second, the resource constraint is satisfied, because the F̂ -distribution is a lottery over

(µ′, c) with probabilities (F (t), 1−F (t)), where µ′ is a mean of the truncated F -distribution,

µ′ = 1
F (t)

∫ t
0 xf(x)dx. Then, the mean of the F̂ -distribution is exactly equivalent to LHS in

(5), and this yields that the resource constraint is just met,

F (t)µ′ + (1− F (t))c =

∫ t

0
xf(x)dx+ (1− F (t))c = 1.

Third, consider any deviation of an instructor k. Notice immediately that if a deviation

imposes positive probability mass on any xk ∈ (t, c), then there exists a more profitable

deviation which (i) shifts the probability to x′k ∈ (t, xk), and (ii) exploits the relaxed constraint

such that it shifts the probability mass from some low x to a higher x. Simply, all shifts in

(i) will be exploited as such shifts relax the constraint without affecting the expected payoff

Πk, given that πk is flat in the interval x ∈ (t, c). Therefore, we will consider only deviations

to distributions which impose zero probability on (t, c).

We insert the resource constraint of Fk,
∫ t
0 xfk(x)dx+ (1−Fk(t))c ≤ 1, into the expected

payoff upon a deviation to Fk:

Πk =

∫ t

0
B(M − 1,K − 1, 1− F (x))fk(x)dx+ [1− Fk(t)]B(M − 1,K − 1, 1− F (c))

=

∫ t

0
x
M

K
fk(x)dx+ [1− Fk(t)]c

M

K
≤ [1− (1− Fk(t))c]

M

K
+ [1− Fk(t)]c

M

K
=

M

K

Hence, the deviation doesn’t pay off, Πk ≤ M
K .

A.4 Proof of Proposition 4

Proof. To start with, recall F (x,K,M) is the distribution parameterized by K and M . This

distribution characterizes a normalized cumulative distribution H(y,K,M) (and its proba-

bility density function h(y,K,M)) such that y = xM
K , where

H(y,K,M) = F
(

y K
M ,K,M

)

.

Notice that F (x,K,M) has a support [0, K
M ], whereas any normalized distributionH(y,K,M)

has a support [0, 1].

In the first step, we exploit the implicit form of the equilibrium cumulative distribution.

Throughout the paper, we will slightly abuse the problem by switching from discrete K to

continuous K; clearly, the switch is irrelevant as long as the first derivatives are strictly

monotonic. Namely, by derivating B(m,n, p) := B(M − 1,K − 1, 1 −H(y,K,M)) = y with

respect to K (i.e., holding M as well as the normalized score y constant), we obtain

Bn(m,n, p)−Bp(m,n, p)HK(y,K,M) = 0.

23



Notice we use subscripts for partial derivatives. We translate the monotonic property of

the discrete binomial distribution B(m,n + 1, p) − B(m,n, p) < 0 into its continuous form,

Bn(m,n, p) < 0. Using also that Bp(m,n, p) < 0 holds, we obtain that the value of H-

distribution is increasing in K:

HK(y,K,M) > 0.

In exactly the same way, we obtain HM (y,K,M) < 0. These properties are sufficient and

necessary for a comparison of distributions in terms of the first-order stochastic dominance.

A.5 Proof of Proposition 5

Proof. We concentrate only on properties of the distribution of normalized scores R(y). To

prove that R(y,K,M) is monotonic in K and M , we proceed in three steps. First, we express

the density of the ex ante normalized scores h(y):

h(y,K,M) =
dF (y K

M ,K,M)

dy
=

dF (y K
M ,K,M)

dx

dx

dy
= f(y K

M ,K,M)
K

M
.

We enter into the density r(y,K,M):

r(y,K,M) =
dG(y K

M ,K,M)

dy
=

dG(y K
M ,K,M)

dx

dx

dy
= g(y K

M )
K

M
= f(y K

M ,K,M)y
K2

M2
= h(y,K,M)y

K

M
.

Second, we express how the density changes in K:

rK(y,K,M) =
y

M
h(y) +

yK

M
hK(y,K,M).

The first component is positive. We prove that the second component is also positive.

Namely, we apply Leibniz rule on the ex ante scores and our observation on the marginal

effect of K on the density h(y,K,M),

∫ ŷ

0
hK(y, K̂,M)dy =

∂
∫ ŷ
0 h(y, K̂,M)dy

∂K
= HK(ŷ, K̂,M) > 0.

Since HK(ŷ, K̂,M) > 0 for any (ŷ, K̂), then hK(y,K,M) > 0 for all (ŷ, K̂,M). As a

consequence, also rK(y,K,M) > 0 for any K. Finally, we impose Leibniz rule on the ex post

scores to observe

RK(ŷ, K̂,M) =
∂
∫ ŷ
0 r(y, K̂,M)dy

∂K
=

∫ ŷ

0
rK(y, K̂,M)dy > 0.

Obtaining RM (ŷ, K̂,M) < 0 is by analogy.
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A.6 Proof to Proposition 6

Proof. Take a course k. If this course offers a realization Xk = x to a representative student

and all other courses stick to F z, then the response rate (the event is denoted Ak ∈ {0, 1}) is

π(x) := Pr(Ak = 1 | x) =



















0 if x < z,

M
K if x = z,

1 if x > z.

The proof now analyzes deviations under each of the two constraints separately. For each

deviation, we use that the probabilities sum up to one, and also that the respective constraint

must be met.

Ex ante mean constraint. We show that the instructor of course k can improve her payoff

if the support is fine-grained enough. The idea is close to ‘concavification’ in Kamenica and

Gentzkow (2010); namely, if we construct a concave closure of π(x), denoted as c(x), then the

instructor can obtain the payoff c(z), where limz→∞ c(z) = 1. In other words, for a sufficiently

fine-grained support, the instructor can deviate such that almost all students attending the

class in the shopping period will eventually enroll in the class.

The deviation will have the following form: The instructor will redistribute some proba-

bility mass to points x = 0 (low offer) and x = z+1 (high offer), dfk(0) > 0 and dfk(z+1) > 0.

We suppose the ex ante mean constraint is met,

fk(0)0 + (1− fk(0)− fk(z + 1))z + fk(z + 1)(z + 1) = z,

which implies

fk(0) =
fk(z + 1)

z
.

The marginal effect on the payoff is

dΠk

dfk(z + 1)
=

dfk(0)

dfk(z + 1)

(

−M

K

)

+ 1− M

K
=

1

z

(

−M

K

)

+ 1− M

K
.

If the support becomes fine-grained enough, i.e., for a sufficiently large z, the payoff

increases with the redistribution,

lim
z→∞

dΠk

dfk(z + 1)
= 1− M

K
> 0.

Ex post mean constraint. First, we will characterize any Fk(x) by two key probabilities,

fk(z) and fk(z
+) :=

∑∞
x=z+1 fk(x). If all other courses stick to F z, then the instructor’s

payoff is

Πk := Pr(Ak = 1) = fk(z)π(z) + fk(z
+)π(z + 1) = fk(z)

M

K
+ fk(z

+).
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In the symmetric profile, fk(z) = 1 and fk(z
+) = 0. Clearly, a necessary condition for an

increase in payoff Πk is dfk(z
+) > 0. We will show that this violates the ex post constraint,

and therefore the instructor’s optimal distribution is Fk(x) = F z(x).

First, see that the distribution of the realized scores in the course k is

gk(x) := Pr(x | Ak = 1) =
Pr(Ak = 1 | x) Pr(x)

Pr(Ak = 1)
=

π(x)fk(x)

fk(z)
M
K + fk(z+)

.

The ex post mean satisfies

∑

x∈N0

xgk(x) =
zfk(z)

M
K

fk(z)
M
K + fk(z+)

+
∞
∑

x=z+1

xfk(x)

fk(z)
M
K + fk(z+)

≥ zfk(z)
M
K + (z + 1)fk(z

+)

fk(z)
M
K + fk(z+)

.

Now, if consider a deviation dfk(z
+) > 0, then in the new distribution, we observe fk(z

+) >

0. Therefore, its ex post mean violates the ex post constraint,

∑

x∈N0

xgk(x) ≥
zfk(z)

M
K + (z + 1)fk(z

+)

fk(z)
M
K + fk(z+)

>
zfk(z)

M
K + zfk(z

+)

fk(z)
M
K + fk(z+)

= z.

B Examples

B.1 Closed-form solution

The existence of a binomial function affects tractability of the problem. To begin with, once

students either pick a single course (M = 1) or avoid a single course (M = K−1), closed-form

solutions are straightforward:

F (x,K, 1) =
(

x
K

)
1

K−1

F (x,K,K − 1) = 1−
[

1− (K − 1) x
K

]
1

K−1

In the language of electoral systems (Myerson, 1993), the two cases describe campaign

promises for plurality and antiplurality voting systems, where a campaign promise is a distri-

bution of a fixed cake in a population of voters. Any other case becomes rather complicated,

even for a small K. For instance, the lowest K which generates a case different from plurality

and antiplurality is K = 4, where M = 2. Then,

B(3, 1, p) = (1− p)3 + 3p(1− p)2 = (1− p)2(1 + 2p) = F 2(x)[3− 2F (x)] =
x

2
.

Using numerical tools, we obtain an offer function

F (x, 4, 2) = −1

4
(1 + i

√
3)(

√

x2 − 2x− x+ 1)1/3 − 1− i
√
3

4(
√
x2 − 2x− x+ 1)1/3

+
1

2
,
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on x ∈ [0, 2]. Its probability distribution function has a U-shape, with many offers being very

small and many offers being very large,

f(x, 4, 2) =
(1− i

√
3)

(

x−1√
x2−2x

− 1
)

12(
√
x2 − 2x− x+ 1)

4

3

−
(1 + i

√
3)

(

x−1√
x2−2x

− 1
)

12(
√
x2 − 2x− x+ 1)

2

3

.

The case of K = 4 serves as a clean illustration of the property found in Proposition 4:

For a small M , the distribution is skewed to the right with a higher frequency of small offers

(bad scores); for an intermediate M , there are both very small offers and very large offers

(separation); and, for a large M , the distribution is skewed to the left with a higher frequency

of large offers (good scores).

To obtain a closed-form solution in general, we may represent the binomial function as a

regularized incomplete beta function,

B(M − 1,K − 1, 1− F (x,K,M)) = (M − 1)

(

K − 1

M − 1

)
∫ F (x,K,M)

0
tM−2(1− t)K−Mdt.

Hence, its first derivative w.r.t. to x must be constant. However, when solving the integral
∫

tM−2(1− t)K−Mdt, we obtain a product of an exponential function evaluated at x and the

Gauss hypergeometric function evaluated at F (x,K,M).

B.2 Median score is not monotonic in flexibility

Suppose we increase the requirements from M = 1 to M = 2; the number of electives is fixed

and satisfies K ≥ 3. Denote the median value x̃(K,M), hence in this specific case x̃(K, 1)

and x̃(K, 2). Given than F (x) = 1
2 characterizes the median, we can easily characterize the

median values, and find that increasing rigidity from M = 1 to M = 2 (i.e., limiting flexibility

from its maximum) in fact increases the median value of noise:

x̃(K, 2)

x̃(K, 1)
=

B(K − 1, 1, 12)

2B(K − 1, 0, 12)
=

K

2
> 1.

In contrast, suppose we increase requirements from M = K − 2 to M = K − 1; again,

the number of electives is fixed and satisfies K ≥ 3. Analyze the ratio of the corresponding

median values:

x̃(K,K − 1)

x̃(K,K − 2)
=

K − 2

K − 1
·B(K − 1,K − 2, 12)

B(K − 1,K − 3, 12)
=

K − 2

K − 1
·1−B(K − 1, 0, 12)

1−B(K − 1, 1, 12)
=

K − 2

K − 1
· 2

K−1 − 1

2K−1 −K
.

We observe that x̃(K,K−1) > x̃(K,K−2) for 3 ≤ K ≤ 5, and x̃(K,K−2) > x̃(K,K−1)

for K ≥ 6. In other words, increasing rigidity to its maximum decreases the median offered

score if the number of the electives is sufficiently large.
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B.3 For M = 1, self-selection turns positive skew into negative skew

We briefly show that self-selection greatly impacts scores distribution if the students pick just

a single course. Consider M = 1. The probability density function of the ex ante grades is

f(x,K, 1) =
1

K − 1

(

1

K

)
1

K−1

x
2−K

K−1 .

The probability density of the ex post grades is

g(x,K, 1) = xf(x,K, 1) =
1

K − 1

(

1

K

)
1

K−1

x
1

K−1 .

Clearly, f(x,K, 1) is decreasing in x (median below mean; here also positive skew), whereas

g(x,K, 1) is increasing in x (median above mean; here also negative skew).

C Endogenous resources

In this extension, the resource constraint (mean-score cap) of an instructor is now

∫ ∞

0
x df(x) ≤ r.

The school allocates a single unit of resources for free (i.e., total test points), while any

extra resources r−1 (such as the instructor’s attention) are costly to the instructor. The cost

function C(r) is continuous, increasing, convex, twice-differentiable, and to comply with our

interpretation, it is normalized at C(1) = 0.

The instructor k sets (rk, Fk) simultaneously; in other words, he is flexible enough to

adjust the amount of resources in the electives-shopping period if necessary. We will again

look for the symmetric equilibrium characterized by (r, F ). Clearly, by inserting the symmetric

equilibrium value of r into (2), the implicitly characterized distribution F is now simply

B(M − 1,K − 1, 1− F (x,K,M)) = x
M

Kr
. (8)

To derive the equilibrium value of r, consider an instructor k’s payoff upon a deviation to

any rk. By inserting (8) into the payoff and combing with the resource constraint, we obtain

that extra resources increases the market share M
K proportionally,

Πk =

∫ ∞

0
B(M − 1,K − 1, 1− F (x,K,M))f(x)dx− C(rk) =

M

K

rk
r

− C(rk).

The equilibrium value of r is characterized by the F.O.C., which yields the following

implicit function:

I(KM ; r) := C ′(r)− M

Kr
= 0.
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What is the effect of curriculum flexibility on resources? As more flexible curricula are

more competitive, there is a lower ‘market share’ for each instructor. Since extra resources

increase the market share proportionally, the marginal benefit is also lower. Hence, flexibility

somewhat unexpectedly decreases extra attention paid to the students. Formally, we use that
∂I

∂K/M = M2

K2r
> 0 and ∂I

∂r = C ′′(r) + M
Kr2

> 0 to obtain

dr

dK/M
= −

∂I
∂K/M

∂I
∂r

< 0.

In spite of this effect, we will show that the result about top scores observed in Corollary

1 is robust to the existence of the option to provide extra resources. The upper bound for

the scores is x̄ := rK
M , and hence the F.O.C. is simply

x̄ =
1

C ′(r)
.

By derivating, the top score is indeed increasing in curriculum flexibility,

dx̄

dK/M
= −C ′′(r)

C ′2(r)

dr

dK/M
> 0.
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