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Abstract: We analyze the transmission of producer price inflation shocks across the U.S. manufacturing
industries from 1947 to 2018 using the Diebold-Yilmaz Connectedness Index framework, which fully
utilizes the information in generalized variance decompositions from vector autoregressions. The results
show that the system-wide connectedness of the input-output network Granger-causes the producer price
inflation connectedness across industries. The input-output network and the inflation connectedness
nexus is stronger during periods of major supply-side shocks, such as the global oil and metal price
hikes, and weaker during periods of aggregate demand shocks, such as the Volcker disinflation of 1981-84
and the Great Recession of 2008. These findings are consistent with Acemoglu et al. (2016)’s conjecture
that supply shocks are transmitted downstream, whereas demand shocks are transmitted upstream.
Finally, preliminary results show that Trump tariffs caused an increase in the system-wide inflation
connectedness in the first half of 2018, due to shocks mostly transmitted from tariff-targeted industries,
namely, basic metals, fabricated metals and machinery.
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1 Introduction

The fact that idiosyncratic microeconomic shocks can affect the aggregate economy has

already attracted attention in macroeconomic theory. In the earlier and perhaps the

more straightforward contribution, Long and Plosser (1983) show how the propagation

of industry-level productivity shocks can generate business cycle movements. Recently,

however, studies on real and financial networks have shown that small microeconomic

shocks could generate rather large effects on the aggregate economy through the

underlying input-output, financial, employment etc. networks (see Acemoglu et al.

(2012), Acemoglu et al. (2016), Atalay (2017), Baqaee and Farhi (2017)).

Among the contributions to this emerging literature, Acemoglu et al. (2012)

characterize the conditions under which the input-output networks of industries can

amplify firm- or industry-level shocks to have significant implications for the aggregate

economy. Acemoglu et al. (2016), on the other hand, show empirically that supply-side

shocks (including productivity shocks) are transmitted downstream from intermediate

goods-producing industries to the final goods-producing industries, while demand-side

shocks are likely to be transmitted upstream from final goods-producing to intermediate

goods-producing industries. Analyzing the contribution of sectoral shocks to business

cycle fluctuations, Atalay (2017) concludes that product complementarity across

industries is the channel through which industry-specific shocks are magnified to

account for at least half of the aggregate output volatility.

As part of their main findings, Acemoglu et al. (2016) further emphasize that supply-

side shocks create powerful downstream propagation while a similar upstream propagation

is not observed in the case of demand-side shocks. This is so because the product price

increases in upstream industries imply higher costs of production and cascade effects

in the final good-producing industries. Demand-side shocks, on the other hand, have

minor or no effects on the prices of final goods and the resulting propagation of shocks to

upstream firms would be very weak. Despite this emphasis on the propagation of supply

shocks taking place through the price effects, Acemoglu et al. (2016) instead only focus

on the spillover of shocks across industries through the output levels only.

In this paper we take up from where Acemoglu et al. (2016) left off. In particular,

we focus on how shocks to the prices rather than the quantities are transmitted across

industries. Using the simple general equilibrium model of Acemoglu et al. (2012), we show

that the input-output linkages across industries form the underlying network through

which the price shocks are transmitted. In particular, price increases in an upstream

industry will lead to an increase in the production costs of the downstream industries

that use the products of the upstream industry as an intermediate input. The firms in
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the downstream industry will eventually have to reflect this cost increase in their product

prices.

Measures of the producer price inflation shock transmission across industries are

obtained using the Diebold-Yilmaz Connectedness Index (DYCI) framework. With this

methodology, we measure the extent of the change in sectoral producer price inflation

due to shocks originated in other industries. Rather than the inherently symmetric

(hence non-directional) measures, such as correlation, the DYCI framework is used

because it allows for asymmetries in the pairwise linkages across sectors. While the

system-wide connectedness measure are quite useful in gauging how much of price

shocks are transmitted across sectors, the total and pairwise directional connectedness

measures are used to distinguish between sectors that on average transmit inflation

shocks to others from the ones that on average receive inflation shocks from others.

Both static and dynamic connectedness measures are obtained. Static connectedness

measures over the full sample identify the industries that generate inflation

connectedness to others over a 70-year period from February 1947 to June 2018. Basic

metals and chemical products, the leading upstream industries, turn out to be the most

important generators of inflation connectedness to others in the full sample. We then

obtain dynamic connectedness measures for rolling sample windows to study the

variation in system-wide and directional inflation connectedness over a 70-year period.

System-wide connectedness measures clearly show that inflation connectedness

fluctuates significantly over time, with jumps as well as gradual increases during some

important international market developments, such as the first and second oil price

shocks of 1973-1974 and 1979-1980, and metal commodities price increases in the late

1980s, mid-1990s and from 2003 through 2011.

Focusing on the dynamic inflation connectedness, the price index for metals and

minerals turns out to have a more important impact on the system-wide inflation

connectedness than the price of oil. Furthermore, taking the impact of the metals and

minerals commodity price index into account, it is not possible to reject the hypothesis

that the system-wide connectedness index of the underlying input-output network

Granger-causes the system-wide inflation connectedness measure. Moving from the

aggregate to the granular, the variation in pairwise input-output network linkages

accounts for up to 58 percent of the variation in the pairwise directional inflation

connectedness across industries. The relationship between the inflation connectedness

and input-output network declined significantly during the Great Recession (2008) and

Volcker disinflation (1981-1984), which were effectively aggregate demand shocks

affecting the downstream industries first.

Over the last decade, a growing body of research has studied various aspects of
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inflation spillovers across countries and industries. Among these, Wang and Wen (2007)

show that cross-country inflation correlations are significantly larger than output

growth correlations. Mumtaz and Surico (2009) and Monacelli and Sala (2009) use

factor models to analyze the transmission of inflation shocks across countries. Ciccarelli

and Mojon (2010) documents that inflation in industrialized countries shares a common

global factor that accounts for close to seventy percent of the variation in inflation.

More recently, Auer et al. (2017) goes one step further and decompose producer

price inflation series into global, sectoral and country factors. They show that sectoral

shocks are the main reason behind the synchronization of producer price inflation across

countries. Several other papers, including Di Giovanni and Levchenko (2010), Auer and

Saure (2013), and Antoun de Almeida (2016) also pointed out to the role of input-output

linkages in driving inflation synchronization across countries.

Our paper differs from the above-mentioned contributions to the literature. While

some of these studies restrict their analysis to the correlation of inflation, the current

paper uses the DYCI framework to take into account the covariance of the error terms

from the VAR model as well as the inflation correlations across sectors. By using Diebold-

Yilmaz connectedness framework, the current paper concentrates on directional bilateral

linkages across sectors rather than the nondirectional correlation measure studied in the

literature.

The remainder of the paper is structured as follows. After a brief literature review in

the next section, section 2 outlines the general equilibrium model of inflation

transmission through input-output linkages. Section 3 provides information about the

DYCI methodology and the data used in the paper. Sections 4 and 5 present the static

and dynamic analysis of inflation connectedness across the three-digit U.S.

manufacturing industries. The relationship between the annual input-output and

inflation networks at the aggregate and granular levels are presented in section 6.

Section 7 concludes the paper.

2 A Model of Perfect Competition

The multi-sector static competitive economy model of Acemoglu et al. (2016) takes into

account the input-output structure of the manufacturing industry to analyze how input

and/or output quantity shocks are transmitted across industries. This model is flexible

enough to be used in the analysis of how product price shocks rather than the quantity

shocks are transmitted across of industries.

Each sector has the following Cobb-Douglas production function, where labor and
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intermediate inputs are used to produce the output of industry i:

yi = ezili
αi

n∏
j=1

x
aij
ij (1)

where yi is the output of industry i, li is the level of employment, and zi is the sector-

specific productivity. xij is the amount of industry j’s product used as intermediate input

in the production of industry i’s output. For each sector, we assume αi > 0, aij ≥ 0 and

αi +
∑n

i=1 αij = 1.

Market clearing condition for industry i dictates the equality of the industry i’s output

and the final consumption and intermediate input demand for the output of industry i:

yi = ci +
n∑
j=1

xij (2)

where ci is the final consumption of the product of industry i. As equation (2) shows

the product each industry is either consumed as a final good or used as an intermediate

input by other industries.

The representative household is endowed with one unit of labor and has the following

utility function defined over the labor and the consumption of goods from industries 1 to

n:

u(c1, c2, ..cn, l)) = γ(l)
n∏
i=1

cβii (3)

where γ(l) is a decreasing function of labor and βi is the weight assigned to good i in the

household’s preferences.

We can write the household’s budget constraint as

n∑
i=1

pici = wl (4)

where pi is the producer price of output of industry i.

The competitive equilibrium of this economy of n industries with price levels

(p1, p2, ...., pn), wage rate w, consumption bundle (c1, c2, ...., cn) is obtained when the

representative household chooses consumption of each good and labor to maximize her

utility, representative firm in each industry chooses employment, intermediate inputs

and output to maximize profits, and the markets for labor and goods 1 to n clear. In

this competitive equilibrium, we can then show that the following proposition holds.

Proposition 1. The producer price in industry i will increase in response to an

increase in the price of intermediate input produced by industry j as well as the adverse
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productivity shocks in industry i (namely, dzi < 0):

dlnpi =
n∑
j=1

aijdlnpj − dzi (5)

Both the adverse productivity shock and the input price increase causes the average cost

of production cost to increase, which in return leads to in an increase in the producer

price of industry i.

Intuitively, equation 5 captures the fact that the impact of the price change dpj in

industry j would have an impact on the producer price of industry i depending on the

intensity with which industry i uses good j as an intermediate input in its production,

namely aij.

It also implies that price shocks propagate from upstream industries to downstream

industries. As emphasized by Acemoglu et al. (2016), supply-side shocks propagate

from input-supplier industries to customer industries through higher intermediate input

prices. When there are changes in producer prices, there are no upstream effects but

only downstream effects owing to the coefficient (aij).

3 Methodology and Data

This section provides a summary of the DYCI methodology and brief information on

the data set used. The DYCI framework was initially developed by Diebold and Yilmaz

(2009, 2012) to study spillovers of financial shocks/crises across countries. Later,

Diebold and Yilmaz (2014) showed that the DYCI methodology was closely linked to

the modern network theory. In that perspective, the pairwise directional connectedness

measures correspond to the directed, weighted edges of a network, while the

system-wide connectedness index corresponds to its mean degree.

3.1 DYCI Framework

The connectedness index is built upon the variance decomposition matrix associated with

an N -variable vector autoregression. The total connectedness index is the ratio of the

sum of off-diagonal elements of the forecast error variance-covariance matrix to the sum

of all elements of the same matrix.

We obtain variance decompositions from an N -variable VAR(p) model,

xt =
∑p

i=1 Φixt−i + εt, where εt ∼ (0,Σ). Covariance stationarity of VAR(p) ensures

that it has a moving average representation of the form: xt =
∑∞

i=0Aiεt−i, where the

coefficient matrices Ai obey the recursion Ai = Φ1Ai−1 + Φ2Ai−2 + . . . + ΦpAi−p, with
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A0 an N xN identity matrix and Ai = 0 for i < 0.

In the VAR framework introduced above, own variance shares are the fractions of

the H -step-ahead error variances in forecasting xi due to shocks to xi, for i = 1, 2, .., N ,

and cross variance shares are the fractions of the H -step-ahead error variances in

forecasting xi due to shocks to xj, for i, j = 1, 2, .., N , i 6=j. DYCI framework uses only

the cross variance shares in calculation pairwise directional, total directional and

system-wide connectedness measures.

Identification of shocks is one of the critical steps in the impulse response and

variance decomposition analyses. It might become quite difficult to adopt a satisfactory

identification scheme when the number of variables N is relatively high. Standard

decomposition approaches such as Cholesky factorization are not robust to the ordering

of the variables. This is a serious limitation if one would like to obtain not only the

system-wide but also directional connectedness measures. For that reason, we follow

Diebold and Yilmaz (2014) and use the generalized approach of Koop et al. (1996) and

Pesaran and Shin (1998) that produces variance decompositions invariant to ordering.

Unlike the Cholesky factorization which orthogonalizes shocks, the generalized approach

allows for correlated shocks taking the correlation into account.

Having chosen the generalized identification method for the variance

decompositions, we can now introduce the connectedness measures. We start with the

highly-granular pairwise directional connectedness measures, and proceed with the total

directional connectedness measures obtained through the first degree of aggregation for

the source variable (“total connectedness to others”) or the target variable (“total

connectedness from others”). Then we move to the highly-aggregative system-wide

connectedness index through the aggregation for both the source and target variables.

The contribution of a one-standard deviation shock in variable j to the H -step-ahead

generalized forecast error variance of variable i, θgij(H), is

θgij(H) =
σ−1jj

∑H−1
h=0 (e′iAhΣej)

2∑H−1
h=0 (e′iAhΣA

′
hei)

, H = 1, 2, ..., (6)

where σjj is the standard deviation of the disturbance of the jth equation, Σ is the

covariance matrix of the disturbance vector ε, and ei is the selection vector with one as

the ith element and zeros otherwise. θij is nothing but the cross variance share of variable

j in the H -step-ahead forecast error of variable i.

By construction, in the generalized VAR framework forecast error variance shares do

not necessarily add to 1; hence, in general,
∑N

j=1 θ
g
ij(H)6=1. Taking this into account, we

normalize each entry of the generalized variance decomposition matrix (6) by the row

sum to obtain pairwise directional connectedness from variable j to variable i.
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Furthermore, in order to introduce a more informative notation, we define pairwise

directional connectedness from variable j to variable i as:

CH
i←j =

θgij(H)∑N
j=1 θ

g
ij(H)

. (7)

Now, by construction
∑N

j=1C
H
i←j = 1 and

∑N
i,j=1C

H
i←j = N .

Once the pairwise directional connectedness measure, CH
i←j, is obtained, total

directional connectedness measures can be obtained by means of aggregation for each

variable i. Total directional connectedness from all other variables j to variable i is

CH
i←• =

∑N
j=1
j 6=i

CH
i←j∑N

i,j=1C
H
i←j

=

∑N
j=1
j 6=i

CH
i←j

N
. (8)

Similarly, total directional connectedness from variable i to all other variables j is

CH
•←i =

∑N
j=1
j 6=i

CH
j←i∑N

i,j=1C
H
j←i

=

∑N
j=1
j 6=i

CH
j←i

N
. (9)

Once the shocks transmitted and received by variable i are calculated, the difference

between the two will result in a measure of the net total directional connectedness

transmitted from variable i to all other variables as

CH
i = CH

•←i − CH
i←• (10)

The net total directional connectedness index, equation 10, provides information about

how much shocks to a variable contributes in net terms to the variation in other variables.

Finally, by summing all non-diagonal entries of the normalized variance

decomposition matrix (namely, the normalized cross variance shares) we obtain the

system-wide connectedness index:

CH =

∑N
i,j=1
j 6=i

CH
i←j∑N

i,j=1C
H
i←j

=

∑N
i,j=1
j 6=i

CH
i←j

N
. (11)

3.2 Data

In our empirical analysis of the inflation connectedness we use producer price data from

the Bureau of Labor Statistics (BLS) for the three-digit U.S. manufacturing industries,

that are included in the U.S. input-output tables. Producer price inflation data used at

the monthly frequency covers a period longer than 71 years, from February 1947 to June
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2018.

We calculate the input-output measures directly from the input-output tables, which

report the intermediate product flow within and across sectors and published annually

by the Bureau of Economic Analysis (BEA).1 The annual availability of the input-output

tables allows for regular updating of the input-output network information every year.

Annual data on other control variables, such as the sectoral employment, output, exports,

and imports, are obtained from the BEA as well.

4 Static Analysis

We start the analysis of inflation connectedness across industries with the static

framework. Connectedness measures are obtained from the estimation of a VAR model

of monthly producer price inflation series over the period from January 1960 to

December 2016. We first calculate the average annual input-output network over the

1960-2016 period. Then we analyze it along with the inflation connectedness network

over the same period to draw conclusions about the possible relationship between the

inflation and input-output connectedness over the full sample.

Table 1 reports the static inflation connectedness table (a 17x17 matrix), which is

obtained from the estimation of a VAR model of order two and a forecast horizon of 12

months.2 The off-diagonal ijth entry of the connectedness table is the pairwise

connectedness measure, which shows the proportion of 12-month-ahead forecast error

variance of industry i’s inflation due to inflation shocks in industry j. The diagonal iith

entries are the own connectedness measures.

In addition to the 17x17 matrix of pairwise connectedness measures, the last column

of Table 1 reports the total ‘from connectedness’ of each industry i, which is equal to the

sum of all off-diagonal elements of the ith row. The last two rows of Table 1 respectively

report the total ‘to connectedness’ and ‘net connectedness’ of each industry i, which are

equal to the sum of all off-diagonal elements of the ith column and the difference between

the ‘to’ and ‘from’ connectedness for each industry i.

Among the total directional connectedness measures, ‘to connectedness’ row indicates

each industry’s contribution to the inflation forecast error variance of other industries.

In our framework, sectors that have higher ‘to connectedness’ measures act as major

transmitters of inflation shocks to others. With values of 81.2 and 79.0, respectively,

1 Even though, the U.S. input-output tables cover 19 manufacturing industries, we include 17 of these
industries in our empirical analysis because the producer price data for the remaining two industries
started later in the sample.

2 The sensitivity of the empirical results to the order of the VAR model, forecast horizon and the
rolling window size are presented in Appendix A.
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basic metals and chemical products are the two industries that generated the highest

inflation connectedness to other industries. They are followed by plastics (60.7),

fabricated metal products (59.8) and nonmetallic mineral products (59.1), furniture

(55.6), printing (48.5), electrical equipment (41.1), plastics (38.3), apparels (34.4),

petroleum and coal products (18.7), other (18.4), machinery (16.7) and food and

beverages (10.9).

Industries with higher ‘from connectedness’ are the receivers of inflation shocks that

originated in other sectors. With corresponding ‘from connectedness’ values of 63.1 and

60.7, fabricated metals and plastics are the industries that receive the largest inflation

shocks from other industries. They are followed by chemicals (43.9), minerals (40.6),

paper (39.4) and basic metals (35.1). Even though, their ‘to’ and ‘from’ inflation

connectedness measures are the highest among the 17 sectors, the ‘to connectedness’ of

chemicals and basic metals sectors are much higher than their corresponding ‘from

connectedness’ measures, with the implication that these two industries have highest

net connectedness’ measures, 51.3 and 28.1, respectively. Machinery (-38.9), plastics

(-22.4), and electrical equipment (-13.6) industries have negative ‘net connectedness’,

indicating that they are in net terms receivers of inflation shocks from other sectors,

especially from chemicals and basic metals.

Chemicals and basic metals industries are effectively the upstream industries that

mainly supply intermediate inputs to downstream sectors. It turns out that they are

transmitting inflation shocks to other industries as well as to each other. While pairwise

inflation connectedness from chemicals to basic metals amounts to 9.6 percent, the

connectedness from basic metals to chemicals amounts to 16.7 percent. Actually, the

basic metals industry’s net pairwise connectedness with all other 16 industries is

positive, indicating that it is the generator of inflation connectedness to the whole

manufacturing industry. While chemicals is the industry that receives the highest

inflation connectedness from the basic metals industry (16.7), it is the plastics that

receives the highest inflation connectedness from the chemicals industry (15.7).

Next, we focus on the input-output network table to see whether the inflation

connectedness across industries has anything to do with the underlying input-output

network. Table 2 reports the edge weights for the input-output network over the

1960-2016 period. Its entries are the average of the entries of the annual domestic

input-output tables from 1960 through 2016. Hence, each entry ij of the static

input-output table denotes the output normalized intermediate product flow from

industry j to industry i. Both output and intermediate products are measured in

constant prices.
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The diagonal elements in Table 2 provides a measure of the use of inputs within the

same industry, whereas the off-diagonal elements measure the use of products as inputs

across industries. We need to note that unlike the inflation connectedness table the sum

of each row in the input-output table does not add to 100.3

With the highest ‘to connectedness’ (71.1 and 70.2, respectively) and ‘net

connectedness’ (63.0 and 59.9) measures in Table 2, basic metals and chemicals

industries appear to be the two top upstream industries, followed by fabricated metals

(42.4 and 11.5), paper (35.2 and 20.0), textiles (34.9 and 12.8), petroleum and coal (11.8

and 9.2) and wood (14.9 and 1.4) All other industries have negative net input-output

network connectedness measures . Among these furniture (-34.6), printing (-27.6),

apparels (-26), other industries (-22.7), electrical equipment (-18.3), machinery (-17.8),

motor vehicles (-17.8), food and beverages (-11.2) are the downstream industries (in

descending order) that depend on intermediate inputs from other industries.

Tables 1 and 2 can be analyzed in further detail. Many of the entries in both tables

are quite close to zero, indicating very low pairwise connectedness across some of the

industries. Yet, some entries are quite large. As can be guessed these entries are located

in the columns of the upstream industries and in the rows of their immediate downstream

industries. In the case of basic metals, it has the stronger input-output links to fabricated

metals (23.7), electrical equipment (12.7), machinery (10.3), motor vehicles (8.3), others

(6.7) and furniture (5.3). Yet, the pairwise inflation connectedness of the basic metals

industry is spread more evenly across industries. One can interpret this as in addition to

input-output network links there must be other forces at work that influence the pairwise

inflation connectedness measures. However, we don’t want to reach a conclusion at the

moment because so far we are analyzing the static networks which represent an average

of 57 years of data.

Even though displaying the estimated static inflation connectedness measures and

input-output matrix in a tabular setting is quite informative, displaying them graphically

is even more revealing. Next, the two networks are presented graphically following the

network graphing convention used in Demirer et al. (2018).

The open-source Gephi software (https://gephi.github.io/) is used for network

visualization. Node locations are determined by the ForceAtlas2 algorithm of Jacomy

et al. (2014) as implemented in Gephi. The algorithm finds a steady state in which

repelling and attracting forces exactly balance; nodes repel each other like similar poles

of two magnets, while edges between two nodes attract their nodes, like springs. The

attracting force of an edge is proportional to the average pairwise directional

3 We also prepared row-sum-normalized input-output network table whose rows add up to 100 and
plot the resulting static network and the dynamic system-wide connectedness index. Neither the static
network graph nor the dynamic system-wide I-O connectedness index was affected by normalization.

12

https://gephi.github.io/


connectedness between the two nodes, which also determines the thickness of the edge.4

Finally, the edge color is the same as the color of the node that generates net positive

directional connectedness to its pair.

Figure 1: Color Spectrum of the Networks

Inflation connectedness and input-output network graphs created with the conventions

listed above are presented in Figures 2 and 3, respectively.

Figure 2: Inflation Connectedness Network (1960–2016)

Node labels are short acronyms of the industry names listed in Appendix Table D.1.

Node size indicates the average gross industry output throughout 1960-2016.5 The node

color indicates total directional inflation connectedness to others, ranging from bright

4 In the inflation connectedness network, the edge thickness represent the average pairwise ‘to’ and
‘from’ inflation connectedness between two nodes. In the case of the input-output network, the edge
thickness between two nodes represents the average product flow between the two industries relative to
their respective levels of production.

5 While the node size represents the average gross output of the industry, they are not directly
proportional. Huge gross output differences between the largest and smallest industries in our sample
make a directly-proportional representation of the output in the node size impossible.
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green (lowest) to luminous vivid yellow, whiskey sour, bright red and dark red (highest).

The node color spectrum is presented in Figure 1.

We have three major takeaways from Figures 2 and 3. First, in Figure 2

red/orange/brown colored nodes which represent the inflation connectedness generating

industries tend to locate in the center of the networks with higher connectedness to

others.

Figure 3: Input-Output Network, Domestic Inputs plus Imports (1960–2016)

Similarly, in Figure 3 the upstream industries represented by red, orange and, to

some extent, brown colored nodes also tend to locate close to the center of the network,

but now we can identify two major clusters formed around the top two upstream

industries. Paper, textiles, plastics, minerals, others and furniture that are the main

users of chemical products as inputs are located close to the chemicals industry.

Fabricated metals, machinery, motor vehicles, electrical equipment and other industrues

are located around the basic metals industry again with sizeable input use from that

industry.

Second, having a closer look at Figure 2, we can discern that basic metals generate
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positive net inflation connectedness to chemicals. The pairwise inflation connectedness of

the two industries with each other is more than implied by their underlying input-output

network. They also form a similar cluster structure of their downstream industries. Yet,

it is more difficult to separately observe the two groups.

Finally, bright green nodes (with the exception of ‘others’ industry) representing the

inflation-shock receiving and downstream industries are, in general, located in the

periphery of their respective networks.

The largest node in the input-output network represents the food and beverages

industry, which accounts for the largest gross output among the industries considered.

However, the node for the food and beverages industry is located in the periphery of the

input-output and inflation connectedness networks. Being a downstream industry it is

on the receiving end of the inflation shocks transmitted by other industries. On the

other hand, with its low gross output the basic metals industry is located in the middle

of a cluster of industries in both networks because it is one of the top two upstream

industries in the U.S. manufacturing sector.

5 Dynamic Analysis

Static inflation and input-output network graphs we presented in the previous section

are quite informative. Yet, it is not realistic to expect the inflation connectedness stay

unchanged over a period of two decades. One needs to take into account the possible

effects of domestic and global shocks on inflation connectedness over time. For that

reason, this section focuses on the dynamic (time-varying) analysis of inflation

connectedness. It starts with the dynamic behavior of the system-wide inflation

connectedness followed by the dynamic analysis of the total ‘net connectedness’ of 17

manufacturing industries.

5.1 System-wide Connectedness

One of the strengths of the Diebold-Yilmaz connectedness index framework has been its

flexibility of implementation over rolling sample windows to obtain dynamic

connectedness measures. For each sample window, we compute the system-wide

connectedness index along with the total and pairwise directional connectedness

measures from the VAR model estimates and the resulting variance decompositions.

We present the system-wide connectedness index in Figure ?? along with the World

Bank commodity price index for metals and minerals. As we will discuss the system-wide

connectedness index is influenced significantly during times of metal and mineral price
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increases. The system-wide connectedness is based on the Lasso estimation of a first-order

VAR model over 60-month rolling sample windows with a forecast horizon of 12 months.

For each rolling sample window, the system-wide connectedness index measures the total

inflation shock transmission across industries for that particular sample period. Not only

does inflation shock transmission fluctuates over time, but it also increases significantly

during the periods of major supply-side inflationary shocks.
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Figure 4: System-wide Connectedness Index Three-digit NAICS industries; Based on LASSO
estimates of VAR(1) model, rolling window length of 60 months and forecast horizon of 12 months

Let us analyze the behavior of the index over time. 1950 was an exceptionally high

inflation year. From the invasion of South Korea in June 1950 to the imposition of

general price and wage controls in January 1951 the U.S. monthly wholesale inflation

rate reached on average to 2% per month. As noted by Ginsburg (1952) (p. 517) the

prices of 28 sensitive agricultural and industrial commodities increased by more than

6% per month over this period.6 As a result, the producer price inflation connectedness

across manufacturing industries was at the highest level to begin with. Once the general

price and wage controls were implemented the inflation rates declined substantially. As

the observations for the second half of 1950 and early 1951 are dropped out of the sample

window, the producer price inflation connectedness recorded a major 30 percentage points

drop.

After a brief upward move in the second half of the 1950s, the index follows a

gradual path that lasts until mid-1960s. These are the years of rather stable commodity

prices. However, starting from 1963 to 1966 the metal commodity prices increased by

6 According to Figure 1 of Radetzki (2006), global metal price index increased by 45% from 1948 to
1952.
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another 40% (see Figure 4 and Figure 1 of Radetzki (2006)). During this period

inflation connectedness moved up by 7 percentage points. From 1968 through 1973, the

metals and minerals price index continued its upward swings, while the system-wide

inflation connectedness index increased by another 7 percentage points over this period.

The following two major hikes in the system-wide connectedness index were due to

two oil price shocks. Since we are studying the manufacturing industries and oil is an

essential input for the manufacturing production, oil price shocks had a significant impact

on production costs in major U.S. industries as anticipated. From October 1973 onwards,

the connectedness index increased by close to 30 percentage points in a matter of a year,

thanks to the sudden increase in oil prices following the OPEC’s oil embargo decision

in October 1973. Global oil prices increased by a factor of three as can be seen in the

spot crude oil price of West Texas Intermediate (WTI) increasing from $3.56 per barrel

in August 1973 to $10.1 in January 1974 and further to $11.2 in October 1974.

The impact of the second oil price shock on the inflation connectedness index is

observed following the 1979 Islamic Revolution in Iran, one of the world’s major oil

producers. The spot price for WTI went up from $14.9 in January 1979 to $26.5 in

September 1979. However, following the outbreak of the hostage crisis in early November

(where 52 American diplomats were taken hostage) the spot price of WTI oil continued

to climb as high as $39.5 per barrel in May 1980.

The increase in the connectedness index in 1979, however, was smaller (less than 10

percentage points) and lasted shorter than the one experienced following the first oil price

shock. It was perhaps so because the impact of the second round of oil price increases in

1979-1980 was much less than the one in the first round of increases in 1974-1975 because

the first round of increases was rather an unexpected development that had caught almost

all industries off guard. The jump in the index followed the oil price shock rather than

the U.S. recession that in January 1980.

As we have already noted above, it was not just the global oil price shocks that affected

the system-wide inflation connectedness across industries over time. Global metals and

minerals prices also affect the system-wide inflation connectedness. The system-wide

inflation connectedness index started to increase gradually in the second-half of 1982,

towards the end of the 1981-1982 recession, along with a 30% increase in the global

metals and minerals commodity price index.

1987 was a year during which the World Bank commodity price index for metals and

minerals increased from 28 in January to 47 in December. Metals and minerals price

index continued to increase in 1988 to reach 62 in December (see Figure 4). Reflecting

the impact of the 121% increase in metals and minerals price index over this period, the

system-wide connectedness index recorded a significant jump, from 30 to 45, in 1987 and
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1988 (see Figure 4).

After a correction that lasted for five years, metals and minerals experienced another

round of price increases in 1994: the price index increased continuously in 1994, from 31

in January to reach a local peak of 51 in January 1995 (see Figure 4). This time around,

the connectedness index increased from 30 at the end of 1993 to 41 in early 1995.

More importantly, following China’s integration to the global economy in the early

2000s, the World Bank metals and minerals commodity price index experienced quite

a long-lasting super cycle of price hikes starting from around 34 at the end of 2002 to

reach 69 by the end of 2005 and 116 by May 2007. During this period, the system-wide

connectedness index also increased, from 23 to 38 (see Figure 4).

After a brief correction during the Great Recession of 2008, the metals and minerals

commodity price index stayed above 100 until 2012. During this period inflation

connectedness continued its upward move albeit at an increased pace reaching around

50 by the end of 2012. It started moving down in 2013 along with the decline in the

metals and minerals commodity price index. Recently, the metals and minerals

commodity price index started to increase since 2016. Yet, until recently the

system-wide connectedness index has not moved up. However, as we will discuss below

in section 5.3, the uptick in the index since January 2018 could also be due to the U.S.

President Donald Trump’s decision to impose additional tariffs on imports in different

sectors including the primary metals.

So far we have focused on the upward moves in the connectedness index over time.

However, we should also note that the index goes through significant drops as we roll the

sample window over time. Most of these drops in the index, however, result from the use

of rolling sample windows framework to undertake the dynamic connectedness analysis.

For example, the index starts fluctuating between 60-79% as we roll the window forward

from 1952 through 1955. However, as we roll the window forward the inflation data for

1950 drop out of the sample window and the index drops down quickly from 65% to 53%,

to 43% and 35% as we roll the windows eight months forward. This is an expected result

because 1950 was an exceptional year when the annual producer price inflation jumped

to 14.7%. Similarly, the index recorded a substantial drop in 1978, as the data for late

1973 and early 1974 are dropped out of the sample window. Similar drops are observed in

1985, 1993 and 1999 that followed the upward jumps in the index with a five-year delay.

5.2 Net Directional Connectedness

After the dynamic analysis of the system-wide connectedness measures, we now shift

the focus to the behavior of the total net directional connectedness measures over time.

Figures 5 and 6 present the net directional inflation connectedness measures for 17
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manufacturing industries. Rather than analyzing each graph in some detail, the focus of

the section will be more on general trends, as well as those industries whose net

inflation connectedness dynamics revealed some distinguishing characteristics.

We first focus on the dynamic net inflation connectedness of the two main upstream

industries, namely, primary (basic) metals (see Figure 5) and chemical products (see

Figure 6). Both industries have positive ‘net connectedness’ in general. Primary metals

industry had high ‘net connectedness’ in the second half of the 1950s (in the 20-30%

range), following the first oil price shocks of 1974-1975 (reaching as high as 80%), briefly

in 1985, and following China’s ever-increasing demand for metals from 2003 to 2014 (in

the 25-70% range). As can be expected, the ‘net connectedness’ of the primary metals

increased significantly during all the metal and mineral price increase episodes (see

Figure 4) except for the 1987 episode. Primary metals industry’s net inflation

connectedness was negative for a short period in the late 1980s and early 1990s (around

-30%).

The net inflation connectedness of the chemical products industry (Figure 6) was very

low until the first oil price shock of 1974-75, after which it increased all the way up to

70% before dropping back to around 20% for the rest of the 1970s. It fluctuated between

30 and 40 % from the second oil price shock of 1979-1980 until 1985. After having

low positive and negative values for a decade, the ‘net connectedness’ of the chemicals

industry jumped to more than 40% in the 1995-2000 period. It again started to increase

gradually from around 10 % in 2002-2003 to reach 40% by 2005. Even though its ‘net

connectedness’ dropped significantly during the global financial crisis, since then it picked

up to reach 60% by 2014-2015 and stayed in the 20-30% band by the end of our sample

period. To summarize, the net inflation connectedness plot for the chemical products

industry shows the industry’s increased importance for the inflation connectedness across

the U.S. manufacturing industries over time.

Fabricated metal products industry (332), which is a recipient of inflation shocks

from the primary metals industry is also a generator of inflation connectedness to other

industries. As the fabricated metal products industry provides intermediate inputs to

machinery, electrical equipment, and motor vehicles industries, it generates inflation

connectedness towards these sectors. Its net inflation connectedness reached as high as

20% in the second half of the 1950s, in early 1990s and in 2010s (see Figure 5). On the

negative side, its ‘net connectedness’ dropped as low as -30% due to the increases in the

metal and mineral prices in the late 1960s and after the oil price shocks of 1974-1975

and 1979-80. Even though we do not present the graphs here, the pairwise

connectedness measures show that negative ‘net connectedness’ of the fabricated metal
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products industry during both episodes followed from the increase in the pairwise

inflation connectedness from the primary metals industry to the fabricated metal

products industry.

Following the first oil price shock of 1974-1975, nonmetallic mineral products (327)

and petroleum and coal products (324) industries generated substantial (30-40%) net

inflation connectedness to other industries (see Figures 5 and 6). Since the first oil

price shock, however, petroleum and coal products industry generated quite low net

inflation connectedness to other industries. Nonmetallic mineral products industry, on

the other hand, had around 30% ‘net connectedness’ in the second half of the 2000s,

followed by a negative ‘net connectedness’ period in the aftermath of the global financial

crisis. While the petroleum and coal products industry has become less important for

the price dynamics of the major manufacturing industries, two key upstream sectors,

namely primary metals and chemical products industries have become more influential

in generating inflation connectedness to others.

Several industries, such as the electrical equipment and appliances (335), paper

products (322), and plastics and rubber products (326) had high (at or above 40%) net

inflation connectedness at the beginning of the sample period (from 1952 to 1956). As

the sample windows are rolled and the inflation observations pertaining to the high

inflation year of 1950 are dropped out of the sample windows, the net inflation

connectedness of these industries drops as well. Afterward, the electrical equipment and

appliances industry had negligible positive ‘net connectedness’ measures, along with two

episodes of high (in absolute value) negative connectedness before and after the first oil

price shock. Following this period, its ‘net connectedness’ dropped to -30% in the

second half of the 1950s. Given that both fabricated metals and basic metals generated

high net inflation connectedness over this period, the electrical equipment industry is

one of the downstream industries receiving the inflation shocks. Other downstream

industries that had negative net inflation connectedness in the early 1950s are the

machinery (333), motor vehicles (3361MV) and furniture and related products (337)

industries.

Plastics and rubber products also had high (in absolute value) negative connectedness

in the second half of the 1970s and the first half of the 1980s, as well as from 2005 to

the end of the sample in 2017. These negative ‘net connectedness’ are due to the high

pairwise inflation connectedness from the chemical products industry to the plastics and

rubber products.

Majority of the remaining 17 U.S. manufacturing industries have had low positive or

negative net inflation connectedness to others for the most part of the 1947-2017 period.

To take an example, apparel and leather products (315AL) industry had high net inflation

21



-8
0

-4
004080

55
60

65
70

75
80

85
90

95
00

05
10

15

31
1F

T 
- F

oo
d 

&
 B

ev
er

ag
es

 &
 T

ob
ac

co
 P

ro
du

ct
s

-8
0

-4
004080

55
60

65
70

75
80

85
90

95
00

05
10

15

31
3T

T 
- 

Te
xt

ile
 M

ills
 &

 T
ex

til
e 

P
ro

du
ct

s

-8
0

-4
004080

55
60

65
70

75
80

85
90

95
00

05
10

15

31
5A

L 
- 

Ap
pa

re
l &

 L
ea

th
er

-8
0

-4
004080

55
60

65
70

75
80

85
90

95
00

05
10

15

32
2 

- 
Pa

pe
r 

pr
od

uc
ts

-8
0

-4
004080

55
60

65
70

75
80

85
90

95
00

05
10

15

32
3 

- 
Pr

in
tin

g 
& 

R
el

at
ed

 S
up

po
rt 

A
ct

iv
iti

es

-8
0

-4
004080

55
60

65
70

75
80

85
90

95
00

05
10

15

32
4 

- 
Pe

tr
ol

eu
m

 &
 C

oa
l P

ro
du

ct
s 

-8
0

-4
004080

55
60

65
70

75
80

85
90

95
00

05
10

15

32
5 

- C
he

m
ic

al
 P

ro
du

ct
s

-8
0

-4
004080

55
60

65
70

75
80

85
90

95
00

05
10

15

32
6 

- P
la

st
ic

 &
 R

ub
be

r P
ro

du
ct

s

F
ig

u
re

6:
N

et
D

ir
ec

ti
on

al
In

fl
at

io
n

C
on

n
ec

te
d
n
es

s
–

U
.S

.
M

an
u
fa

ct
u
ri

n
g

In
d
u
st

ri
es

(c
on

t’
d
)

22



connectedness (reaching as high as 60%) following the first oil price shock, but its net

inflation connectedness is low (lower than 20%) before and after this episode.

Two industries, paper products (322) and printing (323) had relatively sizeable

positive net inflation connectedness until the mid-1990s. To be more specific, paper

products industry’s net connectedness reached close to 40% in the first half of the

1950s, as well as during the period between the two oil price shocks. The industry had

relatively high (around 30%) net connectedness from 1980 to 1985, followed by a net

connectedness of around 20% in 1987 through 1992 and a spike in net connectedness in

1995. In the case of the printing industry, the net connectedness was relatively high

after the oil price shocks of 1975 (exceeding 40%), followed by a more modest net

connectedness of around 15-20% in the 1980s.

In the mid-1990s net connectedness of both industries moved to the negative

territory. The shift has been a result of the increased reliance of paper products

industry to chemicals with developments in the production technology as well as the

increased prices in the chemicals industry and its increased role as the transmitter of

inflation shocks to other industries. This is exactly the period during which the

chemical products industry had a net inflation connectedness of around 40%. Looking

at the pairwise connectedness measures we can see that most of the inflation shocks in

the chemical products were transmitted to the paper products and printing industries.

5.3 Trump Tariffs & Inflation Connectedness: A Preliminary

Analysis

Recently, the U.S. President Donald Trump decided to impose tariffs on U.S. imports

from China and other major trade partners of the U.S. The first of Trump tariffs was

imposed on January 22, 2018 in the form of 20% tariffs on washing machine imports

and 30% tariff on solar panel imports. This was followed by an even more significant

step announced on March 8, that imposed 25% and 10% tariffs on steel and aluminum

imports, respectively. More recently, on July 6 and August 23 Trump administration

imposed tariffs on $34 and $16 billion worth of imports from China, respectively..

At the moment, it is quite early to evaluate the impact of Trump tariffs on inflation

connectedness across U.S. manufacturing industries. Yet, the system-wide connectedness

index has recorded 5.5 percentage points increase from January to June 2018. The 5.5

pp increase in connectedness is not as significant an increase as we observed in previous

episodes discussed above. Furthermore, one can argue that the 5.5 pp increase in the

system-wide inflation connectedness could be due to the increase in metals and minerals

commodity price index in 2016 and 2017, followed by a slight decline in 2018.
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However, analyzing the directional connectedness measures of all 17 manufacturing

industries, one can observe four industries recording substantial increases in their ‘to

connectedness’ measures over the first half of 2018. Comparing their average ‘to

connectedness’ measures, it is observed that four industries recorded the most

significant increase in their ‘to connectedness’ from the last quarter of 2017 to the

second quarter of 2018. These are machinery (with a 20 p (which corresponds to 129%)

increase), fabricated metals (with a 24.7 pp (93%) increase), basic metals (with a 29 pp

(64%) increase) and petroleum and coal products (with a 33.8 pp (52%) increase).7

Even though it is too soon to reach a final verdict on this issue, it is worth pointing

out that three of the four industries (except for the petroleum and coal) are the ones

targeted by Trump’s new tariff policy. Therefore, it’s worth the effort to keep an eye on

the possible impact of Trump tariffs on inflation connectedness across U.S. manufacturing

industries in the near future.

6 Input-Output & Inflation Connectedness Nexus

After analyzing the dynamic behavior of the system-wide and net directional

connectedness measures at some detail, we are now ready to analyze the relationship

between the inflation connectedness and the underlying input-output networks.

Towards that end, we first focus on system-wide connectedness measures followed by the

analysis at the granular level, using pairwise connectedness measures for both networks.

6.1 System-wide Connectedness

In Figure 7 we present the annual average system-wide connectedness index for inflation

along with the system-wide connectedness of the input-output network. Similar to the

inflation connectedness index, the input-output connectedness index is the sum of all

off-diagonal elements of the U.S. domestic input-output matrix.8

The system-wide connectedness index for the input-output network varies much less

(between 17 and 25%) compared to the inflation connectedness index (between 25 and

65%). Such a result is quite expected: While input-output network connectedness is

a reflection of the technological relationship which does not change substantially in a

7In order to save space, we presented the “to connectedness” graphs in Appendix B, Figures B.1
and B.2, highlighting the jump in these industries ‘to connectedness’ measures in the first half of 2018
with a red oval shape.

8As the data on input-output tables are available only on an annual basis we converted the inflation
connectedness measures from monthly to yearly frequency by taking averages for each year. Furthermore,
as the data for input-output tables are availabe only until 2016, the joint annual analysis of the two
connectedness measures covers the period until 2016.
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Figure 7: System-wide Connectedness: Inflation vs Input-Output Networks (Annual)
Three-digit NAICS industries; Based on VAR(1) model, rolling window length of 60 months and forecast
horizon of 12 months

year or two, inflation connectedness can vary substantially depending on the size of the

inflation shocks, as well as the underlying input-output networks and the domestic market

conditions that propagate those shocks across sectors.

The two connectedness indices behave quite differently before the 1960s. We have

already explained above that the inflation connectedness index was high to begin with,

and declined with the removal of the data pertaining to the high inflation year of 1950

from the rolling sample windows. The two indices started to move closely especially in

the 1970s. After going through an upward move in the early 1970s both indices started

to follow a downward long-run trend which lasted until the mid-2000s.

The behavior of the two indices slightly deviate from each other in the mid-2000s to

early 2010s; while the input-output connectedness (including both domestic and imported

inputs) declined from 24% in 2003 to 21% in 2008, the inflation connectedness increased

from 35% to almost 50% over the same period. After this divergent behavior, the two

indices continued to follow a similar downward path starting in 2011 until the end of the

sample in 2016.

Conducting an eye-balling analysis of the behavior of the input-output network

connectedness (ION) and the inflation connectedness (IC) series is quite revealing about

the possibility of a close long-run relationship between the two indices. In order to have

a more conclusive evidence, we need to move one step further and test whether there is

any statistically causal relationship between the two series.

Towards that end, we undertake a simple Granger causality test. We separately

regress each of the system-wide ION and IC indices on its own lag as well as the lagged
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values of the other index and test whether the coefficient on the other lagged values of

the other index is statistically significantly different from zero. We repeat the Granger

causality test for time lags up to five years. The results are presented in Table 3.9

Table 3: Granger Causality: System-wide Inflation vs I-O Network
Connectedness (Annual, 1960-2016)

Dependent Variable: IC Dependent Variable: ION

GC test GC test
Lags IC ION R2 p-value IC ION R2 p-value

1 0.747∗∗ 1.25∗ 0.834 8x10−4 -0.010 0.978∗∗ 0.958 0.378
(0.05) (0.35) (0.011) (0.07)

2 0.519∗∗ 2.11∗∗ 0.666 4x10−4 -0.012 0.921∗∗ 0.912 0.44
(0.08) (0.61) (0.011) (0.07)

3 0.386∗∗ 2.22∗∗ 0.528 4x10−4 -0.010 0.779∗∗ 0.874 0.56
(0.08) (0.59) (0.018) (0.13)

4 0.261∗ 2.12∗∗ 0.418 2x10−4 -0.012 0.701∗∗ 0.863 0.51
(0.08) (0.53) (0.013) (0.08)

5 0.156 1.71∗ 0.317 0.001 -0.013 0.689∗∗ 0.883 0.44
(0.08) (0.50) (0.017) (0.09)

6 0.103 1.46∗ 0.345 0.003 -0.019 0.681∗ 0.899 0.25
(0.09) (0.47) (0.017) (0.06)

Notes: As the World Bank Metals and Minerals Commodity Price Index starts in 1960, regressions

are based on data for 1960-2016 period; t statistics in parentheses; ∗ p < 0.01, ∗∗ p < 0.001.

In the ION equation, the coefficient estimates of the one- to five-year lagged IC variable

are not statistically different from zero. All explanatory power in the equation is obtained

from the lagged values of the ION variable. In the IC equation, on the other hand,

the coefficient estimates of the two- to five-year lags of ION variable are statistically

significant. The explanatory power in the IC equation diminishes quite quickly as the

coefficient estimates of the lagged IC variable becomes statistically insignificant at four-

and five-lags. The hypothesis of insignificant lagged ION coefficients is rejected at the 6%

level or below. Together, these Granger casuality test results indicate that the system-

wide connectedness of the input-output network Granger-causes the system-wide inflation

connectedness. As such the test results support the Acemoglu et al. (2016) model’s

prediction that the stronger the system-wide connectedness of the input-output network

the stronger would be the system-wide inflation connectedness across industries .

9As the dynamic behavior of the system-wide inflation connectedness index is found to be closely
related to the World Bank Metals and Minerals Commodity Price Index, we have undertaken the Granger
causality tests by including this index as an exogenous variable in both ION and IC equations.
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6.2 Pairwise Connectedness

Having found strong statistical evidence for Granger causality at the aggregate level,

we are now ready to test for Granger causality using granular pairwise connectedness

measures for the inflation and input-output networks over time. First, we run regressions

for the full sample and report the results in Table 4. In the pairwise connectedness

regression, the dependent variable is the pairwise inflation connectedness from industry j

to industry i, while the input-output network edge from industry j to industry i (which

is defined as the value of the intermediate inputs from the source industry j used by

the target industry i relative to the total output of the target industry i) as the key

explanatory variable. In addition, we use the GDP share of source industry j relative to

the GDP share of the target industry i as a control variable. We estimate this equation

with and without year, source industry and target industry fixed effects.

Table 4: Pairwise Inflation and I-O Network Connectedness (1952-2016)

Dependent Variable: Pairwise Inflation Connectedness
(1) (2) (3) (4) (5)

Input-Output Linkages 1.766∗∗ – 1.766∗∗ 1.766∗∗ 1.979∗∗

(46.0) (46.2) (46.1) (50.73)

GDP Share (Source/Target Ind.) – 0.455∗∗ 0.435∗∗ 0.437∗∗ 0.367∗

(15.7) (13.6) (13.6) (6.63)

R2 0.394 0.005 0.399 0.399 0.443

Year FE N N N Y Y
Source Industry FE N N N N Y
Target Industry FE N N N N Y

Notes: Number of observations: 18785; t statistics in parentheses. ∗ p < 0.01, ∗∗ p < 0.001

For each specification, the coefficient of the pairwise input-output network measure

is positive and significant. For the 1952-2016 estimation period, 39%of the fluctuations

in the pairwise inflation connectedness can be explained by the fluctuations in pairwise

input-output linkages and the GDP share of the source industry relative to that of the

target industry. When we take the source and target industry fixed effects along with

year fixed effects, the explanatory power of the cross-section regression increases to 44%.

Apparently, industries that are dependent on each other’s intermediate products tend to

spread price changes through cascade effects.

After showing the close relationship between the pairwise connectedness measures for

the input-output and inflation network in the full sample, we repeat the same cross-

section regressions for every year. As there are 289 pairwise measures of connectedness

for every rolling sample window, we undertake cross-section regressions for every year
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and plot the behavior of the resulting goodness of fit measure, R2, in Figure 8 and the

coefficient estimate of the input-output network connectedness in Figure 9.

Figure 8 plots the time-varying explanatory power of pairwise domestic input-output

network entries (domestic input-output matrix entries) on inflation connectedness for

every year from 1952 to 2016. In the earlier part of the sample, the goodness of fit

fluctuates between 0.30 and 0.45. It first starts in the 0.30-0.35 range, but as soon as

the data for 1947 are dropped out of the rolling window sample the goodness of fit

increases to reach 0.45. It does not stay at this level for a long time and fluctuates in

the 0.32-0.41 band until the mid-1980s. It increases following the first and second oil

price shocks but decreases during and immediately after the Volcker Recession of

1981-82, which was an aggregate demand shock. However, as we consider windows from

1985 onwards the goodness of fit increases steadily from 0.32 in 1985 to 0.58 by 2007.

This is exactly the period during which both the system-wide inflation and

input-output network connectedness measures follow a downward trend in Figure 7. It

is no surprise that this period coincides with the so-called Great Moderation, a term

used to describe the significant decline in the volatility of business cycle fluctuations.

As the pairwise connectedness of the input-output network declined over time, so did

the pairwise inflation connectedness across industries. The increasing goodness of fit

from the mid-1980s onwards clearly reflects this fact. Again consistent with the impact

of the global financial crisis (an aggregate demand shock) on inflation connectedness, R2

declines from 0.58 in 2007 to less than 0.41 in 2011.

Figure 8: Dynamic Pairwise Connectedness Regression Fit. R2 values obtained from the

secondary regression; domestic input-output coefficients are used as explanatory variables

Figure 9 plots the beta coefficient from the cross section regression of pairwise
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inflation connectedness measures on domestic input-output network connectedness

measures. Dashed lines indicate the % 95 confidence interval for the estimated beta

coefficient.

The beta coefficient for the domestic input-output network is statistically significant

for all the windows considered. Yet it fluctuates substantially over time, consistent with

the fluctuation of the goodness of fit measure, R2, over time. As the data for 1947 is

dropped from the sample window, the beta coefficient increases from around 1.0 to all the

way to 2.0. The first oil price shock in 1974 first led to a decline in the beta coefficient,

followed by a long-lasting upward trend afterwards. From a value of 1.2 in 1974, it

increased steadily to reach 2.4 by 2003.

Figure 9: Dynamic Pairwise Connectedness Regressions - Domestic IO Coefficients Only.
Statistically significant values of β obtained from the secondary regressions; domestic input-

output coefficients are used as explanatory variables.

The upward trend of the beta coefficient ended in early 2000s; after reaching a

maximum of 2.4 in 2003 it dropped to 2.0 in 2006 and 1.5 in 2012. During the Great

Recession, the crisis spread from financial markets to the whole U.S. economy in the

form of a substantial decline in the consumption demand by households and investment

demand by corporations. The decline in demand put a downward pressure on inflation

across sectors generating an increasing inflation connectedness over time. Yet, during

this time period, the input-output connectedness did not necessarily follow a similar

upward move. As a result, from 2007 to 2012 both the goodness of fit and the

coefficient estimate for the pairwise input-output network connectedness declined

significantly. After 2012, both parameter estimates edged slightly upwards.
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7 Conclusion

We analyzed the producer price inflation connectedness across the U.S. manufacturing

industries. We first used Acemoglu et al. (2012)’s simple general equilibrium model to

show that under certain conditions supply-side shocks are transmitted from the upstream

to downstream industries.

We then applied the Diebold-Yilmaz Connectedness Index methodology to monthly

producer price inflation series to estimate the measures of inflation connectedness across

17 three-digit U.S. manufacturing industries over the 1947-2018 period. The static and

dynamic analyses of inflation connectedness reveal that supply-side inflation shocks are

transmitted from upstream to downstream industries through the underlying

input-output network linkages.

In the static inflation connectedness networks, upstream input-supplying industries

are located closer to the center of the network with thicker edges and arrows pointing

to others, generating pairwise inflation connectedness to others. On the other hand,

downstream industries are located further away from the center and are the receivers of

inflation shocks from others.

Using the system-wide connectedness measures, we showed that the system-wide

connectedness of the underlying input-output network Granger-causes the inflation

connectedness across industries over time. Focusing on the pairwise measures, we

showed that the input-output network and the inflation connectedness nexus was

stronger during periods of major supply-side shocks, such as the global oil and metal

price increases, and weaker during the Great Recession of 2008, the most significant

aggregate demand shock of the past half century.

Last, but not the least, we use our framework to gauge the impact of the recent Trump

tariffs on inflation connectedness across industries. Using data for the first half of 2018,

we showed that the U.S. President Donald Trump’s decision to impose additional tariffs

on imports of primary metals, fabricated metals and machinery from China and other

countries led to higher inflation connectedness from these industries to others. However,

we need to note that it is too early to reach a final verdict on this issue. For that reason,

we will update our data every month to analyze the impact of Trump tariffs on inflation

connectedness and report the results in the future drafts of the paper.
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Appendices

A Robustness

In this Appendix, we check whether the results reported in the main body of the paper

are robust to alternative specifications and parameter choices.

First, we focus on whether the system-wide connectedness index is robust to the

choice of the variance decomposition method. Throughout the paper, generalized variance

decomposition is used to obtain the connectedness measures. Even though, generalized

variance decomposition allows one to obtain directional connectedness measures, one

could use the Cholesky variance decomposition to obtain the system-wide connectedness

index, which is not robust to the ordering of variables and hence cannot be used to obtain

directional measures.

Figure A.1 presents the dynamic system-wide connectedness index obtained with the

generalized as well as the Cholesky decomposition approaches.10 As expected, the

generalized variance decomposition based index is always higher than the Cholesky

variance decomposition based index. As the time series behavior of the two indices are

very much the same, we can conclude that the presence of simultaneous inflation shocks

to different industries does not affect the dynamic behavior of the system-wide

connectedness index significantly.
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GENERALIZED CHOLESKY

Figure A.1: System-wide Connectedness Index and Variance Decomposition Methods

Next, the robustness of the system-wide connectedness index to the choice of the

10The Cholesky variance decomposition based index is calculated for the ordering of variables as in
Table D.1.
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VAR model order is analyzed. The system-wide connectedness index reported in the

main body of the paper was obtained from the estimation of a VAR(2) model of inflation

for seventeen U.S. manufacturing industries. Here the VAR model order is varied from

one month to four months and the resulting system-wide connectedness index is plotted

in Figure A.2. It is clear from the figure that the choice of the VAR model order does

not make much of a difference in terms of the overall connectedness of inflation shocks

across industries.
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Figure A.2: Sensitivity of the Connectedness Index to the VAR Order

Following the analysis of robustness of the results to the choice of the VAR order, we

study the robustness of our results to the rolling window size. Fixing the VAR model

order at two months, four alternative rolling sample window sizes, namely 48, 72, 84 and

96 months, are considered. Along with the choice of the 60-month long window size in

the paper, the system-wide connectedness index for all five alternative windows sizes are

obtained. Rather than plotting each of these separately, it makes more sense to plot the

minimum, maximum and median values of the five resulting system-wide connectedness

indices in Figure A.3.

Clearly, the choice of the window size makes a big difference for the system-wide

connectedness index than the choice of the VAR model order. The upward jumps in the

connectedness index takes place exactly at the same time for all five window sizes when

the systemically important events (such as the first oil price shock of 1974 and the global

financial crisis of 2008-2009) are included in the rolling sample windows, with a very

narrow band of minimum and maximum values The drops in the index, however, take

place with a twelve month delay as we move from the 48 to 60, 72, 84 and 96 month-long
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Figure A.3: Sensitivity of the Connectedness Index to the Window Size The median,

minimum and maximum values of connectedness index with five different window sizes: 48, 60,

72, 84 and 96 months.

rolling sample windows. This is clearly visible in the drop of mid-1950s, which has a very

wide minimum-maximum band for the system-wide connectedness index as the inflation

data for 1950 are dropped out of the sample window. First, the connectedness index for

the 48-month long sample window drops close to 30 percentage points, followed by others

with 12-month lag each time. Over the whole sample, the system-wide connectedness

indices obtained in five different window sizes form a maximum bandwidth of 10-15

percentage points. Despite that fact, however, the overall trends of the system-wide

index and its major turning points are not affected by the choice of the window size.

Finally, the system-wide connectedness index values are also robust to the choice of

the forecasting horizon. The forecast horizon is allowed to vary from 6 to 12, 18, 24 and

30 months and the resulting system-wide connectedness index in obtain. The resulting

connectedness indices for five different forecast horizons are plotted in Figure A.4. It is

clearly visible in Figure A.4 that there is very little variation in the system-wide

connectedness index as the forecast horizon is increased from 6 months to all the way to

30 months.
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Figure A.4: Sensitivity of the Connectedness Index to the Forecast Horizon

B Plots: Inflation Connectedness “To Others”

In this Appendix, we present the directional inflation connectedness “to others” measures

for all 17 U.S. manufacturing industries.
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C Commodity Prices: Metals & Minerals and Oil

0

20

40

60

80

100

120

140

55 60 65 70 75 80 85 90 95 00 05 10 15

WLDMETMINPRICES POIL_WTI

Figure C.1: Metals & Minerals Price Index and Price of Crude Oil (WTI, $ per barrel)

D U.S. Manufacturing Industries

Table D.1: U.S. Manufacturing Industries

NAICS Acronym Sector

321 Wood Wood Products
327 Mineral Nonmetallic Mineral Products
331 BasicMetal Primary Metals
332 FabrMetal Fabricated Metal Products
333 Machinery Machinery
335 ElectricEquip Electrical Equipment, Appliances, & Components
3361MV MotorVech Motor Vehicles, Bodies, Trailers & Parts
337 Furniture Furniture and Related Products
339 Other Miscellaneous Manufacturing
311FT FoodBEv Food and Beverage and Tobacco Products
313TT Textiles Textiles Mills and Products
315AL Apparel Apparel and Leather
322 Paper Paper Products
323 Printing Printing and Related Support Activities
324 PetroCoal Petroleum and Coal Products
325 Chemical Chemical products
326 Plastics Plastics and Rubber Products
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