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Abstract

We study the identification and estimation of large network games where each indi-

vidual holds private information about its links and payoffs. Extending Galeotti, Goyal,

Jackson, Vega-Redondo and Yariv (2010), we build a tractable empirical model of network

games where the individuals are heterogenous with private link and payoff information,

and characterize its unique, symmetric pure-strategy Bayesian Nash equilibrium. We

then show that the parameters in individual payoffs are identified under “large market”

asymptotics, whereby the number of individuals increases to infinity in a fixed and small

number of networks. We also propose a consistent two-step m-estimator for individual

payoffs. Our method is distribution-free in that it does not require parametrization of

the distribution of shocks in individual payoffs. Monte Carlo simulation show that our

estimator has good performance in moderate-sized samples.

1 Introduction

We study the identification and estimation of large Bayesian games on networks where in-

dividuals hold private information about their links as well as payoffs. Private information on

links is prevalent in many empirical environments where the network involves a sizable popula-

tion. In such cases, it is implausible to assume that each individual has complete information
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about the full network structure. For example, Banerjee, Chandrasekhar, Duflo and Jackson

(2014) presented evidence how members of rural communities in India had incomplete infor-

mation about the network structure based on the diffusion of gossips. The impact of private

information on links in network games has also been studied in theory. In a pioneering work,

Galeotti, Goyal, Jackson, Vega-Redondo and Yariv (2010) established the existence of symmet-

ric, monotone Bayesian Nash equilibria in such games. They also showed that shifts in the

degree distribution due to increased connectivity have unambiguous effects on the equilibrium

behavior of individuals on the network.

Despite their empirical relevance and theoretical importance, large network games with pri-

vate information on links have not been investigated in the structural econometrics literature.

Menzel (2015) studies the identification and estimation of large Bayesian games where all in-

dividuals are strategically related, and their types and actions are exchangeable conditional

on observed characteristics, and where payoff-relevant private information are conditionally in-

dependent across players. In our model, individuals’ private types are inherently correlated

through their own links, thus inducing dependence between their actions even in equilibrium.

We provide a new econometric framework for the structural analysis of large network games

with private information on links and payoffs. We extend Galeotti, Goyal, Jackson, Vega-

Redondo and Yariv (2010) to build a tractable empirical model of network games where the

individuals are heterogenous with such private information.1 Under a quadratic payoff specifica-

tion (often used in social interaction models), we show that the model has a unique, symmetric

Bayesian Nash equilibrium. We then investigate the model identification under the concept of

“large-market” asymptotics, whereby the number of networks is fixed and small but the sample

size increases with the number of individuals. Such an asymptotic concept has been used in

the estimation of large Bayesian games in different contexts. See, for example, Leung (2015),

Menzel (2015), Lin and Xu (2017), Song (2015) and Xu (2016).2

Identification under such an asymptotics concept is known to be non-standard. This is be-

cause the sample units cannot be considered as independent draws from any “population” that

can be treated as known when the sample size approaches infinity. Our identification strategy

tackles this difficulty through two steps. First, we define a set of asymptotic moments that can

be consistently estimated via sample analogs under the “large-market” asymptotics. Next, we

1The model in Galeotti et al (2010) focuses on homogenous individuals with private information about

degrees alone. Each individual’s payoff only depends on its degree and neighbors’ actions. In comparison, our

model accommodates a second source of private information in payoff shocks. This is because we consider a

data environments where the links are reported in the data, and thus need to allow for unreported private

information to avoid degeneracy in the econometric model.
2Menzel (2016) and Song (2015) study large Bayesian games in a general setup where all individuals are

strategically interlinked. Leung (2015) estimates large games in network formation when individuals have private

payoff shocks, rather than Bayesian games on a given network.
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derive the structural link between these asymptotic moments and the model parameters, and

use it as the basis for our identification. We then introduce an index sufficiency condition that

reduces the dimension of arguments in the individuals’ endogenous peer effects, and show that

it is sufficient for recovering individual payoff parameters.

We propose a two-step estimator for individual payoffs. The first step estimates the asymp-

totic moments using kernel regressions. The second step estimates the payoff parameters

through a minimum-distance approach. This extremum estimator is consistent under stan-

dard regularity conditions. The estimator has several desirable properties: It does not rely on

any parametric assumption on payoff shocks and exploits some form of asymptotic uncorre-

lation between neighborhood profiles to achieve consistency; its implementation also does not

involve any tuning parameters expect those used in the first-step kernel estimation. Monte

Carlo simulation show that our estimator has good performance in moderate-sized samples.

I Other Related Literature. Bramoulle, Djebbari and Fortin (2009) and Blume, Brock,

Durlauf and Jayaraman (2015) establish identification results in Bayesian games where indi-

viduals have private payoff shocks. Both papers maintain that the complete network structure

is common knowledge among all individuals. In addition, the identification study in these pa-

pers is based on “many-market” asymptotics, which assumes the knowledge of reduced-form

coefficients. Such knowledge typically requires the data to report a large number of repeated

games on a fixed network structure. Xu (2016) and Lin and Xu (2017) estimate Bayesian

games on large networks where individuals have private information about payoffs, but have

common knowledge about the complete network structure. They require some form of near-

epoch dependence between individual actions in equilibrium in order to estimate the model. In

comparison, we accommodate a flexible information structure where individuals have private

information about neighborhood characteristics in addition to payoffs. This leads to different

forms of Bayesian Nash equilibrium, and hence qualitatively different structural equations that

relate the asymptotic moments to model parameters. We also allow for richer contextual effects

in payoffs than these two papers. Yang and Lee (2017) analyze social interactions where the

conditional expectations about group members’ behaviors are heterogeneous. The individu-

als have asymmetric private shocks but share common knowledge about the network/group

structure. Canen, Schwartz and Song (2017) applies a behavioral approach to model games on

networks where agents have partial observation of neighbor types.

Our paper does not study the strategic formation of networks. This is a related but different

topic that has been studied extensively in the literature. Examples include Badev (2013),

Chandrasekhar and Jackson (2016), Christakis, Fowler, Imbens and Kalyanaraman (2010), De

Paula, Richard-Shubik and Tamer (2017), Mele (2017), Menzel (2016), Miyauchi (2016) and

Sheng (2017). See Chandrasekhar (2016) for an extensive review.

I Roadmap. In Section 2 we present the model and establish the existence and uniqueness of
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pure-strategy Bayesian Nash equilibrium. In Section 3 we present our identification strategy as

the number of individuals approaches infinity while the number of observed networks is fixed

and small. In Section 4, we present a two-step consistent estimator. In Section 5, we provide

Monte Carlo simulation results. In Section 6 we conclude. Proofs are collected in Appendix A.

2 The Model

Denote the finite set of individuals on a network byN , and let n ≡ #N denote its cardinality.

The network structure is summarized by the n-by-n matrix g ≡ (gij)ij∈N . For any i, j ∈ N ,

let gij ≡ 1 if i’s payoff is affected by j’s action, and gij ≡ 0 otherwise. By convention in the

literature, let gii ≡ 0. Define the set of neighbors for i by Ni ≡ {j ∈ N : gij = 1}. Each

individual has a vector characteristics xi, which has a discrete finite support X with #X ≡ K.

Let xNi
≡ (xj)j∈Ni

denote the vector of characteristics of i’s neighbors.

Let τi ≡ (xi, Ni, xNi
, εi) summarize the information available to individual i, where εi ∈ R

is an idiosyncratic shock to i’s payoff. Each individual i ∈ N chooses an action ai from some

interval A ⊂ R. The payoff for each individual i from choosing ai is:

ui(ai, a−i, τi) ≡ h̃i(τi)ai −
1

2
a2
i −

φ
2

∑
j∈Ni

w̃ij(τi)(ai − aj)2, (1)

where φ > 0 and a−i ≡ (aj)j∈N\{i}; and w̃ij(τi) are the weights that i assigns to its own deviation

from a neighbor j’s choice. That is, w̃ij(τi) ≥ 0 for all j ∈ Ni, and
∑

l∈Ni
w̃il(τi) = 1 for any i

and τi. In the terminology of Manski (1993), the function h̃i is the “contextual effect” and the

last term is the “peer effect”. The second term reflects the costs of the action.

We maintain the following assumption about the information available to each individual.

Assumption 1 (Information) For each i ∈ N , (Ni, xNi
, εi) is privately known and unobserved

by other individuals j 6= i.

Let F denote the common prior for (τi)i∈N that is known to all individuals and let T denote

the support of each τi.
3 A pure strategy for individual i is a mapping from T to A. A pure-

strategy Bayesian Nash equilibrium (p.s.BNE) is a profile of pure strategies (si)i∈N such that:

si(τi) ∈ arg max
ai∈A

E[ui(ai, s−i(τ−i), τi) | τi] ∀i ∈ N,

where s−i(τ−i) = (sj(τj))j∈N\{i}. The expectation E integrates out τ−i ≡ (τj)j∈N\{i} with respect

to its conditional distribution given τi, as implied by the common prior F . Assuming the order

3Theorem 1 continues to hold when the support of τi differs across i ∈ N .
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of integration and differentiation can be swapped, we use the first-order condition for each i to

derive the following best response to s−i ≡ (sj)j∈N\{i}:

Ri(τi; s−i) = γh̃i(τi) + (1− γ)
∑

j∈Ni

w̃ij(τi)E [sj(τj)| τi] .

where γ ≡ 1
1+φ

.

An alternative characterization of p.s.BNE is through the following fixed-point characteri-

zation:

si(τi) = Ri(τi; s−i) for all i ∈ N and τi.

An argument similar to Blume et al (2015) implies there exists a unique p.s.BNE in this network

game.

Theorem 1 (Uniqueness of p.s.BNE) Under Assumption 1, there exists a unique p.s.BNE.

The rest of this section focuses on an anonymous version of the game above, where only

the profile of characteristics (rather than actual identities) of neighboring individuals affect an

individual’s ex post payoffs and interim beliefs. We show that in such a context, the unique

p.s.BNE is symmetric (i.e., all individuals share the same pure strategy) and anonymous (i.e.,

the equilibrium strategy only depends on the profile of characteristics but not the actual iden-

tities).

For each x ∈ X, let Ni,x ≡ {j ∈ Ni : xj = x} denote the set of neighbors of i whose

characteristic is x. Let ni,x ≡ #Ni,x for each x ∈ X; and let a K-vector ni ≡ (ni,x)x∈X

summarize the distribution of xj in the neighborhood Ni. By construction,
∑

x∈X ni,x = #Ni.

We consider the class of games where individuals’ payoffs and interim beliefs depend on some

sufficient statistics of ni. Specifically, let π : NK →M be a function that summarizes neighbor

characteristics and is known to the researcher. For example, π(ni) ∈ M may be the empirical

distribution or mean of (xj)j∈Ni
. It is important to note that π(.) is a function of ni, but not

of the specific identities of neighbors in Ni. In what follows we use mi ≡ π(ni) as shorthand.

Assumption 2 (Symmetry and Sufficiency in Payoffs) (i) There exists h : X ×M × R → R
such that h̃i(τi) = h(xi,mi, εi) for all i and τi, and E[h(xi,mi, εi)|xi = x,mi = m] exists for all

x ∈ X, m ∈ M . (ii) For each i ∈ N , w̃ij = w̃ik for any j, k ∈ Ni such that xj = xk. (iii) For

any i ∈ N and j ∈ Ni, w̃ij(τi) is determined by (xi,mi) and xj only.

Condition (i) in Assumption 2 states that the contextual effect for an individual i is deter-

mined by its own characteristics xi, its private shocks εi, and the profile of neighbor character-

istics (xj)j∈Ni
. The specific identities of individuals in Ni do not matter for contextual effect.

Condition (ii) states that the weights are divided equally among neighbors sharing the same
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characteristics.4 Condition (iii) states that for each individual i, the distribution of weights

across neighbors with different characteristics are solely determined by its own characteristic xi

and a summary of neighbor characteristics xj in Ni, but not by specific identities of individuals

in the neighborhood.

Under the conditions in Assumption 2, the peer effect as the third term in (1) can be

equivalently expressed as:

φ

2

∑
x∈X

w(x, xi,mi)
1

ni,x

∑
j∈Ni,x

(ai − aj)2,

where w(x, xi,mi) ∈ [0, 1] denotes the weight assigned to the group of neighbors with charac-

teristics x by an individual i with characteristics xi and neighborhood profile mi. (That is,∑
x∈X w(x, xi,mi) = 1 for all xi,mi.)

Let ti ≡ (xi,mi, εi) denote the anonymized information for an individual i. We also maintain

an anonymity condition on interim beliefs.

Assumption 3 (Anonymity in Common Prior) The common prior F is exchangeable in the

identities of individuals i ∈ N ; and F (tj|τi, j ∈ Ni) = F (tj|xj, xi,mi, j ∈ Ni) for all τi and j.5

This condition states that for each i ∈ N , the interim belief of i about a neighbor j’s

anonymized information tj only depends on (xj, xi,mi). This conditional belief is the same

across all individuals as F does not vary across individuals. Menzel (2015) used a similar

exchangeability condition on the individuals’ characteristics and private signals to estimate

large Bayesian games. In our context, an individual’s private information consists of both the

payoff shocks and the neighborhood profile mi, which is correlated across individuals in general.

In a symmetric p.s.BNE all individuals adopt the same pure strategy s, which maps from

an individual’s anonymized information ti to A and solves the following fixed-point equation:

s(ti) = r ◦ s(ti) for all ti, (2)

where r is the best response function implied by the first-order condition, and r ◦ s is the

composite of r and s. That is,

r ◦ s(ti) ≡ γh(ti) + (1− γ)
∑

x∈X
w(x, xi,mi)

1
ni,x

∑
j∈Ni,x

E [s(tj)|xi, xj = x,mi, j ∈ Ni]

= γh(ti) + (1− γ)
∑

x∈X
w(x, xi,mi)E [s(tj)|xi, xj = x,mi, j ∈ Ni] . (3)

4An intuitive interpretation of (ii) is that each node i first classifies its neighbors into K groups defined by

the realized values of xj , and then assigns positive weights to each group based on π(ni). These weights are

then equally divided among nodes within the same group.
5A distribution of a random vector (Y1, Y2, ..., Yn) is exchangable if its joint distribution is the same as that

of (Yρ(1), Yρ(2), ..., Yρ(n)) for any permutation ρ(.).
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Corollary 1 (Unique symmetric p.s.BNE) Suppose Assumptions 1, 2 and 3 hold. Then the

unique p.s.BNE is symmetric, and the equilibrium strategies depend only on the anonymized

information.

The proof of this corollary is similar to that of Theorem 1 and is omitted for brevity. The

main idea is to show that r is a contraction mapping, and then apply the Banach Fixed-point

Theorem to show that s = r ◦ s has a unique solution.

3 Identification

We now discuss the identification of parameters (γ, h, w) as the number of individuals ap-

proaches infinity while the number of observed networks is fixed and small. Such a dimension

of asymptotics differs qualitatively from standard cross-sectional econometric models.

Suppose a researcher collects data from a single network with #N = n individuals. The

data reports the choice ai, the characteristics xi and the neighbor information (Ni, xNi
) for

each single individual i ∈ N . Throughout this section, we maintain that such a data set

with #N = n individuals is a single, random draw from some data-generating process (DGP)

indexed by n. For each n, the DGP is summarized by a joint distribution Fn of the n-tuple

(τi)i∈Nn , where Fn satisfies the exchangeability and anonymity conditions in Assumption 3.

We establish the identification of the model via two steps. In the first step, we show that the

sample average of choices made by n observed individuals on the network converge in probability

to certain asymptotic moments as n→∞. We then argue that the model can not be identified

from these moments without any parametric or shape restrictions on the contextual effect, even

when weights in the peer effects are known to the researcher. In the second step, we show that

under a mild restriction of index sufficiency on the individual weights in peer effects the model

parameters can be uniquely recovered from these asymptotic moments.

3.1 Asymptotic moments

Let Nn denote a sequence of sets such that Nn ⊂ Nn′ for all n < n′. For each n, let En(.)

denote the expectation under Fn. First, we define the asymptotic moments to be used in our

identification analysis. Throughout this section we use
∑

i as shorthand for
∑

i∈Nn
, which is a

sum over the n individuals in Nn; and we use
∑

j 6=i as shorthand for
∑

i∈Nn

∑
j∈Nn\{i}, which is a

sum over n(n−1) ordered pairs from Nn. We maintain the following condition on idiosyncratic

shocks in individual payoffs.

Assumption 4 (Exogeneity) For all n and i, j ∈ Nn, the common prior Fn is such that the

payoff shock εj is independent from (εi, xi,mi, gij) conditional on (xj,mj).

6



This assumption states that conditioning on an individual j’s characteristics xj and neigh-

borhood profile mj purges any correlation between its payoff shock εj and neighbors’ charac-

teristics or links. This exogeneity assumption requires that εj be conditionally independent

from any idiosyncratic noises that affect link formation. It fails, for example, if the network

formation process depends on unobservable variables correlated with εi. We consider the case

where the set of neighbor profiles M is discretized and finite.

Assumption 5 (Existence of Limits) For any x, x′ ∈ X, m,m′ ∈M ,

h∗(x,m) ≡ lim
n→∞

1
n

∑
i

En[h(ti)|xi = x,mi = m],

p∗(x,m) ≡ lim
n→∞

1
n

∑
i

En [1{xi = x,mi = m}] ,

q∗(m′|x′, x,m) ≡ lim
n→∞

1
n(n−1)

∑
j 6=i

En(1{mj = m′}|xj = x′, xi = x,mi = m, gij = 1)

exist and p∗(x,m) 6= 0.

Existence of the limit h∗(x,m) is a mild restriction on the conditional distribution of εi. It

holds, for example, if h(ti) is additively separable in εi and En(εi|xi = x,mi = m) = 0 for all

n. In Appendix B we provide an example of a random link formation process in which p∗, q∗

exist.

The following proposition relates the parameters γ, w, h to asymptotic moments λ∗ and q∗.

Proposition 1 Suppose Assumptions 1, 2, 3, 4 and 5 hold. Then

λ∗(x,m) ≡ lim
n→∞

1
n

∑
i

En(ai|xi = x,mi = m) (4)

exists and

λ∗(x,m) = γh∗(x,m) + (1− γ)
∑
x′∈X

w(x′, x,m)

[ ∑
m′∈M

λ∗(x′,m′)q∗(m′|x′, x,m)

]
(5)

for all x ∈ X, m ∈M .

Equation (5) is an empirical analog of the moments implied by p.s.BNE in (2), with indi-

viduals’ interim expectation about others’ actions replaced by an expression that only consists

of estimable asymptotic moments. The double sum on the right-hand side of (5) is an expec-

tation of λ∗ with respect to a joint distribution over a neighbor’s characteristics x′,m′, defined

as w(., x,m)× q∗(.|., x,m). Such a distribution is an individual’s weighted interim belief in the

limit, because it applies the weights in peer effects to the limit of individual interim beliefs

about neighbors’ mj.
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Next, we show that the asymptotic moments λ∗ and q∗ in (4) can be consistently estimated

using sample averages across individuals from a single network as n → ∞ under certain con-

dition of asymptotic uncorrelation. For any x ∈ X and m ∈ M , let ιi(x,m) be shorthand for

1{xi = x,mi = m}. Let Cn and Vn denote covariance and variance under Fn respectively.

Assumption 6 (Asymptotic Uncorrelation) For any x, x′ ∈ X and m,m′ ∈M ,

(i) Cn(ιi(x,m), ιj(x,m))→ 0 as n→∞;

(ii) Cn(ιi(x,m)ιj(x
′,m′)gij, ιk(x,m)ι`(x

′,m′)gk`)→ 0 as n→∞ if {i, j} ∩ {k, `} = ∅;
(iii) Vn [aiιi(x,m)] and Vn[(ιi(x,m)ιj(x

′,m′)gij] exist for all n, and are both o(n).

This condition requires that as the network size increases, the correlation between the

neighborhood profiles mi and mj for any two individuals i and j diminishes. In Appendix B

we provide an example of how this condition holds in a simple random Poisson network.

The next proposition shows that λ∗ and q∗ can be estimated consistently as the number of

individuals on the single network in data approaches infinity (n→∞).

Proposition 2 Suppose Assumptions 1, 2, 3, 4, 5 and 6 hold. Then∑
i aiιi(x,m)∑
i ιi(x,m)

p−→ λ∗(x,m)

and ∑
j 6=i ιj(x

′,m′)ιi(x,m)gij∑
j 6=i 1{xj = x′}ιi(x,m)gij

p−→ q∗(m′|x′,m, x)

as n→∞ for any x, x′ ∈ X,m,m′ ∈M on the support of p∗.

A generic vector of parameters (γ′, h′, w′) is observationally equivalent to the actual param-

eter (γ, h, w) in the DGP based on the asymptotic moments λ∗ and q∗ if (γ′, h′, w′) satisfies

(5) almost surely [p∗], where λ∗, q∗ are identified as probability limits in Proposition 2. We

say (γ, h, w) is identified based on these asymptotic moments if there exists no other element

(γ′, h′, w′) in the parameter space that is observationally equivalent to (γ, h, w).

It is clear from (5) that (γ, h, w) can not be identified using these asymptotic moments λ∗

and q∗ without further restrictions. To see this, note that for any generic weight function w′

(not necessarily equal to the actual weight function w) there always exist γ′ and h′ such that

(5) holds almost surely [p∗], with λ∗, q∗ fixed and identified from the data. Similarly, for other

(γ′, h′) 6= (γ, h), one may construct a weight function w′ that satisfies (5) by redistributing

weights across realized values of x′ conditional on each (x,m).
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3.2 Preview of identification strategy

In this subsection we illustrate the main idea for identification using a simple example.

For the rest of Section 3, we maintain Assumption 1-6, so that the asymptotic moments are

consistently estimable and are considered known for identification purpose.

The non-identification result mentioned above shows that the parameters can not be recov-

ered from asymptotic moments without further restrictions on the contextual effects h and the

weights in peer effects w. Thus we focus on a semiparametric model with conditional mean

restriction on the contextual effects.

Assumption 7 (Mean Contextual Effects) h(ti) = η(xi,mi; θ) + εi where η is known up to a

finite-dimension parameter θ and En(εi|xi,mi) = 0 for all n and xi ∈ X, mi ∈M .

This assumption states that the conditional mean of contextual effects given (xi,mi) is

known up to a finite-dimensional parameter θ. It is commonly used in econometric models

estimated by Non-linear Least Squares (NLS) or Generalized Method of Momments (GMM).

Under this condition, h∗(x,m) = η(x,m; θ). We show the model is identified under some

exclusion restriction on the weights in the peer effects as well as some rank condition on the

support of observables.

I Exclusion restriction. Suppose x ≡ (z, v) and has a discrete support X = Z ⊗ V where

Z ≡ {z(1), z(2)} and V ≡ {v(1), .., v(κ)}. By construction #X = 2κ ≥ 4. Also suppose that

w(x′, x,m) is a function of z and z′ alone.

For k, ` = 1, 2, let ωk` denote the weights for z = z(k) and z′ = z(`), and let λk(v,m) and

ηk(v,m; θ) be shorthand for λ∗(z(k), v,m) and η(z(k), v,m; θ). Under this exclusion restriction,

the structural link in Proposition 1 is reduced to

λ∗k(v,m) = γηk(v,m; θ) + (1− γ)
∑

`=1,2
ωk`
∑

v′,m′
Q∗k`(v

′,m′, v,m)λ∗`(v
′,m′) (6)

for k = 1, 2, where the summation
∑

v′,m′ is over the supports V and M , and

Q∗k`(v
′,m′, v,m) ≡

q∗(m′ | z′ = z(`), v
′, z = z(k), v,m)

#V
for `, k = 1, 2.

That is, Q∗k` summarizes an individual i’s belief about a neighbor j’s own neighborhood profile

mj, based on i’s information (xj, xi,mi) and adjusted by the weights that i assigns in peer

effects. By construction, ωk`Q
∗
k`(., ., v,m) is an individual i’s weighted interim belief about

v′,m′ and z′ = z(`) conditional on (zi, vi,mi) = (z(k), v,m), as explained after Proposition 1.

I Rank condition. To fix ideas, suppose (x,m) are discrete and denote λ∗k(.), ηk(., .; θ)

and Q∗k`(., .) respectively by two column vectors λ∗k, ηk(θ) and a square matrix Q∗k`, with each

component in λ∗k and ηk(θ) and each row and column in Q∗k` corresponding to an element (v,m)
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on the joint support V ⊗M . Let λ∗ ≡ [λ∗′1 , λ
∗′
2 ]′, η(θ) ≡ [η1(θ)′, η2(θ)′]′. Then we can write (6)

as:

λ∗ = γη(θ) + (1− γ)Q∗ωλ
∗, (7)

where

Q∗ω ≡

(
ω11Q

∗
11, ω12Q

∗
12

ω21Q
∗
21, ω22Q

∗
22

)
.

Equation (7) consists of 2 × #V × #M equalities and involves unknown parameters γ, θ,

ω ≡ (ωk`)k,`=1,2. as well as the identified asymptotic moments λ∗k(.) and q∗(.|.) (in Q∗k`). These

equalites are “quasi-structural” in that they depend on the expected choices of actions λ∗k, which

themselves are endogenous objects arising from the equilibrium. However, by Proposition 2,

both λ∗, q∗ are consistently estimable from sample averages and can be considered known in

identification.6

We now derive the rank conditions needed for uniquely recovering γ, θ, ω from (7). Suppose

there exists some other (γ′, θ′, ω′) 6= (γ, θ, ω) that is observationally equivalent to (γ, θ, ω). Then

the right-hand side of (7) must remain the same when (γ, θ, ω) is replaced by (γ′, θ′, ω′) based

on the asymptotic moments λ∗ and q∗. This implies there exists a column vector υk ∈ R4\{0}
such that [ηk(θ

′), ηk(θ), Q
∗
k1λ
∗
1, Q

∗
k2λ
∗
2]υk = 0 for k = 1, 2. An intuitive condition that prevent

this from happening is:

“For any θ′ 6= θ, [ηk(θ
′), ηk(θ), Q

∗
k1λ
∗
1, Q

∗
k2λ
∗
2] has full rank for k = 1, 2”. (8)

Thus this is a sufficient condition for identifying (γ, θ, ω) from the asymptotic moments. In

general it holds when the conditional mean contextual effects η is nonlinear in θ and (x,m),

and there is enough variation of (x,m) on the support. Also note that because the functional

form of ηk is known (up to θ) and λ∗k, Q
∗
k` are identified from Proposition 2, the rank condition

in (8) can be tested.

I Special cases: linearity in parameters. The rank condition in (8) does not hold when

η is linear in θ. That is, ηk(θ) = ζkθk for all k = 1, 2, where ζk is a (#V × #M)-by-dim(θk)

matrix of known functions of (v,m), and θk 6= 0 is a vector of constant coefficients. In such

cases, [ζkθ
′
k, ζkθk] can not have full rank for any θ′k that is proportional to θk. Nevertheless it is

relatively straight-forward to adjust the argument above to derive the following rank conditions

for identifying (γ, θ, ω):

“[ζk, Q
∗
k1λ
∗
1, Q

∗
k2λ
∗
2] has full rank for k = 1, 2”. (9)

6The econometrics literature abounds in examples where structural models are identified using quasi-

structural equations which involve equilibrium outcomes. For instance, see Bajari, Hong, Krainer and Nekipelov

(2009) in the context of static discrete games with incomplete information; and Aguirregabiria and Mira (2010)

in dynamic games with Markovian perfect equilibria.
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To see why, suppose there exists some (γ′, θ′, ω′) that is observationally equivalent to (γ, θ, ω).

Then there exists a column vector τk ∈ R3\{0} such that [ζk, Q
∗
k1λ
∗
1, Q

∗
k2λ
∗
2]τk = 0 for k = 1, 2.

Thus the rank condition (9) is sufficient for identification.

It follows from (7) that the reduced-form for asymptotic moments in equilibrium is:

λ∗ = γ[I − (1− γ)Q∗ω]−1

(
ζ1θ1

ζ2θ2

)
.

Hence the rank condition in (9) can be expressed in terms of model primitives:

“ [ζk, γQ
∗
k1(M11ζ1θ1 +M12ζ2θ2), γQ∗k2(M21ζ1θ1 +M22ζ2θ2)] has full rank for k = 1, 2”, (10)

whereMk` for k, ` = 1, 2 are conformable submatrices that partitition the inverse of I−(1−γ)Q∗ω.

I A Numerical Example. We conclude this preview with a numerical example that illus-

trates the rank conditions. Let xi ≡ (vi, zi), where vi and zi are binary with supports {1, 2}

and {z(1), z(2)} respectively. Define mi ≡ 1

{
#{j∈Ni:zj=z(1)}

#Ni
≥ 1

2

}
. That is, the contextual ef-

fect depends on the network structure only through the proportion of neighbors with zj = z(1).

Suppose η(xi,mi; θ) ≡ θdvimi if zi = z(d) for d = 1, 2, and suppose that the weights in peer

effects only depend on zj, zi alone. Let θ1 = 0.8, θ2 = 1.3, γ = 0.7, ω11 = 0.6, ω12 = 0.4,

ω21 = 0.3, ω22 = 0.7. Let

Q∗k` =


0.15 0.40 0.25 0.20

0.15 0.40 0.25 0.20

0.40 0.10 0.30 0.20

0.40 0.10 0.30 0.20

∀k, ` = 1, 2,

where the (i, j)-entry in Q∗k` corresponds to Q∗k`(v
′,m′, v,m) with (v,m), (v′,m′) being the i-th

and j-th element in {(1, 1), (1, 0), (2, 1), (2, 0)}. It is worth emphasizing that in our specification

of Q∗k` above, we intentionally minimize the source of exogenous variation by restricting q∗(m′ |
z′, v′, z, v,m) to be invariant in (z′, z,m). Yet even in this scenario it is straighforward to verify

that the rank condition in (10) holds.

3.3 Formal results: index sufficiency

In this subsection we generalize and formalize the identification argument in Section 3.2.

Our method requires an index sufficiency condition on the weights in peer effects.

Assumption 8 (Index Sufficiency) There exist known indexes ψ : X → Ψ and ϕ : X ×M

→ Φ, where dim(Ψ) < dim(X) and dim(Φ) ≤ dim(X ×M), such that w(x′, x,m) = w(y′, y, m̃)

whenever ψ(x′) = ψ(y′) and ϕ(x,m) = ϕ(y, m̃) for all x, x′, y, y′ ∈ X and m, m̃ ∈M .
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Index sufficiency is used frequently in semiparametric econometric models. (See Powell

(1994) for further discussion.) In our context, Assumption 8 is decomposed into two substantive

restrictions. First, individuals with the same index ϕ(xi,mi) assigns weights to neighbors in the

same way. Second, neighbors with the same index ψ(xj) always receive the same weight. Index

sufficiency subsumes the exclusion restriction mentioned in Section 3.2 with with the indexes

ψ(x′) and ϕ(x,m) being subvectors of x′ and (x,m) respectively.

Under this condition, we can reparametrize the weight function w as a function defined

over the lower-dimensional support of indexes. That is, there exists ω : Ψ × Φ → [0, 1] with∑
c∈Ψ ω(c, d) = 1 for all d ∈ Φ such that:

w(x′, x,m) =
ω(ψ(x′), ϕ(x,m))

#{x̃ : ψ(x̃) = ψ(x′)}
for all x′, x ∈ X and m ∈M .

Under Assumptions 7 and 8, the link between asymptotic moments and parameters in (5) is

λ∗(x,m) = γη(x,m; θ) + (1− γ)
∑

c∈Ψ
ω(c, ϕ(x,m))µ∗(c, x,m), (11)

where

µ∗(c, x,m) ≡
∑
{x′:ψ(x′)=c}

∑
m′∈M λ∗(x′,m′)q∗(m′|x′, x,m)

#{x̃ : ψ(x̃) = c}
.

Because the index function ψ is known, Proposition 2 implies that µ∗ is identified (and consis-

tently estimable) as n→∞.7

By definition, the true model elements (γ, θ, ω) in the data-generating process is identified

if the equality in (11) fails at least for some set of (x,m) with positive measure in p∗ whenever

(γ, θ, ω) is replaced by a different vector of parameters (γ̃, θ̃, ω̃) 6= (γ, θ, ω).

To fix ideas, suppose #M < ∞ so that #Ψ < ∞ and #Φ < ∞. For each (x,m), let

µ∗(x,m) ≡ (µ∗(c, x,m))c∈Ψ be a row-vector. We say a random row-vector v has full rank

conditional on some event E (under a probability measure p) if there exists no column-vector

α 6= 0 such that p{vα = 0 | E} = 1.

Assumption 9 (Rank Condition) For any θ̃ 6= θ and any d ∈ Φ, [η(x,m; θ̃), η(x,m; θ),

µ∗(x,m)] has full rank conditional on ϕ(x,m) = d under p∗.

This condition requires there be sufficient variation over an individual’s private information

(x,m). Generalization to the case with #M=∞ would involve some form of “completeness”

condition on linear operators defined by integrals.

7To derive (11), use the reparametrized weights ω to write λ∗(x,m) as

γh(x,m) + (1− γ)
∑

c∈Ψ

∑
{x′:ψ(x′)=c}

ω(c,ϕ(x,m))
#{x̃:ψ(x̃)=c}

[∑
m′
λ∗(x′,m′)q∗(m′|x′, x,m)

]
= γh(x,m) + (1− γ)

∑
c∈Ψ

ω(c, ϕ(x,m))
∑
{x′:ψ(x′)=c}

∑
m′ λ

∗(x′,m′)q∗(m′|x′,x,m)

#{x̃:ψ(x̃)=c} ,

where the equality holds because ω(c, ϕ(x,m)) is constant over {x′ : ψ(x′) = c} and m′ ∈M .
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Proposition 3 Suppose Assumptions 7, 8 and 9 hold. Then (γ, θ, ω) are identified from the

asymptotic moments.

Assumption 9 is often satisfied when η is nonlinear in θ as well as (x,m). However, the rank

condition in Assumption 9 does not hold in a class of models that are linear in parameters.

These are models with η(x,m; θ) = ζd(x,m)′θd whenever ϕ(x,m) = d, where the vector of

functions ζd : X ×M → RLd , Ld <∞ are known up to a finite-dimensional parameter θd.

For example, ζd(x,m) ≡ [1, x, f(x,m)] for all d ∈ Φ, where x ∈ RDX and f(x,m) : X×M →
RDf is a vector of component-wise squared differences between x and the mean of neighbor

characteristics. Then η(x,m; θ) = θd,0 + xθd,X + f(x,m)θd,f whenever ϕ(x,m) = d, with

θd ≡ (θd,0, θd,X , θd,f ) and L = 1 + DX + Df . For such a class of models, Assumption 9 does

not hold because for any θ̃d 6= θd that is proportional to θd, [ζd(x,m)′θ̃d, ζd(x,m)′θd, µ
∗(x,m)]

can not have full rank conditional on ϕ(x,m) = d regardless of the value of d. Our next

proposition shows that for such models (θ, γ, ω) is identified under different and yet intuitive

rank conditions.

Proposition 4 Suppose Assumptions 7 and 8 hold with η(x,m; θ) = ζd(x,m)′θd for all (x,m)

such that ϕ(x,m) = d, where ζd : X ×M → RLd is known, θd 6= 0 and Ld <∞ for each d ∈ Φ.

Then (γ, θ, ω) are identified from the asymptotic moments if for each d ∈ Φ, [ζd(x,m),µ∗(x,m)]

has full rank conditional on ϕ(x,m) = d under p∗.

4 Two-Step M-Estimator

We propose a two-step estimator for parameters in individual payoffs. First, estimate the

asymptotic moments. Then estimate payoff parameters by matching the implied asymptotic

moments with empirical analogs from the data. Throughout this section, we maintain Assump-

tions 1 to 7 in Section 2 and 3.

To fix ideas, we present the estimator for the example in Section 3.2, where the observed

characteristics are discrete (i.e., X = Z ⊗ V with Z ≡ {z(1), z(2)} and V ≡ {v(1), .., v(κ)} for

κ ≥ 2), and the weights in peer effects only depend on the binary characteristics zi of an

individual and its neighbors. Generalization to the cases with continuous covariates in Z ⊗ V
is complex and left for future research.

To simplify notation, we reparametrize the model as

βk` ≡ (1− γ)ωk` for k, ` ∈ {1, 2}.

In what follows, we use δ0 ≡ [γ0; β0; θ0] to denote the true parameters in the data-generating

process and let δ ≡ [γ; β; θ] denote a generic element in the parameter space D.

13



Partition the set of individuals Nn into... into Nn,(k) ≡ {i ∈ Nn : zi = z(k)} for k = 1, 2,

and let λ̂, q̂ be the non-parametric kernel (frequency) estimators for λ∗, q∗ in Proposition 2. Let

ηi(θ) ≡ η(xi,mi; θ), λ̂i ≡ λ̂(zi, vi,mi), q̂`,i(m
′|v′) ≡ q̂(m′|z′ = z(`), v

′, xi,mi) and

χ̂`,i ≡ 1
#V

∑
v′,m′

q̂`,i(m
′|v′)λ̂(z(`), v

′,m′).

Our two-step estimator is:

δ̂n ≡ arg min
δ∈D

Ĝn(δ)

with

Ĝn(δ) ≡ n−1
∑

i

[
λ̂i − γηi(θ)−

∑
k

1{zi = z(k)}
∑

`
χ̂`,iβk`

]2

.

This estimator is consistent under the following conditions.

T1 (Parameter Space) δ0 is in the interior of a compact parameter space D.

T2 (Identificaton) For any δ 6= δ0 in D, (6) does not hold for a set of (x,m) with positive

measure under p∗.

T3 (Regular contextual effects) The mean contextual effect η(., .; θ) is continuously differen-

tiable in θ with a bounded gradient almost surely under p∗.

Compactness of D in T1 ensures that a maximum of the probability limit of the objective

function exists; interiority of the maximum allows for Taylor series expansion around the true

parameter in the proof of consistency in Proposition 5 below. Condition T2 maintains that

the parameters in the model are point identified. Sufficient conditions for T2 are provided in

Section 3. The smoothness and the boundedness conditions in T3 are used for showing the

uniform convergence of the objective function in the proof of consistency below.

Proposition 5 Suppose Assumptions 1 to 7 hold. Then δ̂n
p→ δ0 under the conditions T1, T2,

T3.

An alternative approach for two-step estimation would be as follows. First, use (5) and

iterative, forward-substitution to express λ∗ as an infinite series that depends on the parameters

and asymptotic moments that can be estimated from the data. Then use a minimum-distance

method to estimate the parameters by matching the estimated infinite series with the estimate

λ̂. Compared with our current approach, this alternative estimator involves higher computation

costs, and more complex conditions are needed in order to show identification and consistency

using its objective function.
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5 Simulation

In this section we present simulation evidence for the performance of our two-step m-

estimator, using simulated samples under various designs of the DGP. The contextual effect in

(3) is parametrized as

γh(ti) = xiβx +miβm + εi,

where βx = 3.0, βm = 1.5, the error εi follows a zero-mean truncated normal distribution, and

the individual characteristic xi is uniformly distributed over a discrete support. The peer effects

in (3) is parametrized as τ ≡ (1 − γ) = 0.8, with weights allocated equally among different

types of neighbors. We experiment with two distinctive definitions of the sufficient statistic for

neighbor characteristics: (i) mi is a discretized value of 1
#Ni

∑
j∈Ni
|xj−xi|; and (ii) the number

of same-type neighbors censored at 10.

For every design and sample size n considered, we simulate S = 200 independent samples,

each of which consists of observable characteristics xi and choices ai by n individuals on a single

network. In each sample, the individual characteristics are drawn independently from a specified

support X. The links between individuals are undirected, and are formed independently with

some probability that depends on individual characteristics. We study two scenarios for each

pair xi, xj: (a) the link formation probability pn(xi, xj) decreases as the sample size n increases,

and npn(xi, xj) converge to a constant; and (b) the link formation probability is fixed p(xi, xj)

and invariant as n→∞.

The individual choices under the symmetric pure-strategy Bayesian Nash equilibrium are

simulated using the following steps. First, use our specification of the DGP to calculate in-

dividuals’ interim belief about mj conditional on xj, mi, xi and gij = 1. Next, plug in this

belief into the fixed-point characterization of equilibrium and solve for the endogenous moment

En(ai|xi,mi). (See the proof of Proposition 1 in Appendix A for details.) Then, draw individual

noises εi from the distribution specified and set ai = En(ai|xi,mi) + εi.

For each sample, we calculate our two-step m-estimator β̂x, β̂m, τ̂ . No smoothing parameter

is required because of the discrete support for xi,mi. The tables below report the empirical

bias, variance and mean-squard errors (MSE) from S = 200 estimates.

Table 1. Discretized mi; X = {0, 1}; npn → (10, 5, 10)
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Case 1: ε ∼ truncated at [−3/2, 3/2]

β̂x β̂m τ̂

n Bias Var MSE Bias Var MSE Bias Var MSE

200 0.0164 0.0135 0.0138 0.1930 0.2098 0.2470 -0.0907 0.0314 0.0396

400 0.0106 0.0055 0.0056 0.1651 0.0953 0.1225 -0.0880 0.0189 0.0264

800 -0.0007 0.0036 0.0036 0.0369 0.0210 0.0224 -0.0432 0.0096 0.0115

Case 2: ε ∼ N(0, 1.5) truncated at [−2, 2]

β̂x β̂m τ̂

n Bias Var MSE Bias Var MSE Bias Var MSE

200 0.0193 0.0251 0.0255 0.1886 0.2435 0.2791 -0.0910 0.0357 0.0439

400 0.0148 0.0111 0.0113 0.1046 0.1169 0.1279 -0.0738 0.0223 0.0277

800 -0.0082 0.0061 0.0061 0.0154 0.0434 0.0436 -0.0290 0.0171 0.0179

Note: The bias, variance and mean squared errors in this table are calculated using S =

200 independent samples of single networks with n individuals. Neighborhood profile

mi is defined as (#Ni)
−1∑

j∈Ni |xj − xi| rounded to the nearest multiple of 1
5 .

Table 1 reports the results for a design where xi is Bernoulli with equal probability and mi

is the discretization of the average neighbor characteristics (#Ni)
−1∑

j∈Ni
|xj − xi|, defined by

rounding this average to the nearest multiple of 1
5
. As the sample size increases, the independent

link-formation probability diminishes but converges to nonzero constants. For simplicity in

implementation, we set nPn{gij = 1|xi = xj = k} = 10 for k ∈ {0, 1} and nPn{gij = 1|xi 6=
xj} = 5 for all n. The two panels in Table 1 show how the estimator’s performance vary with

the support and variance of individual noises.

The MSE for three parameters decrease as n → ∞, as the consistency in Proposition 5

implies. The MSEs are quite small even for a moderate sample size n = 800. The estimation

error in the contextual effect of mi appears to be greater than that of the peer effects τ and

individual effect of xi. The distribution of individual payoff noises εi affects the estimation

accuracy, as the MSEs are greater for models with error terms that have higher variances.

Table 2: Censored mi; X = {0, 1}; npn → (10, 5, 10)
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Case 1: ε ∼ N(0, 1) truncated at [−3/2, 3/2]

β̂x β̂m τ̂

n Bias Var MSE Bias Var MSE Bias Var MSE

200 0.0460 0.0687 0.0708 0.0190 0.0047 0.0051 -0.1498 0.0127 0.0351

400 -0.0451 0.0267 0.0287 0.0111 0.0019 0.0020 -0.1130 0.0065 0.0193

800 0.0146 0.0152 0.0154 0.0089 0.0009 0.0010 -0.0890 0.0036 0.0116

Case 2: ε ∼ N(0, 1.5) truncated at [−2, 2]

β̂x β̂m τ̂

n Bias Var MSE Bias Var MSE Bias Var MSE

200 0.0505 0.0762 0.0787 0.0214 0.0060 0.0064 -0.1534 0.0162 0.0397

400 -0.0375 0.0346 0.0360 0.0147 0.0017 0.0019 -0.1172 0.0075 0.0212

800 0.0047 0.0176 0.0176 0.0109 0.0009 0.0011 -0.0898 0.0041 0.0122

Note: The bias, variance and mean squared errors in this table are calculated using S =

200 independent samples of single networks with n individuals. For each i, the neighbor

profile mi is defined as the minimum of same-type neighbors and 10.

Table 2 reports the results for a similar model where the neighbor profile is defined as the

censored number of same-type neighbors. As before, the MSEs converge to zero as n → 0. In

contrast, the estimator for the contextual effect of mi is more accurate than the case where

mi is the discretization of average neighbor characteristics. This may be explained in part by

a richer variation in mi under this new specification with npn
p→ (10, 5, 20) relative to that in

Table 1. While we do not provide a formal result about the rate of convergence of our two-step

estimator, the rate of convergence in the MSE in both Table 1 and Table 2 appears to be

reasonably close to
√
n with few exceptions in the finite sample.
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Table 3: Censored mi; X = {0, 1}; npn → (20, 10, 20)

Case 1: ε ∼ N(0, 1) truncated at [−3/2, 3/2]

β̂x β̂m τ̂

n Bias Var MSE Bias Var MSE Bias Var MSE

200 0.0349 0.0261 0.0273 0.0094 0.0020 0.0020 -0.0708 0.0033 0.0083

400 0.0255 0.0158 0.0165 0.0054 0.0011 0.0011 -0.0662 0.0021 0.0065

800 -0.0193 0.0093 0.0097 -0.0037 0.0004 0.0004 -0.0459 0.0010 0.0031

Case 2: ε ∼ N(0, 1.5) truncated at [−2, 2]

β̂x β̂m τ̂

n Bias Var MSE Bias Var MSE Bias Var MSE

200 0.0446 0.0367 0.0387 0.0116 0.0037 0.0038 -0.0758 0.0062 0.0119

400 0.0313 0.0214 0.0224 0.0076 0.0015 0.0016 -0.0708 0.0037 0.0087

800 -0.0248 0.0113 0.0119 -0.0037 0.0007 0.0007 -0.0450 0.0015 0.0035

Table 3 reports results under a design almost identical to that in Table 2, except that

the sequence of link-formation probability now converges to a higher level (20, 10, 20). In

comparison with Table 2, the MSE in this case are slightly smaller. This pattern is related

to the fact that a higher link formation probability tends to increase the variation in neighbor

profile definded the censored number of same-type neighbors. Similar to Tables 1 and 2, the

results in Table 3 demonstrates that an increase in the variance of noises leads to slightly worse

performance of the estimators.

Table 4: Censored mi; X = {0, 1, 2}; npn → (10, 8, 5, 12, 8, 10)

Case 1: ε ∼ N(0, 1) truncated at [−3/2, 3/2]

β̂x β̂m τ̂

n Bias Var MSE Bias Var MSE Bias Var MSE

200 0.0368 0.0228 0.0241 0.0587 0.0086 0.0121 -0.1501 0.0121 0.0346

400 0.0286 0.0120 0.0129 0.0362 0.0038 0.0051 -0.1381 0.0058 0.0249

800 0.0222 0.0044 0.0049 0.0244 0.0012 0.0018 -0.1146 0.0034 0.0165

Case 2: ε ∼ N(0, 1.5) truncated at [−2, 2]

β̂x β̂m τ̂

n Bias Var MSE Bias Var MSE Bias Var MSE

200 0.0338 0.0259 0.0270 0.0611 0.0093 0.0130 -0.1517 0.0127 0.0357

400 0.0223 0.0138 0.0143 0.0375 0.0040 0.0054 -0.1394 0.0065 0.0259

800 0.0185 0.0049 0.0053 0.0237 0.0015 0.0021 -0.1149 0.0031 0.0163

Next, to see how an increase in the variation of individual characteristics could impact the

estimator performance, we consider a design where xi is uniformly distributed over {0, 1, 2}.
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As in Table 1-3, we let the link formation probability to diminish as n→∞. For simplicity in

implementation, we set link formation probability as follows: nPn{gij = 1|xi = xj = 0} = 10,

nPn{gij = 1|xi + xj = 1} = 8, nPn{gij = 1 | |xi− x|j = 2} = 5, nPn{gij = 1|xi = xj = 1} = 12,

nPn{gij = 1|xi + xj = 3} = 8 and nPn{gij = 1|xi = xj = 2} = 10 for all n.

Table 4 reports the results for such a design with mi defined as the censored number of

same-type neighbors. Compared with Table 3, the MSEs for βm and τ , or the contextual and

endogenous effects of mi, are both higher while that for βx, the marginal effect of individual

characteristics, is slightly smaller. We interpret such a pattern as the result of an interaction

of two immediate consequences of a larger support of X: on the one hand, a richer support for

individual characteristics provides more sources of variation for recovering the parameter; on

the other hand this increases the curse of dimensionality in that for a given sample size n there

are fewer observations (individuals) that can be used to estimate the asymptotic moments in

the first step (both of which condition on individual characteristics).

Table 5: Discretized mi; X = {0, 1}; fixed p = (0.6, 0.4, 0.6)

Case 1: ε ∼ N(0, 1) truncated at [−3/2, 3/2]

β̂x β̂m τ̂

n Bias Var MSE Bias Var MSE Bias Var MSE

200 0.0286 0.0572 0.0580 0.2388 1.0166 1.0736 0.1810 0.0510 0.0838

400 0.0178 0.0094 0.0097 -0.1048 0.6867 0.6977 0.0980 0.0263 0.0359

800 0.0080 0.0045 0.0046 -0.0083 0.2713 0.2782 0.0260 0.0177 0.0184

Case 2: ε ∼ N(0, 1.5) truncated at [−2, 2]

β̂x β̂m τ̂

n Bias Var MSE Bias Var MSE Bias Var MSE

200 0.0475 0.0940 0.0963 -0.0622 2.2340 2.2378 0.2771 0.0826 0.1593

400 -0.0300 0.0140 0.0149 -0.0117 1.1734 1.1736 0.1503 0.0467 0.0692

800 -0.0155 0.0090 0.0092 0.0053 0.8007 0.8007 0.0201 0.0303 0.0307

Up to now we have only considered the designs where the link formation probabality varies

with the sample size n. The last two tables of this section, Table 5 and 6, report the simulation

results in designs where the links are conditionally independently formed with fixed probability

that is invariant with n. In both designs, the neighbor profiles are defined as the discretized

average neighbor characteristic (as in Table 1). The two designs differ in the support of xi.

Both Table 5 and 6 demonstrate evidence of convergence of MSE for all three estimators

under a fixed probability design. While the estimation error for β̂x and τ̂ is comparable to

their counterparts under convergent link formation probability (in Table 1), the MSEs for β̂m
is greater. We conjecture that this distinction happens because an increasing sample size n has
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different implication for the distribution of neighbor profile mi under two paradigms of fixed or

convergent link formation probabilities.

Table 6: Discretized mi; X = {0, 1, 2}; fixed p = (0.6, 0.4, 0.3, 0.6, 0.4, 0.6)

Case 1: ε ∼ N(0, 1) truncated at [−3/2, 3/2]

β̂x β̂m τ̂

n Bias Var MSE Bias Var MSE Bias Var MSE

200 0.0124 0.0250 0.0251 -0.0646 0.8372 0.8414 0.3398 0.0312 0.1467

400 0.0108 0.0026 0.0027 -0.0754 0.4497 0.4554 0.1202 0.0077 0.0221

800 -0.0046 0.0012 0.0012 0.0312 0.3069 0.3079 -0.0633 0.0053 0.0093

Case 2: ε ∼ N(0, 1.5) truncated at [−2, 2]

β̂x β̂m τ̂

n Bias Var MSE Bias Var MSE Bias Var MSE

200 -0.0206 0.0265 0.0269 -0.1845 1.2083 1.2423 0.3431 0.0335 0.1512

400 -0.0113 0.0057 0.0058 -0.0968 0.8013 0.8106 0.1403 0.0128 0.0325

800 0.0045 0.0025 0.0025 0.0191 0.6374 0.6377 -0.1225 0.0092 0.0242

6 Concluding Remarks

Directions for future research include: the use of higher moments of individual actions in

identification and estimation; implementation of estimation when state variables are continuous;

and richer models where network formation is endogenized along with individual actions.

The model and the method we propose in this article can be used to analyze the individual

incentives in a variety of environments. Examples include individuals’ choices of education or

consumption in the context of large social networks. Yet another interesting direction for future

research would be the empirical analyses of individual preferences and interaction under such

scenarios.
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Appendix

A. Proofs in Section 3

Proof of Theorem 1. Let S denote the set of bounded functions on T n taking values in

An. For s, s′ ∈ S, let s ≤ s′ denote s(τ) ≤ s′(τ) for all τ ∈ T n. For any s ∈ S, let ||s|| =

maxi sup{|si(τi)| : τi ∈ T}, i.e., ||.|| is the supremum norm. Note that S with the supremum

norm is a complete metric space.

Define a mapping R : S → S as

R(s)i(τi) ≡ Ri(τi; s−i) for all i ∈ N .

First note that R(s) ∈ S for any s ∈ S, and so R maps S to itself. To establish existence

of a unique p.s.BNE, we show that R satisfies the contraction property. That is, there exists

c ∈ (0, 1) such that ||R(s)−R(s′)|| ≤ c||s− s′|| for any s, s′ ∈ S.

To do so, fix any s, s′ ∈ S. Note that for any i ∈ N and τi ∈ T , we have

|Ri(τi; s−i)−Ri(τi; s
′
−i)| = (1− γ)

∑
j∈Ni

w̃ij(τi)
∣∣E [sj(τj)− s′j(τj)∣∣ τi]∣∣

≤ (1− γ)
∑

j∈Ni

w̃ij(τi) |E [ ||s− s′||| τi]|

≤ (1− γ)||s− s′||. (12)

By definition, ||R(s)−R(s′)|| = sup{|Ri(τi; s−i)− Ri(τi; s
′
−i)| : τi ∈ T} for some i ∈ N . Hence

the desired result follows from (12). �

Proof of Proposition 1. Under Assumption 1, 2 and ??, a unique symmetric pure-strategy

Bayesian Nash equilibrium exists in each data-generating process indexed by n, and

ai = s(ti) = γh(ti) + (1− γ)
∑

x′∈X
w(x′, xi,mi)En[s(tj)|xj = x′, xi,mi, gij = 1].

Define λn(x,m) ≡ 1
n

∑
i En(ai|xi = x,mi = m) = En(ai|xi = x,mi = m), which does not

vary with the specific identity of an individual i because of the symmetry in Assumption 2 and

exchangeability in Assumption 3. Likewise, define h̄n(x,m) ≡ 1
n

∑
i En [h(ti)|xi = x,mi = m] =

En [h(ti)|xi = x,mi = m]. Thus by construction,

λn(x,m) = γh̄n(x,m) + (1− γ)
∑
x′∈X

w(x′, x,m)En[s(tj)|xj = x′,mi = m,xi = x, gij = 1]. (13)

For any n, the Law of Total Expectation and Assumption 4 imply

En[s(tj)|xj = x′, xi = x,mi = m, gij = 1]

=
∑
m′∈M

En(aj|mj = m′, xj = x′)En(1{mj = m′}|xj = x′, xi = x,mi = m, gij = 1)

=
∑
m′∈M

λn(x′,m′)qn(m′|x′,m, x), (14)
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where qn(m′|x′, x,m) ≡ 1
n(n−1)

∑
j 6=i En(1{mj = m′}|xj = x′, xi = x,mi = m, gij = 1). The

second equality holds because En(1{mj = m′}|xj = x′, xi = x,mi = m, gij = 1) does not

depend on specific identities of individuals i and j under Assumptions 2 and 3. Combining (13)

and (14), we write λn as the solution to a fixed-point equation that depends on (h̄n, qn). That

is,

λn = Γ(λn; h̄n, qn), (15)

where Γ(.; h̄n, qn) is a self-map over the set of bounded and continuous functions with domain

X⊗M , and

Γ(λn; h̄n, qn)(x,m) ≡ γh̄n(x,m) + (1− γ)
∑

x′∈X
w(x′, x,m)

∑
m′∈M

λn(x′,m′)qn(m′|x′, x,m).

The solution is unique because, for any h̄n and qn, the map Γ(.; h̄n, qn) has a contraction property

under the sup norm.8

Next, let q and q̃ denote generic density (probability mass) functions of m′ given x′, x,m.

We now show that for any c̄ > 0 there exists c1, c2 > 0 so that

‖h̃− h‖ ≤ c1 and ‖q̃ − q‖ ≤ c2 implies ‖λ̃− λ‖ ≤ c̄, (16)

where ‖.‖ denotes the sup norm over the respective domains, and λ and λ̃ are the unique

solutions in λ = Γ(λ;h, q) and λ̃ = Γ(λ̃; h̃, q̃) respectively. To verify (16), recursively substitute

λ and λ̃ into Γ(λ;h, q) and Γ(λ̃; h̃, q̃) and use the fact that “γ ∈ (0, 1), w(., x,m) ≥ 0 and∑
x′∈X w(x′, x,m) = 1 for all x ∈ X,m ∈M”.

It then follows from (16) that the solution to the fixed point problem λ = Γ(λ;h, q) is

continuous in (h, q). Under Assumption 5, h̄n → h∗ and qn → q∗ given the sup norm. Con-

sequently, the sequence of solutions λn = Γ(λn; h̄n, qn) converges to the unique λ∗ that solves

λ∗ = Γ(λ∗;h∗, q∗). �

Proof of Proposition 2. Fix some n ∈ N++, x ∈ X and m ∈ M . The Chebychev’s Inequality

implies that for any constant c > 0,

Pn

{∣∣∣∣ 1n∑i
ιi − En

(
1

n

∑
i
ιi

)∣∣∣∣ ≥ c

}
≤ c−2Vn

(
1

n

∑
i
ιi

)
, (17)

where Pn is the probability measure associated with Fn, and Vn denotes the variance under Fn.

In what follows, let σ2
n,i be a shorthand for Vn(ιi); and let Cn,i,j be a shorthand for Cn(ιi, ιj),

which is the covariance between ιi and ιj under Fn. By the exchangeability and anonymity of

Fn in Assumption 3, σn,i does not depend on i and Cn,i,j does not depend on i and j. Therefore

the right-hand side of (17) can be written as

c−2n−2
[∑

i
σ2
n,i +

∑
j 6=i

Cn,i,j

]
=
nσ2

n,i

n2c2
+
n(n− 1)Cn,i,j

n2c2
. (18)

8The proof of the contraction property of Γ(.; h̄n, qn) is similar to that of Theorem 1, and omitted for brevity.
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By the first asymptotic uncorrelation condition in Assumption 6, the two terms on the right-

hand of (18) converge to 0 as n → ∞. Thus 1
n

∑
i ιi −

1
n

∑
i En (ιi)

p−→ 0 as n −→ ∞. Under

Assumption 5, this implies 1
n

∑
i ιi(x,m)

p−→ p∗(x,m) as n −→∞.

Next, recall that ai is a function of (xi,mi, εi) in p.s.BNE. By the law of total covariance,

Cn(aiιi(x,m), ajιj(x,m)) → 0 under conditional independence in Assumption 4 and the first

asymptotic uncorrelation condition in Assumption 6. It follows from a similar argument using

Chebychev’s Inequality that 1
n

∑
i aiιi−

1
n

∑
i En (aiιi)

p−→ 0. Under Assumption 5 and Propo-

sition 1, the limit of 1
n

∑
i En (aiιi) as n → ∞ exists. By exchangeability of Fn in Assumption

3 both En (ιi) and En (aiιi) do not vary across the identities of individuals i. It then follows

from the Slutsky’s Theorem that

1
n

∑
i aiιi(x,m)

1
n

∑
i ιi(x,m)

p−→ limñ→∞Eñ[aiιi(x,m)]

limñ→∞Eñ[ιi(x,m)]
= lim

ñ→∞

Eñ[aiιi(x,m)]

Eñ[ιi(x,m)]
= λ∗(x,m) (19)

for all x,m on the support of p∗.

We now prove the second claim in the proposition. Fix x, x′ ∈ X and m,m′ ∈ M . In what

follows, let ι′j, ιi be shorthand for ιj(x
′,m′), ιi(x,m) respectively. Define ξij ≡ (ι′jιigij+ι′iιjgji)/2

so that ξij = ξji and 1
n(n−1)

∑
j 6=i ι

′
jιigi,j = 2

n(n−1)

∑
i

∑
j>i ξij by construction. By the Chebychev

Inequality, for any constant c > 0,

Pn

{∣∣∣ 2
n(n−1)

∑
j 6=i

ξij − En

(
2

n(n−1)

∑
j 6=i

ξij

)∣∣∣ ≥ c
}
≤ c−2Vn

(
2

n(n−1)

∑
j 6=i

ξij

)
,

where the right-hand side is

4
c2n2(n−1)2

∑
j>i

∑
t>l

Cn (ξij, ξlt) .

By construction, this quadruple sum consists of
(
n
2

)
×
(
n
2

)
= 1

4
(n4 − 2n3 + n2) terms. These

include
(
n
2

)
= 1

2
(n2 − n) variance terms Vn (ξij),

(
n
2

)
×
(
n−2

2

)
= 1

4
(n4 − 6n3 + 11n2 − 6n)

covariance terms Cn (ξij, ξlt) in which the unordered pairs {i, j} and {l, t} do not overlap, and(
n
2

)
×
((
n
2

)
−
(
n−2

2

)
− 1
)

= n3 − 3n2 + 2n covariance terms Cn (ξij, ξlt) in which the two pairs

{i, j} and {l, t} share exactly one individual in common. Note that Vn (ξij) and Cn (ξij, ξlt)

are bounded for all {i, j} and {l, t}. Furthermore, the covariance term Cn (ξij, ξlt) with {i, j}∩
{l, t} = ∅ does not vary with the identities {i, j, l, t} due to the anonymity of common prior in

Assumption 3. Under the asymptotic uncorrelation condition in Assumption 6, Cn (ξij, ξlt)→ 0

as n→∞ if {i, j}∩{l, t} = ∅. Therefore 4
c2n2(n−1)2

∑
j>i

∑
l>t Cn (ξij, ξlt)→ 0 as n→ 0. Hence

1
n(n−1)

∑
j 6=i[ι

′
jιigij − En(ι′jιigij)]

p→ 0. By a similar argument, 1
n(n−1)

∑
j 6=i[1{xj = x′}ιigij −

En (1{xj = x′}ιigij)]
p→ 0. Under our condition in Assumption 5, limñ→∞Eñ

(
ι′jιigij

)
exists

and limñ→∞Eñ (1{xj = x′}ιigij) is non-zero. The second convergence result in the proposition

follows from an argument analogous to (19) under the exchangeability in Assumption 3 and the

existence of the limits q∗ in Assumption 5. �
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Proof of Proposition 3. Suppose (θ, γ, ω) is observationally equivalent to some different vector

of parameters (θ̃, γ̃, ω̃) based on asymptotic moments in (11). This means (11) holds almost

surely p∗ when (γ, θ, ω) is replaced by (γ̃, θ̃, ω̃). For each d ∈ Φ, let ω(d) ≡ (ω(c, d))c∈Ψ, which

is a column-vector of weights assigned over Ψ conditional on ϕ(x,m) = d. Likewise, define ω̃

using ω̃(., .). That is, for every d ∈ Φ,

γη(x,m; θ) + (1− γ)µ∗(x,m)ω(d) = γ̃η(x,m; θ̃) + (1− γ̃)µ∗(x,m)ω̃(d) (20)

whenever ϕ(x,m) = d.

Consider the following cases. Case (i): θ = θ̃ and (γ, ω) 6= (γ̃, ω̃). Then (20) implies

that for each d ∈ Φ, [η(x,m; θ),µ∗(x,m)]α(d) = 0 whenever ϕ(x,m) = d, where α(d) ≡
[γ − γ̃, (1− γ)ω(d)′ − (1− γ̃)ω̃(d)′]′. Because (γ, ω) 6= (γ̃, ω̃), the vector α(d) must be nonzero

at least for some d ∈ Φ. This implies that at least for some d ∈ Φ, [η(x,m; θ),µ∗(x,m)] does

not have full rank conditional on ϕ(x,m) = d. Case (ii): θ 6= θ̃ and (γ, ω) = (γ̃, ω̃). Then

(20) implies η(x,m; θ) = η(x,m; θ̃) almost everywhere p∗. Case (iii): θ 6= θ̃ and (γ, ω) 6= (γ̃, ω̃).

Then (20) implies that for every d ∈ Φ,

[η(x,m; θ), η(x,m; θ̃),µ∗(x,m)]b(d) = 0

whenever ϕ(x,m) = d, where b(d) ≡ [γ,−γ̃, (1−γ)ω(d)′−(1− γ̃)ω̃(d)′]′. By construction, b(d)

is non-zero for all d. Thus (20) implies that for each d ∈ Φ, [η(x,m; θ), η(x,m; θ̃), µ∗(x,m)]

does not have full rank conditional on ϕ(x,m) = d.

Each of these cases of observational equivalence implies the following condition: “There

exists θ̃ such that at least for some d ∈ Φ, [η(x,m; θ), η(x,m; θ̃), µ∗(x,m)] does not have full

rank conditonal on ϕ(x,m) = d under p∗”. It then follows that under Assumption 9, (θ, γ, ω)

is not observationally equivalent to any (θ̃, γ̃, ω̃) 6= (θ, γ, ω). �

Proof of Proposition 4. Suppose (θ, γ, ω) is observationally equivalent to some other (θ̃, γ̃, ω̃).

This implies that for each d ∈ Φ, [ζd(x,m),µ∗(x,m)]α(d) = 0 when ϕ(x,m) = d, where α(d) ≡
[γθd− γ̃θ̃d, (1−γ)ω(d)′−(1− γ̃)ω̃(d)′]′. Consider two cases. Case (i): ω = ω̃. In this case, either

γ 6= γ̃ or θd 6= θ̃d at least for some d ∈ Φ. Otherwise (θ, γ, ω) would be identical to (θ̃, γ̃, ω̃).

Hence at least for some d, the two terms γθd − γ̃θ̃d and (1− γ)ω(d)′ − (1− γ̃)ω̃(d)′ can not be

zero simultaneously. Thus α(d) is a non-zero vector for all d. This implies that at least for some

d ∈ Φ, [ζd(x,m),µ∗(x,m)] does not have full rank conditional on ϕ(x,m) = d. Case (ii): ω 6= ω̃.

In this case, ω(d) 6= ω̃(d) at least for some d. It then follows that (1 − γ)ω(d) − (1 − γ̃)ω̃(d)

is a non-zero vector at least for some d, regardless of whether γ 6= γ̃. This implies that at

least for some d ∈ Φ, [ζd(x,m),µ∗(x,m)] does not have full rank conditional on ϕ(x,m) = d.

Therefore, if [ζd(x,m),µ∗(x,m)] has full rank conditional on ϕ(x,m) = d for all d ∈ Φ, then

(θ, γ, ω) is not observationally equivalent to any other (θ̃, γ̃, ω̃). �
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Proof of Proposition 5. Let
∑

x,m,
∑

k,
∑

` be shorthand for
∑

x∈X,m∈M ,
∑

k=1,2,
∑

`=1,2

respectively. For each δ ∈ D, let

G0(δ) ≡
∑

x,m
p∗(x,m)

[
λ∗(x,m)− γη(x,m; θ)−

∑
k

1{z = z(k)}
(∑

`
χ∗`(x,m)βk`

)]2

,

where

χ∗`(x,m) ≡ 1
#V

∑
v′,m′

λ∗(v′, z(`),m
′)q∗(m′|v′, z′ = z(`), x,m).

By Proposition 2 and an application of the Weak Law of Large Numbers, Ĝn(δ)
p→ G0(δ) for

each δ ∈ D. For notational convenience, let 1k,i ≡ 1{zi = z(k)},

Ĥi ≡ [11,iχ̂1,i, 11,iχ̂2,i, 12,iχ̂1,i, 12,iχ̂2,i]

and

q̄i(θ) ≡ λ̂i − γηi(θ)−
∑

k
1k,i

∑
`
χ̂`,iβk`.

For any δ 6= δ′, the mean value approximation implies Ĝn(δ′)− Ĝn(δ) = ∇δĜn(δ̃)(δ′− δ), where

δ̃ is an intermediate value between δ, δ′ and the gradient ∇δĜn(δ) is

2

n

∑
i
q̄i(δ)[ηi(θ), Ĥi, γ∇θηi(θ)].

Let ‖.‖ denote the Euclidean norm. By the Cauchy-Schwartz inequality,

|∇δĜn(δ̃)(δ′ − δ)| ≤
∥∥∥∇δĜn(δ̃)

∥∥∥× ‖δ′ − δ‖ ,
where

∥∥∥∇δĜn(δ̃)
∥∥∥ is Op(1) under T3. Then by Lemma 2.9 in Newey and McFadden (1994),

sup
δ∈D
|Ĝn(δ)−G0(δ)| p→ 0.

In addition, G0 is continuous in δ over D under T3. Under the condition in T2, δ0 is a unique

maximizer of G0(.) over D. By Theorem 2.1 in Newey and McFadden (1994), δ̂n
p−→ δ0. �

B. An Examples of Random Network

This section presents an example of networks with undirected links (i.e., gij = gji for any

i, j ∈ N) that satisfy the conditions in Assumption 5 (existence of limits as n → ∞) and

Assumption 6 (asymptotic uncorrelation as n→∞).

As in Section 2, let N denote the set of individuals and let n ≡ #N ∈ N++ ≡ {1, 2, 3, ..,∞}.
Each individual is characterized by a binary characteristic xi ∈ X ≡ {1, 2}. (Generalization to

the case #X ≥ 3 is straightforward.) Individual characteristics xi, i = 1, ..., n are independently

drawn from a fixed multinomial distribution with p(k) ≡ Pr{xi = k} with k = 1, 2. Let
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n(k) ≡ #{i ∈ N : xi = k} for k = 1, 2. By an application of the Weak Law of Large Numbers,

n(k) → ∞ and n(k)/n → p(k) ∈ (0, 1) as n → ∞ for k = 1, 2. As in the text, let En(.) denote

the expectation under Fn, or the distribution of (τi)i∈Nn in the data-generating process (DGP)

indexed by network size n, and let Pn denote the probability measure in the DGP. Consider a

random Poisson network that satisfy the following conditions on link formation.

(R1). For each n and k, ` = 1, 2, Pn{gij = 1|xi = k, xj = l} = q(k`),n, where q(k`),nn(`) → ρ(k`) <

∞ as n→∞.

(R2). For each n, the joint distribution of all links conditional on all individual characteristics

is ∏
j>i

En(gij|xi, xj)gij [1− En(gij|xi, xj)]1−gij .

Under R2, the links are independent once conditional on the characteristics of individuals.

Recall from Section 2 that an individual i’s neighborhood profile is summarized by a vector

of integers ni ≡ (ni,1, ni,2) with ni,1 + ni,2 = #Ni, where ni,k ≡ #{j : gij = 1, xj = k} and

Ni ≡ {j ∈ N : gij = 1}. Let mi ≡ (mi1,mi2) ≡ (min{ni,1, n̄1},min{ni,2, n̄2}). That is, for any

fixed n, each component in mi ∈ N2
+ follows a binomial distribution censored at a maximum

number of friends n̄k for k = 1, 2. By construction M ≡ {0, 1, ..., n̄1} ⊗ {0, 1, ..., n̄2} is finite

and invariant as n→∞. For any n and any m̄ ≡ (m̄1, m̄2) ∈M ,

En [1{xi = k,mi = m̄}] = p(k)Pn{mi1 = m̄1,mi2 = m̄2|xi = k} (21)

= p(k)Pn{mi1 = m̄1|xi = k}Pn{mi2 = m̄2|xi = k},

where the second equality follows from Condition R2. By definition, for any m̄k < n̄k,

Pn{mik = m̄k|xi = k} = Pn{nik = m̄k|xi = k}

=

(
n(k) − 1

m̄k

)[
q(kk),n

]m̄k
[
1− q(kk),n

]n(k)−m̄k−1
.

Under Condition R1, the Poisson Limit Theorem applies and the expression on the right-hand

side converges to [
ρ(kk)

]m̄k exp{−ρ(kk)}/(m̄k!),

which is the probability mass function (p.m.f.) of a random variable distributed as Poisson

with mean ρ(kk). Furthermore,

Pn{mik = n̄k|xi = k} = Pn{nik ≥ n̄k|xi = k}.

Under Condition R1, q(k`),n = O(n−1). This implies nq2
(k`),n → 0. Thus by the Le Cam’s

Theorem and an application of triangular inequality,∣∣∣Pn{nik ≥ n̄k|xi = k} −
∑∞

m̄k=n̄k

[
ρ(kk)

]m̄k exp{−ρ(kk)}/(m̄k!)
∣∣∣→ 0
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as n→∞. That is, as the network size increases to infinity, Pn{nik ≥ n̄k|xi = k} converges to

the survival function (evaluated at n̄k) of a Poisson variable with mean ρ(kk). By a symmetric

argument, we can show similar results with l 6= k: Pn{mil = m̄`|xi = k} converges to a Poisson

p.m.f. with mean ρ(k`) for m̄` < n̄`; and converges to the survival function at n̄` of a Poisson

variable with mean ρ(k`) for m̄` = n̄`. (To show this, replace n(k)−1, q(kk),n, ρ(kk) in the argument

above with n(`), q(k`),n, ρ(k`) respectively, and apply the Poisson Limit Theorem and the Le

Cam Theorem.) Thus the right-hand side of (21), and consequently En [1{xi = k,mi = m̄}],
converges to some non-zero limits p∗(x,m) for all m̄ ∈M and k = 1, 2.

Consider an uncensored vectors m̃. Then

En(1{mj = m̃}|xj = 2, xi = 1,mi = m̄, gij = 1)

=

(
n(1) − 1

m̃1 − 1

)[
q(21),n

]m̃1−1 [
1− q(21),n

]n(1)−m̃1

(
n(2) − 1

m̃2

)[
q(22),n

]m̃2
[
1− q(22),n

]n(2)−m̃2−1

→ ρm̃1−1
(21)

exp{−ρ(21)}
(m̃1 − 1)!

ρm̃2

(22)

exp{−ρ(22)}
m̃2!

,

where the second equality follows from conditional independence in link formation under Con-

dition R2, and the convergence is due to Poisson approximation of a binomial distribution.

Similar derivation for the other case with m̃ = (n̄1, n̄2) implies similar results, only with proba-

bility mass functions replaced by survival functions in the limit. Thus q∗(m′|x′, x,m) exists for

all x, x′ ∈ X and m,m′ ∈M . Note that in this example, q∗(.|x′, x,m) depends on x′, x but not

m, which is consitent with the rank condition for identification presented in Section 3.2.

To show asymptotic uncorrelation conditions in Assumption 6, first note that for any k, ` ∈
{1, 2} and m̄, m̃ ∈M ,

Pn{mi = m̄,mj = m̃|xi = k, xj = l}
= Pn{mi = m̄,mj = m̃|xi = k, xj = l, gij = 1}q(k`),n

+ Pn{mi = m̄,mj = m̃|xi = k, xj = l, gij = 0}(1− q(k`),n)

Because q(k`),n → 0 as n → ∞, the difference between the right-hand above and the sequence

Pn{mi = m̄,mj = m̃|xi = k, xj = l, gij = 0} diminishes to zero as n → ∞. For example, for

k 6= l and any uncensored values of m̄, m̃ in M ,

Pn{mi = m̄,mj = m̃|xi = k, xj = l, gij = 0}

=

(
n(k) − 1

m̄k

)[
q(kk),n

]m̄k
[
1− q(kk),n

]n(k)−m̄k−1
(
n(`) − 1

m̄`

)[
q(k`),n

]m̄`
[
1− q(k`),n

]n(`)−m̄`−1

(
n(k) − 1

m̃k

)[
q(lk),n

]m̃k
[
1− q(lk),n

]n(k)−m̃k−1
(
n(`) − 1

m̃`

)[
q(``),n

]m̃`
[
1− q(``),n

]n(`)−m̃`−1
.

Again, by an application of the Poisson approximation of a Binomial distribution and the Le

Cam’s Theorem, we have:

Pn{mi = m̄,mj = m̃|xi = k, xj = l, gij = 0} − Pn{mi = m̄|xi = k}Pn{mj = m̃|xj = l} → 0
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for all m̄, m̃ ∈M . Thus by the law of total covariance,

Cn(ιi(x,m), ιj(x,m))→ 0 ∀x ∈ X,m ∈M .

Finally, that

Cn(ιj(x
′,m′)ιi(x,m)gij, ι`(x

′,m′)ιt(x,m)glt)→ 0 ∀x, x′ ∈ X,m,m′ ∈M

as n→∞ for {i, j} ∩ {t, l} = ∅ follows from similar derivation.

C. Asymptotic Distribution of Two-Step Estimator

In this part of the appendix, we sketch a heuristic discussion about the asymptotic dis-

tribution of our two-step m-estimator. This discussion requires some admittedly high-level

assumptions (D1-D6 below). Let ρ̂ denotes the vector of all first-stage estimates in λ̂i and χ̂`,i.

That is,

ρ̂ =


n−1

∑
i ιi(x,m)

n−1
∑

i aiιi(x,m)(
1

n(n−1)

∑
j 6=i ιj(x

′,m′)ιi(x,m)gij

)
x′,m′(

1
n(n−1)

∑
j 6=i 1{xj = x′}ιi(x,m)gij

)
x′


x,m

.

Let ∇δĜn(δ) = n−1
∑

i Γi(δ; ρ̂), with

Γi(δ; ρ̂) = 2q̄i(δ; ρ̂)[ηi(θ), ĉi, γ∇θηi(θ)]

where

q̄i(δ; ρ̂) = λ̂i − γηi(θ)−
∑

k
1k,i

∑
`
χ̂`,iβk`

and ĉi is such that 2q̄i(δ; ρ̂)ĉi is the deriative of the objective function with respect to the vector

of coefficients β. By the first-order condition and a mean-value expansition,

√
n∇δĜn(δ) +∇2

δ,δĜn(δ̃)
√
n(δ̂ − δ) = op(1),

where δ̃ is some intermediate value between δ̂ and δ. Assume:

D1. supx∈X,m∈M ‖ρ̂− ρ‖ = op(n
−1/4).

D2. n−1
∑

i∇δΓi(δ; ρ)−Ψn = op(1), where Ψn ≡ En[ 1
n

∑
i∇δΓi(δ; ρ)] has full-rank for each n.

D3. The Hessian∇2
ρ,ρΓi(δ; ρ) exists and is bounded over an open neighborhood around ρ almost

surely under p∗.
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D4. n−1
∑

i∇ρΓi(δ; ρ) − Φn = Op(n
−1/4), where Φn ≡ En[ 1

n

∑
i∇ρΓi(δ; ρ)] has full-rank for

each n.

D5. ρ̂− ρ = n−1
∑

i ψn,i + op(n
−1/2) for some ψn,i determined by (δ, ρ) such that En(ψn,i) = 0

for all n.

D6. Λ−1
n

{
1√
n

∑
i [Γi(δ; ρ) + Φn × ψn,i]

}
d→ N(0, I), where I is the identity matrix and Λn a

squence of positive semidefinite matrices.

Lemma C1. Under D1 and D2, ∇2
δ,δĜn(δ̃)−Ψn

p→ 0 whenever δ̃
p→ δ.

Proof of Lemma C1. Let Γi(δ, ρ) be defined in a way that is similar to Γi(δ; ρ̂), only with the

first-stage estimates ρ̂ replaced by the probability limit ρ. That is,

Γi(δ; ρ) = 2
(
λ∗(xi,mi)− γη(xi,mi; θ)−

∑
k
1k,i

∑
`
χ∗`(xi,mi)βk`

)
×[η(xi,mi; θ), ci, γ∇θη(xi,mi; θ)].

By definition,

∇2
δ,δĜn(δ̃)−Ψn = n−1

∑
i

[
∇δΓi(δ̃; ρ̂)−∇δΓi(δ; ρ)

]
︸ ︷︷ ︸

A

+ n−1
∑

i
∇δΓi(δ; ρ)−Ψn︸ ︷︷ ︸

B

.

The absolute value of the first term A on the right-hand side is bounded above by

supx,m |∇δΓ(x,m; δ̃; ρ̂)−∇δΓ(x,m; δ; ρ)|.

Note that the consistency of δ̂ implies δ̃
p→ δ. Hence it is bounded above by a term that is op(1)

because supx∈X,m∈M ‖ρ̂− ρ‖
p→ 0. The second term B is op(1) under condition D2. �

Lemma C2. Under D1, D3, D4 and D5,

√
n∇δĜn(δ) = n−1

∑
i
[Γi(ρ) + Φn × ψn,i] + op(n

−1/2).

Proof of Lemma C2. Let Γi(ρ̂) be shorthand for Γ(xi,mi; δ; ρ̂). By a second-order Taylor

expansion, we can write

∇δĜn(δ) = n−1
∑

i
Γi(ρ̂) (22)

= n−1
∑

i

[
Γi(ρ) +∇ρΓi(ρ)(ρ̂− ρ) + 1

2
(ρ̂− ρ)′∇2

ρ,ρΓi(ρ̃)(ρ̂− ρ)
]

for some ρ̃ between ρ̂ and ρ. Under D3, the absolute value of n−1
∑

i(ρ̂− ρ)′∇2
ρ,ρΓi(ρ̃)(ρ̂− ρ) on

the right-hand side is bounded above by the product of a constant and supx∈X,m∈M ‖ρ̂− ρ‖
2,

where ‖.‖ denotes the sup-norm. Under D1, this upper bound is op(n
−1/2). Under D4,

[n−1
∑

i∇ρΓi(ρ)− Φn]× (ρ̂− ρ) = op(n
−1/2). The claim in the lemma follows from D5. �

It then follows that (Ψ−1
n ΛnΨ−1

n )
−1/2√

n(δ̂ − δ) d→ N(0, I) under D1-D5.
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