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Abstract

We propose a parsimonious agent-based model of a financial market at the intra-
day time scale that is able to jointly reproduce many of the empirically validated styl-
ised facts. These include properties related to returns (leptokurtosis, absence of lin-
ear autocorrelation, volatility clustering), trading volumes (volume clustering, correl-
ation between volume and volatility), and timing of trades (number of price changes,
autocorrelation of durations between subsequent trades, heavy tail in their distribution,
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event scheduling borrowed from the EURONEXT exchange, and an endogenous rule for
traders’ participation. We find that the latter proves crucial for matching our target
stylised facts.
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1 Introduction

During recent years, the availability of advanced technology has been substantially redu-
cing the latency required to operate on financial markets, fostering market activity at in-
creasingly higher frequencies. As opposed to traditional money managers that generally
hold their portfolio positions for a lengthy period, ranging from a few days to even months
or more regarding so-called ‘value investors’, high-frequency traders aim at reaping a tiny
profit for each of a large multitude of buy and sell operations that they execute within
each trading day, rarely holding their positions overnight. Short-term trading strategies
have proved remarkably profitable even during periods of nearly unprecedented financial
turmoil (see e.g. Aldridge, 2013). While the trend of progressively shortening the time
needed to collect real-time information and post a new order has been in place for many
decades, starting with the introduction of high-speed telegraph service and later boos-
ted by the availability of powerful computer systems, a full and agreed understanding of
the functioning, potential benefits, and disadvantages of high-frequency trading has yet
to be reached. By the same token, many of the statistical properties (stylised facts) that
are empirically recognised to be pervasive of intra-day financial market dynamics are still
begging for a sound theoretical framework (see Cont, 2011 for an overview).

We propose a parsimonious agent-based model of a financial market at the intra-day
time scale that is able to jointly reproduce many of the empirically validated stylised
facts. These include properties related to returns (leptokurtosis, absence of linear autocor-
relation, volatility clustering), trading volumes (volume clustering, correlation between
volume and volatility), and timing of trades (number of price changes, autocorrelation
of durations between subsequent trades, heavy tail in the distribution of such durations,
order-side clustering).

In the last few decades, the still flourishing literature on agent-based models (see
Hommes (2006) for a general review, and in particular LeBaron (2006) for applications to
financial markets) has proved invaluable in investigating and replicating the emergence of
stylised facts that are hardly reconcilable with the representative agent paradigm.1 How-
ever, the vast majority of the proposed models (some of the milestones include: Arthur
et al., 1997; Levy et al., 1994; Lux, 1995, 1998; Lux and Marchesi, 2000) typically focus
uniquely on a subset of the whole ensemble of recognised stylised facts, mainly consisting
of properties that are time-scale invariant. These generally include properties related to
rates of return, such as leptokurtosis, absence of linear autocorrelation, and volatility clus-
tering. Other stylised facts concerning the timing of orders posting and trades execution
are often neglected. This is partially due to the acknowledged difficulty of defining a reas-
onable mapping from the iterations of a computer simulation to proper calendar time (see
e.g. Cioffi-Revilla, 2002). A notable exception is Kluger and McBride (2011), who propose
a model that replicates the intra-day U-shaped seasonality in market activity, i.e. the tend-

1Some of these models (often dubbed ‘heterogeneous agent models’) are low-dimensional and mathematically
tractable; others, are too complex to be investigated analytically and rely on extensive numerical simulations.
Our work is intended to contribute to the latter strand of literature.
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ency of exchanged volumes to peak during the early morning just after market opening
and late afternoon just short of market closing, leaving a trough around lunch-time.

To the best of our knowledge, no previous study has ever addressed the simultaneous
emergence of all the stylised facts that shape financial dynamics at the intra-day level. We
therefore attempt at filling this gap by proposing a methodological solution to the time
mapping problem and by identifying a set of minimal building blocks whose combination
gives a model that is able to reproduce many of the solicited facts.

Our model relies on three main ingredients. The first consists of a behavioural specifica-
tion on behalf of the traders, which is typical of many previous models in the literature. We
assume that traders are of two types: fundamentalists and chartists. Fundamentalists only
take into account the fundamental value of the security (which we shall assume constant
and common knowledge), buying the asset if undervalued and selling it if overvalued.
Chartists conversely only take into account the recent history of price changes, extrapol-
ating the underlying trend if they are followers or counteracting it if they are contrarians.
This specification is justified by empirical surveys of financial practitioners’ behaviour (see
e.g. Frankel and Froot, 1990). The second ingredient, which to our knowledge has never
appeared in any previous contribution, amounts to a well-defined scheduling of events.
We borrow the exact time structure of a trading day on a real financial market, namely
the EURONEXT, and we design our simulations according to the sequence and durations
of the different phases therein (see Euronext, 2017). The latter consists, in chronological
order, of a morning order accumulation phase, an opening batch auction, a lengthy phase
of real-time order matching according to a continuous double auction, a pre-closing or-
der accumulation phase, and a closing batch auction. We believe that imposing a strict
and realistic schedule on the unfolding of events enables to devise a sound and plausible
correspondence between simulation ticks (which we shall identify with seconds) and cal-
endar time. Microstructure details about the central order book are also compliant with
EURONEXT specifications. The last ingredient of the model is an endogenous mechanism
for traders participation. We assume that traders (of either type) are more willing to en-
gage in trading, the higher the price change (of either sign) realised in the immediate past.
The idea is that large realised (absolute) returns signal the possibility of reaping further
profit in the future. Note that in the following we shall not impose any short-sale restric-
tion. A similar scheme is devised in Ghoulmie et al. (2005) and Jacob Leal et al. (2016). In
spite of being extremely simplistic, we find that this activation mechanism proves crucial
for matching our target stylised facts, specifically those related to the timing of trades exe-
cution. An additional conceivable ingredient, commonly adopted in financial models akin
to ours, is a switching scheme between the fundamental and chartist strategies. In many
contributions this is known to foster volatility clustering (see e.g. Kirman and Teyssière,
2002; Lux and Marchesi, 2000, and for a discussion Cont, 2007). We find however that this
component is irrelevant in our setting, in which volatility clustering arises purely from the
interaction of heterogeneous traders and is especially influenced by the trend-following
momentum on behalf of chartists.

The next Section provides an overview of the various stylised facts that characterise high
frequency financial dynamics. Section 3 describes in detail the various assumptions of our
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model. Section 4 reports the results of numerical simulations under different scenarios.
Finally, Section 5 concludes.

2 Stylised facts

Here we describe the various statistical properties that characterise the intraday dynamics
of many financial markets and that our model aims at reproducing. Some of them are
recognised to apply across different time scales while others require a proper intraday
setting to be analysed (we refer to Cont, 2001, 2011 for a more detailed account). While
the former are mainly related to the statistical properties of returns and have been already
studied and replicated in a number of agent-based models lacking of a rigorous definition
of calendar time, the latter require a more explicit architecture in terms of microstructure
and constitute the main contribution of our work. We list and discuss them in order.

SF1 – Leptokurtic returns The unconditional distribution of returns is characterised by
a heavier tail with respect to the Gaussian distribution (Fama, 1965; Kon, 1984). The mag-
nitude of excess kurtosis is typically inversely related to the time scale of analysis. This
finding stands at sharp odds with the normality assumption adopted in a number of mod-
els, most notably the Black-Scholes formula.

SF2 – Absence of autocorrelation of (raw) returns The time series of (raw) rates of re-
turn exhibits a statistically significant serial correlation for a very short amount of time,
quickly decaying to zero afterwards. Intuitively, should there be more predictable auto-
correlation structure, this information could be used to perform ‘statistical arbitrage’ with
positive profits (Mandelbrot, 1971).

SF3 – Volatility clustering While the linear autocorrelation of returns displays very little
structure, the autocorrelation of non-linear functions such as the absolute value or the
squared value of returns is usually positive and tends to decay at a much slower pace.
Therefore, while the signs of future returns are not readily predictable, their magnitudes
are, and tend to cluster in time, giving rise to prolonged periods of low volatility fol-
lowed by periods of high volatility (Andersen and Bollerslev, 1997; Mandelbrot, 1963).
This clearly suggests that the series of returns is not independent.

SF4 – Leverage e�ect The leverage effect or asymmetric volatility (Black, 1976) captures
the asymmetric tendency of volatility to be higher during price drops rather than during
price surges. This translates into the negative correlation between price volatility – e.g. ab-
solute returns – and the (raw) returns of the asset (Aït-Sahalia et al., 2013; Bollerslev et al.,
2006; Bouchaud et al., 2001).

SF5 – Number of price changes per day Under a cross section perspective, the number
of effective trades per day is clearly related to the degree of liquidity of the market and
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is typically linked to the capitalisation of the underlying security. Over time, moreover,
there is a tendency of reduction in the time needed to execute a market order, fostering the
submission of an increasingly larger number of orders, eventually leading to an increas-
ing frequency of actual trades. Nowadays, for blue-chips in highly liquid markets and in
the absence of ‘disruptive’ fundamental news, this number is often around 10,000, with a
substantial degree of variance (Bonanno et al., 2000; McInish and Wood, 1991).

SF6 – Autocorrelation of durations between subsequent trades Within continuous
double auctions, the actual timing of transactions is endogenous since a freshly submitted
order might not find a compatible crossing order already stored in the book. Therefore, the
time intervals between subsequent transactions is both random and tightly linked to the
previous history of orders posting. Empirically, these durations display positive autocor-
relation – translating in clustered periods of frequent transactions followed by periods of
sporadic transactions.

SF7 – Fat-tailed distribution of durations between subsequent trades The distribution
of the durations defined in SF6 reveals a heavier tail with respect to an exponential distri-
bution, that would be instead expected if traders submitted their orders in a non-correlated
timely fashion (Raberto et al., 2002).

SF8 – Order-flow clustering The arrival of orders over time to the central order book is
clustered with respect to the side of intended transaction: buy orders are more likely to
follow previous buy orders, while sell orders are more likely to follow sell orders (Biais
et al., 1995).

SF9 – Autocorrelation of volumes The quantities exchanged during successive trades
display significant positive serial correlation (Campbell et al., 1993; Engle, 2000; Gallant
et al., 1992). This is true across different time aggregation units and both for indices and
individual stocks.

SF10 – Correlation between volumes and volatility Price variability and trading
volumes display positive correlation (Foster, 1995; Tauchen and Pitts, 1983). The un-
derlying idea is that the flow of information acts as a common determinant of both
changes in prices and traded quantities.

SF11 – U-shaped activity Market activity throughout the day displays a strong season-
ality, with peaks of exchanged quantities in the early morning after market opening and
in the late afternoon in the vicinity of market closing, and a relative more tranquil period
in the hours around lunch-time (Jain and Joh, 1988; Lockwood and Linn, 1990).

In what follows, we aim at developing a simple and parsimonious model which is non-
etheless capable of jointly reproducing all the aforementioned stylised facts, with the ex-
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ception of the intraday volume seasonality2 (SF11), which is unobtainable by construction
in our setting, as will be clear later, and the leverage effect (SF4), for which we believe a
more complex behavioural specification is needed.

3 The model

Consider an order-driven financial market in which a single long-lived stock is traded
by a population of heterogeneous agents. In line with the empirical literature on prac-
titioners’ behaviour in financial markets pioneered, among others, by Frankel and Froot
(1990), Allen and Taylor (1990), Taylor and Allen (1992), and more recently by Menkhoff
(2010), we consider two trading strategies: fundamentalist and chartist. A fundamental-
ist trader believes that the price of a security will quickly revert to its fundamental value;
a chartist (or technical) trader, instead, believes that the future price of a security can be
predicted using the trend of past realised market outcomes. Since we are interested in
modelling short-term dynamics, we assume that the security pays no dividend and there
is no ‘fundamental’ news circulating during this time span. In this sense, besides an addit-
ive i.i.d. noise component incorporated in both strategies whose only purpose is to ensure
that trading doesn’t jam, the dynamics of prices and returns is endogenously determined
by the interaction of the two strategies, and realised volatility is actually excess volatility.

3.1 Timing and market se�ing

Since we are interested in describing the dynamics of a generic stock at a well-defined
time scale – the intra-day level – we need to devise a mechanism that maps the iterations
of our agent-based model to proper calendar time. This is a notoriously daunting and con-
troversial task within the agent-based literature (see e.g. Cioffi-Revilla, 2002). To address
this issue, we impose a strict global schedule to the sequence of events. In particular, we
design our simulations to closely replicate the timing structure of an existing stock mar-
ket, namely the EURONEXT. A typical trading day on the EURONEXT exchange unfolds as
follows:

at 7:15am the trading day starts with the pre-opening phase in which orders accumulate
on the central order book without any transactions taking place;

at 9:00am a (batch) opening auction takes place, matching the orders submitted during
the pre-opening phase and determining the opening price;

from 9:00am to 5:30pm the market operates according to a continuous double auction,
and the introduction of a new order immediately generates one or more transactions
if there are matching orders on the opposite side of the book. This phase is dubbed
the ‘main trading session’;

2Kluger and McBride (2011) provide an agent-based model that reproduces the U-shaped nature of intraday
volumes, although they don’t discuss the whole ensemble of the stylised facts listed above.
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at 5:30pm pre-closing phase starts, in which matching of orders is discontinued and, as in
the pre-opening phase, orders accumulate with no transaction taking place;

at 5:35pm the closing auction takes place, matching the orders submitted during the pre-
closing phase and determining the closing price of the day.

from 5:35pm to 5:40pm orders can be entered for execution at the closing price only. This
phase is dubbed ‘trading at last’.

With the exception of the trading at last phase3, we model our trading day according to
the schedule above, and we identify a single iteration of the model with a calendar second.
Hence, the pre-market phase corresponds to 6,300 time steps (1 hour and 45 minutes), the
main trading session to 30,600 time steps (8½ hours), and the pre-closing phase to 300 time
steps (5 minutes). A whole trading day consists of 37,200 simulation steps of our model.

At every time step some of the traders are activated, they proceed to form their expecta-
tions about future performance of the security, and submit limit orders accordingly. When
an order is submitted, it is either stored on the central order book or matched (if possible),
depending on the current phase of the trading day. If matched, the order gives rise to one
or more trades, the relevant quantities are exchanged, and a new price is disseminated.
The central order book follows the usual price-time priority rule.

We devise two alternative mechanisms for traders activation, one exogenous and one
endogenous. In the first, a single trader is activated at each time step, randomly selected
among the population. This activation scheme is similar to the one employed by Chiarella
and Iori (2002). In the second, we follow Jacob Leal et al. (2016) and we assume that
traders’ activation is endogenous in the following sense: at every time step all traders
decide whether they are willing to submit an order by comparing the last recorded price
change (in absolute value) to a trader-specific and time-varying threshold, drawn from
a common distribution with positive support. In particular, trader i is active at time t
if |rτ | > δi,t ∼ |N (0, σ2

δ )|, where τ < t denotes the last time in which a trade occurred.
If multiple agents are active at time t, they engage in trading in randomised order. If
no trader is endogenously activated at time t, then with a certain probability φ > 0 the
mechanism falls back to the baseline activation scheme, and a randomly selected trader
is asked to submit an order. While the first mechanism is useful as a baseline scenario to
describe and test the functioning of the model, we discover that the second mechanism
is better suited for replicating our target stylised facts. In particular, this scenario admits
both crowded and uneventful periods in which either many or no orders are submitted,
and contribute to clustering of volumes and of the order-flow. Endogenous activation
schemes are known to be crucial for matching realistic financial dynamics. Pellizzari and
Westerhoff (2009) devise a similar rule, based on past profits.

3We don’t model this phase since by construction has no influence on the price of the security, and is therefore
deemed irrelevant with respect to our objective stylised facts.
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3.2 Traders’ behaviour

Traders form expectations about the future (log) return over a certain time horizon h as
follows:

r̂F
i,t+h = wF

i · log
(

pF

pt

)
+ εt (3.1)

r̂C
i,t+h = wC

i · log
(

pt

pt−h

)
+ εt (3.2)

The superscript F (respectively, C) identifies the fundamentalist (respectively, chartist)
strategy, wF

i ∼ |N (0, σ2
F)| and wC

i ∼N (µC, σ2
C) are trader-specific coefficients that describe

how ‘aggressively’ the underlying strategy is implemented, pF > 0 denotes the funda-
mental price of the security, h ∈N+ measures the horizon the trader operates within, and
εt ∼ N (0, σ2

ε ) is a common i.i.d. noise component. The fundamental price pF in eq. (3.1)
is common knowledge of all traders and weight wF

i quantifies how quickly the price of
the stock is expected to revert to its fundamental value. From eq. (3.2), it is clear that all
chartists use only the last realised return over the time-span h to form their expectation.
Weight wC

i measures the extent to which traders believe the future return over period h
will match its past figure. This assumption – that helps in containing the dimensionality of
the model4 – stands at variance with previous literature which usually assume a weighted
moving average (typically exponentially or linearly) over multiple past returns. However,
given our intra-day setting, we believe that the short memory of chartists mimics more
closely the fast response of high-frequency traders to suddenly realised signals. Notice
also that we admit an imbalance between trend followers and contrarians, depending on
the value of the mean µC of the distribution of chartists’ weights wC

i .
Once a trader has formed her expectation about the future return, she submits a limit

order to the central order book. A limit order is a triple {price, quantity, validity}

such that: price equals the expected prevailing price at the end of period t + h, rounded
to the nearest tick; quantity is always fixed to one unit, carrying a positive (respectively,
negative) sign if the order is to be stored on the buy (respectively, sell) side of the central
order book, depending on whether the trader expects the price to increase or decrease;
validity, namely the time after which the order expires and is automatically deleted from
the central order book, is set to equal the horizon of the expectation. We assume that
all traders have unlimited access to external credit at a zero interest rate, so that they can
either short-sell or leverage-buy the stock without bound. In other terms, traders don’t face
a budget constraint; nevertheless, they are prevented from borrowing an infinite amount
of money by the unitary quantity rule. To sum up, a limit order `i,t submitted by trader i
(either fundamentalist or chartist) at time t takes the form:

`i,t =
{
round

(
pt · exp(r̂i,t+h

)
, tick), sign(r̂i,t+h), t + h

}
(3.3)

4The gains in terms of parsimony are due to the fact that we don’t need to quantify the memory of the traders
(or even worse, a distribution thereof), and a rate of decay of the importance of remote past history.
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where round(·) denotes the rounding function, tick is the minimum price incre-
ment/decrement (a parameter of the market), and sign(·) is the sign function.

While we don’t include the early cancellation of an order within the strategy set of a
trader, we devise the following automatic cancellation rule: when a trader submits a new
order, all other orders already submitted by the same trader and stored on the book that are
inconsistent with the new expectation are automatically cancelled. These include all orders
stored on the opposite side of the book and those orders whose underlying price is deemed
unfavourable give current expectations. For example, when a buy (respectively, sell) order
is issued at price p̃, all sell (respectively, buy) orders, and all buy (respectively, sell) orders
whose price is greater (respectively, less) than p̃, are automatically cancelled. The first
condition ensures that a trader never trades with herself, i.e. it rules out the possibility
that two orders submitted by the same trader are matched together. The second condition
ensures that in case a trader is currently willing to buy (sell) the security at a certain price,
she is no longer willing to buy (sell) at a higher (lower) price, as per orders submitted
under possibly different beliefs.

It is important to note that no reference whatsoever to any specific time of the day ap-
pears in either eq. (3.1) or eq. (3.2). In other words, none of the traders knows ‘what time
it is’ when asked to submit an order, and behaves identically throughout every phase and
instant of the trading day. This implies that, by construction, our model is unlikely to
validate SF11, and that any spike in market activity observed in our series has the same
probability of occurring during morning, lunch, or afternoon time.

4 Numerical simulations

In spite of the very simple behavioural rules that we assume, the complexity associated
with the endogenous nature of a limit order book dynamics prevents us from studying the
system analytically and come up with a closed form solution. We thus follow the standard
practice, typical of agent-based models, of numerically simulating the system and then
performing the relevant statistical tests on the generated series.

We start by fixing a few parameters and design principles that are kept stable across
our simulations. The market is populated by N = 1,000 traders; the fundamental price of
the stock is constant and equals pF = 100, while the tick value – i.e. the smallest possible
increment or decrement of the price – equals 0.001. At the beginning of the simulation
the price is set to equal its fundamental value, i.e. p0 = pF, and all chartists are provided
with a history of past prices between t = −h and t = 0 that evolves (backwards) as a
pure random walk whose increments are given by the same noise component εt present in
eqs. (3.1) and (3.2). Finally, we fix the horizon of traders’ expectations h to 1,000 seconds
(simulation time steps); incidentally, this value equals the expected duration between two
consecutive activations of a same trader within the exogenous activation scheme, given
the number of traders N.

At the finest level of granularity, our simulations yield time series of the relevant quant-
ities that are irregular since, by construction, trade emerges endogenously when at least
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Parameter Value

εt N (0, 5e-5)
wF

i 0
wC

i 0
δt +∞
φ 1

Table 1: Parameters value and initial conditions for the NT scenario.

two crossing orders are stored on the central order book. In order to perform the stat-
istical analysis needed to validate our model against the stylised facts listed in Section 2,
we rescale the relevant time series by pooling the stream of trade messages into regular
time windows of one calendar minute each. The minute-by-minute price (respectively,
volume) series corresponds to the average (respectively, sum) of the underlying trading
prices (volume) during that minute. Following Section 3.1, the main trading session con-
sists of 510 minutes.

We proceed by simulating the model numerically5 under three different scenarios, fol-
lowing a bottom-up approach. In Section 4.1 we only include purely noise traders; in
Section 4.2 we investigate the interaction between fundamentalists and chartists under
the baseline exogenous activation; in Section 4.3 we discuss the effect of introducing our
endogenous activation scheme. Finally, in Section 4.4 we perform some complementary
sensitivity analysis. The results that we show correspond to averages across 100 Monte-
Carlo simulations of a fully fledged trading day (see Section 3.1). All confidence intervals
are set at the 95% level.

4.1 Noise traders only

This scenario, which we dub NT, is useful to properly disentangle the dynamic properties
implied by market microstructure details from those implied by our assumptions about
specific trader behaviour. Noise traders do not condition their investment on any market-
related variable; rather, they “trade on noise as if it were information” (Black, 1986). Given our
formulation, we set all the wi’s in eqs. (3.1) and (3.2) to zero, such that the expected return
for each trader will only depend on the i.i.d. noise component εt.

Table 1 summarises the specific parametrisation. By setting δt to infinity we rule out
endogenous activation, and by setting φ = 1 we ensure that exactly one trader is activated
at every time step t.

5The model is coded in C++11 and largely exploits the object-oriented programming paradigm, defining classes
for traders, for the central order book, and for the order data structure. The code supports the execution of
fully parallel Monte Carlo simulations, using the OpenMP framework. Random number generation relies on
the 32-bit Mersenne Twister, as implemented in the C++ Standard Library (std::mt19937). Parameters and
initialisation for all the Monte Carlo simulations are passed through a single json file during run-time, so that
the code needs not be (re)compiled every time a new scenario is simulated. The file is parsed using the jsoncpp
library. Each Monte Carlo simulation returns a SQLite database file containing the associated initialisation
and a stream of messages from the central order book, each corresponding to a successful transaction (each
message reports the current POSIX timestamp, bid, ask, transaction price, quantity, and depth of the book for
both sides). The output databases are then imported and analysed using R.

10



0 100 200 300 400 500

99
.0

99
.6

Time

Pr
ic

e

(a)

0 100 200 300 400 500

−
6e

−
04

2e
−

04

Time

R
et

ur
n

(b)

0 10 20 30 40 50 60

−
0.

1
0.

1
0.

3

Lag

A
C

F

(c)

0 10 20 30 40 50 60

−
0.

05
0.

10

Lag

A
C

F
(d)

0 20 40 60 80 100

−
0.

08
−

0.
02

Lag

A
C

F

(e)

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●

● ● ● ●

0 1 2 3 4 5 6 7

0
2

4
6

8

Theoretical quantiles

E
m

pi
ri

ca
l q

ua
nt

ile
s

(f)

0 10 20 30 40 50 60

−
0.

05
0.

05

Lag

A
C

F

(g)

0 20 40 60 80 100

−
0.

00
6

0.
00

2

Lag

A
C

F

(h)

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

● ●● ●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●
●

●

●
●●

●

●

●

●
● ●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●
●

●

● ● ●

●

● ●●
●

●
●●

●

●
●● ●

●

●

●

●

● ●
●

●

●

●

●

●●
●

●

●
●

●
●

●
●

●
●

●
●●

●

●
●

●

●

●●
●

●
●

●

●●●
●

●

●
●

●

●

●
●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●●

●

●
● ●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●
●
●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

● ●

●

● ●●

●
● ● ●

●

●

● ●
● ●

●
●

●● ●

●

●

●
●

●
●

●
●

● ●

●

●

●

●●
●

●

●

●

●●
●

●●
●

●

●

● ●
●

●

●

●

● ●
●

●
●●

●●

●●
●

●
● ●

●

●●

●
●

●●
●

●

●

●
●

●

●

●

●

●●
●

●
●

●

●●

●

●● ●
●●

●

●

●
●

●
●

● ●
●

●

●

●

●
●

●●
●

● ●

●

● ●
●

●

●
●

● ● ●

●

●

●

●
●

●

●●

● ●

●
●

●●

●

●

●
●

●●●
●●

●

●

● ●

●

●
●

●

●
●

●

● ●●

● ●
●

●

●
●●

●
●

●
●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●● ●

●

● ●

● ●

●
●

●
●●

●● ●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●
●

●

●

●●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●●●

●

●

●

●
●

●
●

●

●●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●
●●

●

●

●

●
●

●

●
●

●
● ●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●●

●●

● ●

●

●●●

●
● ●

●

●
●

●
●

●

●

●●
●

●
●

● ●
●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●● ●

●

●
●

●

●

●

●●

●
●

●

●

●

●
●

●
●

●
●

● ●●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●
●
●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●
●

●
●

●

●●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

● ●

● ●

●

●

●

●

●

● ●

●
●●

●●

●

●

●

●

●

●

●●●

●

●●

●

●
●

●

●
●

●
●

●
●

● ●
●

●

●

●
●

●

●
●

●
●●

●
●

●

●
●

●
●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●
●●

●
●

●
●

●● ●

●
● ●

●

●

●

●●
●

●
●

● ●

●
●

●

●●

●

●
●

●

●

●

●

●

●●

● ●●

●
●●

●

●

●
●

●

●

●

●●
●

●●

●

22 24 26 28 30 32 34

3e
−

05
6e

−
05

Quantity

V
ol

at
ili

ty

(i)

1 3 5 7 9 11 13 15 17 19

−
0.

15
0.

00
0.

15

Lag

C
or

re
la

ti
on

(j)

Figure 1: Main stylised facts under the noise traders scenario. (a): evolution of price of a
typical trading day (the dashed line denotes the fundamental price); (b): returns
of a typical trading day (same as for plot (a)); (c): autocorrelation function of
(raw) returns; (d): autocorrelation function of absolute returns; (e): autocorrela-
tion function of inter-trade times; (f): quantiles of inter-trade times vs. theoretical
quantiles of an exponential distribution; (g): autocorrelation function of volumes;
(h): autocorrelation function of central order book imbalance; (i): scatter plot
of volume and volatility with linear regression line; (j): boxplot of correlation
between returns and leading squared returns (solid line indicates zero).
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Fig. 1 pictures the relevant plots under this scenario. Panel (a) shows the evolution of
the minute-by-minute market price for a typical trading day while panel (b) reports its
increments. The average number of trades per day under this scenario is 14865. If micro-
structure effects were completely irrelevant, given our limit price function (3.3), the time
series of realised returns would share the same statistical properties of the i.i.d. series of
expected returns. We find that the Ljung-Box statistic strongly rejects (p-value < 0.001) the
null hypothesis of independence. This is also visible in panel (c) which shows the auto-
correlation function of returns; evidently, positive autocorrelation for the first lag is sub-
stantial, and for the second lag is very close to the confidence threshold. The Augmented
Dickey-Fuller (ADF) test doesn’t reject (p-value < 0.001) the presence of a unit root within
the price series. Prices are therefore well approximated by a random walk, although its
increments are not independent. Moreover, the kurtosis of the sample distribution of re-
turns, κ ≈ 3.42, is only negligibly higher than that of expected returns, that by construction
equals 3. We conclude that our microstructure setup does force a time dependence charac-
ter into the resulting series, although it lasts for just a couple of minutes. Panel (d) pictures
the autocorrelation function of the absolute value of returns. Its rate of decay is very high
and only the first lag is significant; we conclude that volatility clustering is not present.
Panels (e) and (f) relate to the properties of time durations between subsequent trades.
Panel (e) shows the autocorrelation function of such durations, while panel (f) pictures a
quantile-quantile plot of their distribution, compared to a fitted exponential distribution.
The autocorrelation function is negative for the first few lags, and the distribution has a tail
that is thinner than that of an exponential distribution. The following two panels suggest
that there is no correlation structure in either the exchanged volumes of the asset (panel
(g)), nor in the clustering of buy and sell orders stored in the book (panel (h)). Panel (i)
reports a negative relationship between exchanged volumes and volatility, instead of the
predicted positive correlation. Finally, panel (j) suggests that any leverage effect is absent
in our series.

The first column on the right hand side of Table 4 compares these results with our ob-
jective stylised facts. It is evident that we need to impose some more structure on the
behaviour of the traders in order to obtain a more realistic dynamics.

4.2 Fundamentalists and chartists

In this scenario (FC), we move a step forward by including our fundamentalist and chartist
specifications, following eqs. (3.1) and (3.2). On the one hand, fundamentalist traders an-
chor the price dynamics to a neighbourhood of the fundamental price pF; on the other
hand, chartists tend to exacerbate or counteract the prevailing trend, depending on their
being trend followers or contrarians. The overall stability of the system depends on the bal-
ance between fundamentalists and chartists and, within the latter group, between follow-
ers and contrarians. Intuitively, the stronger the magnitude of trend following behaviour,
the wider the divergence of price from pF, either upwards or downwards. The paramet-
risation we propose, reported in Table 2, yields a mean-stationary price series (ADF test
p-value < 0.001), and therefore a stable dynamics. Note that we set the value of µC > 0.

12



Parameter Value

εt N (0, 5e-5)
wF

i |N (0, 0.001)|
wC

i N (0.01, 0.1)
δt +∞
φ 1

Table 2: Parameters value and initial conditions for the FC scenario.

Reasonably, the overall sentiment among the crowd of chartists predict a self-reinforcing
dynamics, rather than self-opposing. Moreover, as will become clear later in Section 4.4,
we find that this assumption fosters the fat-tailedness character of inter-trades durations,
and thus helps in replicating our objective stylised facts.

Fig. 2 pictures the relevant plots under this scenario. As expected, the evolution of the
price series is more ‘centered’ around the fundamental value pF with respect to the NT

scenario thanks to the fundamentalists’ anchoring behaviour (panel (a)). Moreover, the
presence of chartists introduces a persistence character in the dynamics of returns: the
presence of both trend followers and contrarians is crucial because their effect on the auto-
correlation function of returns cumulates in absolute value, but cancels out when the sign
is taken into account. This is clearly visible in panels (c) and (d).6 Intuitively, while we al-
low a slight imbalance between followers and contrarians, a larger imbalance would have
the effect of adding memory to the autocorrelation function of (raw) returns, which is con-
tradicted by empirical evidence. The average number of trades, 14798, is in line with the
previous scenario. The kurtosis of minute returns has instead increased to 21.3. As pre-
dicted in SF1, the kurtosis decreases with the time window and reverts back to 3, i.e. to
statistical normality, for 15-minute returns. Panels (e), (f), (g), (h), (i), and (j) are qualitat-
ively similar to the NT case. The timing structure of orders submission and matching is not
substantially influenced by the presence of the new behavioural specification; exchanged
volumes display no persistence character either.

The second column on the right hand side of Table 4 suggests that there is an improve-
ment with respect to the noise traders scenario: volatility clustering and leptokurtosis
of price returns are correctly matched after introducing our fundamentalist and chartist
strategies.

4.3 Endogenous activation

In this scenario, which we call EA, we add the last ingredient to the mix of fundamental-
ists and chartists, namely the endogenous activation scheme outlined in Section 3.1. The
ultimate goal is to retain the good properties encountered in the FC scenario, namely those
pertaining to the distribution and dependence of returns, and improve those related to the
timing and volume of trade.

6In a separate experiment (not shown) we set wC
i ∼ ± |N (µC ,σ2

C)|, i.e. we include either trend-followers or
contrarians but not both. In this case we find that the autocorrelation function of returns (panel (c)) and of
absolute returns (panel (d)) look very similar and thus fail to validate our target stylised facts SF2 and SF3.
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Figure 2: Main stylised facts under the fundamentalists vs. chartists scenario. (a): evolu-
tion of price of a typical trading day (the dashed line denotes the fundamental
price); (b): returns of a typical trading day (same as for plot (a)); (c): autocorrel-
ation function of (raw) returns; (d): autocorrelation function of absolute returns;
(e): autocorrelation function of inter-trade times; (f): quantiles of inter-trade times
vs. theoretical quantiles of an exponential distribution; (g): autocorrelation func-
tion of volumes; (h): autocorrelation function of central order book imbalance;
(i): scatter plot of volume and volatility with linear regression line; (j): boxplot
of correlation between returns and leading squared returns (solid line indicates
zero).
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Parameter Value

εt N (0, 5e-5)
wF

i |N (0, 0.001)|
wC

i N (0.01, 0.1)
δt |N (0, 0.3)|
φ 1/3

Table 3: Parameters value and initial conditions for the EA scenario.

The endogenous activation scheme aims at capturing the ever more common high-
frequency nature of financial markets. A crowd of traders, many of which are algorithmic
machines, typically respond very quickly to a newly posted signal and engage in trading
with and against each other for a while until they coordinate on a new price7. This creates
a signature in the series of trading times, in which periods of no trade, sometimes lasting
for several tens of seconds, are followed by the submission of a multitude of orders to the
central order book within a matter of seconds, giving rise to a substantial number of trades.

Table 3 summarises the specific parametrisation that we employ. The value of σ2
δ = 0.3

is such that, on average, exactly one trader is endogenously activated at time t in response
to a realised absolute return |rt−1| ≈ 0.000375, whereas the average absolute return in the
FC scenario is approximately 0.0003. This means that most of the time traders are not
endogenously activated, and the fallback exogenous activation scheme takes over, with
probability φ = 1/3. However, due to the leptokurtic nature of returns (SF1), there exist
periods in which a much larger-than-average price change takes place, and a multitude
of traders are willing to submit new orders at the same time. Moreover, the price change
generated by such turbulent event is likely to be itself larger than the δt threshold for a
number of traders, possibly triggering a new wave of crowded endogenous activation in
the next period, ultimately lengthening the duration of the adjustment.

Fig. 3 pictures the relevant plots under this scenario. Panels (a) to (d) are qualitatively
similar to those of scenario FC, suggesting that the good properties of returns generated in
the latter setting have not been compromised by the new activation assumption. Leptok-
urtosis has increased to a minute-by-minute figure in excess of 200, decreasing to around
22 for 15-minute returns, and 8.5 for 30-minute returns. The average number of trades,
11739, has decreased as a result of the new activation scheme, but is still a perfectly accept-
able level for liquid traded securities (Cont, 2011). The main benefits of the endogenous
activation scheme are noticeable in the subsequent panels of Fig. 3. For the first time, panel
(e) shows a strong and very slowly decaying autocorrelation in inter-trade durations (SF6),
and the quantile-quantile plot in panel (f) suggests that the tail of their distribution is fatter
than exponential (SF7). Moreover, both volumes (panel (g)) and order-flow (panel (h)) are

7In principle, such a signal can arise either from within the order book, e.g. as a disruptive newly submitted
order, or from outside, in which case it is related to fundamental news about the asset. Empirically, it has
been shown that only a fraction of realised volatility is attributable to freshly available news about dividends,
prospective earnings, or other crucial balance sheet and macroeconomic variables (see e.g. Cutler et al., 1989;
Shiller, 1981). In our model no news is ever released and all traders agree on a constant fundamental value;
thus, all the signals come from within the order book, and are the result of sheer trading activity by the traders.
The totality of the generated volatility is excess volatility.
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Figure 3: Main stylised facts under the fundamentalists vs. chartists scenario with endo-
genous activation. (a): evolution of price of a typical trading day (the dashed
line denotes the fundamental price); (b): returns of a typical trading day (same
as for plot (a)); (c): autocorrelation function of (raw) returns; (d): autocorrelation
function of absolute returns; (e): autocorrelation function of inter-trade times; (f):
quantiles of inter-trade times vs. theoretical quantiles of an exponential distri-
bution; (g): autocorrelation function of volumes; (h): autocorrelation function of
central order book imbalance; (i): scatter plot of volume and volatility with linear
regression line; (j): boxplot of correlation between returns and leading squared
returns (solid line indicates zero).
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scenario
stylised fact NT FC EA

SF1 leptokurtic returns 7 3 3
SF2 no linear autocorr. 3 3 3
SF3 volatility clustering 7 3 3
SF4 leverage effect 7 7 7
SF5 # price changes 3 3 3
SF6 autocorr. durations 7 7 3
SF7 fat-tailed durations 7 7 3
SF8 order-flow clustering 7 7 3
SF9 autocorr. volumes 7 7 3
SF10 volume/volatility corr. 7 7 3
SF11 U-shaped activity 7 7 7

Table 4: Replication of the stylised facts within all the simulated scenarios.

clustered (matching respectively SF9 and SF8). Panel (i) shows a positive and significant re-
lationship between volumes and volatility (p-value < 0.001) (as per SF10). An analogously
significant relationship holds also for pooled series at 15-minute and 30-minute level. Fi-
nally, the boxplot in panel (j) suggests a slight improvement with respect to the previous
scenarios: the correlation coefficient for the first 10 lags is negative and increasing for the
majority of our Monte-Carlo simulations. Nonetheless, since the ‘whiskers’ of the plot (de-
noting the ± 1.5 · IQR markers of the underlying distribution) are very spread apart, we
conservatively consider SF4 as not matched.

The rightmost column of Table 4 suggests that many of our objective the stylised facts
are successfully reproduced by this version of the model.

4.4 Sensitivity analysis

In this section we briefly discuss the effect of varying the main parameters of the model.
When not specified otherwise we intend that the effect applies across the three scenarios
analysed earlier.

σ2
F: In the limit σ2

F→ 0 the price series exhibit a unit root (cf. scenario NT). Intuitively, when
fundamentalists’ weights are small the prices are less ‘anchored’ to the fundamental
value. On average, the larger σ2

F, the greater the average extent of fundamentalist
behaviour, and the more often prices cross the fundamental value.

σ2
C: In the limit σ2

C → 0, assuming µC = 0, the persistence of returns is completely ran-
dom, depending only on stochastic process εt. When σ2

C > 0 persistence is driven
by both trend-followers and contrarians, giving rise to volatility clustering. Given
fundamentalist parameter σ2

F, there exist a threshold of σ2
C below which the dynam-

ics is stable, i.e. it is bounded within a neighbourhood of the fundamental price, and
above which the dynamics is unstable and diverges either towards zero or +∞.

µC: When µC > 0 trend-followers are ‘stronger’ than contrarians. This either intro-
duces or bolsters persistence in inter-trade times, order-flow, volatility, and volumes.
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Moreover, when in conjunction with the endogenous activation scheme, it increases
the number of trades because the price dynamics is more volatile and consequently
more traders are activated, on average, given δt. Larger values of µc may either
cause the price dynamics to become unstable (the reasoning goes as for parameter
σ2

C above) or (raw) returns to be serially correlated, which we want to avoid. Con-
versely, negative values µC < 0 wipe out all persistence in both intra-trade times and
order-flow.

δt and φ: These two parameters regulate in conjunction both the total amount of trade that
takes place in the market, for which they act as substitutes of one another, and the
timing structure thereof. In the limit δt→ ∞ activation is never endogenous and the
average amount of trade in the market, cœteris paribus, is a monotone increasing func-
tion of φ. If φ = 0 then trivially no trader is ever activated and no trade takes place;
if instead φ = 1 the amount of trade is maximised: exactly one trader is activated in
every period (cf. scenarios NT and FC) and both volume and count of transactions are
bounded from above by t. Since the (exogenous) baseline activation scheme is i.i.d.,
regardless of the value of φ, when δt → ∞ inter-trade times exhibit no serial correla-
tion. In the opposite limit δt = 0 all traders are active at every time step (regardless
of φ); trade is maximised and bounded from above by N · t. Provided δt > 0, lower
values of δt cause larger crowds of traders to participate in response to a given signal;
as a result, both the order-flow and trading times tend to cluster.

tick : Large tick values cause many of the realised returns to be identically zero since mul-
tiple submitted orders are likely to accumulate at the same price. Conversely, a more
fine grained tick implies dispersion of the orders at different price and therefore it
triggers a non-zero price change at virtually every transaction. We find however that
this effect wears out very fast with aggregation and has negligible influence on our
measures based on 1-minute pooled series.

h : The shorter the order validity h, the fewer the orders stored on the book at all times and
ultimately the lower the number of realised trades per day. Since the order validity is
also connected to the memory span of chartists (in FC and EA scenarios), the higher h,
the more likely the expected return between time t and t+ h is large in absolute terms
(although it needn’t be the case, the intuition is that cumulative returns over longer
periods tend to be larger than returns over short periods), the farther the limit price
of newly submitted order with respect to the current price, and consequently the
steeper the dynamics of the latter. In other words, the larger h, the more likely the
occurrence of sharp temporary appreciations and depreciations, that namely flash
booms and flash crashes. If h is less than a certain threshold, which we find to be
around 100 seconds, chartists have too short memory to introduce clustering both of
absolute returns and of inter-trade times; in this case none of our scenarios is able
to reproduce our target stylised facts. Conversely, for high enough values of h the
dynamics may turn out unstable. This is especially true within the EA scenario when
h is in excess of 13000 seconds (around 3½ hours). In between the two thresholds, we
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find that the statistics relative to out target stylised facts are hardly affected by the
specific value of h.

5 Concluding remarks

The distinctive statistical properties that shape financial market dynamics at high frequen-
cies have been typically attributed to the specific patterns of information release and its
diffusion among the population of traders. We show that many such properties are also
obtainable in a fully endogenous setting, in which fundamental news is absent and inform-
ation, originating from within the financial market as the by-product of trading activity, is
common knowledge. We propose a parsimonious agent-based model in which trading
emerges as the consequence of differing stable beliefs on behalf of a population of hetero-
geneous traders. The underlying disagreement traces to the usual specification of funda-
mentalist vs. chartist behaviour. A novel element that we introduce is the definition of
simulation time in terms of a strict schedule that we borrow from the microstructural spe-
cification of a real stock market, namely the EURONEXT. We believe this plausibly relates
each tick of our numerical simulations to proper calendar time, and enables us to invest-
igate which properties apply within a specific time-window and how they evolve at dif-
ferent time-scales. We also devise a simple endogenous activation scheme that encourages
traders participation in an increasing fashion with realised profit opportunities.

We find that our assumptions regarding the underlying microstructure introduce a slight
dependence in the series of returns, although it quickly fades away within a couple of
minutes. We also find that the fundamentalist vs chartist framework is suitable for replic-
ating the empirically validated dependence properties of returns (leptokurtosis, absence of
linear autocorrelation, and volatility clustering). Nonetheless, the introduction of our en-
dogenous participation scheme proves crucial for the emergence of the persistence charac-
ter in the timing structure of market activity. Under this scenario we are able to simultan-
eously reproduce, along with the stylised facts just mentioned, the fat-tailed and serially
correlated nature of durations between trades, and the clustering of both volumes and
order-flow.

We believe that our framework could be fruitfully extended in a number of directions.
By construction, our model cannot reproduce the U-shaped pattern of intra-day market
activity. More stringent assumptions regarding the traders’ budget constraint or the in-
troduction of a time feedback that puts pressure on the traders in the vicinity of market
closing (e.g. due to margin requirements) could reveal useful thereof. Similarly, a more
structured specification of chartists’ behaviour might unveil a more asymmetric response
of volatility with respect to price drops and surges (leverage effect). Finally, a rigorous cal-
ibration of the parameters of the model to better match actual financial data might allow
for insightful policy experiments.
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