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Abstract

Directional distances provide useful, flexible measures of technical efficiency of pro-
duction units relative to the efficient frontier of the attainable set in input-output
space. In addition, the additive nature of directional distances permits negative input
or outputs quantities. The choice of the direction allows analysis of different strate-
gies for the units attempting to reach the efficient frontier. Simar et al. (2012) and
Simar and Vanhems (2012) develop asymptotic properties of full-envelopment, FDH
and DEA estimators of directional distances as well as robust order-m and order-α di-
rectional distance estimators. Extensions of these estimators to measures conditioned
on environmental variables Z are also available (e.g., see Daraio and Simar, 2014). The
resulting estimators have been shown to share the properties of their corresponding ra-
dial measures. However, to date the algorithms proposed for computing the directional
distance estimates suffer from various numerical drawbacks (Daraio and Simar, 2014).
In particular, for the order-m versions (conditional and unconditional) only approx-
imations, based on Monte-Carlo methods, have been suggested, involving additional
computational burden. In this paper we propose a new fast and efficient method to
compute exact values of the directional distance estimates for all the cases (full and
partial frontier cases, unconditional or conditional to external factors), that overcome
all previous difficulties. This new method is illustrated on simulated and real data sets.
Matlab code for computation is provided in an appendix.

Keywords: directional distances, conditional efficiency, robust frontiers, environmental fac-
tors, nonparametric methods.
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1 Introduction

Production theory and efficiency analysis examine how production units (i.e., Decision Mak-

ing Units or DMUs) transform quantities of inputs (e.g., labor, energy and capital) into

quantities of outputs (e.g., goods and services). The technical efficiency of a particular unit

is then measured by distance in some direction from the unit’s location in input-output space

to the technology, i.e., the frontier of the production set.

Traditional nonparametric efficiency estimators based on radial contractions of inputs

or radial expansions of outputs to reach the frontier have been proposed by Farrell (1957),

Charnes et al. (1978) and Deprins et al. (1984).1 More recently, estimators of directional

distance efficiency have been proposed by Chambers et al. (1996). The directional measures

of efficiency and their corresponding estimators nest the input and output-oriented versions

of the original DEA and FDH estimators, but also permit estimation of efficiency along other

paths to the frontier. In addition, the directional estimators permit negative values of input

or output quantities, unlike the earlier radial estimators. This enhanced flexibility has made

directional measures and their estimators popular in recent years.

The conditional efficiency estimators based on FDH and DEA have been extended to ro-

bust order-m and order-α type estimators; see Daraio and Simar (2007) for an introduction

and Simar and Wilson (2013, 2015) for comprehensive summaries. These robust estimators

are based on the idea of estimating distance from a given DMU’s position in input-output

space to a partial frontier lying “close” to the full frontier (i.e., the boundary of the produc-

tion set). Partial frontiers provide an alternative benchmark, and provide advantages over

the full-envelopment FDH and DEA estimators in terms of the resulting statistical proper-

ties. Inclusion of environmental variables may reflect heterogeneity of the DMUs and their

operating environments. Environmental variables are neither inputs nor outputs, but instead

are external (to the DMU) factors that may affect the performance of the units. Efficiency

estimates are conditioned on these variables in the sense that efficiency is estimated given

the environment described by the environmental variables. Bădin et al. (2014) provide an

overview.

1 The Data Envelopment Analysis (DEA) estimators proposed by Farrell (1957) and Charnes et al. (1978)
impose convexity on the production set, while the Free Disposal Hull (FDH) estimator proposed by Deprins
et al. (1984) does not.
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The statistical properties of both conditional and unconditional directional distance es-

timators have been derived by Simar and Vanhems (2012) and Simar et al. (2012) for both

the full-envelopment and robust, partial frontier cases. However, as observed by Daraio and

Simar (2014), computation of directional distance estimates is problematic due to numer-

ical issues as well as a substantial computational burden due to reliance on Monte-Carlo

approximations required to computed the estimates.

This paper provides a new, fast and efficient method to compute exact values of the

directional distance estimates for all the cases (i.e., both the full frontier case as well as

the robust, partial-frontier cases, and both conditional or unconditional cases). The new

method eliminates the need for Monte-Carlo approximations and provides exact solutions.

This avoids the substantial computational burden that has been incurred until now. In

addition, the new method avoids numerical problems that can arise in applications when the

previous computational methods are used in applications. This new method is illustrated

on both simulated and real data, and Matlab code is provided for use by practitioners.

The results provided in this paper are relevant to practitioners, in particular because the

robust directional distance estimators (both conditional and unconditional) are widely used.

Conditional efficiency analyses have been applied to carry out innovation studies at regional

level (Broekel, 2012) and environmental analyses at both national (Halkos and Tzeremes,

2014; Halkos et al., 2016; Halkos and Managi, 2017; Manello, 2017) as well as regional levels

accounting for governance issues (Halkos et al., 2015) and growth (Halkos et al., 2016; Halkos

and Tzeremes, 2013a). Applications in agriculture (Serra and Lansink, 2014) include the

efficiency of family firms (Balez̆entis and De Witte, 2015) and the analysis of the effect of

public subsidies on farm efficiency (Minviel and De Witte, 2017). Examples of applications

in the financial sector include Mallick et al. (2016), Matousek and Tzeremes (2016) and

Tzeremes (2015). Other interesting applications examine libraries (De Witte and Geys,

2011), primary schools (Cordero et al., 2017b), secondary schools (Haelermans and De Witte,

2012), municipalities (Cordero et al., 2017a), the health care sector (Varabyova et al., 2017;

Varabyova and Schreyögg, 2017; Ferreira et al., 2018), water utilities (Zschille, 2015), waste

management (Fuentes et al., 2015; Guerrini et al., 2016), culture and eco-efficiency (Halkos

and Tzeremes, 2013b) and local police departments (Verschelde and Rogge, 2012).

The paper is organized as follows. The next section introduces the basic concepts and
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notation and provides an outline of the issues addressed by the paper. Section 3 presents

the full frontier cases distinguishing between unconditional and conditional analyses, Sec-

tions 4 and 5 analyze the partial frontier approaches, presenting again for each of them the

unconditional and conditional cases. Section 6 reports the outcome of the application of

the new proposed method for computing directional distances to simulated as well as real

data. Section 7 provides conclusions and a brief summary of the main results. Matlab code

implementing the new computational method is provided in Appendix A.

2 Statistical Framework and Notation

This section introduces the basic concepts and notation needed to present the new computa-

tional methods for directional distances in the various cases of interest. We first summarize

the concepts of directional distance functions and their conditional versions which allow

analysis of possible heterogeneity due to some environmental factors. We then give the intu-

ition behind the robust partial frontiers (order-α and order-m) in the context of directional

distances. Finally, we discuss the drawbacks of the existing algorithms for computing these

various directional distances and the need for the new computational methods provided later

in this paper.

2.1 Directional Distances and Their Probabilistic Formulation

Consider a production process in which p inputs are used to produce q outputs. The pro-

duction set

Ψ = {(x, y) ∈ R
p+q | x can produce y} (2.1)

is the set of technically feasible combinations of inputs and outputs. The efficient frontier of

Ψ is defined by

Ψ∂ = {(x, y) ∈ Ψ | (γ−1x, γy) /∈ Ψ ∀ γ > 1}. (2.2)

Traditional approaches to efficiency measurement based on the ideas of Farrell (1957), Debreu

(1951) and Shephard (1970) involve measuring the distance from a production plan (x, y)

to the efficient frontier Ψ∂ in either the input or output direction by considering either the

maximum feasible, proportionate reduction in input quantities (holding output fixed) or the

maximum feasible, proportionate increase in output quantities (holding input fixed). With
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these radial measures of efficiency, only non-negative values of input and output quantities

can be accommodated.

Nonparametric estimators of the attainable set Ψ are often based on envelopment of the

cloud of observed points Xn = {(Xi, Yi)}ni=1. The Free Disposal Hull (FDH), suggested by

Deprins et al. (1984), only assumes free disposability of both inputs and outputs, whereas the

Data Envelopment Analysis (DEA) estimators proposed by Farrell (1957) and popularized

by Charnes et al. (1978) assume convexity of Ψ as well as free disposability of inputs and

outputs. The properties of the resulting estimators of efficiency measures, in the radial cases,

have been derived in Park et al. (2000) for the FDH case and in Kneip et al. (2008) for the

DEA with varying returns to scale and Park et al. (2010) for the DEA with constant returns

to scale. It is now well-known that these estimators suffers from the “curse of dimensionality.”

When the dimension p+ q increases, the rates of convergence become slower. For individual

efficiency measures, bootstrap techniques are required to make inference, estimate bias and

estimate confidence intervals. For more details, see the recent surveys by Simar and Wilson

(2013, 2015) and the references therein.

Directional distances introduced by Chambers et al. (1996, 1996) and discussed by Färe

and Grosskopf (2004) provide useful and flexible ways to measure technical efficiency of units

relative to the efficient frontier. The directional distance function

β(x, y | dx, dy) = sup{β > 0 | (x− βdx, y + βdy) ∈ Ψ} (2.3)

projects the input-output vector (x, y) onto the technology in a direction specified by a vector

d = (dx, dy) ≥ 0. The choice of the directions dx and dy for measuring the distance from the

unit operating at (x, y) ∈ Ψ to the frontier allows analysis of different strategies for the units

to reach the efficient frontier. Note that some directions (but not all) can be set equal to zero,

indicating the components of X and Y that are “inactive” in the optimization described in

(2.3). For instance is the vector dx = 0, and if all the outputs take positive values, then the

Farrell-Debreu radial output efficiency measure is given by 1+β(x, y | 0, y). Alternatively, in
the input orientation, if all the inputs take positive values, the Farrell-Debreu radial efficiency

is given by 1− β(x, y | x, 0). Note that the additive nature of directional distances allows to
treat negative inputs and outputs, which is not the case for radial distances.

In practice all these quantities are unknown and must be estimated from a sample of ob-

servations Xn = {(Xi, Yi)}ni=1. Therefore, in order to evaluate the properties of the resulting
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estimates, and to make inference, a statistical model is required. We adopt the probabilistic

formulation of Cazals et al. (2002) and extended by Daraio and Simar (2005). The produc-

tion process is characterized by the process that generates a vector of inputs and outputs

defined over an appropriate probability space. Let X ∈ R
p denote a p-vector of inputs and

Y ∈ R
q denote a q-vector of outputs. The joint distribution of (X, Y ) has support over Ψ.

Now consider the joint probability HXY (x, y) = Pr(X ≤ x, Y ≥ y), which is the probability

of finding a unit (X, Y ) dominating the point (x, y). As shown by Cazals et al. (2002), under

the free disposability assumption2

Ψ = {(x, y) ∈ R
p+q | HXY (x, y) > 0}. (2.4)

Simar and Vanhems (2012) show that under free disposability,

β(x, y | dx, dy) = sup{β > 0 | HXY (x− βdx, y + βdy) > 0}. (2.5)

Nonparametric estimators of the attainable set are typically obtained by envelopment tech-

niques. Simar and Vanhems (2012)) and Simar et al. (2012) show that the resulting estima-

tors of the directional distances share properties similar to those of the radial measures.

In this paper we will focus on the FDH family of estimators, without imposing convexity

of the attainable set. In this case, it can be shown that the FDH estimator of β(x, y | dx, dy)
can also be obtained by plugging (2.5) into the empirical version of HXY given by

Ĥn,XY (x, y) =
1

n

n∑

i=1

1(Xi ≤ x, Yi ≥ y), (2.6)

where 1(·) is the indicator function (1(a) = 1 if a is true and 0 otherwise). We will see below

how to implement this in practice, in particular when some (but not all) elements of (dx, dy)

are set at zero.

2.2 Introducing Environmental Variables

The probabilistic characterization of the production process defined above allows quite natu-

rally introduction of environmental factors into the process. Consider the case where external

environmental variables Z ∈ Z ⊂ R
r represent heterogeneity factors that may influence the

2 The free disposability of inputs and outputs assumes that if (x, y) ∈ Ψ, then (x̃, ỹ) ∈ Ψ for all (x̃, ỹ)
such that x̃ ≥ x and ỹ ≤ y. In a sense, it assumes the possibility of wasting resources.
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production process. To accommodate these variables, the probability space considered so

far has to be augmented. We consider the probability space (Ω,F ,P) on which the random

variables X, Y, Z are defined and we denote by P the support of the joint distribution of

(X, Y, Z). Let Ψz denote the support of (X, Y ) given Z = z. Thus the attainable set for

firms facing external conditions Z = z is given by

Ψz = {(x, y) ∈ R
p+q | x can produce y if Z = z}

= {(x, y) ∈ R
p+q | HXY |Z(x, y | z) > 0}, (2.7)

where HXY |Z(x, y | z) = Pr(X ≤ x, Y ≥ y | Z = z). The variables in Z can affect the

production process either (i) through Ψz the support of (X, Y ), (ii) through the conditional

distribution of (X, Y ) given Z, affecting e.g. only the probability of a firm to reach its

optimal boundary, or (iii) through both (i) and (ii).

It is easy to see that Ψ =
⋃

z∈Z Ψz, so that Ψz ⊆ Ψ, for all z ∈ Z. In the very

particular case where the joint support of (X, Y, Z) can be written as the Cartesian product

P = Ψ×Z, Z has no impact on the boundaries of Ψ and Ψz = Ψ for all z ∈ Z (this is called

the “separability condition” in the literature; e.g., see Simar and Wilson, 2007, 2011). In the

latter case, Z may eventually influence the production process only through the probability

of reaching its optimal boundary. Daraio et al. (2018) provide a procedure for testing this

separability condition.

Now we can define the conditional directional distance function

β(x, y | dx, dy, z) = sup{β > 0 | HXY |Z(x− βdx, y + βdy | z) > 0}. (2.8)

Here again, we can recover the conditional version of the radial Farrell-Debreu measures by

the appropriate choice of the distance vector. A nonparametric estimator of β(x, y | dx, dy, z)
is obtained from a sample Xn = {(Xi, Yi, Zi)}ni=1 by plugging a nonparametric estimator of

HXY |Z(x, y | z) into (2.8). This conditional version requires smoothing over the values of Zi

in a neighborhood of z since observations with exact values Zi = z are typically not available.

We use the empirical, localized analog of HXY |Z(x, y | z) given by

Ĥn,XY |Z(x, y | Z = z) =

∑n
i=1 1(Xi ≤ x, Yi ≥ y)Kh(Zi, z)∑n

i=1Kh(Zi, z)
, (2.9)

where Kh(Zi, z) are appropriate kernel functions (with compact support) and h is a vector

of r bandwidths, one for each component of z. In fact, it can be shown that the conditional
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FDH estimator is a localized version of the unconditional case, where the localization is tuned

by the bandwidths h. The estimator is the FDH estimator computed over the subsample of

observations i = 1, . . . , n such that ||Zi − z|| ≤ h (see Cazals et al., 2002 and Daraio and

Simar, 2005 for details).3 The asymptotic properties of the resulting estimators of the radial

conditional measures have been established in Jeong et al. (2010) and adapted to directional

distances in Simar and Vanhems (2012). To summarize, we keep similar properties as in the

unconditional case but with a reduced number of observations: n is replaced by n
∏r

j=1 h
(j).

Conditioning on Z requires the determination of an r-vector of bandwidths. For the radial

oriented efficiency scores, Bădin et al. (2010) suggest adapting least squares cross validation

techniques from the literature. However, Simar et al. (2016) show (see their Appendix B)

that better monotonicity properties of the resulting efficiency estimates are achieved by

searching for the optimal bandwidth when estimating the joint probability HXY |Z(x, y | z).4

Here direct methods suggested by Li et al. (2013) can be used (Matlab code for this purpose

is provided by Bădin et al., 2018. A detailed methodology on how to analyze the effect

of Z on the production process has been proposed by Bădin et al. (2012, 2014). Simar

et al. (2016) show how to adapt the approach when Z is latent and hence unobserved. This

requires an additional model and an instrument to identify Z.

2.3 Partial Frontiers: Robust Approaches

Nonparametric FDH and DEA estimators are envelopment estimators in the sense that

the corresponding estimate of Ψ (or of Ψz) envelops the cloud of observed data points.

Consequently, these estimators are highly sensitive to extreme data points and outliers.

This provides the major interest in the robust version of these estimators developed for

radial measures by Cazals et al. (2002), Aragon et al. (2005) and Daouia and Simar (2007).

Simar and Vanhems (2012) extend these concepts to directional distances. In all cases,

the idea is to define a less-extreme boundary to use as a benchmark, i.e. to define a partial

frontier in contrast to the full frontier used above. By construction, some data points may lie

outside the partial-frontier, but nonetheless the partial frontier provides a useful benchmark

for evaluating efficiency. Two classes of partial frontiers have been suggested in the literature:

3 The inequality ||Zi − z|| ≤ h has to be understood component by component |Z(j)
i − z(j)| ≤ h(j).

4 See the discussion in Footnote 6 below.
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the order-α quantile frontier and the order-m partial frontier. In this summary we give only

some intuitive definitions for the case of one output and with the output orientation (e.g.

dx = 0 and dy = 1) for the unconditional case where Z does not play a role. In the remaining

sections of the paper we will derive expressions for the most general cases.

For any α ∈ (0, 1] the directional distance of order-α is given by

βα(x, y | 0, 1) = sup{β | SY |X(y + β | x) > 1− α}, (2.10)

where SY |X(y | x) = Pr(Y ≥ y | X ≤ x) = HXY (x, y)/FX(x) is the conditional survival

function of Y given X ≤ x. Note that if α → 1, we are back the usual full frontier

measure (for d = (0, 1)). So for α < 1, the benchmark frontier for the unit (x, y) (i.e. where

βα(x, y | 0, 1) = 0) corresponds to the α-quantile of the conditional distribution of the output

among the population of units using less inputs than x.

Then the partial order-α frontier (or the “order-α quantile frontier”) is given by

ϕα(x) = y + βα(x, y | 0, 1), (2.11)

where y can be any value in the support of SY |X(· | x). Note that βα(x, y | 0, 1) can takes

negative values if y is large and hence this unit lies above the conditional quantile frontier

of order-α.

The order-m frontier in the same (output) orientation can be defined for any integer m

as

ϕm(x) = E [max(Y1, . . . , Ym) | X ≤ x] , (2.12)

where the Yj are independent, identically distributed (iid) realization of the output Y , con-

ditionally on X ≤ x. Here, as m → ∞, we are back to the usual full-frontier measure. So

the benchmark frontier is the expected value of the maximum output among m peers drawn

from the population of units using less inputs than x. It can be shown that when Y takes

only positive values,

ϕm(x, y) =

∫ ∞

0

[1− (1− SY |X(y | x))m]dy. (2.13)

Note again that βm(x, y | 0, 1) = ϕm(x)− y can take negative values for large values of y.

Nonparametric estimators are obtained by plugging in the empirical versions of the con-

ditional survival function. They share interesting properties, in particular, and by contrast
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to the full frontier estimates, they achieve the parametric
√
n-rate of convergence indepen-

dently of the dimension of the problem (p + q). The statistical properties of the order-m

estimators have been established by Cazals et al. (2002) and for the order-α cases by Daouia

and Simar (2007). These include the conditional to Z cases. Simar and Vanhems (2012)

extend these to the directional distances cases.

We will provide below general expressions for evaluating the directional distance to these

partial frontiers (conditional and unconditional to Z) and their estimators. Recall that their

robustness properties rely on the fact that for large α (or m) we estimate a partial frontier

not far from the full frontier, but for α < 1 and finite m, the estimators will not envelop all

the data points and so are robust to extreme data points and outliers. Comparisons of the

two concepts from a robustness point of view can be found in Daouia and Ruiz-Gazen (2006)

and Daouia and Gijbels (2011b). Daouia et al. (2010, 2012) show how these partial frontiers

can be used for estimating the full frontier, letting α → 1 and m → ∞ when n → ∞ but at

an appropriate rate.

2.4 Aim of the Paper

After the summary in the preceding sections, we next focus on the computational issues

of directional distance functions. Simar and Vanhems (2012) show the equivalence between

directional distances and hyperbolic radial distances after a monotonic transformation of the

coordinate space of the inputs and the outputs. To summarize, for the “active” variables

(those with components in d being > 0), the transformation is defined as

X∗ = exp(X⊘dx) and Y ∗ = exp(Y⊘dy), (2.14)

where ⊘ is the Hadamard component-wise division of vectors. The “non-active” variables

can remain as they are.

This transformation is useful for obtaining the theoretical properties of the resulting es-

timators but may create some numerical problems for their practical computations (Daraio

and Simar, 2014). The exponential transformation may provide huge numbers that have to

be carefully handled to avoid numerical problems when handling ratios (which is typical in

FDH approaches).5 Also the log transformation at the end, for coming back to original units,

5 Note e.g. that exp(50) is already of the order 5× 1021. So without rescaling the variables we may have
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may create other problems. Simar and Vanhems (2012) observe that this is particularly the

case for the order-m estimators where the log(w) comes in an integral starting at w = 0.

The integral is well defined but its numerical treatment can be difficult. So for the order-m

estimators (either conditional on Z or unconditional on Z), only approximate solutions based

on Monte-Carlo simulations have been proposed so far. These Monte-Carlo approximations

are not easy to implement (especially for the conditional-on-Z case; see Daraio and Simar,

2014 for discussion), and may involve substantial computational burden to achieve reason-

able precision. In this paper we propose an alternative, but equivalent, formulation of the

directional distances which avoids all of these drawbacks. In the same set up and for the

different nonparametric robust conditional and unconditional cases covered by Simar and

Vanhems (2012) and by Daraio and Simar (2014) we propose a fast and efficient formula for

computing the directional distances, also in the most general cases where some components

of dx and of dy might be equal to zero. In addition, we provide simple expressions for the ex-

act computation of the order-m directional distances (both unconditional and conditional).

The main difficulty is to provide a formulation capable of handling cases where some of the

inputs or outputs are inactive (i.e., with d-elements equal to zero). This is important since it

reflects one of the most interesting flexibility properties of the directional distance functions.

In the next sections we detail how our method can be applied in various scenarios, cases.

Appendix A provides the Matlab code implementing our methods.

3 Full Frontier Cases

3.1 Unconditional Case

To fix the notation, and without loss of generality, let us partition dx = (dx1
, dx2

), where

dx2
= 0 is of dimension p2 ≥ 0. Then dx1

> 0 is of dimension p1 = p − p2. Note that dx2

could be an empty vector with p2 = 0. We use similar notational convention for the elements

of dy = (dy1, dy2) with dy2 = 0 of dimension q2 ≥ 0. We partition all the inputs and outputs

analogously, noting that X2 and/or Y2 could be empty vectors. So X1 and Y1 are the active

variables in the optimization equations above.

numerical imprecision and overflow conditions on digital computers. Note that the corresponding elements
of the direction vector have to be rescaled accordingly, to avoid misinterpretation of the resulting β. This
creates additional potential for confusion or errors.
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Following Appendix B in Simar and Vanhems (2012), in the presence of inactive direc-

tions, the directional distance is defined as

β(x, y | dx, dy) = sup{β > 0 | HX1Y1|X2Y2
(x1 − βdx1

, y1 + βdy1 | x2, y2) > 0}, (3.1)

where HX1Y1|X2Y2
(x1, y1 | x2, y2) = Pr(X1 ≤ x1, Y1 ≥ y1 | X2 ≤ x2, Y2 ≥ y2) is the conditional

probability of dominating (x1, y1) given that X2 ≤ x2, Y2 ≥ y2. This is in the spirit of

the probabilistic characterization of the Farrell-Debreu concept of efficiency introduced by

Cazals et al. (2002). For instance, in the pure output orientation dx = 0 and dy > 0, the

efficient frontier for a unit (x, y) is given by the upper support of the conditional distribution

of Y given X ≤ x. Note also that for units where HX2Y2
(x2, y2) > 0, for the full frontier

case, the directional distance may also be computed as

β(x, y | dx, dy) = sup{β > 0 | HXY (x1 − βdx1
, x2, y1 + βdy1, y2) > 0}. (3.2)

As explained below, the latter equivalence will not be valid for the robust versions of the

frontiers where the conditioning on X2 ≤ x2, Y2 ≥ y2 has to be used, as in (3.1).

Directional distances are independent of the units of measurement as described in Färe

et al. (2008) and formally proven in Appendix A in Simar and Vanhems (2012). The property

can be stated as follows:

β(θ◦x, λ◦y | θ◦dx, λ◦dy) = β(x, y | dx, dy) for θ ∈ R
p
+, and λ ∈ R

q
+, (3.3)

where ◦ indicates the Hadamard product or component-wise multiplication of vectors. This

property inspires the transformation of the variables that will make easy the characterization

of directional distances and will facilitate the computation of their estimators. Consider first

the case where all components of d are > 0. We have indeed as a consequence of (3.3) the

following identity:

β(x, y | dx, dy) = β(x⋆, y⋆ | ip, iq), (3.4)

where ik is a vector of ones of length k, x⋆ = x⊘dx and y⋆ = y⊘dy. More generally, when

some elements of d are zero, we consider the transformation

X⋆
1 = X1⊘dx1

and X⋆
2 = X2

Y ⋆
1 = Y1⊘dy1 and Y ⋆

2 = Y2, (3.5)
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which leads to

β(x, y | dx, dy) = sup{β > 0 | HX⋆
1
Y ⋆
1
|X⋆

2
Y ⋆
2
(x⋆

1 − βip1, y
⋆
1 + βiq1 | x⋆

2, y
⋆
2) > 0}, (3.6)

where HX⋆
1
Y ⋆
1
|X⋆

2
Y ⋆
2
is the version of HX1Y1|X2Y2

in the new coordinate system.

Now the nonparametric estimator of the distance is obtained by plugging in the empirical

version of HX⋆
1
Y ⋆
1
|X⋆

2
Y ⋆
2
in (3.6). This yields

Ĥn,X⋆
1
Y ⋆
1
|X⋆

2
Y ⋆
2
(x⋆

1, y
⋆
1 | x⋆

2, y
⋆
2) =

Ĥn,X⋆
1
,X⋆

2
Y ⋆
1
,Y ⋆

2
(x⋆

1, x
⋆
2, y

⋆
1, y

⋆
2)

Ĥn,X⋆
2
Y ⋆
2
(x⋆

2, y
⋆
2)

=

∑n
i=1 1(X

⋆
1,i ≤ x⋆

1, X
⋆
2,i ≤ x⋆

2, Y
⋆
1,i ≥ y⋆1, Y

⋆
2,i ≥ y⋆2)∑n

i=1 1(X
⋆
2,i ≤ x⋆

2, Y
⋆
2,i ≥ y⋆2)

. (3.7)

Some algebra leads to the following explicit formula for the FDH estimator of β(x, y |
dx, dy), namely

β̂(x, y | dx, dy) = sup{β > 0 | Ĥn,X⋆
1
Y ⋆
1
|X⋆

2
Y ⋆
2
(x⋆

1 − βip1, y
⋆
1 + βiq1 | x⋆

2, y
⋆
2) > 0},

= max
{i|X2,i≤x2,Y2,i≥y2}

[
min

k = 1 . . . , p1
ℓ = 1, . . . , q1

{
x⋆,k
1 −X⋆,k

1,i , Y
⋆,ℓ
1,i − y⋆,ℓ1

}]
, (3.8)

where for a vector a, aj represents its jth component. The formulation (3.8) is easy to

program in modern high-level languages like R or Matlab. The call of the Matlab func-

tion FDH dirdist new(x,y,dx,dy,X,Y) in Appendix A computes β̂(x, y | dx, dy) using the

expression in (3.8).

3.2 Conditioning on Environmental Factors Z

Simar and Vanhems (2012) provide the conditional (on environmental factors Z ∈ R
r),

directional measure

β(x, y | dx, dy, z) = sup{β > 0 | HX1Y1|X2Y2Z(x1 − βdx1
, y1 + βdy1 | x2, y2, z) > 0}, (3.9)

where HX1Y1|X2Y2Z(x1, y1 | x2, y2, z) = Pr(X1 ≤ x1, Y1 ≥ y1 | X2 ≤ x2, Y2 ≥ y2, Z = z) is

the conditional probability of dominating (x1, y1) given that X2 ≤ x2, Y2 ≥ y2 and Z = z,

noting the difference in conditioning between the inactive inputs, the inactive outputs and

the factors Z. This distribution is given by

HX1Y1|X2Y2Z(x1, y1 | x2, y2, z) =
HX1,X2,Y1,Y2|Z(x1, x2, y1, y2 | z)
HX1,X2,Y1,Y2|Z(∞, x2,−∞, y2 | z)

. (3.10)
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The nonparametric estimator of the distribution in 3.10 requires smoothing in z using a

kernel with compact support (see Daraio and Simar, 2005). Following Simar et al. (2016), the

optimal bandwidths hz can be obtained through leave-one out cross validation for estimating

the conditional distribution HX1,X2,Y1,Y2|Z .
6 Then we have

Ĥn,X1Y1|X2Y2Z(x1, y1 | x2, y2, z) =∑n
i=1 1(X1,i ≤ x1, X2,i ≤ x2, Y1,i ≥ y1, Y2,i ≥ y2)K

(
(Zi − z)⊘hz

)
∑n

i=1 1(X2,i ≤ x2, Y2,i ≥ y2)K
(
(Zi − z)⊘hz

) , (3.11)

where, with some abuse of notations when Z is multivariate, K(·) is the chosen kernel

function (for multivariate Z we use a product kernel, hz = (h1
z, . . . , h

r
z) and the division by

hz is component-wise). The version for the transformed variables (X⋆, Y ⋆) is the same after

adapting the notation. This estimator will be useful for the robust frontiers below. For the

conditional full frontier, only the knowledge of the bandwidth hz is needed. We know from

Daraio and Simar (2005) and Jeong et al. (2010) that the conditional FDH estimator is a

localized version of the FDH estimator, where “localizing” means using only observations

(Xi, Yi) such that | Zi − z |≤ hz (component-wise). So the expression in (3.8) transforms as

follows:

β̂(x, y | dx, dy, z) = sup{β > 0 | Ĥn,X⋆
1
Y ⋆
1
|X⋆

2
Y ⋆
2
Z(x

⋆
1 − βip1, y

⋆
1 + βiq1 | x⋆

2, y
⋆
2, z) > 0},

= max
{i|X2,i≤x2,Y2,i≥y2,|Zi−z|≤hz}

[
min

k = 1 . . . , p1
ℓ = 1, . . . , q1

{
x⋆,k
1 −X⋆,k

1,i , Y
⋆,ℓ
1,i − y⋆,ℓ1

}]
, (3.12)

where we see clearly after comparing with (3.8) that under the max operator, that conditional

directional distance are localized versions of the unconditional FDH estimator.

The Matlab function ZFDH dirdist new(hz,x,y,z,dx,dy,X,Y,Z) in Appendix A com-

putes β̂(x, y | dx, dy, z) as described in (3.12), where hz has been determined in advance.

6 Note that when some elements of the direction vector d are zero, we condition on the inactive variables
(X2 ≤ x2) and (Y2 ≥ y2), but for bandwidths selection, the argument from the Appendix A of Simar et al.
(2016) remains valid. We select the optimal bandwidth (by cross-validation) for estimating HXY |Z(x, y | Z =
z) rather the ones for estimating the conditional distributions HX1Y1|X2Y2Z(x1, y1 | X2 ≤ x2, Y2 ≥ y2, Z = z).

It is easy to see that for fixed (x1, y1, z), the resulting Ĥn,X1Y1|X2Y2Z(x1, y1 | X2 ≤ x2, Y2 ≥ y2, Z = z) defined

in (3.10) cannot decrease with x2 and cannot increase with y2, and so for β̂(x, y | dx, dy, z) which is required
by the same economic reasoning. Everything else constant (i.e., producing the same level of outputs y1 with
the same level of inputs x1 and under conditions z), the efficiency should increase when decreasing some
of the inputs in x2 or by increasing some of the outputs in y2. This property is not guaranteed by using
bandwidths hz(x2, y2) changing with the levels of the inactive variables (x2, y2).
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4 Robust Version: Order-α Quantile Frontiers

4.1 Unconditional Case

Daouia and Simar (2007) introduced order-α quantile frontiers for radial measures in the

multivariate case. These have been adapted to directional distances in Simar and Vanhems

(2012). Their definition in the more general case where some elements of dx and/or of dy

may be equal to zero can be presented as follows. For any α ∈ (0, 1], and for any (x2, y2)

such that HX2Y2
(x2, y2) > 0,

βα(x, y | dx, dy) = sup{β | HX1Y1|X2Y2
(x1 − βdx1

, y1 + βdy1 | x2, y2) > 1− α},

= sup{β | HX1X2Y1Y2
(x1 − βdx1

, x2, y1 + βdy1, y2) > (1− α)HX2Y2
(x2, y2)},

(4.1)

noting that using the quantile of the complete joint distribution HX1X2Y1Y2
(unconditional to

(X2, Y2)) would give different objects unless bothX2 and Y2 are empty and so HX2Y2
(x2, y2) =

1.7 Note also that a negative value of βα(x, y | dx, dy) indicates a unit (x, y) lying above the

order-α frontier. In the transformed coordinate system this gives

βα(x, y | dx, dy) = sup{β | HX⋆
1
Y ⋆
1
|X⋆

2
Y ⋆
2
(x⋆

1 − βip1, y
⋆
1 + βiq1 | x⋆

2, y
⋆
2) > 1− α}. (4.2)

Now Consider the random variable

W x,y
(
X⋆

1 , Y
⋆
1

)
= min

k = 1 . . . , p1
ℓ = 1, . . . , q1

{
x⋆,k
1 −X⋆,k

1 , Y ⋆,ℓ
1 − y⋆,ℓ1

}
(4.3)

Clearly, the conditional survival function of W x,y
(
X⋆

1 , Y
⋆
1

)
is given by

SW (w | x2, y2) = Prob
(
W x,y

(
X⋆

1 , Y
⋆
1

)
≥ w | X2 ≤ x2, Y2 ≥ y2

)

= HX⋆
1
Y ⋆
1
|X⋆

2
Y ⋆
2
(x⋆

1 − wip1, y
⋆
1 + wiq1 | x⋆

2, y
⋆
2), (4.4)

which allows definition of βα(x, y | dx, dy) through the quantiles of W x,y
(
X⋆

1 , Y
⋆
1

)
. The

nonparametric estimator is obtained by plugging the empirical version of HX⋆
1
Y ⋆
1
|X⋆

2
Y ⋆
2
into

the last equation. Consider the sequence W x,y
(
X⋆

1,i, Y
⋆
1,i

)
for i = 1, . . . , n. Define Nx,y

2 =

7 This would be more in the vein of the quantile frontier introduced by Daouia et al. (2017) and adapted
to directional distances in Daraio and Simar (2014). This approach has the drawback of being defined only
for quantiles (1− γ) where γ > 1−HX2Y2

(x2, y2) (γ = 1− (1−α)HX2Y2
(x2, y2), with α > 0), so if the point

(x2, y2) is on the edge of their possible values, only quantiles with very large values of γ would be available.
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nĤn,X⋆
2
Y ⋆
2
(x⋆

2, y
⋆
2), the number of observations in the original sample with X2,i ≤ x2 and

Y2,i ≥ y2 (note that N
x,y
2 = n if both X2 and Y2 are empty, with all the directions in d being

> 0).

Next, define the order statistics

W x,y
(1) ≤ W x,y

(2) ≤ . . .W x,y
(Nx,y

2
)

(4.5)

of the variables W x,y
(
X⋆

1,i, Y
⋆
1,i

)
only for the Nx,y

2 observations with X2,i ≤ x2 and Y2,i ≥ y2:

It immediately follows that

β̂α(x, y | dx, dy) =
{

W x,y
(αNx,y

2
)

if αNx,y
2 ∈ N

W x,y
([αNx,y

2
]+1)

otherwise,
(4.6)

where [a] denotes the integer part of a. Note that if α = 1 we recover the full frontier

estimate β̂(x, y | dx, dy).
The Matlab function OrderAlpha dirdist new(x,y,dx,dy,X,Y,alpha) in Appendix A

computes β̂α(x, y | dx, dy) using the expression in (4.6), where α ∈ (0, 1] is selected a priori.

4.2 Conditioning on Environmental Factors Z

The conditional (on Z = z) version of the order-α directional distance estimator is rather

easy to derive using the conditional distribution and its nonparametric estimator described

above in (3.10) and (3.11). The definition of the order-α conditional directional distance, for

any α ∈ (0, 1], is given by

βα(x, y | dx, dy, z) = sup{β | HX1Y1|X2Y2Z(x1 − βdx1
, y1 + βdy1 | x2, y2, z) > 1− α}, (4.7)

= sup{β | HX⋆
1
Y ⋆
1
|X⋆

2
Y ⋆
2
Z(x

⋆
1 − βip1, y

⋆
1 + βiq1 | x⋆

2, y
⋆
2, z) > 1− α}. (4.8)

The conditional (on Z) survival function of W x,y
(
X⋆

1 , Y
⋆
1

)
is given by

SW |Z(w | x2, y2, z) = Prob
(
W x,y

(
X⋆

1 , Y
⋆
1

)
≥ w | X2 ≤ x2, Y2 ≥ y2, Z = z

)

= HX⋆
1
Y ⋆
1
|X⋆

2
Y ⋆
2
Z(x

⋆
1 − wip1, y

⋆
1 + wiq1 | x⋆

2, y
⋆
2, z). (4.9)

Its nonparametric estimator can be written as

Ŝn,W |Z(w | x2, y2, z) =

∑n
i=1 1(Wi ≥ w,X2,i ≤ x2, Y2,i ≥ y2)K

(
(Zi − z)⊘hz

)
∑n

i=1 1(X2,i ≤ x2, Y2,i ≥ y2)K
(
(Zi − z)⊘hz

) , (4.10)

=

∑Nx,y
2

j=1 1(W x,y
(j) ≥ w)K

(
(Zx,y

[j] − z)⊘hz

)
∑n

i=1 1(X2,i ≤ x2, Y2,i ≥ y2)K
(
(Zi − z)⊘hz

) , (4.11)

15



where Zx,y
[j] is the observation Zi corresponding to the j-th order statistic W x,y

(j) . Therefore

Ŝn,W |Z(w | x2, y2, z) =





1 if w ≤ W x,y
(1)

Lk+1 if W x,y
(k) < w ≤ W x,y

(k+1), k = 1, . . . , Nx,y
2 − 1

0 if w > W x,y
(Nx,y

2
)
,

(4.12)

where for k = 1, . . . , Nx,y
2 − 1,

Lk+1 =

∑Nx,y
2

j=k+1K
(
(Zx,y

[j] − z)⊘hz

)
∑n

i=1 1(X2,i ≤ x2, Y2,i ≥ y2)K
(
(Zi − z)⊘hz

) . (4.13)

Finally, the explicit expression of the conditional order-α directional distance is given by

β̂α(x, y | dx, dy, z) =
{

W x,y
(k) if Lk+1 ≤ 1− α < Lk, k = 1, . . . , Nx,y

2 − 1

W x,y
(Nx,y

2
)

if 0 ≤ 1− α < LNx,y
2

.
(4.14)

These formulae extend to the general directional distance case allowing some elements of

d to equal zero, and hence include the expressions derived in Daouia and Simar (2007) for

output radial distances as special cases.

The Matlab function ZorderAlpha dirdist new(kernelz,hz,x,y,z,dx,dy,X,Y,Z,alpha)

in Appendix A computes β̂α(x, y | dx, dy, z) using (4.14), where a value α ∈ (0, 1] is passed to

the function as an argument. The kernels for the components of Z can be Gaussian, Quartic,

Epanechnikov or Uniform. The bandwidths hz must be determined before this call.

5 Robust Version: Order-m Partial Frontiers

5.1 Unconditional case

Cazals et al. (2002) introduce order-m partial frontiers and corresponding radial efficiency

measures, while Simar and Vanhems (2012) extend these to directional distances. Cazals

et al. give an explicit, exact expression for computing the nonparametric estimator in the

univariate case (e.g., q = 1 in the output orientation or p = 1 in the input orientation),

but so far only Monte-Carlo approximations are available for more general cases (see Simar

and Vanhems, 2012 or Daraio and Simar, 2014 for discussion). Below, we provide an exact

expression for the estimators which is easy and fast to compute for any p ≥ 1 or q ≥ 1. The

method also allows some elements of the direction vector d to be zero, and includes both the

unconditional as well as the conditional-on-Z cases.
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The order-m directional distance is defined as follows (see Simar and Vanhems, 2012). For

any integer m ≥ 1 and for any (x2, y2) such that HX2Y2
(x2, y2) > 0, consider m iid variables

(X1,j, Y1,j), j = 1, . . . , m drawn from the conditional distribution HX1Y1|X2Y2
(x1, y1 | x2, y2)

and define the random set Ψ̃x,y
m =

⋃m
j=1{(x1, u, y1, v) ∈ Ψ | x1 ≥ X1,j, u ≤ x2, y1 ≤ Y1,j, v ≥

y2}. Next, define the random measure

β̃m(x, y | dx, dy) = sup{β | (x1 − βdx1
, x2, y1 + βdy1, y2) ∈ Ψ̃x,y

m }. (5.1)

Then the order-m directional distance is given by

βm(x, y | dx, dy) = E(β̃m(x, y | dx, dy) | X2 ≤ x2, Y2 ≥ y2). (5.2)

Similar to the interpretation in Cazals et al. (2002), βm(x, y | dx, dy) in (5.2) benchmarks the

unit (x, y) against the expectation of the “best” among m peers using less inactive inputs

X2 and producing more inactive outputs Y2. A negative value of βm(x, y | dx, dy) indicates
a unit at (x, y) operating above the order-m frontier.

We can now see what happens in the transformed coordinate system (X⋆, Y ⋆) defined

above. We have

β̃m(x, y | dx, dy) = sup{β | H̃m,X⋆
1
Y ⋆
1
|X⋆

2
Y ⋆
2
(x⋆

1 − βip1, y
⋆
1 + βiq1 | x⋆

2, y
⋆
2) > 0}, (5.3)

where H̃m,X⋆
1
Y ⋆
1
|X⋆

2
Y ⋆
2
is the empirical version (in the new coordinate system) of HX⋆

1
Y ⋆
1
|X⋆

2
Y ⋆
2

obtained from the random sample {(X1,j, Y1,j)}mj=1. Hence by defining W x,y(X⋆
1 , Y

⋆
1 ), as

above in (4.3), but now for the m transformed observations {(X⋆
1,j, Y

⋆
1,j)}mj=1, it is clear that

β̃m(x, y | dx, dy) = max
j=1,...,m

{
W x,y(X⋆

1,j , Y
⋆
1,j)

}
(5.4)

where the (X⋆
1,j, Y

⋆
1,j) are distributed according HX⋆

1
Y ⋆
1
|X⋆

2
Y ⋆
2
.

The survival function of W x,y(X⋆
1 , Y

⋆
1 ) is given by

SW (w | x2, y2) = Pr(W x,y(X⋆
1 , Y

⋆
1 ) ≥ w | X2 ≤ x2, Y2 ≥ y2)

= HX⋆
1
Y ⋆
1
|X⋆

2
Y ⋆
2
(x⋆

1 − wip1, y
⋆
1 + wiq1 | x⋆

2, y
⋆
2). (5.5)

Consequently, the distribution function of β̃m(x, y | dx, dy) is given by

Gx,y
m (w) = Pr(β̃m(x, y | dx, dy) ≤ w) = [1− SW (w | x2, y2)]

m . (5.6)
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This leads to an equivalent expression for βm(x, y | dx, dy), namely

βm(x, y | dx, dy) =
∫ β(x,y|dx,dy)

0

w dGx,y
m (w). (5.7)

It is straightforward to confirm thatGx,y
m (0) = [1− SW (0 | x2, y2)]

m = 0 and thatGx,y
m (w) = 1

for all w ≥ β(x, y | dx, dy). Integration by parts then gives the desired result,

βm(x, y | dx, dy) = β(x, y | dx, dy)−
∫ β(x,y|dx,dy)

0

Gx,y
m (w) dw. (5.8)

Nonparametric estimation is now easy. Plugging the empirical version Ĥn,X⋆
1
Y ⋆
1
|X⋆

2
Y ⋆
2
into

(5.5) leads to

β̂m(x, y | dx, dy) = β̂(x, y | dx, dy)−
∫ β̂(x,y|dx,dy)

0

Ĝx,y
m (w) dw, (5.9)

where Ĝx,y
m (w) =

[
1− Ŝn,W (w | x2, y2)

]m
. As shown above, Ŝn,W (w | x2, y2) is easily obtained

from the order statistics of the Nx,y
2 variables W x,y

(
X⋆

1,i, Y
⋆
1,i

)
defined in (4.3) such that

X2 ≤ x2, Y2 ≥ y2, i.e., W
x,y
(1) ≤ . . . ≤ W x,y

(Nx,y
2

)
. Then an explicit expression for the order-m

directional distance estimator is given by

β̂m(x, y | dx, dy) =
Nx,y

2∑

j=1

W x,y
(j)

[(
j

Nx,y
2

)m

−
(
j − 1

Nx,y
2

)m]
. (5.10)

The Matlab function Orderm dirdist new(x,y,dx,dy,X,Y,m) in Appendix A organizes

the computations for evaluating β̂m(x, y | dx, dy) as described in (5.10), where m is an integer

≥ 1 chosen a priori.

5.2 Conditioning on Environmental Factors Z

The conditional-on-Z case follows similar arguments. The definition of the conditional order-

m directional distance is now based on the conditional (on Z) versions of the various distri-

butions used above in Section 5.1.

For any integer m ≥ 1 and for any (x2, y2) such that HX2Y2|Z(x2, y2 | z) > 0, con-

sider m iid variables (X1,j, Y1,j), j = 1, . . . , m drawn from the conditional distribution

HX1Y1|X2Y2Z(x1, y1 | x2, y2, z) and define the random set Ψ̃x,y,z
m =

⋃m
j=1{(x1, u, y1, v) ∈ Ψ |

x1 ≥ X1,j, u ≤ x2, y1 ≤ Y1,j, v ≥ y2, Z = z}. Define the random measure

β̃m(x, y | dx, dy, z) = sup{β | (x1 − βdx1
, x2, y1 + βdy1, y2) ∈ Ψ̃x,y,z

m }. (5.11)
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Then the conditional order-m directional distance is defined by

βm(x, y | dx, dy, z) = E(β̃m(x, y | dx, dy) | X2 ≤ x2, Y2 ≥ y2, Z = z). (5.12)

Following the arguments used in Section 5.1 for the unconditional case, we have

β̃m(x, y | dx, dy, z) = sup{β | H̃m,X⋆
1
Y ⋆
1
|X⋆

2
Y ⋆
2
Z(x

⋆
1 − βip1, y

⋆
1 + βiq1 | x⋆

2, y
⋆
2, z) > 0},

= max
j=1,...,m

{
W x,y(X⋆

1,j, Y
⋆
1,j)

}
, (5.13)

where now the (X⋆
1,j, Y

⋆
1,j) are distributed according to HX⋆

1
Y ⋆
1
|X⋆

2
Y ⋆
2
Z . The conditional (on Z)

survival function of W x,y(X⋆
1 , Y

⋆
1 ) is given by

SW |Z(w | x2, y2, z) = Pr(W x,y(X⋆
1 , Y

⋆
1 ) ≥ w | X2 ≤ x2, Y2 ≥ y2, Z = z)

= HX⋆
1
Y ⋆
1
|X⋆

2
Y ⋆
2
Z(x

⋆
1 − wip1, y

⋆
1 + wiq1 | x⋆

2, y
⋆
2, z). (5.14)

Finally, using reasoning analogous to that in Section 5.1, we have

βm(x, y | dx, dy, z) = β(x, y | dx, dy, z)−
∫ β(x,y|dx,dy,z)

0

Gx,y,z
m (w) dw, (5.15)

where Gx,y,z
m (w) =

[
1− SW |Z(w | x2, y2, z)

]m
.

The nonparametric estimator is obtained by plugging the estimator of the survival func-

tion SW |Z described in (4.12) into (5.15), yielding

β̂m(x, y | dx, dy, z) = β̂(x, y | dx, dy, z)−
∫ β̂(x,y|dx,dy,z)

0

Ĝx,y,z
m (w) dw, (5.16)

where Ĝx,y,z
m (w) =

[
1− Ŝn,W |Z(w | x2, y2, z)

]m
. Simple analytical derivations reveal that the

estimator can be computed by the explicit formula

β̂m(x, y | dx, dy, z) =
Nx,y

2∑

k=1

W x,y
(k) ([1− Lk+1]

m − [1− Lk]
m) , (5.17)

where the Lk+1 are defined in (4.13) for k = 1, . . . , Nx,y
2 − 1, noting that L1 = 1 in (4.13),

and defining LNx,y
2

+1 = 0.

The Matlab function Zorderm dirdist new(kernelz,hz,x,y,z,dx,dy,X,YZ,,m) given

in Appendix A computes values for β̂m(x, y | dx, dy, z) using (5.17), where m ≥ 1 is an

integer, kernelz is the kernel chosen for Z and hz is the vector of bandwidths.
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6 Numerical Illustrations

In this section we demonstrate how much is gained by the new computational methods in-

troduced above, relative to the existing algorithms involving Monte Carlo methods proposed

by Simar and Vanhems (2012) and Daraio and Simar (2014). For the full frontier estimates

and the order-α (both unconditional and conditional) the gain in computing speed is negli-

gible. Nonetheless, the new methods avoid potential numerical problems related to ratios of

exponentials and logarithms (recall footnote 5).

The new methods proposed for computing order-m directional distances (either uncon-

ditional or conditional) are remarkably faster than the existing Monte Carlo methods that

have been used until now. The results presented above provide exact expressions that are

easy to implement in practical applications. The results presented below indicate that even if

one is willing to accept precision to only two decimal places, the existing Monte Carlo-based

algorithms require roughly 200 times the CPU time required by the new methods presented

above. To obtain precision to 3 decimal places, the old methods require roughly 1,000 times

the CPU time required by the new methods.

It is important to note that implementation of the older Monte-Carlo algorithm is com-

plicated when some elements of the direction vector d are zero. We used the algorithms

suggested by Daraio and Simar (2014).8 For the conditional-on-Z case, some complications

arise due to step (1) of the algorithm where the data points have to be sampled according

to the weights given by the kernel function. These complications are avoided by the new

methods developed above.

6.1 Simulated Data

We simulate p = 2 inputs Xj,i ∼ Unif(0, 1), independently for j = 1, 2 and for i = 1, . . . , n.

Then the two efficient outputs are defined by

Y ∂
1,i = X0.5

1,i ×X0.5
2,i

8 There is an unfortunate typo in Appendix B Daraio and Simar (2014). The last line before step (1) of
the algorithm appears as D∗

x,y 6= {(X∗
i , Y

∗
i ) | X∗

i ≤ x∗, Y ∗
i ≥ y∗} but should instead be D∗

x,y = {(X∗
i , Y

∗
i ) |

X∗
2,i ≤ x∗

2, Y
∗
2,i ≥ y∗2}, where only the inactive variables are concerned here.
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and

Y ∂
2,i = X0.4

1,i ×X0.3
2,i .

Then the observed outputs are computed as

Y1,i = Y ∂
1,i × exp(−Ui),

Y2,i = Y ∂
2,i × exp(−Ui)

where Ui ∼ N+(0, 0.752) is the inefficiency term. We then simulate independent Z ∼
N(1, 32). In this illustration, we are not interested interpreting the results, but rather in

investigating how much computing time is saved by our new approach over the existing,

previous method. Hence we choose the bandwidth hz = 0.8111 given by the usual rule of

thumb (i.e., normal reference rule) for estimating the density of Z.

We have p = q = 2 and r = 1. For the numerical illustration we choose n = 1000 and

m = 100 and α = 0.99 (in the next example using real data we discuss how one should

choose these robustness parameters in practice). With these two values the percentage of

points above the partial frontiers are comparable (0.55 percent for order-α and 0.50 percent

for order-m. We also fix the direction vector by setting dx = Med(Xi) and dy = Med(Yi),

i.e., we use the sample medians of the input and output vectors, respectively.

The computing time required for computing the full frontier, the conditional full frontier,

the order-α, the conditional order-α, the order-m and the conditional order-m for the n =

1000 units using the new methods presented above was only 2.11 seconds running on a 2.6

Ghz MacBook-Pro laptop computer running MacOS 10.13 with 8GB of memory and using

Matlab version R2015a. Using the Monte-Carlo algorithms for the order-m and conditional

order-m with limited precision (MC = 200 replications for both cases as often recommended

in the literature) the required 418.18 seconds of CPU time for producing the same full table

of results (an increase in computation time by a factor of 198.2). Table 1 merges the two

approaches for the first 10 units, with subscripts “MC” identifying the order-m estimates

computed via Monte Carlo methods. Comparing the MC estimates with the exact estimates

gives an idea of the loss of precision due to the Monte-Carlo approximations.
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Table 1: The first 10 units from the sample n = 1000, in the simulated example. We fixed
α = 0.99 and m = 100. Here MC = 200 have been used for the Monte-Carlo approximations
of the order-m and conditional order-m measures.

Unit β̂(x, y) β̂(x, y|z) β̂α(x, y) β̂α(x, y|z) β̂m(x, y) β̂m,MC(x, y) β̂m(x, y|z) β̂m,MC(x, y|z)
1 0.0130 0.0130 -0.0410 0.0000 -0.0382 -0.0377 -0.0038 -0.0049
2 0.0000 0.0000 -0.1481 -0.0685 -0.1069 -0.1142 -0.0384 -0.0387
3 0.0045 0.0000 -0.1481 -0.2005 -0.1334 -0.1284 -0.1192 -0.1171
4 0.1434 0.0589 -0.0008 0.0589 0.0336 0.0327 0.0377 0.0340
5 0.0616 0.0491 -0.0024 0.0000 0.0182 0.0149 0.0161 0.0166
6 0.4852 0.3932 0.3359 0.3360 0.3565 0.3491 0.3569 0.3582
7 0.0000 0.0000 -0.0577 -0.0329 -0.0461 -0.0464 -0.0171 -0.0213
8 0.1836 0.0000 0.0329 0.0000 0.0647 0.0697 -0.0002 0.0000
9 0.7942 0.7207 0.6985 0.7048 0.7192 0.7202 0.6973 0.6977
10 0.3689 0.2917 0.2822 0.2583 0.3060 0.3057 0.2679 0.2668

We repeated the same exercise using MC=1000 trials for the Monte-Carlo approximations

in both cases, requiring 2071.64 seconds of CPU time (a factor around 1000 compared to the

CPU time required by our new method). The results are reported in Table 2. The Monte

Carlo approximations are improved over those in Table 1, but some error remains.

Table 2: The first 10 units from the sample n = 1000, in the simulated example. We
fixed α = 0.99 and m = 100. Here MC = 1000 have been used for the Monte-Carlo
approximations of the order-m and conditional order-m measures.

Unit β̂(x, y) β̂(x, y|z) β̂α(x, y) β̂α(x, y|z) β̂m(x, y) β̂m,MC(x, y) β̂m(x, y|z) β̂m,MC(x, y|z)
1 0.0130 0.0130 -0.0410 0.0000 -0.0382 -0.0387 -0.0038 -0.0059
2 0.0000 0.0000 -0.1481 -0.0685 -0.1069 -0.1092 -0.0384 -0.0404
3 0.0045 0.0000 -0.1481 -0.2005 -0.1334 -0.1342 -0.1192 -0.1220
4 0.1434 0.0589 -0.0008 0.0589 0.0336 0.0336 0.0377 0.0379
5 0.0616 0.0491 -0.0024 0.0000 0.0182 0.0169 0.0161 0.0147
6 0.4852 0.3932 0.3359 0.3360 0.3565 0.3552 0.3569 0.3593
7 0.0000 0.0000 -0.0577 -0.0329 -0.0461 -0.0441 -0.0171 -0.0163
8 0.1836 0.0000 0.0329 0.0000 0.0647 0.0649 -0.0002 -0.0001
9 0.7942 0.7207 0.6985 0.7048 0.7192 0.7192 0.6973 0.6976
10 0.3689 0.2917 0.2822 0.2583 0.3060 0.3067 0.2679 0.2665

6.2 Real Data on Banks

In this section we illustrate our new methods using real data on US commercial banks

observed in 2002. These data are also used by Simar and Wilson (2007), Bădin et al.
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(2012) and Florens et al. (2014) for analyzing the of environmental factors on the production

process, while Daraio et al. (2018) use the same data to illustrate their test of the separability

condition described by Simar and Wilson (2007).

As explained by Florens et al. (2014) and Daraio et al. (2018), the three inputs (purchased

funds, core deposits and labor) can be aggregated into one input factor and the four outputs

(consumer loans, business loans, real estate loans, and securities held) can be aggregated into

a single output factor with minimal loss of information.9 After the dimension-reduction, we

have a sample of n = 303 banks with one input and one output factor and with two environ-

mental factors Z1, Z2 which include a measure of the size of the banks (log of total assets)

and a measure of diversity of the services offered by the banks (see Simar and Wilson (2007)

for a detailed discussion of the variables). Here we again focus on the gain in computing

time afforded by our new methods.

Since we want to use robust measures of efficiencies, we have to select values of the order

m and the order α. As recommended in the literature (e.g., see Daraio and Simar (2007),

Daouia and Gijbels (2011a) and Simar (2003)), the efficiency measures have to be computed

for a number of values of m and α to determine sensible values. Simar (2003) proposes

computing the order-m efficiency estimates for a grid of values of m, and reporting in a

graph the corresponding percentage of points lying outside the corresponding frontiers in

order to detect outliers.10 This may involve substantial computational burden when Monte

Carlos approximations are used to compute the order-m estimates. burden when using

Monte-Carlo approximations for the order-m measures.

Figure 1 shows the percentage of observations lying above the order-m frontier for m =

10, 30, 50, . . . , 390. Producing the estimates needed for this graph required only 0.91

seconds using the new computational methods and the MacBook Pro described above. Using

the older Monte Carlo approximations, and only MC = 100 Monte Carlo trials, consumed

444.0 seconds, an increase by a factor of about 488.

9 See also Wilson (2018) for detailed discussion of dimension reduction techniques for efficiency analysis.
10 The idea is that in the absence of any outliers, this graph should show a steadily decreasing number of

points outside the order-m partial frontier with increasing m (recall that as m → ∞ the order-m estimates
converge to the corresponding FDH estimates). But if the graph exhibits a kink or “elbow” effect, then
this is evidence that the remaining points outside the order-m frontier for the corresponding value of m are
potential outliers.
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Figure 1:

Figure 1 indicates that m = 150 may be reasonable value for the order m since the

graph becomes nearly horizontal for larger values of m. To select α one could use the same

approach, but for purposes of comparison, we select α = 0.995 which results in the same

proportion of observations lying outside the order-α quantile frontier as does m = 150 in the

case of the order-m frontier. Note that this is close to the same value obtained by setting

α = 0.51/m = 0.9954 as discussed by Daouia and Gijbels (2011a), where the two partial

frontiers coincide if the expectation operator E is replaced by the median operator in the

definition of the order-m frontier.

Table 3 shows the various directional distance estimates for the first 20 units in the sample

of n = 303 banks. The last four columns on the right allow comparison of the exact results

for order-m and their counterparts obtained by Monte-Carlo approximation with MC = 200.

Producing the full table for all observations required 0.44 seconds with the new method and

104 seconds with the Monte-Carlo approximations (again, a difference involving a factor of

about 200, with roughly only 2 decimal digits of precision).11

11 For the conditional-on-Z estimates with bivariate Z, the optimal vector of bandwidths was obtained by
least-squares cross validation yielding hz = (0.0240, 0.2134).
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Table 3: Directional Distances for the Bank Dataset. Here n = 303 and the Monte-Carlo
approximations have been computed with MC = 200.

Unit β̂(x, y) β̂(x, y|z) β̂α(x, y) β̂α(x, y|z) β̂m(x, y) β̂m,MC(x, y) β̂m(x, y|z) β̂m,MC(x, y|z)
1 0.2612 0.2371 0.2371 0.2371 0.1705 0.1665 0.2206 0.2155
2 0.0326 0.0326 0.0102 0.0326 0.0120 0.0136 0.0325 0.0324
3 0.0975 0.0867 0.0867 0.0867 0.0703 0.0668 0.0867 0.0867
4 0.4638 0.4638 0.3885 0.4638 0.4081 0.4080 0.4629 0.4638
5 0.0000 0.0000 -0.1749 0.0000 -0.1608 -0.1516 -0.0000 0.0000
6 0.0379 0.0379 0.0373 0.0379 0.0318 0.0307 0.0379 0.0379
7 0.0254 0.0254 0.0197 0.0254 0.0154 0.0148 0.0254 0.0254
8 0.0012 0.0012 0.0000 0.0012 -0.0060 -0.0067 0.0007 0.0007
9 0.0000 0.0000 -0.0028 0.0000 -0.0037 -0.0039 -0.0000 0.0000
10 0.0579 0.0579 0.0547 0.0579 0.0477 0.0464 0.0579 0.0579
11 0.0871 0.0176 0.0384 0.0176 0.0461 0.0432 0.0168 0.0165
12 0.0174 0.0174 0.0000 0.0174 0.0005 -0.0003 0.0168 0.0168
13 1.4536 1.4536 1.2835 1.4536 1.1000 1.1346 1.4536 1.4536
14 0.0650 0.0509 0.0509 0.0509 0.0420 0.0471 0.0509 0.0509
15 0.0000 0.0000 -0.0074 0.0000 -0.0174 -0.0156 -0.0000 0.0000
16 0.1250 0.1250 0.1008 0.1250 0.0789 0.0760 0.1245 0.1250
17 0.0000 0.0000 -0.0695 0.0000 -0.0497 -0.0522 0.0000 0.0000
18 0.0000 0.0000 -0.0013 0.0000 -0.0442 -0.0386 -0.0000 0.0000
19 0.0151 0.0151 0.0000 0.0151 0.0006 -0.0005 0.0151 0.0151
20 0.2475 0.2078 0.2078 0.2078 0.1954 0.2030 0.2078 0.2078

7 Conclusions

This paper provides a new method for computing directional distance functions. The paper

develops simple and easy-to-program expressions for computing full frontier, partial frontier

(order-α and order-m cases) with their corresponding conditional-on-Z versions. The inputs,

the outputs and the environmental factor can in principle be of any dimension, but we

know that the curse of the dimensionality may in some cases jeopardize the quality of the

estimators. In such cases, it is often possible to exploit multicollinearity in economic data

using the dimension-reduction techniques analyzed by Wilson (2018). The direction vector

d ≥ 0 can have an arbitrary number of zero elements in either dx or dy (provided at least

one element remains positive to preserve meaningfulness of the directional distance).

The new method for computing directional distances is much faster than the older Monte

Carlo approximations that have been used to date as illustrated the examples in the preceding

section. For the order-m cases (conditional and unconditional) to the best of our knowledge
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this is the first time an exact expression is provided. We have shown in the numerical

illustrations, that even if low precision of the estimates is acceptable, the computing time

is increased by a factor of 200–400 when the older Monte Carlo approximations are used in

place of our new methods. As illustrated in the example using bank data, the new method

is particularly useful when several order-m measures have to be evaluated, e.g., as in the

outlier detection exercise discussed by Simar (2003) or when an appropriate value of m is

chosen as discussed by Daraio and Simar (2007).

A Matlab Codes

The Matlab codes will be made available once the paper will be published.
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