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Abstract: 

We study volatility spillovers among commodity and equity markets by employing a 

recently developed approach based on realized measures and forecast error variance 

decomposition invariant to the variable ordering from vector-autoregressions. This 

enables us to measure total, directional and net volatility spillovers as well as the 

asymmetry of responses to positive and negative shocks. We exploit high-frequency 

data on the prices of Crude oil, Corn, Cotton and Gold futures, and the S&P 500 

Index and use a sample which spans from January 2002 to December 2015 to cover 

the entire period around the global financial crisis of 2008. Our empirical analysis 

reveals that on average, the volatility shocks related to other markets account for 

around one fifth of the volatility forecast error variance. We find that shocks to the 

stock markets play the most important role as the S&P 500 Index dominates all 

commodities in terms of general volatility spillover transmission. Our results further 

suggest that volatility spillovers across the analyzed assets were rather limited before 

the global financial crisis, which then boosted the connectedness between 

commodity and stock markets. Furthermore, the volatility due to positive and 

negative shocks is transmitted between markets at different magnitudes and the 

prevailing effect has varied. In the pre-crisis period, the positive spillovers 

dominated the negative ones, however, in several years following the crisis, the 

negative shocks have had a significantly higher impact on the volatility spillovers 

across the markets, pointing to an overall increase in uncertainty in the commodity 

and equity markets following a major crisis. In recent years, the asymmetric 

measures seem to have returned to their pre-crises directions and magnitudes. 
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1 Introduction

In the last decades, individual markets have become interconnected in an unprecedented

manner and financial liberalization and internationalization of trade have induced a sig-

nificant increase in volatility in these markets. With higher integration, commodity and

equity markets have become more sensitive to innovations, changing political and eco-

nomic situation, positive and negative shocks and changes in the investors’ expectations.

Moreover, as commodity markets become more financialized and the liquidity of com-

modity futures increases, an increasing number of investors are interested in commodi-

ties exclusively as investments. Monitoring, analyzing and understanding time-varying

volatility and the transmission mechanism across different asset classes has thus become

of fundamental concern for researchers, investors as well as for policy makers.

Most previous studies have focused on volatility spillovers among major stock markets,

across one specific industry or between the crude oil market and financial markets. In

this paper we model volatility spillovers across widely traded commodity markets, specif-

ically among Crude oil, Gold, Corn and Cotton futures, and one of the main U.S. stock

market indices, the S&P 500 Index, to represent the equity market. Each of the included

commodities represents an important asset in its class - energy, precious metal, grain and

fiber, respectively. We employ high-frequency data for the period from January 2002 to

December 2015 which enables us to examine volatility spillovers before, during, and after

the global financial crisis of 2008.

Following the approach of Diebold and Yilmaz (2009), we base our methodology on the

construction of a simple quantitative measure of interdependence, the so-called spillover

index. Specifically, our approach is based directly on the decomposition of the forecast

error variance of a vector auto-regressive model, which allows us to distinguish the forecast

error variance in one market from the shocks in other markets and thus to estimate the

spillover effect. We employ an extension to this approach pioneered by Baruńık et al.

(2016), who build not only upon the work on spillover indices by Diebold and Yilmaz

(2009), but also on the updated methodology introduced by Diebold and Yilmaz (2012),

which introduces measures of both total and directional volatility spillovers. The resulting

modified indices allow for modeling asymmetric responses to positive and negative shocks.

We find that volatility spillovers across the analyzed assets were rather limited before

the 2008 crisis, which then deepened the connectedness between commodity and stock

markets and emphasized further financialization of commodities. The shocks to the stock

markets play the most important role regarding the transmission of volatility as the S&P

500 Index dominates all commodities in terms of general volatility spillover transmis-

sion measures. We analyze asymmetric responses to positive and negative shocks and

our results contradict the common perception that the negative shocks impact volatility

spillovers more heavily than the positive ones and suggest that except for the times of

crises, the attitude of market participants is not as pessimistic as generally assumed. In

the pre-crisis period, positive spillovers dominated the negative ones, however, after the

Lehman Brothers collapse in September 2008, the negative shocks have had a significantly
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higher impact on the volatility spillovers across the analyzed markets. Nevertheless, in

recent years, we observe that the asymmetric measures seem to have gradually returned

to their pre-crises directions and magnitudes.

The remainder of this paper is structured as follows. The following section provides an

overview of the existing literature focusing on inter-market connectedness, transmission

of volatility between different markets, measurement of volatility spillovers and asymmet-

ric responses to positive and negative shocks. In Section 3 we describe the theoretical

background behind the construction of realized measures and the methodology used to

estimate the effects of volatility in commodity and equity markets. We detail the con-

struction and adjustments of the data and provide some descriptive statistics in Section

4. In Section 5 we evaluate the results of a static and dynamic analysis of volatility

spillovers between the two asset classes—stocks and commodities—as well as volatility

spillovers across different commodities and we further investigate potential asymmetries

in the transmission mechanism due to negative and positive shocks. Section 6 concludes

and discusses the contribution of our analysis.

2 Literature review

In this section we overview the existing literature focusing on the inter-market connect-

edness between assets, and in particular those included in our analysis. We then briefly

summarize the approaches used in the literature to measure volatility spillovers and the

asymmetry of the response to positive and negative shocks.

The majority of the existing studies that analyze volatility transmission focus on the

relationships among different key stock markets or between the crude oil market and

financial markets. Arouri et al. (2012) investigate the volatility transmission between

oil and stock markets in Europe using the VAR–GARCH model, enabling the analysis

of spillover effects in both returns and conditional volatility, and document significant

volatility spillovers between oil and stock markets in Europe with various intensity of

volatility interactions in different sectors. The transmission effect from oil to stock markets

shows to be more evident. In order to extract the nature of the relationship between the

volatility of stock and oil futures markets, Vo (2011) employs the bivariate VAR(1)-SV

model for the joint processes governing the S&P 500 Index and the oil futures returns

during the 1999–2009 period. The author finds that there is time-varying correlation

between the stock and oil futures markets which tends to grow with increasing volatility

in the market, and daily volatility in both markets shows to be very persistent and hence

quite predictable. Degiannakis et al. (2013) examine the relationship between the returns

of oil prices and industrial sector indices in a time-varying heteroskedastic environment,

taking into consideration the origin of the oil prices shocks. The results show that the

correlation between industrial sectors’ returns and oil price returns is influenced by the

origin of the oil price shock as well as by the type of industry. Degiannakis et al. (2014)
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follow up with a study showing that oil price changes due to aggregate demand shocks

lead to a reduction in stock market volatility in Europe, and that supply-side shocks and

oil specific demand shocks do not affect volatility.

In recent years, significant volatility in the U.S. stock market and dramatic fluctua-

tions in the global price of crude oil spurred notable academic interest in studying the

relationships of these markets. For example, Kang et al. (2015) use a structural VAR

model to study the impact of global oil price shocks on the covariance of U.S. stock mar-

ket returns and the stock market volatility. The results reveal that after the 2008 crisis,

oil-market specific demand shocks predicted a much larger fraction of implied-covariance

of stock returns and volatility than in the pre-crisis period. Importantly, the authors find

that positive shocks to aggregate demand and to oil-market specific demand are asso-

ciated with negative effects on the covariance of return and volatility, while oil supply

disruptions are associated with positive effects. The spillover index measuring the degree

of connectedness for the oil market and the stock market shows to be relatively large and

highly statistically significant, suggesting a strong connection between the volatility of oil

prices and stock market returns.

Other commodity markets and their inter-connectedness have received relatively less

attention, however, there are reasons to think that it plays an important role. First, there

has been an extensive increase in the price volatility of non-energy commodities, argued

by Tang and Xiong (2012) to be a result of financialization of the markets (Basak and

Pavlova, 2016), a process accelerated by the fast growth of commodity index investment

and causing increased commodity price correlations. Tang and Xiong (2012) find intensi-

fied price co-movements between non-energy commodity futures and oil prices since 2000,

contemporaneously with the rapidly increasing index investment in commodity markets.

The expanding financialization of commodities in general is documented by other studies

as well (Dwyer et al., 2011, Vivian and Wohar, 2012, Mensi et al., 2013, Creti et al., 2013,

Basak and Pavlova, 2016).

Nazlioglu et al. (2013) study volatility transmission between oil and selected agri-

cultural commodity prices—sugar, wheat, soybeans and corn. The time period under

research is divided into two, the period before (1986-2005) and after (2006-2011) the food

price crisis. By employing a recently developed variance causality test, they show that

the risk spills over between oil and agriculture commodity markets (except for sugar) in

the post-crisis period while there is no such evidence in the period before the food crisis.

Du et al. (2011) also study the relationship between crude oil prices and agricultural mar-

kets and the potential transmission of their volatility over the time period from November

1998 to January 2009. They apply stochastic volatility models with parameters estimated

by Bayesian Markov Chain Monte Carlo (MCMC) methods to weekly average settlement

prices of crude oil, corn and wheat futures and find that the recent oil price shocks appear

to have a substantial impact on agricultural commodity markets. These results confirm

their assumption about the volatility spillovers among crude oil, corn, and wheat mar-

kets after the fall of 2006 potentially caused by the increasing presence of commodity
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investments.

A distinct body of literature studies the links between the commodity markets and

the stock markets and the transmission of volatility between them. Creti et al. (2013)

study the connectedness between price returns for 25 commodities and stocks. In partic-

ular, they cover various sectors such as energy, precious metals, agricultural, non-ferrous

metals, food, oleaginous, exotic and livestock, including also an aggregate commodity

price index, the Commodity Research Bureau (CRB) index, as well as the S&P 500 Index

representing the U.S. equity market. To investigate the time evolution of correlations

between the various markets during 11 years spanning from 2001 to 2011, they proxy

the volatility by the daily squared returns of prices and employ the dynamic conditional

correlation GARCH methodology. The results suggest that the correlations between com-

modity and stock markets evolve over time and fluctuate substantially, with high volatility

being particularly observable in the post-crisis period. On the other hand, the safe-haven

role of gold is revealed as the correlation with the stock market is mainly negative and

in times of declining stock prices is less considerable. Despite the fact that there are

some common features for the commodities included in the analysis, Creti et al. (2013)

conclude that they cannot be regarded as a homogeneous asset class. This is in line with

results reached by Vivian and Wohar (2012) who argue that commodities are too diverse

to be considered as an asset class. Mensi et al. (2013) examine possible correlations and

potential volatility spillovers across commodity and stock markets. Specifically, using the

VAR-GARCH model, they analyze volatility transmission between the S&P 500 Index re-

turns and BRENT, WTI, WHEAT, GOLD, and BEVERAGE spot prices over the period

from 2000 to 2011. Their results suggest a substantial correlation and volatility spillovers

across commodity and stock markets revealing that the highest conditional correlations

are exhibited between the S&P 500 Index and Gold and the S&P 500 Index and the WTI

index. Further emerging empirical literature studying the links between the commodity

and equity markets also underlines the usefulness of the analysis of volatility transmission

between the two types of markets as volatility plays a crucial role in determining sub-

stitution strategies and hedging possibilities (Choi and Hammoudeh, 2010, Dwyer et al.,

2011, Silvennoinen and Thorp, 2013).

The vast majority of this research has used multivariate GARCH models, cointegra-

tion, structural VAR models or ARCH type models to study volatility spillovers. These

models are, however, very limited in the detail in which they are able to quantify spillovers

(Baruńık et al., 2015). In order to better measure and capture volatility spillovers, Diebold

and Yilmaz (2009) introduce a simple and intuitive measure of connectedness between as-

sets based on forecast error variance decompositions from vector autoregressions. Several

drawbacks of this approach were solved by Diebold and Yilmaz (2012) who provide an

improved volatility spillover measure in which forecast-error variance decompositions are

invariant to variable ordering. This updated methodology allows us to measure both the

total and directional volatility spillovers and reveals the level of intra-market spillovers.

Klößner and Wagner (2014) further enhance the volatility spillover index by developing
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a new algorithm for the swiftly calculation of the minimum and maximum of the index

over all renumerations. In this paper, we use an approach that builds on these devel-

opments and was proposed by Baruńık et al. (2016). Combining the volatility spillover

index methodology and the concept of positive and negative realized semivariances pro-

posed by Barndorff-Nielsen et al. (2010) allows us to analyze the asymmetric spillovers

using high-frequency measures.

Regarding directional spillovers, Diebold and Yilmaz (2009) analyze nineteen global

equity markets from the early 1990s and find a strong evidence of divergence in the

dynamics of return spillovers and volatility spillovers. Diebold and Yilmaz (2012) measure

both the total and directional daily volatility spillovers among four U.S. asset classes—

stocks, bonds, foreign exchange rates and commodities—from January 1999 to January

2010. The authors show that the cross-market volatility spillovers proved to have an

increasing importance during the global financial crisis of 2008. Until then, the volatility

transmissions across assets were quite limited. Specifically, the spillovers from the stock

market to the other markets have shown to be significant especially after the collapse of

the Lehman Brothers in September 2008. Diebold et al. (2017) study the connectedness

among 19 key commodities between 2011 and 2016 and their results show a clear clustering

of commodities into groups that match traditional industry groupings, with only a few

exceptions. The energy sector turns out to be the most important in terms of transmitting

shocks to other markets. Baruńık et al. (2016) focus on data covering the most liquid U.S.

stocks in several sectors between 2004 and 2011. The results suggest there is asymmetric

connectedness in the U.S. stock market. Furthermore, the positive and negative volatility

transmissions show to have different volumes which changes over time in different sectors.

The authors conclude that the overall intra-market connectedness of the U.S. stocks rose

significantly during the recent financial crisis. Baruńık et al. (2015) study spillovers from

volatility among petroleum commodities during the 1987-2014 period and find evidence

for increasing volatility spillovers that substantially change after the 2008 financial crisis.

They argue that the observed higher volumes of volatility spillovers are related to the

progressive financialization of commodities. Regarding the asymmetric spillovers, the

prevalence of spillovers due to negative shocks corresponds to periods of increasing crude

oil prices and the asymmetries in spillovers markedly declined after the financial crisis.

In this paper we hypothesize that volatility spillovers exhibit different magnitudes

based on whether the shock originates from negative or positive returns. This notion has

roots in a broad body of research, represented for example by Barberis (2013), who argue

that market agents possess asymmetric attitudes toward good and bad news and related

outcomes and that on average, people are more sensitive to losses than to gains of the

same volume. To test for these effects, we use return-based measures which has been the

standard approach in the literature (Patton and Sheppard, 2015, Feunou et al., 2013).

The main innovation presented by this paper is that we estimate directional spillover

indices for seemingly unrelated commodity and equity markets.
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3 Methodology

In this section, we describe the theoretical background behind the specific hypotheses and

methodology used to estimate the effects of volatility and their spillovers in commodity

markets. First, we discuss the realized measures—realized variance and its decomposition

into positive and negative semi-variances. Then, we present the methodology behind

the construction of the spillover index and the measures of spillover asymmetry. We

employ the connectedness measurement methodology which was originally developed by

Diebold and Yilmaz (2009) and Diebold and Yilmaz (2012), using a generalized vector

autoregressive framework. Specifically, we use variance decomposition which helps to

demonstrate the amount of information each variable contributes to the other variables in

the regression and it shows how much of the forecast error variance of each of the variables

can be explained by exogenous shocks to the other variables (Diebold and Yilmaz, 2013).

This method allows us to measure both the total and directional volatility spillovers and

will reveal the level of intra-market spillovers.

To study the volatility-spillover asymmetries, we will employ the volatility spillover

index devised in Diebold and Yilmaz (2009) as modified by Baruńık et al. (2016). Based

on the concept of realized semi-variances presented by Barndorff-Nielsen et al. (2010), the

model allows us to decompose the realized variance into parts corresponding to positive

and negative shocks in the market. Focusing on the intra–market spillovers, we estimate

the size of the spillovers using these asymmetric spillover indices.

3.1 Realized measures

Let us consider a continuous-time stochastic process for logarithmic prices of an asset,

pt. This price evolves over a given time period t ∈ 〈0, T 〉. The price process consists of

two components—a continuous component and a pure jump component—and takes the

following form:

pt =

∫ t

0
µsds+

∫ t

0
σsdWs + Jt, (1)

where µ represents a predictable drift process, σs a strictly positive volatility process, W

a standard Brownian motion and J the pure jump. All variables used in this equation are

adapted to a common filtration F . The quadratic variation of the process is then defined

as:

[pt, pt] =

∫ t

0
σ2sds+

∑
0<s≤t

4p2s, (2)

where 4ps = ps− ps− represent possible present jumps. The first term on the right-hand

side of this equation denotes the integrated variance of the process, which is observed to

be equal to zero Andersen et al. (2001).

As proposed by Andersen et al. (2001) and Barndorff-Nielsen (2002), the sum of

squared returns,
∑n

i=1 r
2
i , can be used as a natural estimator of the quadratic variation.
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If we suppose that the intraday logarithmic returns ri = pi − pi−1 are equally spaced on

the interval [0, t], then the sum, denoted RV , converges in probability to the quadratic

variation of the underlying price process, or [pt, pt], as n→∞. If we use a small-enough

interval between observations, we can approximate the quadratic variation using this

concept. This simple approach, however, does not differentiate between positive and

negative returns. Therefore, we cannot focus individually on positive and negative shocks

to prices and the volatility these shocks induce. In reality, the reactions of markets to

positive and negative shocks differ, which is why Barndorff-Nielsen et al. (2010) derived

the concept of dividing the realized variances into positive and negative realized semi-

variances.

3.2 Realized semi-variances

Since markets may differ in ways they cope with volatility due to general increase and

decrease of prices, Barndorff-Nielsen et al. (2010) define signed returns as follows:

RS− =

n∑
i=1

r2i I[ri<0] (3)

RS+ =
n∑
i=1

r2i I[ri>0] (4)

By definition, RV = RS− + RS+. RS− represents a measure of downside risk and

captures the variation determined only by falls of the underlying prices; RS+, on the

other hand, captures the variation determined by increases in the price of the asset. The

limiting behavior of RV is transferred to RS− and RS+, with both being equal to exactly

one half of the integrated variance and the sum of squared jumps due to negative and

positive jumps, respectively.

Moreover, the positive and negative realized semi-variances correspond to the good

and bad states of the underlying variable and serve as a proxy for good and bad volatility,

respectively. Consequently, we may observe asymmetries in the volatility spillovers due

to these different states as they may spread differently across markets (Baruńık et al.,

2016).

3.3 Spillover index

Next, we introduce a measure of volatility spillovers which will allow for the distinction

between negative and positive jumps. Based on the approach of Diebold and Yilmaz

(2012), Baruńık et al. (2016) propose an extension in the form of including the above-

defined concept of realized semi-variances.

The initial uniform spillover index introduced by Diebold and Yilmaz (2009) was built

on the variance decomposition of the forecast errors in a vector autoregressive model

(VAR). These measures record how much of the H-step-ahead forecast error variance of

some variable i is due to innovations in another variable j and hence provide a simple way

7



of measuring volatility spillovers (Baruńık et al., 2016). However, this methodology has

several limitations. A substantial drawback of the original Diebold and Yilmaz framework

is that the variance decompositions employ the Cholesky factorization of the covariance

matrix of the VAR residuals, which may lead to the dependence of the variance decom-

position results on the ordering of variables in the underlying VAR process. Moreover,

the initial spillover index allows to measure only the total spillovers (the transmission

from (to) one market to (from) all other markets) while one may be interested also in the

directional spillovers, i.e. how the volatility from one particular market i is spilled over

to another specific market j and vice versa. Further limitations concern the application

of the methodology only on spillovers across identical asset in different countries whereas

many other types of spillovers, such as spillovers across asset classes within one country,

may be of interest. These methodological shortcomings were overcome by Diebold and

Yilmaz (2012), who develop a generalized vector autoregressive framework which makes

forecast error variance decomposition invariant to the variable ordering and enables to

measure not only total but also directional volatility spillovers.

3.4 Total spillover index

We further describe the construction of the extended spillover index as developed by

Diebold and Yilmaz (2012), which follows directly from the variance decomposition in a

generalized VAR framework instead of employing the Cholesky factor orthogonalization.

Simply put, the forecast error variance decomposition indicates what percent of the k-step

ahead forecast error variance is due to which variable (Cochrane, 2005). First, consider a

covariance stationary N-variable VAR (p):

xt =

p∑
i=1

Φixt−i + εt, (5)

where xt = (x1t, x2t, ..., xnt) is an N-dimensional vector, Φi, with i = 1, ..., p, stands

for coefficient matrices and εt ∼ N(0,Σε) is a vector of independently and identically

distributed disturbances. In our subsequent empirical work, a vector x will represent

realized variances of N assets, more precisely positive or negative realized semivariances.

Assuming covariance stationarity, the moving average (MA) representation of the VAR

exists and is given by

xt =

∞∑
i=0

Ψiεt−1, (6)

where the N ×N coefficient matrices Ψi obey the following recursive definition:

Ψi = Φ1Ψi−1 + Φ2Ψi−2 + ...+ Φ1Ψi−1 =

p∑
j=1

ΦjΨi−j , (7)

with Ψ0 being an N ×N identity matrix IN and with Ψi = 0 for i < 0.

The total spillover index developed by Diebold and Yilmaz (2012) is composed of two
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parts—own variance shares and cross variance shares. Own variance shares are defined

as fractions of the H-step-ahead error variances in forecasting xi due to shocks to xi, for

i = 1, 2, ..., N . Cross variance shares, or spillovers, are defined as fractions of the H-step-

ahead error variances in forecasting xi due to shocks to xj , for i, j = 1, 2, ..., N such that

i 6= j. Following the notation used by Baruńık et al. (2016), the H-step-ahead generalized

forecast error variance decomposition matrix then looks as follows:

ωHij =
σ−1jj

∑H−1
h=0 (e′iΨhΣεej)

2∑H−1
h=0 (e′iΨhΣεΨ′hei)

, (8)

where Σε is the variance matrix for the error vector, εt, σjj is the standard deviation of

the error term for the jth equation, ei is the selection vector, with one as the ith element

and zeros otherwise, and Ψh are moving average coefficients from the forecast at time

t. Because the shocks to each variable are not necessarily orthogonalized, the sum of

contributions to the variance of forecast error (i.e. the row sum of the elements of the

variance decomposition table) is not necessarily equal to one:

N∑
j=1

ωHij 6= 1 (9)

Therefore, to be able to use the information available in the variance decomposition

matrix in the calculation of the spillover index, we normalize each entry of the variance

decomposition matrix by the row sum:

ω̃Hij =
ωHij∑N
j=1 ω

H
ij

(10)

This step ensures that
∑N

j=1 ω̃
H
ij = 1 and

∑N
i.j=1 ω̃

H
ij = N (i.e. the contributions

of spillovers from volatility shocks are normalized by the total forecast error variance

(Baruńık et al., 2016)). Diebold and Yilmaz (2012) then define the spillover index, a

measure of the contribution of spillovers from volatility shocks across the variables in the

system to the total forecast error variance, as:

SH = 100× 1

N

N∑
i,j=1
i 6=j

ω̃Hij (11)

3.5 Directional spillovers

The crucial improvement achieved by using the generalized VAR framework lies in the

fact that we are now able to identify the directional spillovers, i.e. we can decompose

the total spillover to those coming from and to each observed asset (Diebold and Yilmaz,

2012). The directional spillovers received by asset i from all other assets j are defined as
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follows:

SHi←• = 100× 1

N

N∑
i,j=1
i 6=j

ω̃Hij (12)

Similarly, the directional spillovers transmitted by asset i to all other assets j can be

measured as:

SHi→• = 100× 1

N

N∑
i,j=1
i 6=j

ω̃Hji (13)

3.6 Net spillovers and net pairwise spillovers

Once we have obtained the directional spillovers, it is straightforward to derive a simple

measure of net spillovers as the difference between gross volatility shocks transmitted to

and received from all other assets:

SHi = Si→• − SHi←• (14)

As explained by Baruńık et al. (2016), the above measure tells us how much each

asset contributes to the volatility in other assets in net terms. The net pairwise spillovers

between two assets, i and j, can then be simply computed as the difference between the

gross shocks transmitted from asset i to asset j and those transmitted from asset j to

asset i:

SHij = 100× 1

N

(
ω̃Hji − ω̃Hij

)
(15)

3.7 Bad and good volatility

The innovation brought about by Baruńık et al. (2016) lies mainly in fitting the N-variable

vector auto regression model to semivariances defined above instead of volatility itself.

This combined methodology allows for focusing individually on effects that one asset’s

volatility has on the other, while also differentiating between negative and positive shocks

to the asset price. In particular, using this method, we are able to account for spillovers

due to negative returns (S−) and positive returns (S+) and also directional spillovers

from volatility due to negative returns (S−i←•,S
−
i→•) and positive returns (S+i←•,S

+
i→•).

We are thus able to isolate asymmetric volatility spillovers by replacing the vector

of volatilities RVt = (RV1t, ..., RVnt)
′ defined above with the vector of negative semi-

variances, RS−
t = (RS−1t, ..., RS

−
nt)
′, or the vector of positive semivariances, RS+

t =

(RS+
1t, ..., RS

+
nt)
′1. This approach allows to distinguish between the effects of positive and

negative shocks on volatility spillovers. We are thus able to test which volatility (good or

1This notation excludes the H index for ease of display, however, it remains a valid parameter for the
estimation of spillover indices
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bad) matters more for volatility spillover transmission or whether their effects are similar

in magnitude.

3.8 Spillover asymmetry measure

Following Baruńık et al. (2016), we define the spillover asymmetry measure SAM as the

difference between positive and negative spillovers:

SAM = S+ − S− (16)

where S+ and S− are volatility spillover indices due to positive and negative semivariances

(RS+ and RS−), respectively, with an H-step-ahead forecast at time t. Defining the

measure in this way allows for a straightforward interpretation of the results. In the

case when SAM ≥ 0, the spillovers from positive realized semivariances are larger in

magnitude than those coming from negative realized semivariances and vice versa in the

case when SAM ≤ 0. When SAM = 0, the spillovers coming from RS+ and RS− are

of the same magnitude.

4 Data

In our analysis, we use five-minute high-frequency data to study volatility spillovers and

their asymmetries on the commodity market and how the commodity market’s volatility is

transmitted to the stock market. From four different commodity classes—energy, precious

metal, grain and fiber futures—we select four widely traded commodities (one from each)

to represent each sector, namely Crude oil, Gold, Corn and Cotton. As we are also

interested in the connectedness between the commodity market and the stock market,

we use data for the S&P 500 Index to represent the stock market. The data spans from

January 2, 2002 to December 31, 2015. The data were obtained from Tick Data, Inc., one

of the leading providers of historical data from stock, futures, options and forex markets.

In order to prevent estimation bias that may be caused by low trading activity on

the market, we exclude weekends, U.S. federal holidays and some state holidays. As all

five selected futures are traded on different Exchanges, the number of observations per

trading day as well as the number of days when the exchange was open varies among the

analyzed commodities. For the purposes of this analysis, we exclude all days on which

at least one of the Exchanges was closed. Furthermore, we discard days on which, for

at least one variable, more than 20% observations is missing as compared to the average

trading day.2 Such harmonization of data across markets enables us to eliminate days

when there are some missing observations due to special opening hours of the Exchanges

(e.g. the day before Independence Day) which could lead to a bias in our estimation.

These adjustments lead to the final sample which consists of 3,437 trading days.

2An exception to this rule is Cotton whose numbers of observations per day are, somewhat surprisingly,
extremely unstable and their exclusion would lead to the loss of a significant amount of observations.
Therefore, we treat Cotton futures with care and use a sample that excludes Cotton entirely as a robustness
check.
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We calculate the 5-minute return at time t as the change in log price between times

t− 1 and t. Overnight returns are not computed in order to avoid possible distortion. In

order to construct an accurate measure of volatility, we compute the realized variance as a

sum of squared intraday logarithmic 5-minute returns for each trading day in our sample.

Moreover, as we are also interested in whether the volatility is asymmetric, we further

compute positive and negative semivariances as sums of positive and negative intraday

returns, respectively.

In Figure 1, the plots of daily realized variances for each observed variable are pre-

sented. It can observed that the highest realized variances are reached during the mid-2008

and 2009 which corresponds to the turbulent periods during the global financial crisis.

This pattern is particularly substantial for the S&P 500 Index which is not surprising as

the index is based on the market capitalizations of 500 largest companies listed on the

U.S. exchange stocks. Prices in markets that are tied more firmly to the financial markets

tend to be affected the most by financial crises. Accordingly, the Crude oil and Gold

markets were influenced by the financial crisis more as compared to the Cotton and Corn

markets.

Figure 1: Daily realized variances

Source: Author’s computations.
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5 Results

We describe our empirical results in this section. First, we carry out a full-sample static

analysis of volatility spillovers between two asset classes—stocks and commodities—as

well as volatility spillovers between different commodity markets. As detailed above, this

approach can help us detect to what extent expectations in the markets change in reac-

tion to events in other markets and how the connectedness between different class assets

evolves. We also provide a number of robustness checks using restricted samples. Second,

we track the time variation of the volatility spillovers using 200-day rolling samples and

we assess the extent and nature of the development of the total volatility spillover index

over time. Furthermore, we focus on the development over the observed time period also

for the gross directional and net spillovers. Third, we employ the Spillover Asymmetry

Measure (SAM) framework, as described above, to study the differences in the spillovers

from bad and good volatility and we quantify the spillover dynamics via rolling window

estimation.

5.1 Static analysis

First, we analyze volatility spillovers between four selected commodities traded on U.S.

Exchanges and the S&P 500, an American stock market index, using a static VAR model.

In order to determine the lag length of the VAR model, we calculate two information

criteria, the Akaike information criterion (AIC) and the Bayesian information criterion

(BIC). The results reveal that there is no significant difference between the values obtained

for each number of lags.3 Therefore, we choose the number of lags to be 2 as it balances

the relative simplicity of the model with its good performance. Moreover, using 2 lags is

in line with the related literature that has a similar scope of study.4

We report below the so-called volatility spillover tables which provide an approxi-

mate “input–output” decomposition of the total volatility spillover index. The ith entry

represents the estimated contribution to the forecast error variance of market j coming

from shocks to market i. Numbers on the diagonal account for the share of own vari-

ance and the off-diagonal values represent the cross-variance, i.e. the volatility spillovers

between markets. The sum of the off-diagonal columns stands for the contribution to

others while the sum of rows stands for the contribution from others. Furthermore, by

subtracting the contributions to others from the contributions from others, we obtain the

3We do not report these results here, but they are are available upon request.
4The VAR lag of length 2 was chosen (based on the AIC) by Baruńık et al. (2016) when studying

asymmetric connectedness on the U.S. stock market as well as by Baruńık et al. (2015) when studying
volatility spillovers in petroleum markets. In addition, Diebold and Yilmaz (2012) provide a sensitivity
analysis of their volatility spillover index employed in this analysis to the VAR lag structure and show that
results do not differ substantially for lags of 2 to 6. Baruńık et al. (2016) obtained analogous results for
lags of 2 to 4. All their results are in support of the assumption that the spillovers are not sensitive to the
choice of the order of the VAR model. Furthermore, Baruńık et al. (2016) run the residual diagnostics to
check whether there is deflection from assumptions on VAR concluding that there is no dependence in the
residuals and their estimates are consistent. We also perform this robustness check provided in Appendix
and conclude that there are no significant differences and the volatility spillover indices are robust to the
choice of the VAR model specification.

13



net volatility spillovers. In the lower right corner of Table 1 we report the results for the

Volatility Spillover Indices for the full sample. The directional spillovers are shown as

the off-diagonal values of the matrix represented by Table 1. We conclude that the share

of volatility shocks that are spilled over from one market to another substantially differs

across the analyzed markets and ranges from 0.6% to 26%. The Cotton futures exhibit

the lowest values of volatility transmission among our sample, followed by Corn. On the

other hand, the highest spillovers are reported from the S&P 500 Index to Crude Oil and

Gold futures—the share of volatility transmitted from the S&P 500 Index to these two

markets has been 26.4% and 17.8%, respectively. Regarding the contribution to others,

we can see that gross directional volatility spillovers to others from each of the five assets

span from 6.4% for Cotton to 51.7% for the S&P 500 Index. In other words, the shocks

related to Cotton are reflected only slightly in other analyzed markets while more than

half of the variance in the S&P 500 Index is transmitted to other markets considered in

our analysis. Furthermore, more than 20% of realized variance in the prices of Gold and

Crude Oil futures are transmitted to other assets in our sample. In addition, we run a

series of robustness checks using restricted samples and report the results in Tables 9 and

11 in the Appendix.

Table 1: Volatility spillover table - full sample

From

CL CN CT GC SP Directional from others

CL 73.675 2.135 1.183 5.217 17.790 26.325

CN 2.748 85.679 3.501 4.019 4.053 14.321

CT 2.749 3.786 88.674 1.297 3.493 11.326

To GC 6.341 2.299 0.583 64.399 26.377 35.601

SP 8.684 1.450 1.147 13.353 75.366 24.634

Directional

to others
20.523 9.670 6.414 23.888 51.714 112.208

Directional

including own
94.198 95.348 95.088 88.286 127.079

Total Spillover Index

22.44%

Source: Author’s computations.

Looking at the directional volatility spillovers from all markets to one specific market

(i.e. contributions from others in the last column of Table 1), we observe that the range

of results is narrower as compared to contributions to others, reaching values from 11.3%

to 35.6%, for Cotton and Gold, respectively. While significant differences between the

results for different markets persist, we may conclude that volatility in all observed assets

is at least from one tenth caused by the events taking place in other markets. Gold, as a

representative of precious metals, is the one most affected by the shocks in other markets.

These results are in line with the economic intuition, since precious metals are often used

as a hedge against adverse events in other markets.

Finally, let us consider the total volatility spillovers, which are essentially extracted
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from the separated directional spillovers to form one complex index. On average, the

volatility shocks related to other markets account for 22.44% of the volatility forecast error

variance in our sample. The rest of the volatility can be attributed to the idiosyncratic

shocks or to innovations that have taken place in other markets which are not included

in our analysis.

To obtain more detailed information about the direction and magnitude of volatility

spillovers, we calculate net spillovers and net pairwise spillovers. The results are presented

in Tables 2 and 3, respectively. As described above, the net volatility spillovers are

calculated simply as the difference between the contribution to others and the contribution

from all others. Subsequently, when we subtract the gross volatility spillovers from asset j

to asset i from the volatility transmitted from asset i to asset j, we obtain the net pairwise

spillovers. Therefore, as an example, the notation “CL-CN” stands for the contribution

from CL to CN minus the contribution from CN to CL.

Table 2 shows whether the asset acts as a net “receiver” or “giver”, i.e. whether the

contribution (in terms of volatility that is spilled over to other markets) from all other

markets is greater than the transmission of its own shocks to other markets. We find

that the only net giver in our sample is the S&P 500 Index as it transmits more than

twice as much volatility than it receives. The results thus suggest that all our selected

commodities are more affected by the volatility in the other assets than what they transfer

to others. Gold shows to be the biggest receiver of volatility spillovers among the markets

in our sample.

Table 2: Net volatility spillovers - full sample

CL CN CT GC SP

-5.80242 -4.652 -4.912 -11.714 27.079

Source: Author’s computations.

Table 3 provides an overview of the net pairwise spillovers. The S&P 500 Index acts as

a net giver of volatility with respect to all commodities which should not be surprising as

the index reflects the performance of the stocks of the 500 U.S. leading companies on the

two largest5 exchanges in the world representing all major industries. Its development is

thus largely representative of the overall situation on the market, including the commodity

markets. As expected, Crude Oil and Gold are the largest receivers of volatility from the

S&P 500 Index. Crude Oil is widely used in nearly all industries, making it largely

dependent on the performance of the business sector, while Gold, as explained above, is

often used as a hedge against adverse events on the financial and equity markets. Cotton,

on the other hand, acts as a net pairwise receiver of volatility with respect to all other

examined assets.

5In terms of total market capitalization of its listed companies.
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Table 3: Net pairwise spillovers - full sample

CL - CN CL - CT CL - GC CL - SP
0.613 1.566 1.124 -9.106

CN - CT CN - GC CN - SP
0.285 -1.720 -2.603

CT - GC CT - SP
-0.714 -2.347

GC - SP
-13.024

Source: Author’s computations.

5.2 Conditioning and dynamics

In this section we move from the static analysis towards a dynamic one to analyze volatility

spillovers over time. The data used in our analysis spans over 14 years from the beginning

of 2002 until the end of 2015. By far the most important event that occurred during the

observed time period was the global financial crisis of 2008. While the previous static

analysis provides a useful overview of the average volatility spillovers over the period

under research, it would be inadequate to assume that the spillover index obtained from

matrices above would be appropriately informative for the whole time period. To be able

to examine the development of the volatility spillovers over time, as explained above, we

estimate our preferred model using 200-day rolling windows, horizon h = 106, and VAR lag

length of 2. Firstly, we examine the dynamics of total spillovers for the full sample and

two subsamples constructed by excluding the S&P500 Index and Cotton, respectively.

Secondly, we capture the time variation employing the rolling window estimation on

the contribution to other markets, from other markets, and net and pairwise volatility

spillovers.

Figure 2 presents the moving-window estimation of total spillovers for the full sample

and for the sample including only commodities. We can easily observe the rich dynamics

of volatility spillovers between the commodities and the S&P 500 Index over the studied

period. The volatility spillover indices for both samples evolve relatively similarly over

the studied time period, however, some marked differences can be isolated. The spillovers

based on the full sample reach larger magnitudes during the whole time period under

research which is in accordance with our findings from the static analysis. Figure 3 depicts

the dynamics of the differences between volatility spillover index for the full sample and

for the sample that contains only the four selected commodity markets. We can observe

that in the years following the crisis the difference between indices is greater than before

2008 which suggests that the impact of the crisis on the commodity market (or at least

6We nevertheless check the robustness of our model with respect to the length of the rolling window
and also with respect to the forecasting horizon. The results do not substantially change and are robust
with respect to the window length and horizon selection as well as with respect to the choice of the model
specification. The obtained results are provided in Appendix. The specification of the model is consistent
with the approach employed by Baruńık et al. (2016) and Diebold and Yilmaz (2012).
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regarding the commodities included in our sample) was not as extensive as that on the

U.S. stock market (represented by the S&P 500 Index). Table 4 provides some basic

summary statistics regarding the differences in the two measures.

Figure 2: Total volatility spillovers - full sample and sample excluding the S&P
500 Index

Source: Author’s computations.

Figure 3: Differences in spillover indices with respect to the full sample

Source: Author’s computations.

The level of volatility spillovers in both samples is rather low at the beginning of the

observed period and fluctuates between 5% to 15% for the first four years. The volatility

spillovers index for the full sample hits 20% in the middle of 2006 and then slightly

declines during the first half of the year 2007. The same pattern seems to repeat during

the following year. The first substantial increase in inter-market connectedness can be

detected in September 2008 following the collapse of Lehman Brothers, an investment

bank, and the burst of the U.S. sub-prime mortgage crisis which turned into a global
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Table 4: Summary statistics - Differences in spillover indices with respect to the
full sample

Mean Min Median Max St. Dev.

Excluding S&P 500 6.831 -1.722 6.267 17.877 3.556
Excluding CT 1.292 -6.196 1.381 11.234 2.980

Source: Author’s computations.

recession and affected the world’s economy in a major way over several years that followed.

During the fall of 2008, the index for the full sample more than doubled and exceeded

the 40% level of volatility spillovers. Concerning only the commodity markets sample,

the values of the index increased from 18% before the Lehman Brothers collapse by 15

percentage points, reaching their maximum of 33.37% during November 2008. The high

level of volatility spillovers has lasted also throughout the first half of 2009 due to the

increased level of uncertainty and instability of the financial markets. At the end of July,

the spillover indices hit their second peak and the full-sample index reached its maximum

over the studied period, at 43.7%. The probable cause of this peak is the development

of the financial crisis which around this time started to impact the economy around

the world to its full extent. From mid-2009, the volatility transmissions between markets

gradually declined with some minor fluctuations until late 2014 when both indices reached

their pre-crisis levels. However, after this point, we can observe again an increase in the

transmission of volatility in both samples in the last observed year. To analyze the largest

jumps in the volatility spillovers, we calculated their intra-day returns and found that the

highest returns correspond to adverse events on the financial market. Table 5 provides

an overview of the important events and explains most of the major spikes observable in

Figure 2.

To sum up, the overall connectedness of the markets included in our analysis in-

creased substantially following the global financial crisis of 2008. We can distinguish two

main periods regarding the behavior of the volatility spillovers over the 14 years under

research—before 2008 and after 2008. During the pre-crisis period, the average value of

the volatility spillover index was about 15% for the full sample and 10% for the sample

including commodities only, whereas in the post-crisis period, the average values of the

index for the full and the restricted sample reached 25% and 17%, respectively. Fur-

thermore, regarding the full sample, the highest spikes of spillovers before 2008 do not

reach the average level of the index after the global financial crisis. As the period under

study covers 7 years after the crisis, we may conclude that the uncertainty and skepticism

of stock market participants persist in the market long after the crisis and the traders

may change their behavior by diversifying the portfolio more extensively which may lead

to higher intra-market connectedness. Our findings reflect the financial situation on the

market and are in line with those reached by Baruńık et al. (2016), Baruńık et al. (2015)

and Diebold and Yilmaz (2012).

18



Table 5: Event study

Date
Volatility
Spillover Index

Return Event

9/17/2008 28.892 10.714 Bankruptcy of Lehman Brothers
9/18/2008 51.234 22.342 Bankruptcy of Lehman Brothers
10/10/2008 64.454 38.617 The great crash of 2008

8/5/2011 64.519 36.548
Asian markets plunge on back
of euro fears and U.S. losses, oil and gold
both decline as investors race for U.S. Treasuries

10/15/2014 34.569 14.621 U.S. stock market decline

12/17/2014 39.400 15.377

Sharp decline in world stock markets,
the tumbling price of oil, and the prospect
of another eurozone crisis prompted
by political uncertainty in Greece.

8/12/2015 38.351 18.225
Global stock markets plunge on China
currency rapid decline

8/24/2015 79.994 49.438 China’s Black Monday flash crash

Source: Author.

We also analyze the development of the total volatility index when excluding Cotton

from our sample as a type of a robustness check since, as explained above, the observations

for Cotton are somewhat inconsistent in the number of observations per day. In Figure 4,

we present the development of two total volatility indices—for the full sample and for the

sample excluding Cotton. A visual inspection of the figure reveals that both spillovers

indices share a largely common path. Somewhat surprisingly, the level of spillovers is even

greater at some points of the observed period for the sample that excludes Cotton. These

findings indicate that Cotton does not play an important role in the volatility spillovers

within our sample and that there is not significant connectedness between Cotton and

other commodities included in our analysis. Furthermore, these results suggest that our

previous estimates are robust with respect to the selection of assets.
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Figure 4: Total volatility spillovers - full sample and sample excluding Cotton

Source: Author’s computations.

Note: The black line represents the total volatility spillover index for the full
sample, the gray line for the sample excluding Cotton.
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Figure 5: Robustness of volatility spillovers to VAR model specification

Source: Author’s computations.

Note: The first plot represents the VAR(2)-based spillover index, second depicts
the VAR(5)-based index and the third the VAR(4)-based index.

Let us now move to the analysis of directional spillovers. Figure 6 presents directional

volatility spillovers from others to each of the five assets over time (corresponding to the

“directional from others” column in Table 1). For the full sample, we can observe higher

values of gross directional spillovers during the turbulent period of the end of 2008 and

the first months of 2009 as compared to those before the crisis. Nevertheless, while the

level of volatility transmission from others to Crude oil, the S&P 500, and Gold remains

relatively high for a long period after the crisis, the directional contributions from others
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to Cotton and Corn return relatively fast to their pre-crisis levels. During the whole

analyzed period, the directional transmissions from others to Cotton and Corn are lower

than for the other three assets. We can observe a spike in the market for Cotton and Corn

in 2013 when, at the same time, the gross directional spillovers to Crude oil, Gold and

the S&P 500 have a decreasing trend. These findings further support our previous results

that the soft commodities, represented by Cotton and Corn, are the least connected to

the rest of the sample.

Figure 6: Directional spillovers from other assets

Source: Author’s computations.

Figure 7 depicts the evolution of the gross directional spillovers to others from each of

the five observed assets. The directional contributions to others vary greatly over time,

however, they seem to reach lower overall volume than the gross directional spillovers

from others for all assets except for the S&P 500 Index which exhibits significantly higher

transmission to others than any other commodity. This is in line with the results obtained

in the “directional to others” row compared to the “directional from others” column in

Table 1. An interesting pattern can be observed for Crude oil. While all other assets hit

their maximum of gross spillovers to others during the turbulent period corresponding

to the global financial crisis, the spillovers from Crude oil to others reach their highest

values relatively long after the crisis. This may be the impact of the unstable situation in

the oil markets caused by the political problems and rising tensions in the Middle East

and North Africa in 2011 when Crude oil prices reached their highest levels since 2008.
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Figure 7: Directional spillovers to others

Source: Author’s computations.

So far, we focused our analysis on the gross directional spillovers; in what follows, we

analyze the net spillovers and the net pairwise spillovers. The former is defined simply

as the difference between contribution from others and contribution to others. Therefore,

when the values for a specific asset are above zero, the commodity was transmitting

more volatility to others than it was receiving from others. In that case, we call that

commodity a net spillover giver. The negative domain corresponds to the net spillovers

that a commodity receives from the others and therefore the asset acts as a net spillover

receiver. Figure 8 shows that the net effects alternate over the sample period as the net

spillovers for all assets take both positive and negative values at some point. The net

spillovers of all assets except for Crude oil reached their maximum (in absolute value)

during the global financial crisis of 2008.

Moreover, the impact of financial instability reflected in the net spillovers is more

evident for Cotton, Gold and the S&P 500 Index as their absolute values in the post-crisis

period are substantially higher and the increased level of net spillovers is also noticeable

in the years following the crisis. Furthermore, the net spillovers of Gold and Cotton

take almost exclusively negative values and thus make these two commodities appear

as net spillover receivers while the opposite is true for the S&P 500 Index whose net

spillovers reach significantly higher volumes compared to the rest of the sample and do

not take almost any negative values over the 14-year observed period. These emerged

patterns are in accordance with the static analysis and the results obtained in Table 2.

Cotton and Crude oil seem to be more balanced in terms of transmitting and receiving net

spillovers from other assets, however, it appears that the negative values prevail for both

commodities. Furthermore, regarding Crude oil and the S&P 500 Index, we can observe

extensive spikes taking the opposite values at the end of the analyzed time period. These
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correspond to August 2015, the time of the so-called Black Monday in China, which caused

the U.S. stock market to suffer its biggest sell-off in four years and commodity prices have

also been hit by worries over China, especially oil which tumbled by 6% (Denyer, 2015).

Figure 8: Net spillovers

Source: Author’s computations.

Figure 9 depicts the net pairwise spillovers that show the dynamics and dominance

of the net spillovers between two specific commodities. For example, in the plot labeled

cl − cn, when the values are above zero, the spillovers from Corn (cn) to Crude oil (cl)

exceed those from cl to cn. Based on visual inspection, we can determine the dominant

position of an asset in almost each pair. The S&P 500 Index appears to be dominant in

all pairs. The volatility in Crude oil spills over to Gold more extensively than the other

way around, particularly in the post-crisis period. For most of the observed time period,

Crude oil also seems to dominate Cotton in terms of spillover transmission. The volatility

of Gold impacts considerably more the fluctuation of Cotton than vice versa. The shocks

to Gold are also transmitted more heavily to Cotton than in the opposite direction. The

transmission of pairwise net spillovers appears quite balanced in cl− cn and cn− ct pairs.
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Figure 9: Pairwise spillovers

Source: Author’s computations.

5.3 Asymmetric volatility spillovers

In the previous static and dynamic analysis the presence of volatility spillovers among the

selected commodities and the S&P 500 Index has been confirmed. We have also examined

the evolution of the volatility transmission over time and the amount of volatility spilled

over from each of the studied assets. In this section, we investigate potential asymmetries

in the transmission mechanism due to negative and positive shocks.

Based on the methodology proposed by Barndorff-Nielsen et al. (2010) we decompose

the realized variance to positive and negative semivariances and use them to derive nega-

tive and positive volatility spillovers. Furthermore, in order to quantify the extent of the

asymmetric transmission of the volatility within our sample, we calculate the spillover

asymmetric measures (SAM) proposed by Baruńık et al. (2016).

5.4 Asymmetric volatility spillovers – static and dynamic analysis

First, we analyze the results summarized in the spillover volatility tables based on nega-

tive and positive semivariances which provide a useful overview of the average volatility

spillovers due to negative and positive shocks. In the low right corners of Tables 6 and

7, we present the total spillover indices for negative and positive returns, respectively.

The overall average contribution of positive shocks to volatility spillovers in our sample is

only slightly higher compared to the negative ones (17.72% compared to 16.46%). This

finding is not in support of our hypothesis that on average, volatility spillovers resulting

from negative realized semivariances are of higher magnitude than the ones stemming

from the positive ones. For all commodities, the gross directional spillovers to others

reach greater values when taking into account good news. However, the S&P 500 Index

exhibits higher transmission of bad volatility to others and lower from others as compared

to good volatility spillovers. The differences are particularly significant for Gold, Cotton,
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and Corn, where the transmission of good volatility to others reaches almost twice the

volume of spillovers due to bad volatility. These results indicate that the stock market

represented by the S&P 500 Index is more sensitive to bad news corresponding to negative

returns than the commodity market. The directional spillovers of good and bad volatili-

ties from others do not vary as considerably, however, the most distinct output is observed

again for the S&P 500 Index. When employing the positive realized semivariances in the

estimation, the volatility in all commodities included in our analysis is responsible for

almost 22% of the fluctuations observed in the S&P 500 Index compared to 15.9% of bad

volatility transmitted from others.

Table 6: Volatility spillover table - Negative realized semivariances

From

CL CN CT GC SP Directional from others

CL 77.698 1.147 0.938 3.863 16.354 22.302

CN 1.476 93.034 0.917 1.515 3.059 6.966

CT 2.162 0.859 92.175 1.464 3.339 7.825

To GC 5.872 1.263 0.407 70.643 21.815 29.357

SP 7.425 0.803 0.734 6.908 84.130 15.869

Directional

to others
16.935 4.072 2.996 13.750 44.568 82.320

Directional

including own
94.633 97.105 95.171 84.393 128.698

Total Spillover Index

16.46%

Source: Author’s computations.

Table 7: Volatility spillover table - Positive realized semivariances

From

CL CN CT GC SP Directional from others

CL 77.249 2.486 1.527 5.068 13.670 22.750

CN 2.951 89.585 1.308 3.308 2.847 10.415

CT 2.272 1.502 93.262 0.545 2.418 6.738

To GC 4.539 2.554 0.608 73.260 19.038 26.739

SP 7.605 1.582 1.499 11.291 78.023 21.977

Directional

to others
17.368 8.125 4.942 20.212 37.973 88.619

Directional

including own
94.617 97.710 98.204 93.472 115.996

Total Spillover Index

17.72%

Source: Author’s computations.

Figure 10 depicts the development of two spillover indices based on negative and

positive realized semivariances which allows us to observe the differences in volatility

transmission that emerge due to negative and positive returns. The black line represents

the spillover index from positive RS whereas the gray line depicts the spillover index

from negative RS. There are some observable differences in the development of the two
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measures, especially in the post-crisis period. The volatility spillover index from positive

RS dominates the one from negative RS almost throughout the whole first part of the

studied time period, between 2002 and 2005. For years 2005 to 2008, the good and bad

volatilities exhibit a more or less common path and reach similar levels. The dominance

of volatility transmission due to positive news remains also at the beginning of the crisis

in 2008. However, from March 2009 until mid-2011, the volatility index based on negative

RS prevails and the differences between the two indices are more excessive. In the period

that follows, we can again observe a rather interchangeable development of both indices.

At the end of the studied period the impact of positive shocks on the volatility spillover

re-dominates.

In Figure 11 we can observe the development of the spillover indices based on negative

and positive RS for the sample that includes commodities only. Both indices evolve very

similarly to the corresponding ones in Figure 10 which study the whole sample, however,

they both reach lower volumes. This is in line with our findings above that the level of

volatility transmission is higher for the full sample than for the sample excluding the S&P

500 Index. A closer inspection of different asymmetries in the two samples is provided

in Section 5.5 as the differences are better visible using the asymmetry measure. To

conclude, we can confirm the presence of certain asymmetries in the impact of positive

and negative shocks on the volatility and its transmission. Furthermore, our findings in

this section are not in line with the hypothesis that the bad news resulting in negative

returns affect the volatility more intensively than good news and related positive shocks.

In the following section, we inspect the asymmetries further by employing the Spillover

Asymmetry Measure.

Figure 10: Asymmetric volatility spillovers - full sample

Source: Author’s computations.

Note: The black line represents the spillover index from positive realized semi-
variances (RS+), the gray line from negative realized semivariances (RS−).
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5.5 Spillover asymmetry measure (SAM)

Finally, we use the Spillover Asymmetry Measure (SAM) proposed by Baruńık et al.

(2016) and defined in Section 3.7 to quantify the differences in the volatility spillovers

due to negative and positive shocks. This approach allows us to study the extent of the

asymmetry in the volatility transmission independently of the level of spillovers. Positive

values of SAM indicate the dominance of the volatility spillover index based on positive

RS while negative values of SAM imply that the transmission of volatility due to negative

returns reaches higher volume than that due to positive returns. When SAM = 0, the

effects of both negative and positive spillovers offset each other, however, as we will see,

this situation is very rare on the markets.

Figure 11: Asymmetric volatility spillovers - sample excluding the S&P 500 Index

Source: Author’s computations.

Note: The black line represents the spillover index from positive realized semi-
variances (RS+), the gray line from negative realized semivariances (RS−).
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Figure 12: Spillover ssymmetry measure (SAM) - full sample

Source: Author’s computations.

Figure 12 presents the SAM for our full sample. Significant fluctuations of the mea-

sure are evident over the whole time period under study. We can observe that the extent

of asymmetric behavior reflects not only the magnitude but also the duration. Consid-

ering the pre-crisis period, we find that the SAM takes predominantly positive values

except for several months at the beginning of 2003 which may be associated with the

perturbed situation in the oil markets caused by the second Gulf War and unrest in

Venezuela (Baruńık et al., 2015). The overall dominance of the positive values in this

period means that the transmission of volatility due to positive shocks is higher than the

bad volatility spillovers which may be related to the optimistic sentiment persisting from

the prosperous period before the global financial crisis. Moreover, the asymmetries in

spillovers from negative and positive shocks in the pre-crisis period do not take very high

values—they range from approximately -5% to +5%.

The most significant asymmetric effect is visible after the crisis starting in March 2009

until September 2011 when we observe a prevalence of negative asymmetries. The clusters

of negative spillovers during the years that followed the crisis document the pessimistic

mood on the markets, when the negative shocks had a higher impact than the positive ones

as the investors were more cautious and more sensitive to bad news. Furthermore, during

this period, the extent of negative asymmetries is much higher compared to the pre-crisis

period, falling to -14.4% in June 2011, which may point to concerns about uncertainty and

stability of the financial markets following the crisis. In the subsequent period, we can

observe much less excessive fluctuations of volatility spillovers with a varying dominant

position of spillovers based on positive and negative returns. The lower fluctuation with

similar range as in the pre-crisis period and the variability of the prevalence of good

and bad volatility may be to some extent caused by increasing financialization (Baruńık

et al., 2015). Similarly, Tang and Xiong (2012) find support for the notion of increasing

financialization of commodities by showing that synchronized price movements of major

29



commodities markets in the U.S. are a consequence of such financialization. Moreover,

Baruńık et al. (2015) argue that as a further consequence, higher volatility transmission

occurs simultaneously with a lower level of asymmetries between volatility spillovers due

to positive and negative shocks. At the end of the observed period, good news had a

substantially larger influence on the markets than bad news.

Figure 13 depicts the asymmetries induced by positive or negative shocks for the

sample that excludes the S&P 500 Index. We notice several differences as compared to

the asymmetries presented for the full sample. First, the impact of negative shocks is

stronger during the period between 2005 and 2006. This may be caused by uncertainty

on the commodity markets associated with the food price crisis which is in line with the

findings of Nazlioglu et al. (2013), who examine volatility transmission between oil and

selected agricultural commodity prices. They find that oil market volatility spills on the

agricultural markets in the post-crisis era while there is no risk transmission between oil

and agricultural commodity markets before the food price crisis. Regarding the immediate

post-crisis period, the dominance of volatility spillovers based on negative semivariances

is also observable for the sample that includes only commodities, however, it does not

reach such a high volume as in the case of the full sample.

Figure 13: Spillover asymmetry measure (SAM) - sample excluding the S&P 500
Index

Source: Author’s computations.

From mid-2011 till mid-2014, the good volatility transmission prevails. However, in

the late 2014 and for several first months of 2015, negative shocks to commodity markets

had a substantially larger impact as compared to positive shocks. This negative cluster

may be associated with the global commodity price crash when the global commodity

prices fell by almost 40% and large drops across many different commodity classes were

observable (Saggu and Anukoonwattaka, 2015). Table 8 provides summary statistics for

the SAM for both samples. The asymmetries for the full sample reach higher extremes

especially regarding the transmission of volatility induced by the negative shocks. How-
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ever, the mean for the full sample is slightly above zero while for the sample including

only commodities, the mean is -0.215 which means that on average, volatility stemming

from the negative semivariances spilled over to the commodity markets fractionally more

than the good volatility.

Table 8: SAM - Summary statistics

Mean Min Median Max St. Dev.

Full sample 0.156 -14.438 0.550 8.462 3.132
Commodities only -0.215 -10.102 0.091 7.278 3.074

Source: Author’s computations.

Overall we find some asymmetric behavior in volatility transmission for both samples.

In particular, in the years following the crisis, the negative shocks have had a higher impact

on the volatility spillovers across the markets included in our analysis. Nevertheless, the

level of the asymmetry measure does not take very high values compared to the results

obtained by Baruńık et al. (2015) who find the asymmetric effects in spillovers on the

petroleum market rather substantial. Similarly, Dovhunová (2014) finds stronger evidence

of asymmetric volatility transmission also for the stock markets in Central and Eastern

Europe. Despite the fact that the asymmetric connectedness of markets included in our

analysis is not as substantial, the good and bad volatility is transmitted at different

magnitudes and the dominant position changes over the studied time period. While

negative spillovers reach higher extremes, they do not strictly dominate the transmission

of volatility based on positive returns. These findings are in line with those of Baruńık

et al. (2016) and suggest that risk transmission is not driven by pessimism as much as

generally assumed.

6 Conclusion

In this paper, we study volatility spillovers using a recently developed approach based

on the volatility spillover index, as introduced by Diebold and Yilmaz (2009) and fur-

ther developed by Diebold and Yilmaz (2012). The approach uses a generalized vector

autoregressive framework in which forecast-error variance decompositions are invariant

to the variable ordering which enables us to measure total, directional and net volatility

spillovers. We employ an extension to this approach introduced by Baruńık et al. (2016)

who build upon the volatility spillover index proposed by Diebold and Yilmaz (2012) and

combine it with the concept of positive and negative realized semivariances developed by

Barndorff-Nielsen et al. (2010). The realized measures allow not only to better estimate

the total volatility but most importantly, the resulting modified indices allow for modeling

asymmetric responses to positive and negative shocks.

We apply the methodology proposed by Baruńık et al. (2016) to quantify the volatility

spillovers and the asymmetric response to positive and negative shocks in high-frequency

data within two datasets. First, we model the volatility transmission between four se-
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lected widely traded commodities and one of the main U.S. stock market indices, the S&P

500 Index, as a representative of the equity market. The second dataset includes com-

modities only, specifically Crude oil, Gold, Corn and Cotton futures. Each of the included

commodities represents a specific branch of the commodity market—energy, precious met-

als, grains and fiber markets, respectively. The importance of each of these commodities

within their markets is sufficient to consider them as a proxy for each sector. In order to

provide accurate estimates, five-minute returns are used for the construction of realized

measures. Our sample covers a 14-year period from January 2002 to December 2015,

which allows us to analyze the development long before the global financial crisis of 2008

as well as quite long after the turbulent period fades away and we can thus evaluate the

impact of the global crisis on the commodity and equity markets.

The results are divided into several categories. First, we provide a static analysis

of the full sample and samples that exclude first the S&P 500 Index and then Cotton

futures. The decomposition of the total volatility spillover index allows us to estimate the

directional spillovers, i.e. how much the shocks to one asset are transmitted to another

asset, as well as the net and the pairwise spillovers. Second, in order to capture the

development of spillovers over time, we employ the rolling window estimation. Third and

last, we investigate potential asymmetries in the transmission mechanism due to negative

and positive shocks.

The static analysis reveals that the volatility transmission within the sample including

the S&P 500 Index is substantially higher than the volatility spillovers only between

commodities. On average, the volatility shocks related to other markets account for

22.44% of the volatility forecast error variance in our full sample while only for 12.64%

in the sample that includes commodities only. The S&P 500 Index turns out to be a net

giver of volatility when compared to all commodities under research, i.e. the transmission

of shocks from the stock index to others exceeds the volatility spillovers from others to

the stock index. Our findings thus show that the shocks to stock markets play a rather

important role in the volatility in commodities while commodities do not influence each

others’ volatility to such an extent. Especially, the soft commodities such as Cotton and

Corn exhibit the lowest contribution of spillovers to other markets.

The dynamic analysis shows the development of volatility spillovers between markets

over time and provides strong evidence that the connectedness between markets has be-

come much more significant after the global financial crisis of 2008. The uncertainty

and skepticism of market participants persist in the markets long after the crisis as the

volatility spillovers reach higher volumes than in the pre-crisis period. The recent global

financial crisis has thus played an important role for volatility spillovers, emphasizing the

connectedness between commodity and stock markets and inducing further financializa-

tion of commodities. Furthermore, by applying the rolling window estimation also on

the net, pairwise and directional spillovers, we reveal that the S&P 500 Index exhibits

significantly higher volatility transmission to commodities than any other commodity and

also the S&P 500 appears to be dominant in all pairs over the whole period. The stock

32



markets turn out to play a crucial role in the volatility transmission on the commodity

market.

Finally, we investigate asymmetries in the response to negative and positive shocks.

Despite the fact that the level of the asymmetry measure is not very substantial, the

good and bad volatility is transmitted at different magnitudes and the dominant position

changes over the studied time period. We find that in the years following the crisis, the

negative shocks have had a higher impact on the volatility spillovers across the markets

included in our analysis. However, while negative spillovers reach higher extremes, they do

not strictly dominate the transmission of volatility based on positive returns. Moreover,

an inspection of volatility spillover tables reveals that for all the observed commodities, the

gross directional spillovers to others based on positive semivariances reach greater values

than the directional spillovers due to negative shocks. Nevertheless, the S&P 500 Index

exhibits a higher transmission of bad volatility to others and lower from others compared

to good volatility spillovers which indicates that the stock market is more sensitive to bad

news than the commodity market.

This paper provides further corroboration of the increased importance of intra-market

connectedness following the global financial crisis of 2008. While most previous studies

focus on the volatility transmission among different stock markets or between the crude oil

market and financial markets, we provide a complex analysis of the connectedness between

seemingly unrelated widely traded commodities, representing different sectors, and the

S&P 500 Index. The increasing financialization on the commodity market and the fast

growth in the liquidity of commodity futures are of particularly high interest. Moreover,

our results from the analysis of the asymmetric responses to positive and negative shocks

defy the common notion that the negative shocks impact the volatility spillovers more

heavily than the positive ones and indicate that the attitude of market participants has

not been as pessimistic as generally assumed, except for the period of a few years following

the global financial crisis. We thus provide a fresh look at the speed of the healing process

of the markets following a major financial crisis.

We see several possible extensions of the present research. First, the inclusion of more

commodities representing each sector would enable a more precise analysis of how the

individual markets are related and one might want to inspect also the connectedness at the

disaggregate sectoral level. Similarly, the connectedness between our selected commodities

and the bond market could lead to interesting findings. Furthermore, a more detailed

event analysis would further clarify the volatility transmission mechanism following major

events in the commodity and equity markets. Last but not least, a directional spillover

asymmetry measure would allow to study the source of asymmetry among assets and to

identify the extent to which volatility from one specific asset transmits to other assets

asymmetrically.
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7 Appendix

Static analysis for adjusted samples

We conduct a similar static analysis in Section 5.1 but for samples modified by excluding

one of the assets. First, we eliminate the S&P 500 Index from our sample as we are also

interested in the interconnectedness exclusively among the commodity markets. Table 9

reveals unconditional patterns of volatility transmission among the examined commodi-

ties. The total volatility spillover index is substantially lower than the one we obtained

for the full sample—the overall transmission of volatility within this sample only slightly

exceeds 12%. Thus, almost 88% of the total variance of forecast errors can be attributed

to the idiosyncratic volatility shocks and to events that have taken place in other markets

not included in our sample.

Table 9: Volatility spillover table - sample excluding the S&P 500 Index

From
CL CN CT GC Directional from others

CL 86.718 2.864 1.738 8.679 13.282
CN 3.431 87.729 3.796 5.044 12.271

To CT 3.565 4.069 90.242 2.123 9.758
GC 10.616 3.471 1.149 84.764 15.236
Directional
to others

17.612 10.405 6.683 15.846 50.547

Directional
including own

104.330 98.134 96.926 100.610
Total Spillover Index

12.64%

Source: Author’s computations.

Comparing the gross directional spillovers with the results from the volatility spillover

table for the full sample, we may conclude that while the values for Cotton and Corn do

not exhibit significant changes neither regarding the directional transmission to others

nor the contribution from others, the figures for Crude oil and Gold vary rather exten-

sively. The gross directional spillovers to Gold are twice as small as for the full sample

which includes the S&P 500 Index, and for Crude oil, the difference is even more sub-

stantial, decreasing from 35% to 15%. The same applies for the directional effects to

others, although the difference is less significant. It follows from the above that the U.S.

stock market represented by the S&P 500 Index plays an eminent role in the transfer of

volatility to hard commodities, represented by Gold and Crude Oil, but does not play

such an important role for soft commodities, represented by Corn and Cotton. These

results are in line with the notion that while the production process in many industries

relies heavily on hard commodities, soft commodities are more often consumed directly

(Creti et al., 2013). Taking into account the results from Table 10 which summarizes the

net spillovers, we can conclude that the volatility shocks to Crude Oil and Gold spill over

to other commodities the most. On the other hand, the shocks related to volatility in the

Cotton futures are the least influential in both samples. To summarize the results shown
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in Table 9, we can say that both the total as well as the directional spillovers over the

studied period were rather low among the commodity markets themselves.

Table 10: Net spillovers - sample excluding the S&P 500 Index

CL CN CT GC

4.330 -1.866 -3.074 0.610

Source: Author’s computations.

As the number of observations per trading day for Cotton futures was relatively un-

stable over time, we did not harmonize the data for CT as we did for all other assets to

prevent unnecessary loss of too many observations (see Section ?? for more details). For

this reason, we perform the same analysis as above but for a sample excluding Cotton

in order to reveal some possible hidden patterns due to its inconsistency in observations.

Table 11 reports the volatility spillovers for the sample that excludes Cotton. The total

volatility spillover index is slightly higher than the one obtained for the full sample, at

23.9%.

Table 11: Volatility spillover table - sample excluding Cotton

From

CL CN GC SP Directional from others

CL 74.536 2.146 5.258 18.059 25.464

CN 2.853 88.768 4.158 4.220 11.231

To GC 6.383 2.307 64.792 26.518 35.208

SP 8.829 1.451 13.423 76.296 23.704

Directional

to others
18.065 5.905 22.839 48.798 95.607

Directional

including own
92.601 94.674 87.631 125.094

Total Spillover Index

23.90%

Source: Author’s computations.

Concerning the off-diagonal figures representing directional spillovers as well as the

diagonal figures standing for idiosyncratic volatility shocks, the results do not exhibit

significant differences as compared to the volatility spillover table for the full sample.

Inspecting the cumulative contribution to and from other markets, the figures do not

change excessively compared to the results from the full sample (Table 1). An exception

to this is Corn, the results for which change relatively significantly after the exclusion of

Cotton from the sample—contribution to other markets as well as the transmission from

other markets declines markedly in absolute numbers, from 9.7% to 5.9% and from 14.3%

to 11.2%, respectively. Table 12 reports the net volatility spillovers and underlines our

conclusion that by the exclusion of the Cotton market from our sample, we do not observe
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significant variation from results obtained from the full sample analysis. The impact of

the change of the sample affects almost exclusively the Corn market results and we may

conclude that the connectedness between the two markets (Corn and Cotton) is more

intense than the connection between the Cotton market and other assets included in our

sample. These results suggest that regarding volatility spillovers, the connectedness is

higher among soft commodities than between soft and hard commodities.

Table 12: Net spillovers - sample excluding CT

CL CN GC SP

-7.399 -5.326 -12.369 25.094

Source: Author’s computations.
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