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Abstract

In this paper, we propose a method for jointly estimating indexes of economic and
financial conditions by exploiting the intertemporal link between their cyclical behav-
ior. This method combines a dynamic factor model for the joint modeling of economic
and financial variables with mixed frequencies together with a tailored Markov regime
switching specification for capturing their cyclical behavior. It allows for imperfect
synchronization between the cycles in economic and financial conditions/factors by ex-
plicitly estimating the phase shifts between their cyclical regimes. We examine the
efficacy of the model for predicting cyclical activity in a key emerging economy, namely,
Turkey, by making use of a mixed frequency ragged-edge data set. A comparison of
our framework with more conventional cases imposing common cyclical dynamics as
well as independent cyclical dynamics for the economic and financial indicators reveals
that the proposed specification provides precise estimates of indexes of economic and
financial activity together with accurate and timely recession probabilities. Recession
probabilities estimated using the available data in the first week of November 2018 in-
dicate that Turkey entered a recession that is still ongoing starting from August 2018.
We further conduct a recursive real-time exercise of nowcasting and forecasting business
cycle turning points. The results show evidence for the superior predictive power of our
specification by signaling oncoming recessions (expansions) as early as 3.6 (3.3) months
ahead of the actual realization.
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1 Introduction

Monitoring economic and financial activity and anticipating economic downturns in a timely

manner is of key importance for economic agents. To this end, various econometric methods

have been proposed to create measures of economic and financial conditions using large sets

of variables. These typically involve modeling the co-movement in the behavior of a large

number of economic and financial variables to generate indicators that are conformable with

the notion of common cycles in economic and financial activity.

The recent global recession together with its underlying financial roots have made un-

derstanding the impact of financial conditions on real activity a key requirement for timely

predictions of business cycle turning points. However, economic and financial indicators

are often measured in isolation of each other. Typically, the link between the two measures

are established by pre-selecting financial variables according to their predictive capability of

macroeconomic aggregates, i.e. GDP or industrial production, see for example Hatzius et al.

(2010). Such sequential procedures can cause inefficiencies for several reasons. On the one

hand, the intertemporal link between single variables does not necessarily reflect the joint

cyclical behavior of economic and financial conditions in a broader sense. On the other

hand, independent estimation of economic and financial conditions does not fully exploit all

available information in economic and financial variables for measuring and now/forecasting

the business cycle turning points.

In this paper, we propose a method for joint estimation of economic and financial con-

ditions by exploiting the intertemporal link between their cyclical behavior explicitly. This

method combines a dynamic factor model for the joint modeling of economic and financial

variables with mixed frequencies together with a tailored Markov regime switching dynamics

in model parameters for capturing the cyclical behavior embedded in economic and finan-

cial conditions. The specification for regime dynamics that we employ allows for imperfect

synchronization between the cycles embodied in economic and financial indicators/factors

by explicitly estimating the phase shifts between the cyclical regimes. This implies that

we allow for the financial cycle to lead/lag the business cycle in a systematic way when

estimating the indicators. This, in turn, facilitates the inference of economic and financial
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indicators with a more precise estimation of the turning points of these indicators. There-

fore, our model enables us to efficiently exploit a rich dataset of economic and financial

variables for estimation of economic and financial conditions, even more importantly, for

nowcasting and forecasting economic downturns accurately in real time.

We examine the efficacy of this approach in a key emerging economy, Turkey. Using

our framework, we construct indicators of economic and financial conditions together with

probabilities of recessions for Turkey.1 We use a mixed frequency dataset with different

time spans (for the earliest case) starting from January 1999 (for the most timely case)

until October 2018, i.e. the data that are available to us as of the first week of November

2018. Our results reveal the imperfect synchronization between the cycles embedded in the

indicators of economic and financial conditions. Specifically, we show that financial indi-

cator enter recessions (expansions), on average, 3.6 (3.3) months earlier than the recession

(expansion) for the economic indicator. A recursive now/forecasting exercise in real time

indicate that the proposed model can predict cyclical downturns in a more timely manner

compared to a model with independent cycles and to a model with a single common cycle.

Moreover, by virtue of the joint modeling of economic and financial indicators, the (mostly

short-lasting) downturns observed in financial conditions captured by the financial indica-

tor are not necessarily labeled as recessions, thereby eliminating false signals of recessions.

Finally, our results indicate that Turkey entered an economic recession in August 2018 that

is still ongoing, a finding not picked up by the model with independent cycles.

The comovement in the behavior of a large number of economic series was noted by

Burns and Mitchell (1946) in their quest to define a ‘business cycle’. Following the seminal

paper of Stock and Watson (1989) who construct a monthly coincident indicator of (US)

real activity summarizing the behavior of key macroeconomic series, dynamic factor models

have been the major workhorse of the empirical research on business cycles. Chauvet (1998),

Kim and Nelson (1998), among others, integrate the Markov mixture structure proposed by

1While there is a lack of widely accepted indicators of economic and financial conditions for Turkey,
earlier studies on developing leading and coincident indicators for Turkey include Atabek et al. (2005) who
construct a composite leading indicator for the Turkish economy and Aruoba and Sarikaya (2013) who
develop a monthly indicator of real economic activity using multiple indicators at mixed frequencies by
employing the dynamic factor model proposed in Aruoba et al. (2009). Our model clearly differs from those
as we provide a unified framework for joint estimation of coincident and financial indicators together with
their potentially imperfectly synchronized cyclical regimes due to phase shifts of the business cycle.
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Hamilton (1989) into the dynamic factor structure to capture the distinct dynamics of the

different phases of the business cycle, i.e. expansions and recessions. A recent generation

of factor models exploits larger datasets involving variables with mixed frequencies and

potentially mixed time span based on the unobserved components modeling framework that

can handle missing values in a statistically optimal way. Mariano and Murasawa (2003) and

Aruoba et al. (2009), among others, for example develop monthly and weekly coincident

indicators for the US using such datasets. A similar approach is followed by Banbura et al.

(2013) for ‘nowcasting’ key macroeconomic aggregates using multiple factors; see Bok et al.

(2018) for a recent review on this.

While papers focusing on modeling and now/forecasting economic conditions are abun-

dant, the research on financial conditions remains relatively limited prior to the Great

Recession of 2008.2 However, the global financial crisis of 2008 has demonstrated that de-

velopments in financial markets may have a significant impact on the overall functioning of

the economic system by deepening the link between financial and economic conditions; see

Gourinchas and Obstfeld (2012); Borio (2014), among others. Moreover, financial prices

bear timely information on future economic conditions as they incorporate market expec-

tations of future price and output development. Consequently, understanding the behavior

of key financial variables such as credit, asset prices, their volatilities, interest rate spreads,

and risk indicators of various sorts and establishing their link with economic conditions

has gained importance; see Claessens et al. (2012) for an extensive analysis on the cycli-

cal behavior of these variables. Therefore, several financial conditions indexes (FCI) have

been developed using such key financial variables to examine the role of financial factors in

determining future real activity.3

A number of papers consider estimating the capability of leading indicators in predicting

recessions mostly in the context of US. Using quarterly US GDP and the leading indicator

provided by the Conference Board, Hamilton and Perez-Quiros (1996) provide a framework

2For an exception, see Kaminsky and Reinhart (1999).
3See also Hatzius et al. (2010), who provide an extensive review and a comparison of alternative indexes,

typically published by financial industry and central banks, that are available for the US and the EU. In
their study, they construct an FCI for US that includes a large array of risk measures and conventional
financial variables such as interest rates and asset prices, and show that their measure of financial conditions
is tightly related to future economic conditions. Other examples include Wacker et al. (2012) who construct
several indexes of financial conditions for major non-Euro Area economies, including the US, the UK, Japan,
China, Brazil, Russia, India, and Turkey.
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in a Markov regime Switching Vector AutoRegression (MS-VAR) context to model the

lead/lag relation between the regimes of the corresponding variables, where they allow the

turning points of the leading indicator to lead the turning points for US GDP. Their findings

suggest that the leading indicator systematically leads the business cycle peaks and troughs

by one quarter. Paap et al. (2009) extend this model by allowing for distinct lead times

for peaks and troughs using the monthly data and conclude that this lead time escalates

to almost 12 months for business cycle peaks. Finally, Çakmaklı et al. (2013) provide a

general framework allowing for distinct phase shifts in the timing of multiple regimes. They

conclude that the 12-month lead time shrinks considerably to 6 months in predicting more

severe recessions such as the recent global crisis of 2008-9. The common feature of all

of these approaches is that they model the intertemporal link characterizing the cyclical

behavior of ‘observed’ indicators computed in isolation of each other.

The approach used in this paper combines various modeling approaches in a unified

framework. First, following Aruoba et al. (2009) and Banbura et al. (2013), we employ

a dynamic factor model framework using a real-time ragged-edge dataset comprised of

variables with mixed frequencies. Second, departing from these studies, we incorporate

Markov regime dynamics into the dynamic factor model structure. Barnett et al. (2016)

propose a related approach that allows for structural breaks of selected model parameters

using a restricted Markov dynamics in the spirit of change point models. In our framework,

we employ an unrestricted Markov dynamics to capture distinct phases of the business

cycle rather than structural breaks. Furthermore, we model structural breaks in selected

parameters using a different modeling approach. Third, we allow for potential phase shifts

of the business cycle for modeling the financial cycle by explicitly estimating the temporal

link between the cyclical dynamics of the coincident and financial indicators/factors using

the approach of Çakmaklı et al. (2013). We use simulation-based Bayesian inference for

joint estimation of all of these features in a unified framework.

The remainder of this paper is as follows. Section 2 presents the model and data. Section

3 describes the estimation approach. Section 4 presents the empirical results and discusses

real-time estimation and forecasting. Finally, Section 5 concludes.
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2 The Model

In this section, we present the dynamic factor model for the extraction of the coincident

economic index (CEI) and financial conditions index (FCI) from a broad set of variables

with mixed frequencies. The cyclical phases of the indicators, i.e. recessions and expansions,

are captured by a single Markov process. One of the key features of our analysis is that we

exploit the intertemporal link between the cyclical regimes of the CEI and FCI by estimating

the phase shifts in the single common cycle for the economic and financial indexes.

Let yi,t denote the first difference or the growth rate of the ith variable in period t for

i = 1, . . . , N and t = 1, . . . , T . We assume that the growth rate of variables are driven by

(the growth rates of) the economic and financial factors, denoted as ft = (f1,t, f2,t)
′, that

are common across all variables and idiosyncratic factors, denoted as εi,t. The resulting

specification is as follows

yi,t = γi,1 + λift + εi,t,
(1)

where λi = (λ1,i, λ2,i)
′ are the loadings of the ith variable, yi,t, on the common factors, ft.

We allow the idiosyncratic component to follow an autoregressive process as

ψi(L)εit = ǫi,t. (2)

For now, we do not specify the evolution of the common factors explicitly, but we return to

this in detail below.

The fact that we use a broad dataset involving stock and flow variables with missing

observations implies some care in the handling of the data. Here we follow the practice in

Banbura et al. (2013), which we discuss briefly only for the case of quarterly data being used

for the estimation of monthly factors, and refer to Banbura et al. (2013) for further details.

Consider the transformation of variables measured at the quarterly frequency, denoted by

XQ
i,t and by yQi,t as its first difference, to the monthly frequency.

For stock variables, this would imply missing observations for all periods excluding the

corresponding period of the observation. For flow variables, however, temporal aggregation

should be taken into account. Specifically, for the differenced variables, the transformation

to the higher frequency is implemented as follows
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yQi,t = XQ
i,t −XQ

i,t−3 =
∑2

k=0Xi,t−k −
∑2

k=0Xi,t−k−3

= yi,t + 2yi,t−1 + 3yi,t−2 + 2yi,t−3 + yi,t−4.

(3)

For the log-differenced variables, we use the approximation in (Mariano and Murasawa,

2003) in line with Banbura et al. (2013), which allows us to use (3) also for those variables.

So far, the model is similar to the methodologies employed for the developed countries

as in Aruoba et al. (2009) and Banbura et al. (2013). Departing from these studies we add

two modifications to the general framework to capture the characteristics that are specific

to emerging markets. First, as is the case for many emerging economies during the 2000s,

Turkey experienced a normalization in its macroeconomic environment following the severe

financial and banking crisis of 2000-1. To capture this normalization, we allow for a single

structural break in the variances of the variables as

σ2i,t = σ2i,1 I [t ≤ τ ] + σ2i,2 I [t > τ ] , (4)

where τ is the period of the structural break to be estimated and I[.] denotes the indicator

function, which takes the value 1 if the condition in brackets is true and 0 otherwise.

Second, data for emerging market economies often embrace more aberrant observations

compared to those for developed economies with deeper financial markets. Considering this,

we model the distribution of the variables, ǫi,t with a t-distribution with variance σ2i,t and

ν degrees freedom. We note that the t-distribution with ν degrees of freedom is essentially

a scale mixture of the normal distribution as follows:

ǫi,t = ξ
−1/2
t σi,tζt, (5)

where ζt follows a standard normal distribution. When ξt follows a Gamma distribution

with Γ(ν2 ,
ν
2 ), then ǫi,t follows a Student’s t-distribution with ν degrees of freedom and

accordingly ǫi,t|ξt ∼ N(0, σ2i,t/ξt).
4

Next, we proceed with the specification of the evolution of factors, ft, which are com-

prised by (the growth rate of) the coincident economic and financial conditions indexes. We

specify an autoregressive process for the factors with intercept parameter depending on the

4See Geweke (1993), Geweke (2005) for textbook expositions and Curdia et al. (2014) for an application
in the context of a structural macroeconomic model.
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cyclical regime of the corresponding factor. Specifically, in case of first-order autoregressive

dynamics for the factors, our assumptions imply the model specification

ft = αSt + δ +Φft−1 + ηt ηt ∼ N(0,Σ), (6)

where

ft=







f1,t

f2,t






,St=







S1,t

S2,t






, αSt =







α1,S1,t

α2,S2,t






, ηt=







η1,t

η2,t






,Φ=







φ1,1 φ1,2

φ2,1 φ2,2






,Σ=







σ2f1 σ1,2

σ2,1 σ2f2






.

Here Sl,t, l = 1, 2 are latent binomial variables taking the value 0 (1), if fl,t is in expansion

(recession) at time t representing the cyclical regimes embedded in economic and financial

factors. δ = (δ1, δ2)
′ is a function of the long-run growth rates of the factors which are

constant over time while αSt varies cyclically depending on whether the economy is in a

recession or expansion. We assume that S1,t and S2,t are governed by the first-order Markov

processes with transition probabilities as

Pr(Sl,t = 0 | Sl,t−1 = 0) = ql

Pr(Sl,t = 1 | Sl,t−1 = 1) = pl for l = 1, 2.
(7)

In line with the regime specifications as expansion and recession, we restrict α0 > α1, an

assumption which we discuss further when we specify the prior distributions. Next, to

implement the joint estimation of the factors, we need to specify the intertemporal links

between the cyclical dynamics of the growth rates of the CEI and the FCI. Note that (6)

already indicates a linear association between the factors by means of cross-autoregressive

coefficients. In addition, we seek to uncover the nonlinear association between these factors

by specifying the link between their cyclical regimes.

Without loss of generality, we assume that f1,t, i.e. the (growth rate of the) CEI, is the

‘reference series’ and we define the properties of S2,t, the regime indicator of f2,t, i.e. the

(growth rate of the) FCI, relative to S1,t. Different specifications of the relation between

the two Markov processes S1,t and S2,t imply different types of relations between the cycles

of the two indicators. We start the analysis with two polar cases. First, we assume that

the cycles embedded in economic and financial conditions are independent. Note that this
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specification does not rule out the synchronization of the cycles completely, as the two cycles

are in the same regime with probability

Pr(S2,t = S1,t) = p1p2 + q1q2 > 0. (8)

Second, we assume that the cycles in both indicators are identical, that is,

S2,t = S1,t, (9)

or, put differently, there is a single cycle governing both indexes. Following Harding and Pagan

(2006), we refer to this case as ‘perfect synchronization’ (PS).

In practice, the relation between the cycles governing economic and financial conditions

may not be perfect. In fact, as stated in Hatzius et al. (2010), financial conditions often

lead the business cycle. Following Paap et al. (2009) and Çakmaklı et al. (2011), we model

the intermediary cases to allow for the cycle in the FCI to lead/lag the cycle in the CEI by

κS1,t
periods, i.e.

S2,t−κS1,t
= S1,t. (10)

To specify the cycle in the FCI, we assume that the regime indicator S1,t itself is shifted but

allow the amount of phase shift to be different across expansions and recessions of the CEI.

The subscript S1,t to κ indicates that the regime indicator is shifted by a possibly different

number of time periods for each regime. Hence, this specification involves a separate regime

shift parameter κj for expansions and recessions for j = 0, 1. To put things differently, we

assume that the lead/lag time is different per regime, such that each regime in the other

series starts later or earlier by κj, j = 0, 1 periods. This specification is denoted as Imperfect

Synchronization of the cycles with regime dependent phase shifts (IS).

Nevertheless, the specification in (10) is not a complete description of the phase shifts,

as it may lead to situations where for some time periods S2,t is assigned multiple values or

it is not defined at all. In these cases, the regime with the larger amount of phase shift

is assigned to such conflicting periods, ensuring that S2,t is assigned only a single regime

and each regime starts with a phase shift of κj for j = 0, 1 periods relative to S1,t. To

elaborate further, consider a recession of CEI that starts in period t0 and ends in period t1.

We further assume that κ1 > κ0. In this case, (10) implies that the recession (expansion)
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regime indicators for the FCI relative to that of the CEI should be shifted by κ1 (κ0) periods.

Considering the initial switch of CEI from the expansion to the recession in period t0, for

the FCI the expansion ends in period t0−1−κ0 while the recession starts in period t0−κ1.

As κ1 > κ0 this leads to the fact that for the periods t0−κ1, . . . , t0− 1−κ0 FCI is assigned

multiple regimes. If the recession indicator is assigned for these conflicting periods, as its

shift parameter is larger, the resulting specification implies that the recession in the FCI

starts κ1 periods earlier/later than that of the CEI. On the other hand, in case of the latter

switch from recession to the expansion in period t1 + 1, the recession of the FCI ends in

period t1 − κ1 while the expansion of the FCI starts in period t1 +1− κ0. In this case, FCI

is not assigned any regime for the periods t1 + 1− κ1, . . . , t1 − κ0. Assigning the recession

indicator for FCI in these periods ensures that the expansion of FCI starts or, put differently,

the recession in the FCI ends κ0 periods earlier/later than that of the CEI. This indicates

that, using this specification indeed κ0 and κ1 serve as phase shift parameters of recession

and expansion regimes, respectively. Consequently, recessions in the FCI are κ0−κ1 periods

shorter than recessions in the CEI. Notice that if the duration of the recession, t1 − t0 + 1,

in CEI is shorter than κ0 − κ1 then the recession in FCI completely vanishes.

We conclude the specification of the factor model by describing the assumptions required

for the identification of the factors, since both factors and the loadings are unobserved as

in (1). First, to better identify the factors of the economic and the financial conditions,

the coefficientss of the financial (coincident) variables that load on the first (second) factor

are set as zero to identify the first factor as the CEI and the second as the FCI. Second,

as neither the constant terms in the measurement equation for the idiosyncratic factors,

γi,1 for i = 1, . . . , N, nor δ are not uniquely identified, we standardize the dataset and we

restrict the unconditional variance of the factors to be one for identification of the scale

and location of the factors following Sargent and Sims (1977), Stock and Watson (1989)

and Stock and Watson (1993), for example5. We then recover the long-run growth rate

factors, δ, that is required for constructing the levels of CEI and FCI using the methodology

5Alternatively, Bernanke et al. (2005) and Bańbura and Modugno (2014), among others, set the upper
N × k part of the matrix of factor loadings to identity, where N (k) is the number of variables (factors),
to set the factor orientation according to the order of the variables. Such a strategy is prone to the or-
dering of variables which might even be more sensitive in our application for emerging markets. See also
Del Negro and Otrok (2008) and Bai and Wang (2015) for alternative identification schemes.
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proposed by Stock and Watson (1989) and also used in Kim and Nelson (1998) by reverse

engineering the long-run growth rate of the factors from the average growth rates of the

observed variables.

Combining (1),(2) and (6) together with (4)-(10) and imposing the identification speci-

fications we can summarize the final model as

yi,t = λift + εi,t

ψ(L)εi,t = ǫi,t ǫi,t ∼ t(0, ν, σ2i,t)

σ2i,t = σ2i,1 I [t ≤ τ ] + σ2i,2 I [t > τ ] for i = 1, . . . , N

ft = αSt +Φft−1 + ηt ηt ∼ N(0,Σ)

S2,t−κS1,t
= S1,t.

(11)

2.1 Data

We use a comprehensive set of variables for the estimation of the CEI and FCI to estimate

the model in (11). However, as we describe in detail below, our dataset suffers from the

problem of missing observations. This stems from the use of data (1) with mixed frequency,

leading to periodically missing observations; (2) with mixed time span, leading to successive

periods with missing observations; and (3), exhibiting lags in their releases, leading to

missing observations at the end of the dataset referred to as ragged-edge. Given that the

dataset mostly involves monthly and quarterly variables, we design the model to estimate

‘monthly’ indicators of coincident and financial conditions. Our dataset covers the periods

(for the earliest case) starting from January 1999 (for the most timely case) until October

2018, i.e. the data that are available to us as of the first week of November 2018.

For the construction of the CEI, we follow the common practice of choosing variables

that broadly represent different aspects of the real economy; see Stock and Watson (1989)

or Kim and Nelson (1998). In most applications, GDP is typically taken as a measure of

economic conditions. However, the national accounts in Turkey have undergone a substan-

tial revision in 2016 and the discussion of the accuracy of this revision has not reached a

consensus. This is due the fact that not only the levels but also the growth rates of old and

new series substantially diverge; see the discussion in Yilmaz et al. (2017). Therefore, we

exclude this series in our analysis to preclude any potential bias in our analysis. Still, our
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robustness checks suggest that the model estimates with the GDP series are very similar to

those without the GDP, which will be discussed in the next section. In the final set of coinci-

dent variables, we include the industrial production index (ip) and the purchasing manager

index (pmi) representing the production side of the economy, total non-agricultural employ-

ment (empna) representing labor markets, the trade and services turnover index (traserv)

and the retail sales volume index (retails) representing trade and sales, and finally, the total

export and import quantity indexes (export and import), which take into account the small

open-economy characteristics of Turkey and are less prone to nominal fluctuations. The

quarterly trade and services turnover index (traservq) is discontinued in January 2018 and

replaced by a monthly measures of the index (traservm). We use both of the variables in the

in-sample analysis. In the recursive out-of-sample analysis we include the monthly index

only in March 2018 which is the first release date of the monthly index.

Turning to the construction of the financial indicators, the common practice involves

choosing those series that represent the financial side of the economy together with the

ability to predict future real activity; see, for example, Hatzius et al. (2010). Predictive

ability is often measured in terms of the success of predictive regressions with a quadratic

loss function, i.e. the mean squared forecast error criterion.6 In our analysis, first, we

construct a dataset comprised of a large number of financial variables. A brief description of

the economic and financial variables is provided in Section A of the supplementary material.

We take the advantage of our unified modeling approach of constructing both indexes jointly,

and conduct an analysis using several combinations of variables from each group. We, then,

evaluate the variables based on their ability to predict recessions using our framework.

The final set of financial variables includes firstly, variables that represent stock market

and (sovereign) bond market behavior. The stock market variables are given by the stock

market index (BIST100) in real terms (rbist), price-earnings ratio of the portfolio (P/E)

used for computing the BIST100, the MSCI emerging market index (MSCIem)7, and re-

alized volatility on the BIST100 (VOL) while the treasury auction rate (TAuc) is used to

6An early application involves Estrella and Mishkin (1998), who examine the ability of individual series
such as interest rate spreads for predicting US recessions based on econometric methods suited for the binary
nature of NBER recession dates; see also Kauppi and Saikkonen (2008). Liu and Moench (2016) conduct a
similar analysis using various financial variables.

7The MSCI emerging market index is a broad stock market index encompassing all emerging markets
serving as a measure of the risk appetite to emerging economies.
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represent (sovereign) bond market behavior. The second set of variables is intended to

capture credit risk on financial markets given by various spreads including the term spread

(TermS) computed as the spread between the interest rate on deposits - up to 1 year and

more and the interest rate on deposits up to 1 month8, the TET spread (TETS) computed as

the difference between the 3-month interest rate on deposits and 3-month LIBOR, and the

spread between the JP Morgan Emerging Markets Bond Index9 and the 1-month interest

rate on deposits (EMBI-Tr), which is intended to represent other sources of risk in emerging

economies. We also include the Central Bank of the Republic of Turkey (CBRT)’s gross

foreign exchange reserves in real terms (FXRes), the confidence index of CBRT (Conf), and

banking sector credit loans (Cred). This last variable has been the focus of much discussion

following the failure of traditional approaches to predict the recent global crisis; see, for

example, Gadea and Perez-Quiros (2015), for example. We discuss its contribution to our

analysis in subsequent sections.

3 Estimation

The model specified in (11) is a special case of the unobserved components model together

with (Markov) regime dependent parameters, as neither the factors, i.e. economic and fi-

nancial indicators, nor the regimes and the phase shifts are observed. Since we conduct a

joint estimation strategy taking into account the uncertainty related to all of these com-

ponents, classical inference is not feasible due to the discrete nature of the phase shift.

Therefore, we adopt a Bayesian approach for estimation and inference and we make use

of Markov Chain Monte Carlo (MCMC) techniques. Specifically, we use Metropolis within

Gibbs sampling together with data augmentation for posterior inference. In Section 3.1 we

derive the likelihood function of the model, while we discuss the specifications of the prior

distributions in Section 3.2. In Section 3.3 we outline the resulting algorithm for simulat-

ing from the posterior distribution. Full details on the model specification and conditional

posterior distributions are given in Sections B and C of the supplementary material for the

8We use the interest rates on deposits rather than the sovereign bond (zero-coupon) yields for computing
the term spread. This is mainly due to the fact that short-term sovereign bonds possess limited liquidity.

9JP Morgan Emerging Markets Bond Index is a broad bond market index encompassing all emerging
markets serving as a measure of the cost of funding for emerging markets.
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sake of brevity.

3.1 Likelihood Function

Given the fact that the dynamic factor model involves regime dependent parameters gov-

erned by a Markov process, we need to derive the complete data likelihood function. To do

this, first, we cast the model in (11) into state-space form as

yt = Hβt + εt εt|ξt ∼ N(0,Rt)

βt = αSt + Fβt−1 + ηt ηt|ξt ∼ N(0,Ωt),
(12)

where yt = (y1,t, . . . , yi,t, . . . , yN,t)
′, H is comprised by the factor loadings with the specific

location and form depending on the frequency and on the type as flow and stock of the

corresponding variable. Rt is the diagonal matrix with conditional variances of the variables

on the diagonal. The state vector βt includes ft = (f1,t, f2,t)
′, i.e. factors representing the

coincident and financial indicators, as well as error components εi,t as idiosyncratic factors

and their lags. F is comprised of the autoregressive coefficients of the coincident and

financial factors as well as idiosyncratic factors and accordingly Ωt includes the variances

(and covariances) of these factors. The time variation inRt as well as Ωt stems from the fact

that we allow for a single structural change for the variances of the variables. Notice that

these variances are scaled by the Gamma-distributed elements of ξt = (ξ1,t, . . . , ξi,t, . . . , ξN,t)
′

leading to a t−distribution as discussed earlier. Finally, the regime dependent parameters,

αSt , include α1,S1,t
and α2,S2,t

. Conditional on the model parameters and regimes, we can

proceed with standard inference of the linear Gaussian state-space models by running the

Kalman filter. However, before running the Kalman filter a slight modification to the system

is required for handling missing observations. This is simply achieved by creating a selection

matrix, Wt, that is a diagonal matrix with the ith diagonal element taking the value 1 if

yi,t is observed and 0 otherwise. The Kalman filter is then run by replacing yt, H and R
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with y∗
t = Wtyt, H

∗ = WtH and R∗
t = WtRtW

′

t, respectively as

βt|t−1 = αSt + Fβt−1|t−1

Pt|t−1 = FPt−1|t−1F
′
+Σ

vt|t−1 = yt −H∗βt|t−1

Vt|t−1 = H∗Pt|t−1H
∗′ ,

(13)

to compute the prediction error, vt|t−1, and its variance, Vt|t−1. Let y
T = {y1, . . . ,yi, . . . ,yT }

and S
T = {S1, . . . ,Si, . . . ,ST }, then, the complete data likelihood can be written as

f(yT ,ST |θ) =





2
∏

i=1

2
∏

j=1

p
Tij
ij





T
∏

t=1

(

1√
2π

)

|Vt|t−1|−
1

2 exp

(

−1

2

T
∑

t=1

v
′

t|t−1V
−1
t|t−1vt|t−1

)

,

(14)

where Tij is the number of transitions from regime i to regime j and P = {pij}2i,j=0,1

is the matrix with transition probabilities. θ = (vec(Φ)′, α′, λ′, σ2′, ψ′, vec(P )′, κ, vec(Σ)′)′

represent all model parameters with α = (α1,0, α1,1, α2,0, α2,1)
′, λ = (λ′1, . . . , λ

′
i, . . . , λ

′
N )

′

where λi = (λi,1, λi,2)
′, σ2 = (σ2′1 , . . . , σ

2′
i , . . . , σ

2′
N )

′ where σ2i = (σ2i,1, σ
2
i,2)

′ and ψ =

(ψ′
1, . . . , ψ

′
i, . . . , ψ

′
N )

′ where ψi = (ψi,1, . . . , ψi,p)
′ where p is the lag order of the autore-

gressive process for the idiosyncratic factors, and κ = (κ0, κ1)
′. The likelihood function

conditional only on the model parameters can be obtained by summing (14) over all the

possible states

f(yT |θ) =

1
∑

S1,1=0

1
∑

S2,1=0

. . .

1
∑

ST,1=0

f(yT ,ST |θ). (15)

3.2 Prior Distributions

We use diffuse priors for most of the parameters in order to let the data be decisive for

estimation results. For the discrete parameters this can be achieved using proper priors but

this strategy leads to use of improper priors for the continuous parameters.

For the phase shifts parameters, κ = (κ0, κ1), we use a uniform prior assigning equal

probability to each value of κ in a predefined set

f(κ) ∝







1 for all (κ0, κ1) ∈ C,
0 otherwise.

(16)

The set C = {(κ0, κ1) ∈ Z
2 | −c ≤ κj ≤ c for j = 0, 1, |κ0 − κ1| ≤ d} specifies the
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restrictions imposed on κ0 and κ1. Specifically, we set c = 8 and d = 6 implying that κ0

and κ1 are restricted to lie in the interval [−8, 8] and their difference is restricted not to

exceed 6.10 Note that setting d = 0 and c = 0 leads to the model with single common cycle.

See Çakmaklı et al. (2011) for more details.

For the transition probabilities, we use an informative Beta prior such that 95% highest

posterior density interval covers the domain of 0.9 to 1 to match the duration of the recession

and expansions with stylized facts.

The prior for the regime-dependent intercept parameters α is specified using improper

distributions with sign restrictions as

f(αl) =







1 if αl ∈ {αl ∈ R
2 | αl,0 > αl,1}

0 elsewhere.

(17)

for l = 1, 2 to identify expansions and recessions as discussed in Section 2. For the matrix

of autoregressive coefficients of common factors, Φ, and for the vector of autoregressive

coefficients of idiosyncratic factors, ψ, we use flat priors

f(Φ) ∝ 1 and f(ψi) ∝ 1 for i = 1, . . . , N (18)

if the condition that characteristic roots of Φ and ψ lie outside the unit circle holds and 0

otherwise.

For the factor loading parameters we also use flat priors

f(λi) ∝ 1 for i = 1, . . . , N. (19)

For the variance parameters of the variables as well as factors, we use noninformative

Jeffrey’s priors of the form

f(σ2k,i) ∝ σ−2
k,i for k = 1, 2 and i = 1, . . . , N

f(Σ) ∝ |Σ|−1.

(20)

For the distribution of the structural break parameter, τ , we use a discrete uniform distribu-

tion assigning equal probability for all time periods but the first and the last 12 observations,

that is, we trim the first and last year of the sample period.

10We experimented with various setups. The results are quite similar and available upon request. Setting
these values to sensibly small values without affecting the results facilitates the computation substantially.
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3.3 Posterior simulation scheme

The posterior distribution is proportional to the product of the likelihood in (15) together

with the prior specifications described in (16)-(20). For inference of the posterior distribu-

tion, we use Metropolis within Gibbs algorithm that leads to the following sampling scheme.

Starting with initializing the parameters, at step (m) of the iteration

1. Sample fT from p(fT |yT , α(m−1),Φ(m−1),Σ(m−1),ST (m−1))

2. Sample S
T from p(ST |fT (m), α(m−1),Φ(m−1),Σ(m−1), κ(m−1))

3. Sample α from f(α|yT ,ST (m),Φ(m−1),Σ(m−1), σ2(m−1), λ(m−1), ψ(m−1), τ (m−1))

4. Sample Φ from f(Φ|yT ,ST (m), α(m),Σ(m−1), σ2(m−1), λ(m−1), ψ(m−1), τ (m−1))

5. Sample Σ from f(Σ|yT ,ST (m), α(m),Φ(m), σ2(m−1), λ(m−1), ψ(m−1), τ (m−1))

6. Sample κ from f(κ|yT , S(m)
1 , α(m),Φ(m),Σ(m), σ2(m−1), λ(m−1), ψ(m−1), τ (m−1))

7. Sample λ from f(λ|yT , fT (m), σ2(m−1), ψ(m−1), τ (m−1))

8. Sample σ2 from f(σ2|yT , fT (m), λ(m), ψ(m−1), τ (m−1))

9. Sample ψ from f(ψ|yT , fT (m), λ(m), σ2(m), τ (m−1))

10. Sample τ from f(τ |yT , fT (m), λ(m), σ2(m), ψ(m))

11. Sample P from f(P |S(m)
1 )

12. Repeat (1)-(11) M times.

Our model specification implies that the unobserved regimes are linked to the variables

through the common factors of economic and financial indicators. Therefore, direct sam-

pling of ST conditional on observed data requires the factor to be integrated out, which is not

feasible in our case. The fact that our model specification involves potential phase shifts pre-

cludes efficient simulation techniques such as Gerlach et al. (2000). Accordingly, we sample

the regimes conditional on factors in step (2). However, in steps (3)-(6) any factor-related

parameters are sampled conditional on data rather than factors using Metropolis steps to

alleviate autocorrelation in the draws that could decelerate the convergence.

4 Empirical Findings

In this section, we report our empirical findings for the competing models for the construc-

tion of the coincident economic index (CEI) and the financial conditions index (FCI). We

first conduct an analysis on the cross-autoregressive parameters of the (growth rates of the)
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CEI and FCI. Posterior odds ratios using mildly informative priors indicate that zero is

inside the Highest Posterior Density Interval (HPDI) and therefore, we exclude these pa-

rameters. We further conduct an extensive analysis on the lag order of the idiosyncratic

factors. Model comparisons suggest that a lag order of 3 (0) for the idiosyncratic factors of

economic (financial) variables provides the best fit of the model to the data.

First, we display findings of the full-sample estimation. In the next section, we provide

a detailed analysis on the performance of the competing models in real-time forecasting of

business cycle turning points. The competing models involve (i) the model with independent

cycles for the CEI and FCI, (ii) the model with Perfectly Synchronized cycles for the CEI

and FCI (PS), (iii) the model with Imperfectly Synchronized cycles due to regime dependent

phase shifts (IS) between the cyclical components of the CEI and the FCI.

First, we compare the fit of the competing models with the data using the (logarithm

of the) marginal likelihood metric computed for each of the models. These are reported at

the bottom panel of Table 1.

[Insert Table 1 about here]

Marginal likelihood values indicate that both of the models with independent cycles and

PS model perform worse than the IS model. While the model with independent cycles

has the lowest marginal likelihood value, we observe an increase in the marginal likelihood

by 20 points for the PS model. It seems that modeling economic and financial variables

jointly for extraction of the indicators with a single common cycle improves upon modeling

the indicators with independent cycles. Allowing for phase shifts between cycles of the

financial and economic activity improves the marginal likelihood value further by almost 20

points. This indicates that modeling the intertemporal link between the cyclical patterns

of economic and financial indicators explicitly pays off, as the highest marginal likelihood

value is achieved by the model allowing for imperfectly synchronized cycles. In the next

section, we discuss the findings of this model.

4.1 The coincident economic index and the financial conditions index

This section describes the coincident economic and financial conditions indexes that are

estimated using the model that allows for imperfectly synchronized cycles as in (11). As
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discussed in Section 2 this model is estimated using growth rates of variables. We, then,

reverse engineer the levels of CEI and FCI as in Stock and Watson (1989).

Figure 1 displays these indexes together with the dates of recessions indicated by the

gray shaded area computed using the BBQ algorithm11.

[Insert Figure 1 about here]

This figure shows that the CEI is successful in tracking the business cycle and predicting

accurately the economic downturns that occurred in 2000-1 and 2008-9. Moreover, it cap-

tures the accelerated expansion of the Turkish economy between 2002-8 and right after the

2008-9 crisis, which is replaced by a slower growth path after 2012. The FCI displays similar

behavior but with a clear lead of the cyclical regimes by several months. While both the

CEI and the FCI capture the downturns during the recessions of 2000-1 and 2008-9, these

are amplified further for the FCI with frequent downturns in 2011, 2013 and 2015 reflecting

the relatively volatile nature of the financial variables that are used to constitute it. The

divergence between the CEI and FCI can be tracked in the second half of the sample after

2011. This period coincides with the start of the relatively unconventional monetary policy

initiated by the Central Bank of the Republic of Turkey (CBRT), which involved mixing

various policy tools. Finally, we observe a sizable downturn in the FCI in early 2018 ac-

companied by a downward swing in the CEI which seems to start in August 2018 following

an increase in July 2018.

Table 1 reports the estimates of the parameters related to the growth rates of the CEI

and FCI estimated using the three competing models, which differ according to the nature

of the assumed synchronization between the cyclical components of the CEI and FCI. The

first panel displays the estimates of the lead/lag parameters, i.e. the phase shift in the

expansion phase of the FCI, κ0, and the phase shift in the recession phase of the FCI, κ1,

for the model that allows for the imperfect synchronization between the cycles embedded

11As Turkey lacks a business cycle dating committee as opposed to US (NBER dating committee) we
use the dates estimated by the BBQ algorithm as reference recession dates. The BBQ algorithm is a
nonparamatric procedure used for dating business cycle turning points based on the definition of a recession
as two consecutive quarters decline in economic activity. The algorithm is proposed by Bry and Boschan
(1971) and simplified by Harding and Pagan (2002). This approach uses the aggregate real GDP series or
the monthly industrial production growth rate according to the choice of frequency. The resulting recession
dates are identified as the period from October 2000 until June 2001 and from April 2008 until March 2009
in our sample.
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in FCI and CEI. The posterior means of the phase shift parameters for expansions and

recessions is estimated as 3.27 and 3.55 months, respectively. In line with the improved

marginal likelihood value of the IS model compared to other polar cases, these findings

suggest that the cycle embedded in the FCI systematically leads the cycle in the CEI by

more than a quarter ahead. Therefore, the FCI constructed using the proposed methodology

as in (11) may serve as a leading indicator of the CEI. Even more importantly, it provides

an early warning indicator for the oncoming recessions 3.55 months ahead. For the case

of the US, using the ‘observed’ indicators of the Conference Board’s monthly composite

coincident index and the leading indicator Çakmaklı et al. (2013) find that the lead time

for mild recessions is 12 months while for severe recessions this lead time reduces to 6

months. For expansions, the lead time further reduces to 4 months. While these findings

show that the lead times are larger for the US, nevertheless, given the severity of recessions

in emerging markets, the magnitude of the phase shifts seems to be comparable. Notice

that the relatively more volatile markets in countries like Turkey may limit the ability of

financial markets to forecast future events accurately relative to the developed countries.

The left panel of Figure 2 displays the posterior distribution for the phase shift param-

eters κ0 and κ1.

[Insert Figure 2 about here]

Figure 2 shows that the mode of the posterior joint distribution of κ0 and κ1 is 3 and 4

months with a large probability mass around this mode. Interestingly, there is also large

probability mass around 8 months for the phase shift parameter of recessions, κ1. This

indicates that for some recessions the lead time may be as high as 8 months, similar to

findings for US, but we need to have a larger dataset for enhancing the probability mass in

this part of the distribution. Since the lead times of recessions and expansions are close to

each other for the major part of the joint distribution of phase shift parameters, we estimate

a model where the phase shift parameters are restricted to be identical. The right panel of

Figure 2 displays the posterior distribution for this unique phase shift parameter. In this

case, it is seen that the posterior distribution of the unique phase shift parameter is nicely

gathered around the values of 3 and 4 months. A large probability mass around the lead

time of 8 months, as in the case of regime dependent phase shifts, cannot be observed if
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the phase shift parameters are restricted to be identical. This is due to the fact that the

large lead time of recessions, that is observed when the phase shift parameters are regime

dependent, are not accompanied by the large lead time of expansions.

The second and third panel of Table 1 reports estimates of the parameters related to

the growth rates of the CEI and FCI estimated using the three competing models. As it

can be seen in the second panel, the estimates of intercepts in recessions differ substantially

from those in expansions, indicating that the regimes are identified quite precisely. For

the models with imperfect and perfect synchronization, the estimates of the intercepts in

recessions vary between -0.531% (-0.686%) and -0.503% (-0.715%) and those in expansions

between 0.079% (0.153%) and 0.075% (0.146%) for the CEI (FCI), respectively. However,

for the model with independent dynamics for the cyclical components, estimates of the

intercepts during recessions and expansions are somewhat different, with values of -0.780%

(-0.632%) during recessions and of 0.027% (0.175) during expansions for the CEI (FCI),

respectively. Taking together with the estimates of the autoregressive coefficients, which

are displayed in the third panel, these estimates imply more severe downturns for the model

with independent cycles than those for the other two models.

The fourth panel of Table 1 displays the estimates of the transition probabilities. The

probability of remaining in recessions is less than the probability of remaining in expansions

for all three models, reflecting the fact that expansions last longer than recessions. Based

on the posterior estimates of the transition probabilities, the duration of expansions is

predicted to be 35 months while the duration of recessions is given by 15 months for the

models with perfect or imperfect synchronization. By contrast, the model with independent

cycles yields a slightly lower probability of remaining in recessions, with an implied duration

of recessions being equal to 14 months. This indicates the concordance of cyclical behavior

of financial and economic conditions in that the length of the cycles are quite similar across

the different specifications.

We now examine the behavior of the different model specifications based on their ability

to determine turning points and to identify recessionary episodes. Figure 3 shows reces-

sionary episodes for the Turkish economy based on the BBQ algorithm together with the

smoothed recession probabilities implied by the models.
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[Insert Figure 3 about here]

The first panel of Figure 3 displays the recession probabilities estimated using the specifica-

tion with imperfect synchronization of the cycles. Consistent with Figure 1 and the nonzero

estimates of phase shifts between the cyclical components of CEI and FCI, the smoothed

probabilities of being in recession for the FCI precede the smoothed probabilities of being

in recession for the CEI for both the 2000-1 and 2008-9 recessions. This occurs at the onset

when entering recessions as well as at the end when leaving recessions. Moreover, the timing

of the recessions for the CEI where smoothed probabilities of being in a recession for CEI

exceed 0.5 match with the periods of recessions computed by the BBQ algorithm. This

implies that the FCI not only measures the current financial conditions but also serves as

an early warning indicator for the oncoming downturns of economic activity. An interesting

pattern can be observed in the final periods of the sample in 2018. Our results indicate

that the smoothed probabilities of being in recession exceed 0.5 in August 2018, indicating

quite a recent and still-ongoing recession as of the first week of November 2018, i.e. based

on using the dataset until October 2018, when these results are generated. The FCI, on

the other hand, enters the recession in May 2018 reflecting the phase shift when entering

recessions. Notice that, the BBQ algorithm still does not signal any recession for these

periods.

When we consider the model with perfect synchronization, displayed in the second panel

of Figure 3, we observe that it has some success in capturing the cyclical turning points,

specifically, at the onset of the 2008-9 recession. However, a comparison of the smoothed

recession probabilities computed using the financial cycle of the IS model and those using

the unique cycle of the PS model indicates that the PS model captures the financial cycle

rather than the business cycle. It can clearly be seen that due to the leading capability

of the financial variables, it produces false signals of recessions at the onset of the 2000-1

recession. For this recession, the periods when smoothed probabilities exceed 0.5 precede

the periods of the actual realization. Even more pronounced, the model produces false

signals of expansions towards the end of both recessions during the transition periods from

recession to expansion in the sense that model implied probabilities decline to levels below

0.5 much earlier than the actual periods of expansionary phase following recessions. This
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indicates that blending economic variables together with financial variables for estimation

of indicators of economic activity and its cyclical turning points often yields false signals

of this cyclical behavior. This implies that economic and financial variables have distinct

characteristics in terms of their relation to the underlying business cycle. This is the focal

point of our model for construction of the indicators of economic and financial conditions.

Finally, considering the model with independent cycles for the CEI and the FCI, dis-

played in the third panel of Figure 3, we observe the poor performance of CEI in capturing

the cyclical behavior of economic activity. First, it does not deliver decisive signals of the

2000-1 recession producing smoother probabilities below 0.5 over the course of these peri-

ods. Second, it enters the 2008-9 recession with a substantial lag, and similarly, it leaves the

recession before the actual trough occurs. Finally, the recession signals in 2018 are much

weaker than those for the PS and IS models. While there is an increase in recession prob-

abilities at the onset of 2018, these probabilities remain below 0.5. Still, the FCI for this

specification appears capable of capturing the financial cycle, as the smoothed probabilities

in this case are very similar to the smoothed probabilities for the model with imperfect

synchronization. We observe frequent increases in recession probabilities that exceed 0.3 in

2011, 2013 and around 2015 which can be perceived as signals of an oncoming recession.

However, the model with imperfect synchronization remains relatively silent in these peri-

ods where the recession probabilities fluctuate only around 0.1. This is due to the fact that,

for the IS model, the cycles embedded in CEI and FCI are modeled jointly using a unique

cycle which is reflected with the phase shifts to the FCI. Therefore, even though there is

a short-lasting downturn in the FCI, it is not translated into recession probabilities when

a similar downturn cannot be observed for the CEI. This substantially eliminates the false

signals as it can be seen from Figure 3.

A final remark is on the effect of exclusion of the GDP series in our model as discussed

in earlier sections. To examine this further, we estimate the IS model together with the new

GDP series. Figure 4 displays the estimate of the CEI using the GDP series in addition to

the other economic variables together with the CEI estimated without the GDP series.

[Insert Figure 4 about here]

As can be seen in Figure 4, the two series almost perfectly overlap with each other and we do
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not observe any noticeable difference. This implies that the estimated CEI already captures

the effect of the GDP and the GDP series does not provide any additional information on

top of the economic variables used in our dataset.

Table 2 displays the parameter estimates related to the measurement equation in (11).

These are the factor loadings, the variances and the autoregressive coefficients of the id-

iosyncratic factors. Here we display the parameter estimates of the model with imperfectly

synchronized cycles embedded in CEI and FCI for the sake of brevity. The parameter esti-

mates of other competing models are provided in Section D of the supplementary material.

[Insert Table 2 about here]

Loadings of the variables on the CEI and FCI are displayed in the left panel of the Table 2.

We observe that all of the eight variables used to construct the CEI load positively on the

common factor due to the procyclicality of the selected variables. For a majority of the

variables zero is outside the 95% Highest Posterior Density Interval (HPDI), though for the

purchasing manager index (pmi) and total non-agricultural employment (empna) the 95%

HPDIs contain zero. While for the pmi this might be due to the lack of data as it starts only

after 2011, for the empna this might be due to the persistently high levels of unemployment

observed throughout the sample for Turkey.

Turning to the factor loadings for the FCI, we observe that variables that are related to

various risk sources such as the volatility of the return on the stock market index BIST100

(VOL), the Treasury auction rate (TAuc) and the spread between the 3-month rate and the

3-month LIBOR Rate (TETS), have sizable negative loadings on the common factor. More-

over, the distributions related to these loadings have relatively small standard deviations,

leading to quite precise estimates. These results seem intuitive in that greater volatility

on local stock markets described by (VOL) or an increase in the spread variable, TETS, is

likely to signal adverse developments in financial markets and the related distress in the real

economy. An important finding refers to the loading of the credit-related variable banking

sector credit loans (Cred). Similar to the risk-related variables, this variable has a negative

loading, attesting to its importance in signaling recessions. By contrast, an increase in the

real value of the stock market index (rbist) or the MSCI Emerging Markets Index (MSCIem)

tend to signal favorable developments and hence, lead to an increase in the FCI.
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The middle panel of the Table 2 provides estimates of the conditional variances of

economic and financial variables together with the timing of the structural break in these

variances in the bottom line of the Table. The posterior mode for the breakpoint parameter τ

is estimated as September 2001. Figure 5 shows the posterior density of the break parameter

for the IS model.

[Insert Figure 5 about here]

We observe that the bulk of the posterior mass is located around the years 2001-2 reflecting

the precision in the break parameter estimate. For the variance parameters, we can track a

general reduction in the shock variances of almost all variables following the break date of

September 2001. This date corresponds to the ending of the severe financial crisis of 2000-1

in Turkey. Financial variables exhibit even larger declines in the estimated shock variances

compared to economic variables, reflecting the financial turbulence and the large increases

in the sovereign risk that Turkey endured during this period and the normalization that

occurred in its aftermath.

Finally, we display the estimates of the autoregressive coefficients related to idiosyncratic

factors in the right panel of the Table 2. In many of the cases, zero is outside 95% HPDI.

These results show the importance of modeling the dynamics of the idiosyncratic factors

for identification of the common factors.

4.2 Predicting business cycle turning points in real-time

Economic agents are often interested in predicting economic downturns before they are

actually realized. In fact, the uncertainty about the state of the business cycle is often

unresolved even after it is realized, as data on economic activity, i.e. GDP, are often

released with substantial lags. Therefore, we also assess the efficacy of the model in signaling

business cycle turning points in a timely manner in real-time. To do this, we conduct a

recursive prediction exercise for examining the ability of the models in predicting business

cycle turning points over the evaluation period starting from December 2006 until October

2018. To obtain the predictions in real-time, we first restructure the dataset leading to a

ragged-edge in each period to account for the delays in releases.12 This implies that we

12Specifically, while many of macroeconomic variables including ip, import, export, traservm and retails

are released with a lag of 2 months, other variables including empna and traservq are released with lags of
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simulate a forecaster who estimates the model in the first week of each month starting from

January 2007 until November 2018 to construct the predictions.

To compare the real-time predictive ability of the models in predicting business cycle

turning points, we make use of the metric of turning point forecast errors (TPFE) using

predictive probabilities of being in a recession. To obtain these probabilities, we first com-

pute the predictive distribution of the regime indicator of being in a recession in period

t0 + h, f(S1,t0+h = 1|θ, Y t0)p(θ|Y t0), where p(θ|Y t0) is the posterior distribution of model

parameters given the observations until t0. To do this, we use the posterior simulator to ob-

tain a sample from the distribution of the model parameters {θ(m)}Mm=1 and then to obtain

a sample of predictive distribution of regime indicators {S(m)
1,t0+h

}Mm=1, where M is a large

number of draws from the posterior distribution. Finally, predictive recession probabilities

for period t0+h are computed using the sample average as S̄1,t0+h =M−1
M
∑

m=1

S
(m)
1,t0+h

. The

TPFE is given by

TPFE(h) =
1

T2 − h− T1 + 2

T2+1−h
∑

t=T1

(BCt+h − S̄1,t+h)
2, (21)

where BCt+h is the indicator function that equals to 1 if the economy is in recession at time

t+ h and 0 otherwise, according to the BBQ algorithm. T1 and T2 correspond to the first

and terminal dates of the evaluation period, respectively. We examine the out-of-sample

predictive accuracy of the models by using the robust version of the Diebold–Mariano

test (HAC-DM) of Diebold and Mariano (1995). We employ pairwise comparisons of the

competing models using TFPEs as loss functions to compute the DM test statistics which

follows a standard normal distribution asymptotically.13 Nevertheless, the finite sample

approximations may be poor, as was noted by Harvey et al. (1997) (HLN), and we therefore

use a HLN-corrected version of the HAC-DM test in our pairwise forecast comparison.

The IS model has two attractive features in terms of predicting the recessions. First,

3 and 4 months, respectively. pmi is the only variable with a timely release at the end of the corresponding
month. On the other hand, financial variables are released in a timely manner, except FXRes, P-E, MSCIem,
EMBI-Tr, TermS andTETS are released with a lag of 2 months.

13This test relies on the differential of the loss functions from the forecast errors of two competing models,
and tests its significance. Note that the DM test can also be formulated as a regression of the loss differentials
on a constant, and heteroskedasticity and autocorrelation robust (HAC) standard errors can be used. Under
certain conditions involving the covariance stationarity of the loss differential, the test statistic follows a
standard normal distribution asymptotically.
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similar to nowcasting models of Banbura et al. (2013) we use a mixed frequency ragged-edge

dataset in a real-time setup for efficient backcasting and nowcasting. Second, we estimate

the CEI and FCI jointly by exploiting the phase shifts between their cyclical components.

Given the positive phase shift parameters of several months, the IS model has potentially

superior forecast ability. Therefore, we examine the ability of the IS model in backcasting,

nowcasting and forecasting the business cycle turning points. In our prediction exercise, we

compute the TPFEs for horizons of h = −3,−2,−1, 0, 1, . . . , 8 to evaluate the predictive

ability of competing models for various horizons related to backcasting, nowcasting and

forecasting. We evaluate these features in Table 3, which displays the TPFE differences of

the competing models with respect to the IS model.

[Insert Table 3 about here]

The model specifications with independent cycles and with perfect synchronization of the

cycles of the CEI and the FCI perform much worse than our general model specification,

as can be seen in the second and third columns of Table 3. Essentially, the specification

with independent cycles performs worst with sizable differences in TPFEs compared to our

specification. The HAC-DM tests indicate that these sizable differences are significant at

least at 10% significance level in terms of backcasting and they increase gradually as the

predictive horizon approaches to 0. In terms of nowcasting, the outperformance of the IS

model is significant even at 1% significance level with a difference of the TFPE as high as 3.6

at the prediction horizon h = 0. The superior performance of our specification in nowcasting

is carried over to the forecasting horizon as well. The sizable differences are significant at

1% significance level up to a forecast horizon of 4 months. The statistical significance of

the results at the 10% significance level prevails up to 7-month forecast horizon.

The specification with perfect synchronization of cycles produces better predictions than

the model with independent cycles for the CEI and FCI. This shows the importance of

utilizing financial information for the extraction of the business cycle. Nevertheless, it

delivers worse signals for recessions compared to our specification, as indicated by the

positive differences displayed in the second column of the Table 3. These differences are

significant over a horizon involving backcasting up to 3 months and forecasting up to 3

months. These results are in line with the in-sample findings displayed in the previous
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section. First, as shown also in Figure 3 the model with perfect synchronization of cycles

produces early and false signals of recessions before the start of the actual recession. Since

this model essentially captures the financial cycle rather than the business cycle, it also

delivers early false signals of expansions. This explains the inferior performance of this

model in terms of back- and nowcasting compared to our specification. Indeed, while for

these horizons all differences are significant at least at the 10% significance level, in terms

of nowcasting when h = 0, the large difference is significant at the 1% significance level as

well. This difference is preserved also for the forecasting horizons up to 3 months where

our findings suggest a significance at least at 5% significance level. Consistent with the

estimates of the phase shift parameters indicating the lead time of financial cycle as around

3 and 4 months for expansions and recessions, the large differences between TPFEs decline

for forecast horizons of 4 months and longer.

Figure 6 displays the performance of the models in predicting the economic downturns

with a focus on the 2008-9 recession.

[Insert Figure 6 about here]

Specifically, we display the posterior probabilities of being in a recession for a given vintage

T , before and at the terminal date, i.e. in-sample probabilities together with back- and

nowcasts of recessions, and after the terminal date of the vintage, i.e. predictive probabilities

of being in recession up to eight months ahead. These probabilities are computed for data

vintages spanning the periods from December 2006, T1, until January 2011. This episode

comprises the periods just before, during and after the 2008-9 recession. The vertical

axis shows the specific vintage, T , used to compute the posterior probabilities while the

horizontal axis shows time, t, starting from January 2007 to February 2011. Each row

of the graphs represents the values of the posterior probabilities of a recession over time,

Pr(S1,t = 1|yT ) for t = T1, T1+1, . . . , T, T+1, . . . , T+8, based on the vintage as indicated on

the vertical axis. Values of the recession probabilities greater than 0.5 are represented by the

shades of red color getting darker as the probabilities are getting closer to 1. Probabilities

smaller than 0.5 are represented by the shades of the blue color getting darker as the

probabilities are getting closer to 0. If, for a particular vintage, the color changes from

blue to red in a certain month and remains red thereafter, then this month is considered
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as a business cycle peak, i.e., the onset of a recession. A change from red to blue similarly

represents a business cycle trough, the onset of an expansion. We indicate the periods of the

2008-9 recession identified according to the BBQ algorithm on the horizontal axis with the

red marker as the peak and the blue marker as the trough of the cycle. Looking across the

columns of these graphs shows how the assessment of the probability of a recession changes

across the different data releases.14

Figure 6 provides insights on the dynamics of the competing models through the lens

of the 2008-9 recession. First, we consider the onset of the recession, i.e. the business

cycle peak, which is (ex post) dated as April 2008 by the BBQ algorithm. Focusing on the

January 2008 vintage, the IS model specification starts to deliver signals with predictive

probabilities approaching to 0.4 for around April 2008. A striking finding occurs for the

signals delivered by the specification with perfect synchronization of cycles. For the January

2008 vintage, this model produces signals of the oncoming recession starting almost from

January 2008, with recession probabilities wandering around 0.4-0.5. However, in line with

our in-sample findings, these ‘false’ early signals are due to the fact that this model captures

the financial cycle rather than the business cycle. By contrast, the IS model captures the

business cycle peak of April 2008 in a timely and accurate manner. At first sight, these false

signals produced by the PS model might be considered as ’positive’ false signals, as it still

signals recessions early though imprecisely. However, the model produces these signals in

almost every downturn of the financial cycles in 2011, 2013 and 2015 which did not evolve

into recessions in real sector. This also explains the poorer performance of the PS model

relative to IS model in Table 3 where we display the differences in TPFEs. Finally, the model

with independent cycles displays the poorest performance for signaling recessions. The first

signals using this specification emerge as late as April 2008 and these are interrupted later

on until August 2008. Since the model with independent cycles resembles the conventional

methodology of measuring business cycles, its failure to accurately capture the business

cycle peak of April 2008 points the inadequacy of this approach.

Next, we consider the performance of the models in predicting the oncoming expansion,

14We also add the red and blue markers on the vertical axis. In this case, they represent the release
date of the GDP or industrial production series, while, in real-time, the BBQ algorithm computed using
these vintages indicates the recession date. We include these markers on the vertical axis to compare our
methodology with more conventional methods in terms of generating recession signals in a timely manner.
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i.e. business cycle trough, which is (ex post) dated as March 2009 by the BBQ algorithm.

Focusing on the January 2009 vintage, the IS specification delivers recession probabilities for

March and April 2009 that gradually decline to values around 0.6-0.7. These probabilities

reduce well below 0.5 with the release of the March 2009 vintage. For the model specification

with perfect synchronization of the cycles, signals of oncoming expansion are delivered much

earlier than the actual date of the trough. Even for the vintages released after March 2009,

in-sample estimates of recession probabilities indicate the end of the recession as early

as December 2008, confirming the finding that this model essentially conveys information

about the financial cycle rather than the business cycle. Finally, the model with independent

cycles performs worst, providing false signals of the trough much earlier than the actual

realization.

Beginning with 2017 and 2018, there has been an increasing pressure on emerging

economies as the monetary policy practiced by the FED has been shifted towards a more

hawkish stance relative to the earlier post-Great Recession periods. Therefore, we repeat

the analysis in the most recent periods starting from January 2017 until the end of the

sample, i.e. October 2018. Figure 7 displays the performance of the models in predicting

the economic downturns with a focus on the periods in 2017-8.

[Insert Figure 7 about here]

As can be seen from the left panel of Figure 7, in June 2018 the IS model starts to deliver

signals of a potentially oncoming recession. Specifically, the recession probabilities generated

in June 2018 exceed the probability level of 0.3 for August 2018. In subsequent periods,

the recession probabilities seem to settle to values over 0.5 in August 2018. Note that

the in-sample results displayed in the last row of the graph as well as in the first panel

of Figure 3 also date the start of the recession as August 2018. Considering the signals

produced by the model with perfect synchronization of cycles, the first signals of a recession

appear in June 2018, as in the case of the IS model. In this case, these indicate the start

of the recession by May 2018. In the subsequent periods, this model signals the business

cycle peak as early as March 2018. Given the positive GDP growth of 0.6% in the second

quarter of 2018 and negative growth rate of -1.1% in the third quarter of 2018, a recession

seems quite likely to start in the third quarter of 2018. The model with independent cycles
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also produces a recession signal for August 2018 by July 2018. However, this model almost

uniformly produces recession signals in the forecasts using most of the vintages considered

in this subsample, as can be seen in the right panel of Figure 7.

On top of the evaluation of the predictive performance of the parametric methods, we

further conduct a real-time dating exercise of recessions using the nonparametric BBQ

algorithm estimated based on GDP and IP series. The timing of the BBQ algorithm relies

on the release dates of these variables. Indeed, the algorithm sets the starting (final) date of

the recession as April 2008 (March 2009) only in September 2008 (September 2009) for the

2008-9 recession, considerably ‘lagging’ the business cycle. On the contrary, our IS model is

able to signal the oncoming recession (expansion) as early as January 2008 (January 2009),

essentially ‘leading’ the business cycle. For the recent period of 2018, the BBQ algorithm

still fails to signal any recession. Given the negative growth rate of -1.1% in the third

quarter of 2018 we expect the algorithm to produce this signal with the release of first

quarter of 2019 GDP data in March 2019.

5 Conclusion

Tracking economic and financial conditions in a timely and systematic manner is central

for accurate predictions of economic downturns and for resolving economic and financial

uncertainty. Not surprisingly, many central banks and policy makers construct such in-

dexes of economic and financial conditions to anticipate developments regarding the future

state of the economy. Interestingly, economic and financial conditions are often constructed

independently of each other, thereby missing the important link between the cyclical com-

ponents of these measures. This is a key deficiency of this approach, as it is widely accepted

that many financial variables serve as important leading indicators of business cycle phases,

i.e. of recessions and expansions.

This paper fills this gap by proposing a unified framework for joint estimation of the Co-

incident Economic Index (CEI) and Financial Conditions Index (FCI) by modeling the cycli-

cal behavior of these indexes allowing for imperfect synchronization together with regime

dependent phase shifts between the cyclical regimes. We estimate our model using a dataset
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with mixed frequencies to construct the CEI and FCI for Turkey and for dating cyclical

regimes of the Turkish business cycle over the period starting from January 1999 until Oc-

tober 2018. The results from the full-sample estimation show that these indexes as well as

the model-implied recession probabilities are able to capture stylized facts of the Turkish

economy quite precisely and match with the dates of recessions computed using the non-

parametric BBQ algorithm. We document the capacity of the FCI in leading the business

cycle phases by showing that the financial cycle enters recessions on average 3.6 months

earlier than that of the business cycle, while this lead time becomes on average 3.3 months

for entering expansions. We further conduct a real-time recursive forecasting exercise for

predicting the recessions over the periods starting from January 2006 until the end of the

sample, and provide convincing evidence for the superior backcasting, nowcasting and fore-

casting ability of our specification. In this context, we show that it outperforms competing

parametric models with perfect synchronization of cycles as well as independent cycles and

the nonparametric BBQ algorithm. An interesting finding is that starting from the vintage

as early as June 2018, our model specification produces signals of a recession that appears

to have started in August 2018. Indeed, our in-sample results estimated as of the first week

of November 2018 indicate a recession starting by August 2018.

Our model provides a prototype for joint estimation of the CEI and the FCI together

with their cyclical components in a data-rich environment of variables with mixed fre-

quencies. It also serves as an effective early-warning indicator of oncoming recessions by

exploiting the joint behavior of the forward-looking financial variables efficiently. Therefore,

the framework would also be useful for other emerging markets with similar characteristics,

and it may serve as a useful tool for the joint construction of the CEI and the FCI in high

frequencies such as at the weekly or even at the daily frequency for advanced economies

such as the US.
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Table 1: Posterior means and standard deviations (in parentheses) of parameters
in the transition equations of CEI and FCI for competing models

Imperfect Perfect Independent
synchronization synchronization cycles

of cycles of cycles

Phase shifts κ0 3.269 (1.984)
κ1 3.552 (2.300)

Intercepts α1,0 0.079 (0.054) 0.075 (0.051) 0.027 (0.071)
α1,1 -0.531 (0.221) -0.503 (0.188) -0.780 (0.094)
α2,0 0.153 (0.074) 0.146 (0.070) 0.175 (0.092)
α2,1 -0.686 (0.144) -0.715 (0.160) -0.632 (0.124)

Autoregressive φ1,1 0.206 (0.135) 0.288 (0.152) 0.329 (0.151)
coefficients φ2,2 0.354 (0.088) 0.347 (0.087) 0.349 (0.090)

Transition p1 0.970 (0.012) 0.970 (0.012) 0.972 (0.011)
probabilities q1 0.933 (0.024) 0.931 (0.025) 0.930 (0.026)

p2 0.962 (0.016)
q2 0.930 (0.024)

Variances σ2

f1
0.939 (0.070) 0.894 (0.095) 0.869 (0.105)

σ2

f2
0.867 (0.063) 0.872 (0.061) 0.870 (0.063)

Log-marginal likelihood -855.16 -873.35 -893.59

Note: The table shows posterior means and standard deviations (in parentheses) of the param-
eters in the transition equation defining the autoregressive process for CEI and FCI in (6) for
competing models estimated using the data for the periods starting from January 1999 until
October 2018. Log-marginal likelihood values are computed for the full model as given in (11).
The competing models are constituted by the model with imperfect synchronization between
the cyclical components of the CEI and the FCI, the model with perfect synchronization of cy-
cles of the CEI and FCI and the model with independent cycles for the CEI and FCI. Posterior
results are based on 60,000 draws from the posterior distribution where the first 10,000 draws
are discarded as burn-in sample.
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Table 2: Estimates of factor loadings, conditional variances and autoregressive coefficients of
the idiosyncratic factors of the variables for the model with imperfect synchronization of the
cycles

Economic variables Factor loadings Variances Autoregressive coefficients

ip
λ1,1 0.434 (0.079) σ2

1,1 1.095 (0.315) ψ1,1 -0.230 (0.085)

σ2
1,2 0.731 (0.106) ψ1,2 -0.070 (0.083)

ψ1,3 0.003 (0.079)

import
λ2,1 0.259 (0.068) σ2

2,1 1.987 (0.633) ψ2,1 -0.394 (0.078)

σ2
2,2 0.631 (0.097) ψ2,2 -0.059 (0.084)

ψ2,3 0.054 (0.076)

export
λ3,1 0.115 (0.055) σ2

3,1 1.263 (0.389) ψ3,1 -0.582 (0.069)

σ2
3,2 0.592 (0.071) ψ3,2 -0.314 (0.076)

ψ3,3 -0.073 (0.067)

retails
λ4,1 0.405 (0.112) σ2

4,1 1.622 (2.034) ψ4,1 −0.358 (0.131)

σ2
4,2 0.775 (0.149) ψ4,2 -0.117 (0.136)

ψ4,3 -0.082 (0.125)

pmi
λ5,1 0.169 (0.151) σ2

5,1 1.648 (2.103) ψ5,1 -0.030 (0.116)

σ2
5,2 0.933 (0.160) ψ5,2 -0.167 (0.111)

ψ5,3 0.037 (0.114)

empna
λ6,1 0.113 (0.117) σ2

6,1 1.615 (2.074) ψ6,1 0.128 (0.085)

σ2
6,2 0.889 (0.114) ψ6,2 0.275 (0.079)

ψ6,3 -0.183 (0.080)

traservq
λ7,1 0.236 (0.154) σ2

7,1 1.620 (2.042) ψ7,1 0.011 (0.168)

σ2
7,2 0.921 (0.229) ψ7,2 0.135 (0.159)

ψ7,3 0.149 (0.160)

trasermm
λ8,1 0.419 (0.112) σ2

8,1 1.600 (2.040) ψ8,1 -0.307 (0.119)

σ2
8,2 0.736 (0.132) ψ8,2 -0.078 (0.119)

ψ8,3 0.113 (0.116)

Financial Variables

rbist
λ9,2 0.576 (0.066) σ2

9,1 1.877 (0.618)

σ2
9,2 0.352 (0.069)

FXRes
λ10,2 0.260 (0.070) σ2

10,1 3.325 (1.138)

σ2
10,2 0.510 (0.072)

Conf
λ11,2 0.607 (0.072) σ2

11,1 0.635 (0.217)

σ2
11,2 0.627 (0.091)

TermS
λ12,2 0.290 (0.084) σ2

12,1 1.735 (2.976)

σ2
12,2 0.721 (0.129)

VOL
λ13,2 -0.238 (0.078) σ2

13,1 1.266 (0.333)

σ2
13,2 0.899 (0.122)

P/E
λ14,2 0.184 (0.104) σ2

14,1 2.190 (1.252)

σ2
14,2 0.681 (0.318)

TAuc
λ15,2 -0.311 (0.075) σ2

15,1 1.622 (0.472)

σ2
15,2 0.776 (0.111)

TETS
λ16,2 -0.117 (0.059) σ2

16,1 10.441 (5.965)

σ2
16,2 0.083 (0.027)

Cred
λ17,2 -0.180 (0.095) σ2

17,1 1.589 (2.135)

σ2
17,2 0.893 (0.206)

MSCIem
λ18,2 0.643 (0.095) σ2

18,1 1.587 (2.014)

σ2
18,2 0.651 (0.108)

EMBI-Tr
λ19,2 0.104 (0.038) σ2

19,1 6.624 (3.782)

σ2
19,2 0.055 (0.024)

Most likely
τ 2001:09break date

Note: The table shows posterior means and standard deviations (in parentheses) of the factor loadings, the variances
and the autoregressive coefficients of the idiosyncratic factors in the measurement equations in (11) for the model with
imperfect synchronization between the cyclical components of the CEI and the FCI estimated using the data for the
periods starting from January 1999 until October 2018. Posterior results are based on 60,000 draws from the posterior
distribution where the first 10,000 draws are discarded as burn-in sample.
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Table 3: Turning point forecast error differences to the model with imperfect
synchronization of cycles

Horizon
Perfect Independent
synchronization cycles

h of cycles

-3 1.742* 1.787**
-2 1.526* 2.017*
-1 1.432** 2.668**
0 1.369*** 3.627**
1 0.791*** 3.800**
2 0.597** 3.534***
3 0.501** 3.504***
4 0.311 3.153***
5 -0.057 2.456**
6 0.041 1.871*
7 0.087 1.323*
8 0.310 1.133

Note: The table shows the difference between the TPFE(h) (multiplied by 100) described
in (21) of the models with (i) perfect synchronization of cycles and (ii) independent cycles
from the model with imperfect synchronization of cycles with regime dependent phase shifts
(IS). Pairwise comparisons are carried out using HAC-DM test with HLN finite-sample cor-
rection. The comparisons involve the competing models against the model with imperfect
synchronization of cycles with regime dependent phase shifts. ’***’ indicates significance
at 1%, ’**’ indicates significance at 5%, ’*’ indicates significance at 10% against one sided
alternative of the positive loss differential. A larger (smaller) RMSE with asterisk indicates
statistical significance for inferior (superior) performance of the competing model.

Figure 1: Estimate of Coincident Economic Index and Financial Conditions Index
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Figure 2: Histograms of the phase shift parameters, κ0 and κ1, for models with imperfect
synchronization with regime dependent phase shifts (left) and with a unique phase shift
(right)

Note: The graph displays the posterior distribution of the phase shift parameters, κ0 and κ1, between the
cyclical components of CEI and FCI estimated for the model with imperfect synchronization of cyclical
components of CEI and FCI with regime dependent (unique) phase shifts in the left (right) panel using the
data for the periods starting from January 1999 until October 2018. Posterior results are based on 60,000
draws from the posterior distribution where the first 10,000 draws are discarded as burn-in sample.
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Figure 3: Posterior recession probabilities estimated using competing models
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Note: The graphs display the posterior recession probabilities computed for competing models estimated
using the data for the periods starting from January 1999 until October 2018. The shaded areas show
recessionary episodes for Turkish economy based on the nonparametric business cycle dating algorithm
proposed by Harding and Pagan (2002). Posterior results are based on 60,000 draws from the posterior
distribution where the first 10,000 draws are discarded as burn-in sample.

Figure 4: Estimate of Coincident Economic Index with and without the real GDP series
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Figure 5: Posterior density of the break point parameter, τ , for the structural break in
conditional variances of variables
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Note: The graph displays the posterior distribution of the break date, τ , in conditional variances of variables
estimated for the model of imperfect synchronization of cycles with regime dependent phase shifts using the
data for the periods starting from January 1999 until October 2018. Posterior results are based on 60,000
draws from the posterior distribution where the first 10,000 draws are discarded as burn-in sample.

Figure 6: Real time nowcasting/forecasting exercise: In sample estimates and out-of-sample
predictions of recession probabilities for the 2008-9 recession
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Note: The graphs display the recession probabilities in an expanding horizon, where at every point on the
vertical axes, the latest data vintage (each starts at January 1999 and ends at the indicated date) is used
to compute in-sample estimates and out-of-sample predictions for h = 0, 1, 2, . . . , 8 months ahead. Values
of the recession probabilities which are bigger than 0.5 are represented by the shades of red color getting
darker as the probabilities are getting closer to 1 and values less than 0.5 are represented by the shades of
the blue color getting darker as the probabilities are getting closer to 0 as shown in the bars next to the
graphs. On the horizontal axes, the red and blue pointers mark the dates of the start and the end of the
2008-9 recession, respectively, computed using the BBQ algorithm. On the vertical axes, the pointers mark
the announcement date of the II. quarter-2008 and II. quarter-2009 GDP, when the BBQ algorithm signals
the peak and through for 2008-9 recession for the first time given the available data in real-time.

Figure 7: Real time nowcasting/forecasting exercise: In sample estimates and out-of-sample
predictions of recession probabilities after 2017
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Note: The graphs display the recession probabilities in an expanding horizon, where at every point on the
vertical axes, the latest data vintage (each starts at January 2017 and ends at the indicated date) is used to
compute in-sample estimates and out-of-sample predictions for h = 0, 1, 2, . . . , 8 months ahead. See Figure 6
for details.
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