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1 Introduction

The prototypical evaluation problem is cast in a framework where treatment
is offered only once. Thus treatment assignment is a static problem and the
information contained in the timing of treatment is typically ignored; see
Heckman et al. (1999) for an overview of the literature. This prototype
concurs rather poorly with how most real-world programs work. Often it
makes more sense to think of the assignment to treatment as a dynamic
process, where the start of treatment is the outcome of a stochastic process.
There are (at least) two important implications of taking the timing of

events into account. First of all, the timing of events contains additional
information which is useful for identification purposes. Indeed, Abbring and
van den Berg (2003) have shown that one can identify a causal effect1 non-
parametrically in the Mixed Proportional Hazard model from single-spell
duration data without conditional independence assumptions (i.e. without
assuming that all factors that jointly determine the treatment assignment
and the outcome are observed). Second of all, the dynamic assignment pro-
cess has serious implications for the validity of the conditional independence
assumptions usually invoked to estimate effects such as treatment on the
treated.
The main objective of this paper is to substantiate the second of the

above claims. In particular we discuss program evaluations when (i) there
are restrictions on treatment eligibility, (ii) no restrictions on the timing
of the individual treatment, and (iii) the timing of treatment is linked to
the outcome of interest. For instance, this evaluation problem arises when
unemployment is a precondition for participation in a labor market program,
programs may start at any time during the unemployment spell, and we are
interested in employment outcomes. Employment outcomes have increasingly
become the focus of the labor market evaluation literature so our analysis
should have wide applicability.2 We choose to focus on employment outcomes
for illustrative purposes but our analysis has implications for all situations
when points (ii) and (iii) apply. For instance, it follows immediately that
the points we raise should be taken into consideration in analyses of earnings

1At this stage, we are deliberately vague on what causal effect this really is.
2The prime candidate for the shift in emphasis is that the ultimate goal of many

labor market programs is to raise the reemployment probability rather than increasing the
productivity of the participants. Also, the targets that government agencies responsible
for, e.g., training, should fulfill are usually formulated in terms of employment rather than
wages. For instance, one of the key targets for evaluating the performance of the Swedish
labor market board is that at least 70 percent of participants in labor market training
should be regularly employed one year after the end of treatment.
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outcomes.
A second objective of the paper is to bridge some of the gap that exists

between the literature on matching and the literature using hazard regres-
sions. In the matching literature one typically considers, e.g., the probability
of employment some fixed time period after treatment; Gerfin and Lechner
(2002) is a recent example. By assumption, unobserved heterogeneity is not
an issue. In the hazard regressions literature, the focus in on the timing of
the outflow to a state of interest (e.g. employment). Usually, there is more
structure imposed on the form of the hazard but there is also greater concern
about unobserved heterogeneity; van den Berg et al. (2004) is an example.
Clearly, the outcomes considered are intimately related and to us the division
of the literature seems rather superficial. For instance, with rich data, one
might well think of applying a matching approach to estimate the hazard to
employment.
Here we assume that we can construct the counterfactual outcome using

the method of matching. We take this approach for illustrative purposes —
not because we are strong believers in the matching approach. To convey
our basic messages as clearly as possible we want to avoid the complications
arising from unobserved heterogeneity. Moreover, we want to refrain from
making assumptions about the appropriate bivariate distribution for the tim-
ing of events. If one is prepared to make assumptions about the functional
form of the bivariate distribution, this is an alternative way of attacking the
particular evaluation problem that we are considering.
The rest of this paper is structured in the following way. In section 2, we

present the evaluation framework. We discuss the potential outcomes of in-
terest, possible estimands, and the specific problem associated with dynamic
treatment assignment. Section 3 considers some alternative estimators avail-
able in the literature. We also propose an estimator of the effect of treatment
on the treated. In section 4 we apply this estimator to the problem of eval-
uating the employment effects of a Swedish employment subsidy program.
Section 5, finally, concludes.

2 The evaluation framework

Consider a pool of openly unemployed individuals who are eligible for the
program as long as they are unemployed.3 We assume that these individuals
are identical conditional on the date of unemployment entry and observed
covariates. For expositional convenience, we suppress the observed covariates

3The openly unemployed refers to the unemployed who do not participate in a labor
market program.
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for most of our analysis. At time τ , these individuals are exposed to two kind
of risks: either they get a job offer with instantaneous probability λ(τ , 0), or
they get an offer to participate in a treatment (a program) with probability
γ(τ) per unit time. The instantaneous probability of being offered a job if
treated at s is χs(τ , 1). The hazard rates, λ(τ , 0) and χs(τ , 1), are potential
outcomes. They are potential in the sense that they are not observed for
everyone. Let us also denote the potential unemployment duration if not
treated by T (0).
It is important to realize that this set-up implies that the duration until

treatment start (S) is stochastically dependent on T (0). Whether we ob-
serve S or not depends on such things as the behavior of case workers, the
characteristics of the unemployed, but also on whether the individual had
the luck of receiving a job offer before receiving an offer to participate in
treatment. In particular, we observe individuals taking treatment (D = 1)
if their unemployment duration is longer than the duration until program
start:

D = I(T (0) > S) (1)

This may appear to be tautologically true, but this specification also embod-
ies an important assumption: individuals must not anticipate their actual
date of treatment start nor anticipate future jobs (i.e. the realization of
T (0)).4 If they knew exactly when treatment will start their behavior will be
altered prior to entering treatment, i.e., there will be a pre-treatment effect.
Let us be clear on what we can observe in the data. For non-treated

individuals we observe the potential duration in unemployment if not treated
and thus T = T (0). For individuals who are treated at S = s we observe

T = s+ T s(D = 1)

where T s(D = 1) is the post-treatment duration for those treated at s. The
evaluation problem consists in not observing the post-treatment duration
without treatment for the treated, i.e., we do not observe T s(0) for theD = 1
sample. Since

T s(0) = [(T (0)− s)|(T (0) > s)]

the dynamic assignment process implies that there is a stochastic dependence
between the post-treatment and pre-treatment duration even if there is no
treatment effect. In other words T (0) need to be independent of D in order

4This assumption is also invoked by Abbring and van den Berg (2003). They refer to
it as a “no anticipation” assumption.
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for the potential unemployment duration post s if not treated, T s(0), to be
independent of D.
Now that we have introduced some notation let us define the notational

convention that we will adopt throughout the paper. Stochastic variables
are denoted by upper-case roman letters (e.g. T, S, and T s), realizations of
the stochastic processes are lower-case roman letters (e.g. t, s and ts), and
potential outcomes are indicated by 0 and 1 (e.g. T (0), T s(0), λ(τ , 1) and
χs(τ , 1)).

2.1 Objects of evaluation with random assignment

To fix ideas, it is useful to digress to the case with random assignment into
treatment. What is the virtue of random assignment and what are sensible
objects of evaluation?
Suppose that treatment is randomly assigned among the individuals in

the unemployment pool. Random assignment takes place at time ψ, implying
that the pre-treatment duration is a function of ψ, s = s(ψ). Since treatment
status (DR) is assigned randomly, the pre-treatment duration distributions,
FR
S , are equal for the two samples consisting of the treated and the non-
treated respectively, i.e., FR

S (s|DR) = FR
S (s). Using the notation of Dawid

(1979), we thus have
S ⊥⊥ DR (2)

Since random assignment balances the pre-treatment duration distributions
there is no need for information on unemployment duration prior to treatment
entry.5 In other words, random assignment creates samples of treated and
non-treated that are duration matched.
The condition (2) also implies that potential unemployment duration post

assignment — T s(j) = T (j) − s, j = 0, 1 — is independent of being assigned
to treatment or not. Hence

(T s(1), T s(0)) ⊥⊥ DR.

An estimand of interest is the difference in the post-treatment duration
if treated and non-treated

∆R = EsET s(1)− EsET s(0) (3)

where ES(.) is the expectation with respect to the pre-treatment duration. If
durations are not censored, this can easily be estimated using the differences

5This is not to say that information on the pre-treatment duration is uninteresting in
the experimental setting. With it one could ask the highly interesting question such as:
Does the treatment effect vary by prior unemployment duration?
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in the sample means. However, in almost every situation censoring is present.
So it is more appropriate to define the estimand of interest in terms of the
survival function (or the hazard rate). Let the survival function, averaged
over pre-treatment durations, be denoted F

R
(ts, j). Then the difference in

average survival rate by ts is defined by

∆R(ts) = F
R
(ts, 1)− F

R
(ts, 0), ts ∈ (0,∞). (4)

The two average survival functions are given by

F
R
(ts, j) =

Z ∞

0

F
R

s (t
s, j)dFR

S (s)

=

Z ∞

0

½
exp(−

Z ts

0

χs(τ , j)dτ)

¾
dFR

S (s), j = 0, 1

where χs(τ , 0) = λ(τ + s, 0)(s/es(0)), τ > 0 is the stock sampling hazard and
es(0) is the expected total duration if not treated for an eligible individual
given survival up to s (see e.g. Lancaster, 1990, ch. 5).6 Also, χs(τ , 1) =
λs(τ , 1)(s/es(0)) where λs(τ , 1) is the hazard rate if treated at s.
The estimand defined in (4) is more “fundamental” than (3) since the

difference in survival functions integrates to the difference in mean duration,
i.e., Z ∞

0

∆R(ts)dts = EsET s(1)− EsET s(0) = ∆R (5)

Calculating F
R
(ts, j), of course, requires information on unemployment

duration prior to treatment. Such information is not always available and,
therefore, it is useful to define an object of evaluation that is less demanding
on the data. Our purpose now is to introduce an estimand that conveniently
averages the hazards over s (even if the information is unavailable) and τ
(to get at the “total” effect). In the special case where there is no duration
dependence this estimand has the additional virtue of being equal to ∆R(ts)
defined in (4).
Consider, therefore, the estimand

∆R,1(ts) = F
R,1
(ts, 1)− F

R,1
(ts, 0), ts ∈ (0,∞) (6)

6If we randomly select an individual at s from the stock of unemployed individuals,
then the stock sampling hazard is equal to χs(τ , 0) and the density of participation is

f(s) =
exp(−

R s
0
λ(τ , 0)dτ)

ET (0)
.
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where F
R,1
(ts, j) denotes the survival function for the average treated and

untreated individual. Hence, F
R,1
(ts, j) is defined by

F
R,1
(ts, j) = exp(−

Z ts

0

χ(τ , j)dτ)

where χ(τ , j) =
R∞
0

χs(τ , j)dF
R
S (s) is the average hazard rate for the treated

and non-treated population. Thus, ∆R,1(ts) measures the differences in sur-
vival rate for the average individual while ∆R(ts) measures the differences in
the average survival rate. Notice that, in general, F

R,1
(ts, j) 6= F

R
(ts, j). The

only situation when they are equal is when there is no duration dependence.
Then we have ∆R,1(ts) = ∆R(ts).
An alternative to basing the evaluation on the difference in the sur-

vival functions is to estimate hazard regressions. Assume for instance that
the “structural” treatment effect is of the proportional variety and that
it is independent of the date of treatment, hence λ(τ , 1) = λ(τ , 0) exp(δ).
This implies that the average stock sampling hazard is proportional as well:
χ(τ , 1) = χ(τ , 0) exp(δ). Thus, estimating a proportional hazard regression
model using the stock sample population provides us with an estimate of δ.7

Notice that this estimate enables us to estimate ∆R,1(ts) rather than ∆R(ts).
In sum, we think that there are two main lessons to be gleaned from

this section. First, even with experimental data there are many possible
treatment effects. Although the fundamental input for all treatment effects
is the hazard rates if treated and non treated, different ways of aggregating
the information contained in the hazards, results in different effect sizes.
Second, even if the magnitude of the estimates vary with the pre-treatment
duration, random assignment works for the obvious reason that it balances
the pre-treatment duration among the treated and the non-treated. We now
turn to the more complicated situation with observational data.

2.2 Objects of evaluation with observational data

Consider the case with observational data. What makes the observational
study special is that we lack treatment start dates for those not treated.
Hence, it is impossible to use the post treatment duration for the untreated
to estimate the counterfactual mean ET s(0) for the treated population. This
is different than in the experimental situation, where treatment for the stock

7Notice that the aggregation of the effects is achieved by the functional form assump-
tion, i.e., that the treatment effect is of the proportional variety.
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of eligibles is offered at some fixed point in time, and the fairly uncommon
situation where a program starts after a fixed duration.8

The estimand defined in (4) is generically the most informative object
of evaluation. However, in the observational setting we must focus on the
treatment of the treated variant of (4) since only the pre-treatment duration
for the treated, FS(s|D = 1) is observed. Consider, therefore, the estimand

∆(ts|D = 1) = F (ts, 1)− F (ts, 0), ts ∈ (0,∞) (7)

The survival functions, F (ts, j), are again averaged over the pre-treatment
duration distribution:

F (ts, j) =

Z ∞

0

F s(t
s, j)FS(s|D = 1), j = 0, 1 (8)

The difference in the survival functions integrates to the difference in mean
duration for the treated and in the limiting case without censoring we obtainZ ∞

0

∆(ts|D = 1)dts = ESET s(1|D = 1)− ESET s(0|D = 1) = ∆1 (9)

Another option is to form the treatment of the treated variant of (6),
hence

∆1(ts|D = 1) = F
1
(ts, 1)− F

1
(ts, 0), ts ∈ (0,∞) (10)

where F
1
(ts, 1) and F

1
(ts, 0) are the survival functions for the average treated

individual if treated and non-treated respectively. Hence, F
1
(ts, j) is defined

by

F
1
(ts, j) = exp(−

Z ts

0

χ(τ , j)dτ), j = 0, 1

where χ(τ , j) =
R∞
0

χs(τ , j)dFS(s|D = 1) is the average hazard rate if treated
and not treated for the treated.
In an observational study it is absolutely crucial to have information on

the pre-treatment duration. Without such information it is impossible to
balance the pre-treatment duration for the treated and non-treated. In the
experimental setting, on the other hand, random assignment creates samples
of treated and non-treated that are duration matched so information on the
pre-treatment duration is not required.

8Of course there are some treatments that start after a fixed point in time. The
expiration of UI benefits is a prototypical example.
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3 Potential estimators

In this section we consider alternative strategies to estimate the parameters
of interest. We begin by examining the properties of matching estimators
that impose a binary treatment indicator in a setting where the assignment
to treatment is really a dynamic stochastic process. We then move on to
a proportional hazard model. Finally, we consider matching with a time-
varying treatment indicator.

3.1 Matching with a binary treatment indicator

Here we follow the typical approach to evaluating an on-going program.
As indicated above, researchers usually impose a “binary framework” even
though the timing of events varies. To implement the idea that the assign-
ment to treatment occurs only at a “single point in time” there is typically a
classification window of some length (w). Individuals that take up treatment
within, say, the first six months of the unemployment spell are defined as the
treated (D(w) = 1) while those that do not are defined as the non-treated
(D(w) = 0). Then the typical outcome would be something like the employ-
ment status one year after treatment entry (s). Thus the starting point for
measuring the effect of treatment occurs before the end of the classification
window (s < w).
A practical problem is that those who had the luck of finding a job quickly

are more likely to be found in the non-treated group. Thus some trimming of
the left-tail of the duration distribution seems to be called for. Here we follow
an approach that is akin to the one suggested by Lechner (1999). Before
matching on the covariates he proposes a procedure to trim the duration
distribution of the non-treated such that he obtains a duration matched
comparison sample.
To illustrate the approach as clearly as possible, let us consider the ex-

treme case where w→∞. Now, duration matching is an attempt to estimate
average effect of treatment on the treated, e.g., in terms of the post-treatment
duration

∆1 = ESET s(1|D = 1)− ESET s(0|D = 1)

The expectation ESE(T s(1|D = 1) can be estimated as

t̂s =
1

n

nX
i=1

(ti − si)

where n is the number of treated individuals. An estimator of the coun-
terfactual outcome, ESE(T s(0|D = 1), is based on random sampling from

8



the inflow distribution, FS(s|D = 1). For a random draw, si, an individual
from the comparison sample is matched if the unemployment duration for
this randomly assigned individual satisfies tc > si. Applying this procedure
we get a duration matched comparison sample (consisting of n matches) and
may calculate

t̂sc =
1

n

nX
i=1

(tci − si), (11)

where tci−si is the observed unemployment duration after si for a (randomly
assigned) matched individual. The treatment effect is then estimated as

b∆1 = t̂s − t̂sc (12)

Proposition 1 a) Conditional on s, the assignment is not ignorable for the
remaining duration if not treated : T s(0) 6⊥⊥ D|(T (0) > s). b) When there is
no treatment effect, the estimator (b∆1) is positively biased

Proof. Consider individuals treated at S = s. For these individuals
we know that T (0) > s. For potential comparison individuals we have s <
T (0) < S since they were never treated. Thus

E[T s(0)|(D = 1)] = E[(T (0)− s)|T (0) > s] (13)

E[T s(0)|(D = 0, T (0) > s)] = E[(T (0)− s)|(S > T (0) > s] (14)

Since E[(T (0) − s)|T (0) > s] >E[(T (0) − s)|(S > T (0) > s)], T s(0) 6⊥⊥
D|(T (0) > s).
Notice that the result hold for any specification generating the two pro-

cesses T (0) and S. In particular, the duration matched estimator is biased
even though the hazards to employment and treatment are constant.
Proposition 1 a) follows from the observation that for all classification

periods such that s < w there is some conditioning on the future involved
when defining the potential comparison group for an individual treated at s.
Thus, the estimator is always biased. Given that there is no treatment effect
we can determine the sign of the bias involved in applying this procedure.
The intuition is simply that for the comparison group we know that (since
the individual is not treated) the spell ends with employment, while for the
treated group we do not know if the spell ends in employment. Therefore,
there is an upward bias in the effect of treatment on post-treatment durations
(i.e. there is a bias towards finding that the program does not work). Let
us also make the (perhaps obvious) remark that Proposition 1 hold if the
observations on unemployment durations are censored at, say, el, although
one would expect the bias to be reduced in magnitude.
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To sum up, it is not possible to create a sample of matching individual
who do not receive treatment at any point in time. In defining the treated
and the comparisons, the sampling is on T (0), which in turn determines
the (potential) outcome T s(0). We wish to emphasize that the crux of the
problem with this estimator lies in the use of a classification window; it is not
due to the trimming procedure. It is the strive to transform a world where
treatment assignment is the outcome of two dependent stochastic processes
to an idealized world where treatment assignment and outcomes occurs at
single points in time that causes the problems.

3.2 The proportional hazard model

A popular approach to estimate the treatment effect is to use the proportional
hazard model; see, e.g., Crowley and Hu (1977), Lalive et al. (2002), and
Richardson and van den Berg (2003). Here we examine what happens when
we impose a discrete time proportional hazard model in our context.
The discrete time hazard model is given by

λ(t, 1) = h(t, 0) exp(δD(t))

where D(t) = I(T (0) > S = t). Thus D(t) = 1 for individuals who have
been treated by t and D(t) = 0 for individuals who remain untreated at t
(but may be treated in the future). If δ estimates an average treatment effect
then λ(t, 0) = h(t, 0) and hence λ(t, 1) = λ(t, 0) exp(δD(t)).
Can we estimate an average treatment effect using this framework? The

following proposition provides part of the answer.

Proposition 2 The data generating process D(t) = I(T (0) > S = t) implies
that the baseline hazard for the treated is not equal to the baseline hazard in
the population, i.e., h(t, 0) 6= λ(t, 0).

Proof. The appropriate baseline hazard is given by

h(t, 0) = λ(t, 0|D = 1)Pr(D(t) = 1) + λ(t, 0|D = 0)Pr(D(t) = 0) (15)

Clearly, λ(t, 0) = h(t, 0) requires λ(t, 0|D = 1) = λ(t, 0|D = 0). Now, note
that Proposition 1 implies E(T (0)|D = 1) >E(T (0)|D = 0). Since this is
true for any censoring point t > 0 the probability of survival for the treated
(if not treated) is greater than the probability of survival for the non-treated,

10



i.e. F (t, 0|D = 1) > F (t, 0|D = 0). Now,

F (t, 0|D = 1) > F (t, 0|D = 0)⇔
lnF (t, 0|D = 1) > lnF (t, 0|D = 0)⇔Z t

0

d lnF (τ , 0|D = 1)

dτ
dτ >

Z t

0

d lnF (τ , 0|D = 0)

dτ
dτ ⇔

−
Z t

0

λ(τ , 0|D = 1)dτ > −
Z t

0

λ(τ , 0|D = 0)dτ ⇔Z t

0

[λ(τ , 0|D = 1)− λ(τ , 0|D = 0)]dτ < 0

This shows that λ(t, 0|D = 1) 6= λ(t, 0|D = 0).
Thus, the mirror image of the fact that those we observe taking treatment

have longer expected unemployment duration is that the integrated hazard
if not treated is lower for treated individuals than non-treated individuals.
Further, if δ > 0 it is not possible to identify all components of the baseline
hazard (15) using observational data. So estimates of the treatment effect
using the proportional hazards specification will, in general, neither estimate
an average treatment effect nor an effect of treatment on the treated. Can
we say anything about the sign of the bias relative to the true parameter, δ?
Proposition 3 outlines the results

Proposition 3 a) If there is no treatment effect (δ = 0), the proportional
hazards estimator (δ̂PH) has the property that plim δ̂PH = 0. b) If δ 6= 0,

then plim
¯̄̄
δ̂PH

¯̄̄
< |δ|.

Proof. See appendix 1.
The intuition for Proposition 3b) is the following. With observational

data, the risk set used for estimation includes individuals who are not treated
at time t but will be treated at some future time point. The inclusion of these
individuals (in addition to those who have been treated prior to t and those
who are never treated) will lead to attenuation bias.
However, the inclusion of those treated in the future in the risk set is a

virtue when δ = 0. The inclusion of these individuals balances the bias that
would arise if only the never treated were used as comparisons.
The thrust of Proposition 3 is that the proportional hazards specification

is a fertile ground for testing.9 However, the estimate will be smaller in ab-
solute value than the treatment effect when a treatment effect exists. Notice

9In the absence of (observed and unobserved) heterogeneity the proportional hazard
specification is a non-parametric specification of a causal parameter. When heterogeneity
is present however, the parametric specification (e.g. including the covariates as a single
index) is always a concern.
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also that standard (Wald) tests will not give correct inference since the true
model is non-proportional; see DiRienzo and Lagakos (2001).
Abbring and van den Berg (2003) show that the variation in the timing of

treatment identifies a causal treatment parameter in the proportional hazard
model. This is also true in our case since the model in this sub-section is
really a stylized version of their more general model. Consider estimating
δ(t) in

λ(t, 1) = h(t, 0) exp(δ(t)D(t))

It is clearly possible to estimate the causal treatment effect, δ(t), since h(t, 0)
is also the baseline hazard for those who have not been treated at t. Thus,
taking the timing of treatment seriously allows the identification of causal
parameters. The interpretation of δ(t) is “the effect of the program in time-
period t”.

3.3 Matching with a time-varying treatment indicator

The lesson from the above sub-section is that one should take the timing
of treatment seriously. However, if we believe in the assumptions that jus-
tify matching we have no reason to postulate a proportional hazard model.
Instead we will introduce a non-parametric matching estimator that takes
the timing of events into account but does not rely on proportionality as-
sumption. The estimand is also easier to interpret than the δ(t) parameter
discussed above.
With the treatment indicator D(s) = I(T (0) > S = s), the potential

unemployment durations for the two groups are:

T s(0)|(D(s) = 1) = T (0)− s (16)

T s(0)|(D(s) = 0) = (T (0)− s)I(T (0) < S) + T s(1)I(T (0) > S)

= (T (0)− s) + (T s(1)− T s(0))I(T (0) > S) (17)

It is straightforward to show that

Proposition 4 a) Under the null hypothesis of no treatment effect (H0),
potential unemployment duration is independent of the treatment indicator
D(s). b) Under the alternative (H1), conditional independence does not hold.

Proof. By inspection of (16) and (17) it follows that T s(0) ⊥⊥ D(s) if
T s(1) = T s(0). If there is a treatment effect, T s(1) 6= T s(0), then the CIA
does not hold.
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Thus, the gain of introducing the time-varying treatment indicator, D(s),
is immediate: under H0, potential unemployment duration is conditionally
independent of D(s). However, one cost associated with this procedure is
that the estimand

∆1(s) = E(T s(1)|D(s) = 1)− E(T s(0)|D(s) = 1) (18)

is only useful when it comes to testing for the existence of a treatment effect.
For the purpose of testing one would potentially like to average over the
distribution of program starts, i.e., calculate ES(∆1(s)).10 However, as shown
in Proposition 4, this estimand is not useful for estimating the magnitude of
the causal treatment effect. Under H1, the fact that individuals may enter at
future time points affects the duration distribution and, thus, T s(0) 6⊥⊥ D(s).

3.3.1 Estimators in discrete time

What assumptions are required to estimate a causal treatment effect? One
alternative is to assume that time is discrete.11 Therefore, let Ys(ts, 1) de-
note the potential employment outcome in ts if treated at s. Thus, e.g.,
Ys(t

s, 1) = 1 if an individual treated at s is employed at time ts. Further,
define Rs(t

s, 1) =
Pts−1

u=1 Ys(u, 1). Then χs(t
s, 1) = E(Ys(t

s, 1)|Rs(t
s, 1) = 0)

and this can be estimated using the sample taking treatment at s:

χs(t
s, D(s) = 1) =

n1s(t
s)

R1s(t
s)
=

PR1s(t
s)

i=1 yi,s(t
s)

R1s(t
s)

, ts = 1, ...,el − s (19)

where yi,s(ts) = 1 if individual i, treated at s, is employed at ts and yi,s(ts) = 0
otherwise, R1s(t

s) = R(ts,D(s) = 1) is the number of individuals, treated at
s, who are still unemployed at ts, n1s(t

s) =
PR1s(t

s)
i=1 yi,s(t

s) is the number who
exit to employment at ts, and el is a fixed censoring date.
How should the counterfactual hazard to employment — i.e. the hazard

if not treated by s — be calculated? Let Ys(ts, 0) be the potential employ-
ment outcome in ts if not treated at s, and Rs(t

s, 0) =
Pt−1

u=1 Ys(u, 0) then
χs(t

s, 0) = E(Ys(t
s, 0)|Rs(t

s, 0) = 0). Notice that those who did not take
treatment in period s will not have had time to experience an outcome as
treated in the following period. As a consequence the sequence of poten-
tial outcomes if not treated will be the same for the treated at s and the
10Sianesi (2001) has an analogous definition of the estimand of interest.
11For the practical application that we have in mind, i.e. unemployment duration, this

assumption is not restrictive; it may be more restrictive in other circumstances and then
one should bear in mind the potential bias caused by time aggregation.
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non-treated at s. Thus

{Ys(ts, 0)}∞ts=1 ⊥⊥ D(s). (20)

This then yields
{Rs(t

s, 0)}∞ts=1 ⊥⊥ D(s) (21)

and
{χs(ts, 0)}∞ts=1 ⊥⊥ D(s). (22)

That is, the sequence of potential hazard rates if not treated is independent
of treatment status at s. We can thus compare the hazard rate for those who
took treatment in time period s with those that did not, since those who did
not take treatment in period s will not have had the time to experience an
outcome as treated.
This implies that the estimates of the counterfactual hazard to employ-

ment for those treated by s can be based on the not yet treated at s:

χs(t
s,D(s) = 0) =

n0s(t
s)

R0t (t
s)
=

PR0s(t
s)

j=1 yj,s(t
s)

R0s(t
s)

, ts = 1, ...,el − s

where R0s(t
s) = Rs(t

s,D(s) = 0) is the number of individuals who have not
entered a program at time s and who are still openly unemployed (i.e., not
in the program) at time ts and n0s(t

s) is the number leaving for employment
at ts.
Conditioning on s, the survival function for the treated and the counter-

factual survival function can be estimated as

F
j

s(t
s) =

tsY
u=1

(1− χs(t
s, D(s) = j)), t = 1, ...,el − s, j = 0, 1

The effect of joining the program at s can then be calculated as the difference
between the two survival functions, i.e.

b∆s(t
s) = F

1

s(t
s)− F

0

s(t
s), ts = 1, ...,el − s. (23)

It would in principle be possible to estimate (7) and (9) by averaging over
the observed distribution of S. There are some complications associated with
sampling and inference, however. First, we must observe ts of equal length
for each s and hence el must be made dependent on FS(s|D = 1). Second, it
is not clear how the variance of the estimator should be calculated. Owing
to these complications, we consider two simpler possibilities.
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Estimator I One option, proposed in Fredriksson and Johansson (2003a),
is to calculate the difference between the two flow sample survival functions

F
c
(t, j) =

tY
u=0

(1− λ(u,D(u) = j), j = 0, 1 (24)

Here λ(u,D(u) = 0) is the estimator of the hazard rate to employment if non-
treated for the population who has been treated by u, while λ(u,D(u) = 1)
“estimates” the hazard rate to employment if treated by u. The interpreta-
tion of the estimand ∆c(t) = F

c
(t, 1) − F

c
(t, 0) is the difference in survival

rates for the population treated by t. This is an alternative to the propor-
tional hazard specification.

Estimator II Another option is to device an estimator of (10) in discrete
time. The potential hazard at ts if treated is equal to

χ(ts, 1) = ERs(ts,1)E(Ys(t
s, 1)|Rs(t

s, 1) = 0,D = 1)

=

elX
s=0

χs(t
s, 1)Pr(Rs(t

s, 1) = 0,D = 1)

where Pr(Rs(t
s, 1) = 0, D = 1) is the (potential) probability to still be un-

employed (remain in the risk set) at ts if treated at s. This hazard is easily
calculated as

χ11(t
s) = χ(ts, D = 1) =

Pel
s=0

PR1s(t
s)

i=1 yi,s(t
s)Pel

s=0R
1
s(t

s)

=

elX
s=0

χs(t
s,D(s) = 1)× p1s(t

s),

where p1s(t
s) = R1s(t

s)/
Pel

s=0R
1
s(t

s) is the sample probability to be unem-
ployed at ts if treated at s. Denote the potential hazard to employment if
not treated for the treated χ(ts, 0|D = 1). Now

χ(ts, 0|D = 1) = ERs(ts,0)E(Ys(t
s, 0)|Rs(t

s, 0) = 0, D = 1)

=

elX
s=1

χs(t
s, 0)Pr(Rs(t

s, 0) = 0,D = 1)

where Pr(Rs(t
s, 0) = 0|D = 1) is the potential probability to still be un-

employed (remain in the risk set) at ts if not treated at s for the treated
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population. Given the independence assumption (20) χ(t, 0|D = 1) can esti-
mated as

χ10(t
s) =

Pel
s=1

PR0s(t
s)

j=1 yj,s(t
s)Peles=1R0s(ts)

=

elX
s=0

χs(t
s,D(s) = 0)× p0s(t

s)

where p0s(t
s) = R0s(t

s)/
Pel

s=1R
0
s(t

s) is the estimated probability for the pop-
ulation of treated to be at risk if not treated at s.
The survival function in unemployment for the average treated individual

if treated and non-treated can then be estimated as

F
1

j(t
s) =

tsY
u=1

(1− χ1j(u)), t
s = 1, ...,el, j = 0, 1 (25)

Finally, the effect of joining the program is given by the difference between
the two survival functions, i.e.

b∆1(ts) = F
1

1(t
s)− F

1

0(t
s), ts = 1, ...,el (26)

Notice that F
1

1(t
s) is the maximum likelihood estimator (MLE) of F

1
(ts, 1);

see Kalbfleich and Prentice (1980) ch. 4. Therefore, plimF
1

1(t
s) = F

1
(ts, 1).

We can now make a statement about the virtue of (26)

Proposition 5 plim b∆1(t) = F
1
(ts, 1)− F

1
(ts, 0).

Proof. Since {Ys(ts, 0)}∞ts=1 ⊥⊥ D(s), F
1

0(t
s) is the MLE of F

1
(ts, 0).

Hence, plim F
1

0(t
s) = F

1
(ts, 0) and the proposition follows.

The reasoning above clearly shows that the hazard χ10(t
s) and its comple-

ment, the survival function F
1

0(t
s), define a matching estimator. To apply it,

we just have to create the same distribution of entrance dates s as for those
who actually enter the program. The proposed estimator thus balances the
pre-treatment duration. In this sense the estimator is analogous to what
random assignment accomplishes in experimental data. Random assignment
then balances the pre-treatment duration (and any other covariates) for the
treated and control group, which is why we do not have to condition on the
length of the period prior to treatment entry when estimating the treatment
effect.
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3.3.2 Observed heterogeneity and inference

Here we device a matching estimator for the more realistic case with observed
heterogeneity. Then, we discuss the inferential aspects of this estimator.
Denote by xs the observed covariates for the population treated at s.

Then it is straightforward to show that

Proposition 6 If {Ys(ts, 0)}∞ts=1 ⊥⊥ D(s)|xs, the counterfactual survival func-
tion for the average treated individual F

1
(ts, 0) can be estimated using indi-

viduals that are non-treated by s and have covariates xs.

Proof. see Appendix 2.
The survival functions are:

F
1

j(t
s) =

tsY
u=1

(1− χ1j(u)), t
s = 1, ...,el, j = 0, 1 (27)

where

χ1j(u) =

elX
s=0

χs(u,D(s) = j|xs)×
R0s(u|xs)
R0(u|Xel)

=

Pel
s=0

PRj
s(u|xs)

i=1 yi(u)Pel
s=0R

j
s(u|xs)

,

Xel = {xs}el0 denote the covariates for the treated population and Rj
s(u|xs) =

R(u,D(s) = j|xs) is the number of persons with covariates xs still at risk
and unemployed in u.

Inference For purposes of inference, a simple, but not quite correct,12 way
of calculating Var(b∆1(ts)) is: Var(b∆1(ts)) =Var(F

1

1(t
s))+Var(F

1

0(t
s)), where

the variance for the estimated survival function is equal to (see, e.g., Lan-
caster, 1990)

Var(F
1

j(t)) = F
1

j(t)
2

tX
u=1

nj(u)

(Rj(u)− nj(u))Rj(u)
, j = 0, 1 (28)

Here n1(u) =
Pel

s=0

PR1s(u)
i=1 yi,s(u), n

0(u) =
Pel

s=0

PR0s(u)
j=1 yj,s(u), R

1(u) =Pel
s=0R

1
s(u) and R0(u) =

Pel
s=0R

0
s(u).

12The variance calculation is not quite correct since it ignores the covariance between
the estimated survival functions. Ignoring the covariance does not seem to lead to biased
inference (see Fredriksson and Johansson, 2003a).
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Fredriksson and Johansson (2003a) study the small sample performance
of the ∆c(t) = F

c
(t, 1)− F

c
(t, 0) estimator (i.e. the estimator based on the

survival function (24)) and the alternative estimators that we reviewed in
section 3. We find that the survival function estimator is reliable in terms
of testing for a treatment effect. Under the null hypothesis of no treatment,
there is a substantial negative bias (i.e. a bias towards finding that the
program does not work) in the matching approach applied by, e.g., Gerfin
and Lechner (2002), Larsson (2003), and Lechner (1999, 2002). The bias is,
as expected, increasing in length of the observation window and the sizes
of their Wald tests are too large. Therefore, the null hypothesis is rejected
too often and one may even find statistically significant negative treatment
effects. The estimator we propose suffers from no bias (under H0) and a our
Wald test gives the correct size.13

4 An empirical application

In this section we apply the estimators defined by (26) and (28) to evaluate
the effects of an employment subsidy (ES) program. In addition we also
estimate treatment effects that vary by entrance date, i.e., we calculate the
estimator given by (23).
The ES program was introduced on January 1, 1998.14 The subsidy was

targeted at the long-term unemployed, i.e., persons at least 20 years-of-age
and registered as unemployed at the public employment service (PES) for at
least 12 months. The subsidy amounted to 50 percent of total wage costs
and was paid for a maximum period of 6 months.15

We use register data from the National Labour Market Board. The
database, the unemployment register, contains information on all individ-
uals registering at the PES in Sweden since August 1991. The database
includes information on, e.g., age, educational attainment and sex, as well as
the individuals’ registration date, job training activities and starting dates
of participation in various labour market programs.
For each individual registered at the PES we observe an event history

including the number of spells and days of unemployment. Everyone that
left the register before the introduction of the ES program are dropped from

13The small sample performance of the two estimators ∆c(t) and b∆1(ts) and the accom-
panying Wald test are very similar.
14For a more thorough description of the employment subsidy programmes, see Forslund

et al. (2004) and the references therein.
15The subsidy was also capped at SEK 350 per day and could be extended to 12 months

in some exceptional cases.
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the data. We also exclude all individuals for which the first spell of unem-
ployment occurred before January 1, 1992 and all registered spells shorter
than 365 days. The reason for the last two exclusions is that previous labour
market history is the key variable for the matching estimator and the main
eligibility criteria for the program is continuous unemployment for at least
365 days.
Until December 31, 2000, individuals under 25 years-of-age had the pos-

sibility to start the ES program with a registered spell of only 90 days. Due
to this exception, all unemployed persons under 25 years of age on January
1, 1998, (the starting date of the program) or later are excluded from the
data set. We have also excluded those who at the month of registration at
the PES were at least 63 years-of-age (15,160 persons).16 We have also ex-
cluded all individuals who had spells with negative duration before the last
spell (324 spells). Finally, because we aggregate time to monthly intervals,
we have discarded 63 ES spells that ended within 29 days.
A spell of unemployment is defined as an uninterrupted period of time

when an unemployed person is registered at the PES. The spell is ended if
the unemployed person gets a job for a period of at least 30 days, or if he or
she, for any other reason, leaves the register for a period of at least 30 days.
It is possible to have more than one spell of unemployment of at least 365

days without interruption during the time the ES program has been going
on. Thus, an individual can be eligible for the program more than once.
The unit of observation is chosen to be every time a person becomes eligible
for the ES program. In the analysis we use information on each individual’s
total number of spells and days in unemployment before becoming eligible
for the ES. For those who are eligible more than once the total number of
days and spells is aggregated each time they become eligible. Thus, the data
include only persons who have been eligible for the ES program on at least
one occasion.
The individuals in the data are separated into two different groups: those

who start the ES program after having become eligible and eligibles who
do not start the program. Each time a person becomes eligible, the total
number of days until he or she either leaves the employment service office or
becomes right censored is calculated. The point in time for right censoring
is 1 October 2002 or when a person leaves the register for other destinations
than work. For those who enter the ES program, the duration to ES is
calculated as well.
16This is done because retirement is imminent for these individuals. The eligibility

condition of being registered for one year coupled with a program duration of at least six
months leaves half a year before statutory retirement occurs (normally at age 65).
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Individuals are defined as having found a job if they deregister for em-
ployment or for temporary employment for a minimum period of 30 days. A
non-trivial number of persons leave the register for unknown reasons (which
may well include work, see Bring and Carling, 2000). To the extent that
there are systematic differences between participants and non-participants
in the fraction of those who leave the register for unknown reason that actu-
ally leave it for work, we would get biased estimates of the treatment effect
by using our definition of the outcome of interest.17

A total of 631,358 individuals, aged 25—63, were eligible for ES between
January 1998 and October 2002. This population of eligibles is described
in Table 1.18 Three percent of the eligible spells ended in ES. The most
salient feature of the eligible persons is that they on average had a long
lasting relationship with the employment service: in addition to the days
spent in the register in order to become eligible, the average number of days
in the register was almost 500 and the average number of earlier spells in
the register was almost 1.5. Approximately 40 percent of the spells ended in
regular employment.
The mean characteristics of the ES participants and non-participants in

the eligible population are reported in Table 2. A significantly higher fraction
(64 percent as compared to 39 percent) of the ES participants ended up in
employment. This does not indicate a positive treatment effect; it more
likely reflects the fact that the program participants on average registered
earlier (see T0) at the PES and, hence, on average had spent a longer time
looking for a job. Males and non-Nordic immigrants are over-represented
and disabled are under-represented among the participants. Participants
are younger, more educated, and have spent less time at the employment
service prior to the last period of unemployment. Given reasonable priors
about how these characteristics should influence the exit to employment, the
participants should be expected to leave unemployment more rapidly than
the non-participants.
To apply our estimators in the present setting we must check whether

selection on observables and no-anticipation are reasonable assumptions. To
make a long story short, we think that these assumption are palatable in the
present setting but let us substantiate this claim somewhat.
In a stated preference experiment, Eriksson (1997) finds that the hetero-

geneity of the PES caseworker is more important for determining program

17This problem has been pointed out by Sianesi (2001, 2002). Forslund et al. (2004)
performed a sensitivity analysis with respect to this issue. They found that, if anything,
the treatment effect of ES is biased downward.
18Note that we have categorized a number of variables since we want to perform an

exact matching procedure.
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Table 1: Descriptive statistics for all eligibles

Variable Description Mean Std. dev. Min Max
ES =1 if in ES program 0.03 0.17 0 1
Duration Current spell duration (months) 23.7 23.2 1 118
Employed =1 if regularly employed 0.40 0.49 0 1
Male =1 if male 0.41 0.49 0 1
NonNordic =1 if non-Nordic citizen 0.14 0.35 0 1
NoUI =1 if no unemployment insurance 0.18 0.38 0 1
Disabled =1 if disabled 0.10 0.30 0 1
Gymnasium =1 if upper secondary degree 0.35 0.48 0 1
University =1 if university degree 0.12 0.33 0 1
Age1 =1 if age ≤ 30 0.22 0.42 0 1
Age2 =1 if 30 < age ≤ 40 0.31 0.46 0 1
Age3 =1 if 40 < age ≤ 50 0.24 0.43 0 1

TD1
=1 if days in register during
previous spell (TD) = 0

0.38 0.48 0 1

TD2 =1 if 0 < TD ≤ 100 0.05 0.21 0 1
TD3 =1 if 100 < TD ≤ 500 0.20 0.40 0 1
TD4 =1 if 500 < TD ≤ 1000 0.18 0.38 0 1

TP1
=1 if previous number of program-
mes (TP) = 0

0.39 0.49 0 1

TP2 =1 if 0 < TP ≤ 5 0.39 0.49 0 1
TP3 =1 if 5 < TP ≤ 15 0.21 0.41 0 1

T0
Month turning eligible, January
1998=1 October 2002=118

69.8 27.6 1 118
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Table 2: Mean characterstics of participants (ES), non-participants (No ES),
and exactly matched sample (Matched).

ES No ES ES-No ES Matched
Variable mean mean t-value mean
Duration 34.38 23.37 62.90 —
Employed 0.64 0.39 71.54 —

Covariates
Male 0.61 0.41 56.38 0.56
NonNordic 0.21 0.14 25.41 0.14
NoUI 0.16 0.18 -5.43 0.11
Disabled 0.06 0.10 -20.41 0.02
Gymnasium 0.43 0.35 24.08 0.42
University 0.12 0.12 -3.43 0.09
Age1 0.26 0.22 11.34 0.24
Age2 0.32 0.31 3.39 0.30
Age3 0.27 0.24 7.04 0.25
TD1 0.41 0.38 9.44 0.51
TD2 0.05 0.05 4.28 0.02
TD3 0.22 0.20 8.37 0.19
TD4 0.18 0.18 1.22 0.15
TP1 0.41 0.38 7.15 0.51
TP2 0.42 0.39 7.82 0.35
TP3 0.17 0.22 -18.62 0.14
T0 58.33 70.22 -65.75 60.18
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participation than the heterogeneity of the individuals. Carling and Richard-
son (2001) report evidence in the same vein. They compared the effects of
eight different programs on the probability of finding a job. They argue that
their results probably do not reflect selection by showing that program place-
ment depended more on the employment service office that the job seeker had
visited than on her observed characteristics.
For the specific ES program we are considering there is also survey evi-

dence on the selection process (see Lundin, 2000). The survey was directed
to the caseworkers at the PES. The majority of the caseworkers (55 %) re-
ported that the first initiative to enter ES was taken by them; an additional
33 percent said that the initiative came from the employer; only 6 percent
maintained that the initiative came from the eligible. In the same survey,
the caseworkers were asked about the criteria that were important when
suggesting ES participation. The caseworkers were allowed to give multiple
responses. The following list orders the criteria by their importance: (1) the
formal requirements of ES (84 %); (2) the motivation of the eligible (58 %);
(3) that the eligible belonged to a high priority group (31 %); (4) that the
employer has suggested to employ the eligible (13 %); (5) that the eligible
has education for the job (11 %); (6) in order to extend the period on un-
employment insurance (UI) for the eligible (9 %); and (7) the unemployed
suggested ES (5 %).
All in all, individual self-selection to ES do not seem to be a big is-

sue. The potential threat to the selection on observables assumption is the
case workers’ appreciation of the motivation of the unemployed individual.
However, Eriksson (1997) shows that this appreciation is very heterogenous
among caseworkers, suggesting that this may not be so problematic. More-
over, we have detailed information on the previous labour market history
(presumably a good indicator of motivation). Also, there is information on
the local labour market19 where the individual is registered. We can thus
control for any common component in the appreciation of the motivation of
the unemployed individual; c.f. Carling and Richardson (2001).
The no-anticipation assumption requires that the unemployed neither

knows the exact date of treatment start nor the exact date of the start of the
job spell. There must be some randomness in these events. Therefore, it is
comforting to see that only 9 percent of the caseworkers think that extending
the period on UI is important, since the expiration of benefits is an event
that is known for certain in advance. Anticipation is also less of a concern
since we are using monthly rather than daily data.
Concerns about anticipation is not the main reason for the time aggre-

19There are 100 local labour markets and the definition is based on commuting patterns.
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gation, however. The principal reason is that there is a good deal of mea-
surement error in the exact day of a start of a job spell. The main reason
for this measurement error is the strategy used by PES officers to obtain the
information on when the job spell began. If the unemployed individual has
not been in contact with the PES office for some specific time period, the
unemployed is asked over the phone whether s(he) is employed or not. As
noted in section 3.1, time aggregation of data may lead to a small downward
bias in the estimated treatment effects.
We match on the covariates listed in Table 2 and the local labor market

where the individual is registered. In this application, we use a one-to-
one exact matching estimator. Alternatively, a propensity score matching
estimator could be used (see Appendix 2 and Fredriksson and Johansson,
2003b, for an application).20

Index the treated at s = 0, . . . ,el − 1 by i and the comparison group at s
by c. The unique match (for each s) is then given by

ci = xi ≡ xc, c ∈ N(s), (29)

where N(s) is the number of individuals in the comparison group. If there
is more than one individual in the comparison group with the same values
of the covariates, we randomize over the potential matches. If no unique
match from c is found for individual i, this individual is removed from the
estimation. With complete pairs of treated and non-treated individuals, (26)
is estimated as b∆1(ts) = F

1m

1 (t
s)− F

1m

0 (t
s), ts = 1, ...,el (30)

where F
1m

1 (t
s)) and F

1m

0 (t
s) are the Kaplan-Meier survival function if treated

and non-treated for the subset of treated individual with support common
to the comparison sample.
Matching is based on 7, 651 treated individuals.21 Descriptive statistics

for the matched pairs are reproduced in Table 2.

4.1 Results

Figure 1 displays the estimated survival functions and figure 2 shows the esti-
mated treatment effects (b∆1(ts)) along with 95 percent confidence intervals.

20This would make it more easy to find comparison individuals to the treated individuals
and would increase the efficiency of the estimators. On the other hand, estimation of the
propensity score may introduce bias.
21The original sample consisted of 19, 951 ES individuals. Thus 12, 300 observations

were excluded since no matching individual was found in the control group.
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In both figures the upper panels is the estimate when we control for both pre
ES duration and covariates while the estimate in the lower panel only control
for pre ES duration. This means that the differences between the upper and
the lower panels reflect the effects of observed heterogeneity.
From figure 2 we can see that after an initial period of about 6 months

with a negligible (negative) treatment effect there is a downward jump; from
then on the effect gradually becomes smaller, but it is negative and significant
over the rest of the follow-up horizon (57 months). This scenario is consistent
with an initial period of locking-in and a subsequent period with a positive
treatment effect. The sum of the effects over the whole follow-up horizon is
7.78 months, which corresponds to a decrease in unemployment duration for
the average individual by 14 percent over the follow-up horizon.
Further, by comparing the upper and lower panels of figures 1 and 2, we

can see that the “treatment effects” are reduced considerably by matching.
Hence, this confirms our prior (from our inspection of Table 2) of a positive
selection to ES among the eligibles.
One advantage of our estimator is that we can compute treatment ef-

fects by pre-treatment duration; see equation (23). In Figure 3 we plot the
treatment effect for those entering during months 0—3 after eligibility, and
in Figure 4 we plot the treatment effect for those entering during months
36—39.22 The general message is that treatment effects look rather similar
irrespective of the timing of program entry; once again we see that it is
imperative to control for observed heterogeneity.
A likely explanation for the downward jump in the estimated treatment

effect after 6 months is that the participants simply tend to stay-on at the
work place where they were employed with the subsidy. On the one hand, this
is an intended effect of the program. On the other hand, this result may be
seen as an indication that the program tends to displace regular employment.
That is, employers use the subsidy to fill vacancies that would have been
filled by hiring on the regular market in the absence of the program. This
interpretation is consistent with the qualitative evidence reported in Lundin
(2000).

5 Concluding remarks

In this paper we have considered the evaluation problem using observational
data when the program start is the outcome of a stochastic process. We have

22Only 489 matched individuals begin treatment during months 36—39 and the number
of matched individuals is 206.
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shown that (i) matching with a binary indicator variable using a classifica-
tion window will yield biased estimates of treatment on the treated effects;
(ii) the duration framework in discrete time (with a time-varying treatment
indicator) is a fertile ground for effect evaluations.
We have suggested easy-to-use non-parametric matching estimators of

the survival functions. These estimators do not rely on strong assumptions
about the functional form of the two processes generating the inflow into
program and employment. We have assumed that selection is purely based
on observables. Whether the conditional independence assumptions required
for the estimators are reasonable depend crucially on the richness of the
information in the data. Even if we assume that unobserved heterogeneity
is not an issue, the evaluation problem is demanding on the data. We need
longitudinal data where we can observe the duration path. Knowing the
entire path is crucial as we need to screen it in order to define a comparison
sample that is matched in terms of the pre-treatment duration.
We think that the issues we have raised applies fairly generally to eval-

uations of on-going labor market programs. The problems associated with
estimating well-defined treatments effects affect all outcomes that are func-
tions of the outflow to employment. Hence, it applies directly when the
outcome of interest is employment (or annual earnings) some time after pro-
gram start. Moreover, if skill loss increases with unemployment duration, as
suggested by the recent analysis in Edin and Gustavsson (2001), one should
be careful when estimating the effect of treatment on wages. Although it
may be tempting to screen the future in order to find individuals who did
not take part in the program during some window there is a definite risk
associated with doing this. It is more probable that individuals who, by the
luck of the dice, found employment are included in the comparison group.
But if there is skill loss, this lucky draw will in turn spill over onto wages
yielding a negative bias in the estimates of the treatment effects. Thus the
issues we have raised here may be important also for studies examining the
treatment effects on wages.
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Appendix 1: Proof of proposition 4

It is helpful to first consider the experimental estimate δ̂R. Suppose we were
to conduct an experiment where at t = 0 individual are randomly assigned
to a treatment (D = 1) and a comparison (control) group (D = 0). To
simplify the exposition, assume that we observe k unique durations after
randomization. Order the k survival times such that t(1) < t(2) < .... < t(k).
Associate a treatment indicator with each unique duration such thatD(j) = 1
if the individual has been treated in period t ≤ t(j) and D(j) = 0 otherwise.
Now, consider the partial likelihood

L(δ) =
kY

j=1

⎛⎝ exp(δD(j))P
l∈R(t(j))

exp(δDl)

⎞⎠ =
kY

j=1

µ
exp(δD(j))

R(j)(1) exp(δ) +R(j)(0)

¶

where R(j)(1) and R(j)(0) denote the number of treated and non-treated
in the risk-set respectively. The maximum likelihood estimator of δ under
random sampling is given as

δ̂R = ln

Ã
kX

j=1

D(j)R(j)(0)

!
− ln

Ã
kX

j=1

R(j)(1)(1−D(j))

!
.

If there is no treatment effect then

E(D(j)R(j)(0)) = E(R(j)(0)|D(j) = 1)Pr(D(j) = 1)

= E(R(j)(0)) Pr(D = 1) (31)

and

E((1−D(j))R(j)(1)) = E(R(j)(1)|D(j) = 0)Pr(D(j) = 0)

= E(R(j)(1)) Pr(D = 0) (32)

and hence δ̂R
p→ 0. If δ > 0 then, R(j)(1) and D(j) are no longer independent

and Pr(D(j)) 6= Pr(D).
Now consider the partial likelihood in the observational setting

L(δ) =
kY

j=1

Ã
exp(δD(j))P

l∈R(t(j)) exp(δDl)

!
(33)

=
kY

j=1

µ
exp(δD(j))

R(j)(1) exp(δ) +R(j)(0) +R(j)(0|1)

¶

30



The difference compared with the partial likelihood in the experimental set-
ting is the inclusion of R(j)(0|1), which is the number of individuals that have
not been treated at t ≤ t(j) but will be treated in the future. The estimator
for the observational data is equal to

δ̂PH = ln

Ã
kX

j=1

D(j)(R(j)(0) +R(j)(0|1))
!
− ln

Ã
kX

j=1

R(j)(1)(1−D(j))

!
,

If there is no treatment effect (i.e. δ = 0) then, as above, Pr(D(j)) = Pr(D);
that is, the probability to enter treatment at duration t(j) is the same at the
probability to enter treatment for a randomly chosen individual at t = 0.
This means that the probability to belong to the comparison group is not
dependent on the order (j) of the durations and as a result we get the same
expressions as above; hence, plimδ̂PH = 0. The inclusion of those treated in
the future in the risk-set, i.e. R(j)(0|1), balances the bias that would result
if only the never treated are used as comparisons.
If δ 6= 0 then plimδ̂R = δ. This estimator is only based on the rank orders

of the treated relative to the rank orders for those not treated.23 In the
observational setting the only change (from the case without a treatment
effect) in rank order is for the individuals who are never treated and the
estimator δ̂PH will be biased downwards in absolute terms; hence plim|δ̂PH | <
|δ|.

23Note that the rank statistic is sufficient to yield consistent estimates of the parameters
in the proportional hazards model without knowledge of λ0(·). This is also true if the true
model is of the non-proportional variety (see DiRienzo and Lagakos, 2001). Wald tests of
a treatment effect are biased, however.
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Appendix 2: Matching

Proof of proposition 6 The CIA

{Ys(ts, 0)}∞ts=1 ⊥⊥ D(s)|xs (34)

implies
{Rs(t

s, 0)}∞ts=1 ⊥⊥ D(s)|xs, ∀s.
and

{χs(ts, 0)}∞ts=1 ⊥⊥ D(s)|xs,∀s.
Thus

χs(t
s, 0) = Exs [χs(t

s, D(s) = 1)|xs] = Exs [χs(ts,D(s) = 0)|xs], ∀ts and s

and

F s(t
s, 0) = Exs [F s(t

s,D(s) = 1)|xs] = Exs [F s(t
s,D(s) = 0)|xs], ∀ts and s

Furthermore we get from using (34) that

χ(ts, 0) = Eps(ts|xs)[χ(t
s,D(s) = 1|xs] = Eps(ts|xs)[χ(ts,D(s) = 0)|xs)], ∀ts

and

F
1
(ts, 0) = Eps(ts|xs)[F s(t

s,D(s) = 1)|xs] = Eps(ts|xs)[F s(t
s, D(s) = 0)|xs], ∀ts,

where Eps(ts|xs) is the expectation with respect to the distribution of the
probability of belonging to the risk set (if not treated) given treatment at s,
(i.e. ps(ts|xs) = Pr(Rs(t

s, 0|xs) = 0|D = 1)).

Propensity score matching Let the conditional probability for the pop-
ulation at risk of being treated at s given xs be given by e(xs) = Pr(D(s) =
1|xs) and let 0 < e(xs) < 1 for all xs.24 By the conditional independence
assumption (34) it holds that (see Rosenbaum and Rubin, 1983)

xs ⊥⊥ D(s)|e(xs)

Thus, the counterfactual can be estimated as

F
1
(ts, 0) = Eps(ts|e(xs))[F s(t

s, D(s) = 1)|e(xs)]
= Eps(ts|e(xs))[F s(t

s, D(s) = 0)|e(xs)], ∀ts.

24This means that for each xs satisfying the CIA there must be individuals in both
states.
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Figure 1: Survival functions to employment for participants and eligible non-
participants
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Figure 2: Estimated treatment effect
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Figure 3: Estimated treatment effect for participants entering during months
t = 0, . . . , 3
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Figure 4: Estimated treatment effect for participants entering during months
t = 36, . . . , 39
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