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Bias of OLS Estimators due to Exclusion of Relevant

Variables and Inclusion of Irrelevant Variables

Deepankar Basu⇤

December 1, 2018

Abstract

In this paper I discuss three issues related to bias of OLS estimators in a general mul-
tivariate setting. First, I discuss the bias that arises from omitting relevant variables.
I o↵er a geometric interpretation of such bias and derive su�cient conditions in terms
of sign restrictions that allows us to determine the direction of bias. Second, I show
that inclusion of some omitted variables will not necessarily reduce the magnitude of
OVB as long as some others remain omitted. Third, I show that inclusion of irrelevant
variables in a model with omitted variables can also have an impact on the bias of
OLS estimators. I use the running example of a simple wage regression to illustrate
my arguments.
JEL Codes: C20
Keywords: omitted variable; irrelevant variables; ordinary least squares; bias.

1 Introduction

This paper studies three issues related to the problem of bias of ordinary least squares
(OLS) estimators that arise from errors of exclusion (of relevant variables) and inclusion (of
irrelevant variables). The first issue relates to the possibility of determining the direction
of omitted variable bias (OVB) in a general multivariate setting - a longstanding issue in
econometrics; the second issue relates to the possibility of reducing bias of OLS estimators
with the inclusion of some of the variables that were excluded in the first place; and the
third issue relates to the possible interaction between the errors of exclusion and inclusion
in determining the bias of OLS estimators. Since OLS estimation remains a work horse of
applied econometrics research, the issues discussed in this paper will be of interest to a wide
range of researchers in the social sciences, including in economics, sociology, political science.

⇤Department of Economics, University of Massachusetts, 310 Crotty Hall, Amherst, MA 01003, email:
dbasu@econs.umass.edu. I would like to thank Michael Ash and Junshang Liang for comments and sug-
gestions. This paper supersedes Basu (2018).
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Let me introduce the first issue by considering a simple population regression function,

y = �0 + �1x+ �1z + u, (1)

where the expected value of u conditional on x and z, is zero, i.e. E(u|x, z) = 0. Suppose a
researcher does not have data on the variable z and ends up estimating the following model,

y = ↵0 + ↵1x+ v,

with OLS. Since the omitted variable, z, might be correlated with the included regressor,
x, leaving it out of the estimated model induces correlation between the error term and the
regressor. This makes the OLS estimator of the parameters biased. Moreover, conditional
on x and z, the bias of OLS estimator of the slope parameter, �1, is given by

E (↵̂1)� �1 =

✓
�̂z

�̂x

◆
⇢̂x,z�1, (2)

where ⇢̂x,z is the sample correlation coe�cient between the omitted and included regressor,
and �̂z and �̂x are sample standard deviations of z and x, respectively. It is often of interest to
ascertain the direction of bias, even though the magnitude cannot be, in general, determined.
Since �̂z and �̂x are always positive, it is possible, in this case, to determine the direction of
bias only using information on the signs of �1 and ⇢̂x,z: if both are of the same sign, the bias
is positive; if both are of opposite signs, the bias is negative.

Let me introduce the second issue by considering a slight extension of the above frame-
work and consider the following population regression function,

y = �0 + �1x+ �1z1 + �2z2 + u, (3)

where E(u|x, z1, z2) = 0. In the context of this model, let us define a estimated “short
regression” model as

y = ↵0 + ↵1x+ v,

where both the variables z1 and z2 have been omitted, and an estimated “long regression”
model as

y = �0 + �1x+ �2z1 + w,

where only z2 has been omitted.
Let ↵̂1 and �̂1 denote the OLS estimators of the coe�cient on x in the short and long re-

gressions, respectively. Since x, z1 and z2 are likely to be correlated, both the estimated short
and long regression models give biased OLS estimators of the parameters in the population
regression function - because in both cases, the error term is likely to be correlated with the
included regressors. Thus, both ↵̂1 and �̂1 are biased estimators of �1, the coe�cient of x
in the population regression function. Moreover, conditional on x, z1, z2, expressions for the
bias are as follows:

E (↵̂1)� �1 =

✓
�̂z1

�̂x

◆
⇢̂x,z1�1 +

✓
�̂z2

�̂x

◆
⇢̂x,z2�2 (4)
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where ⇢̂x,z1 is the sample correlation coe�cient between x and z1, ⇢̂x,z2 is the sample corre-
lation coe�cient between x and z2, �̂x, �̂z1 and �̂z2 are sample standard deviations of x, z1
and z2, respectively; and

E
⇣
�̂1

⌘
� �1 =

✓
�̂z2

�̂x

◆
⇢̂x,z2�2 +

✓
�̂z1

�̂x

◆✓
�̂z2

�̂v̂

◆
⇢̂x,z1 ⇢̂v̂,z2�2 (5)

where ⇢̂x,z2 and ⇢̂v̂,z2 are the sample correlation coe�cients, respectively, between z2 and x,
and z2 and v̂, where the latter are the (negative of) the residuals from an auxiliary regression
of z1 on x, and �̂v̂ denotes the sample standard deviation of v̂.

To introduce the third issue, let me return to the population regression function in (1),

y = �0 + �1x+ �1z + u,

and consider the case where the estimated model is given by

y = ↵0 + ↵1x+ ↵2w + v.

In this case, the estimated model is doubly misspecified: it excludes the relevant variable,
z, and includes an irrelevant variable, w.1 We assume that the error term in the population
regression function satisfies the following condition:

E(u|x, z, w) = 0.

If the doubly misspecified model is estimated with OLS, then all the parameters will be
estimated with bias. In fact, letting ↵̂1 denote the OLS estimator of ↵1, a little algebra
allows us to pin down the bias as,

E (↵̂1)� �1 =

✓
�̂z

�̂x

◆
⇢̂x,z�1 + ⇢̂x,w

✓
�̂w

�̂x

◆
⇢̂z,wx

✓
�̂z

�̂wx

◆
�1, (6)

where w
x denotes the residuals that come from the regression of w on x, ⇢̂z,wx denotes the

sample correlation coe�cient of z and w
x, and other symbols have their usual interpretation.

In moving from the simplest case with one omitted variable to even slightly more complex
cases, we get a preview of three important results. First, a comparison of (2) and (4) shows
that it is no longer possible to determine even the direction of OVB on the basis of the signs
of parameters only when we have more than one omitted variable. This is because, as we
see from (4), the bias of the OLS estimator,

✓
�̂z1

�̂x

◆
⇢̂x,z1�1 +

✓
�̂z2

�̂x

◆
⇢̂x,z2�2,

is the sum of two terms, each of which can be of any sign. One can immediately generalize
this to see that, in a multivariate case, it is no longer possible to unambiguously determine

1A variable is considered irrelevant if it does not appear in the population regression function, i.e. its
coe�cient in the population regression function (the true model) is zero.
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the direction of OVB on the basis of signs of parameters only, as has been known for long
(Forbes, 2000; Greene, 2012). An interesting question, and one that is investigated in this
paper, is if we can determine the direction of the OVB in some special cases on the basis of
signs of parameters only.

Second, a comparison of (4) and (5) shows that it is no longer possible to ensure bias
reduction by the inclusion of an omitted variable when some others remain omitted. This is
because, using (4) and (5), we get

E
⇣
�̂1

⌘
� �1 =

⇥
E (↵̂1)� �1

⇤
+

✓
�̂z1

�̂x

◆
⇢̂x,z1�1 �

✓
�̂z1

�̂x

◆✓
�̂z2

�̂v̂

◆
⇢̂x,z1 ⇢̂v̂,z2�2,

so that the bias in the long regression, E
⇣
�̂1

⌘
� �1, can be larger or smaller than the bias in

the short regression, E (↵̂1)� �1.
This result goes against the common perception that including omitted variables will

always lead to a reduction in bias and arises from the fact that both the short and long
regressions are mis-specified. In textbook treatments, bias is reduced because the long re-
gression includes all the omitted variables. But if, as seems quite realistic, the long regression
also su↵ers from the problem of omitted variables, then it is no longer possible to ensure bias
reduction unambiguously by inclusion of omitted variables. One can easily generalize this
to see that, in a multivariate setting, inclusion of omitted variables will not necessarily lead
to a reduction in OVB if some variables remain omitted, a result that has been highlighted
in recent work (Clarke, 2005; Luca et al., 2018).2

Third, a comparison of (2) and (6) shows that the bias in the doubly misspecified model,
where a relevant variable is omitted and an irrelevant variable is included, is the sum of the
omitted variable bias - which is the first term in (6) - and an additional term that comes
due to the inclusion of the irrelevant variable - which is the second term in (6). Thus, in
the doubly misspecified model, the overall bias of OLS estimators can be decomposed into
two terms, the first being the direct e↵ect of the omitted variable, and the second being
the indirect e↵ect of the omitted variable, the latter working its way through the irrelevant
variable.

This is a novel result and goes against the common perception that inclusion of irrelevant
variables has no impact on the bias of OLS estimators (Greene, 2012, pp. 58).3 This, perhaps
surprising, result comes from the fact that the model su↵ers from both problems at the same
time - omitting a relevant variable and including an irrelevant variable. The presence of an
omitted variable interacts with the correlation between the irrelevant and included regressor
- which is also mediated by the correlation between the omitted variable and the part of
the irrelevant variable that is not explained by the included regressor - to contribute an
additional term to the overall bias. Of course, one can see the standard result, that inclusion
of irrelevant variables have no e↵ect on bias, as a special case of this more general framework.
If the estimated model does not su↵er from the problem of omitted variable problems, which

2I would like to thank Weikai Chen for pointing me to this literature.
3In the standard analysis, inclusion of irrelevant variables does have an implication on the second moment

of the OLS estimator: it increases the variance of the OLS estimator (Fomby, 1981; Greene, 2012).
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can be captured by positing that �1 = 0, then the inclusion of irrelevant variables will not
have any impact on the bias.4

This paper pursues these three ideas related to bias of OLS estimators arising from errors
of exclusion and inclusion in a multivariate context. The first contribution of the paper is to
o↵er a simple geometric interpretation of the OVB in a general setting, with many included
and omitted regressors. This helps us derive a set of su�cient conditions in terms of sign
restrictions on partial e↵ects that allow us to unambiguously determine the direction of
OVB. I show that these conditions are natural multivariate generalizations of the simplest
univariate case. I illustrate my argument with a canonical wage regression. The second
contribution of the paper is to reiterate the negative result in Clarke (2005) and Luca et al.
(2018) that inclusion of omitted variables will not always lead to a reduction in OVB.5 In
fact, I emphasize that we are not even able to derive su�cient conditions for bias reduction
using sign restrictions. The third, and novel, contribution of the paper is to show that the
inclusion of irrelevant variables can have an impact on the bias if the estimated model also
su↵ers from the problem of omitted variables. While we cannot determine the direction of
the impact in general, I derive su�cient conditions using sign restrictions that allow us to
make assertions about the direction of the impact. I illustrate the arguments in the paper
with a running example of a simple wage regression.

The rest of the paper is organized as follows: in section 2, I provide a general result
on bias coming from omitting relevant variables and from including irrelevant variables in
a multivariate context; in section 3, I o↵er a geometric interpretation and derive su�cient
conditions using sign restrictions that allow us to unambiguously determine the direction
of OVB; in section 4, I reiterate the fact that, in general, we cannot unambiguously ensure
reduction in bias with inclusion of excluded variables if some variables remain omitted; in
section 5, I discuss the doubly misspecified model and decompose the overall bias of OLS es-
timators into a component coming from omitting relevant variables and another coming from
including irrelevant variables. I conclude in the final section by drawing some conclusions
of the analysis in this paper. Proofs of propositions are collected together in Appendix A,
and in Appendix B, I give some examples of the use of direction-of-bias arguments from the
applied economics literature of the past several decades.

2 Omitted Variable Bias in a General Setting

To fix ideas, let the population regression function of interest be denoted as

y = X� +Z1�1 +Z2�2 + u (7)

where y is a N⇥1 vector representing the dependent variable, X, Z1 and Z2 denote (N⇥J),
(N ⇥ K) and (N ⇥ L) matrices, respectively, of regressors, �, �1 and �2 denote (J ⇥ 1),

4I would like to thank Michael Ash for suggesting this idea for investigation.
5In certain special cases, it is possible to derive explicit expressions for the OVB even in the multivariate

case (Clarke, 2019).
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(K ⇥ 1) and (L⇥ 1) denote vectors of population regression coe�cients, and u is the N ⇥ 1
vector of errors which satisfy

E
⇥
u|X,Z1, Z2

⇤
= 0. (8)

If we collect Z1 and Z2 into the N ⇥ M matrix Z = [Z1 Z2], where M = K + L, and
similarly collect together �1 and �2 into the M⇥1 vector of coe�cients � =

�
�0
1 �0

2

�0
, then

we can also write the population regression function as

y = X� +Z� + u. (9)

We would like to compare two scenarios. In the first scenario, the researcher is not able to
include Z1 and Z2 in the estimated model. Let us call this the “short” regression model:

y = X�̃ + vS. (10)

In the second scenario, the researcher is able to include, Z1, in the estimated regression, but
is not able to include the regressors, Z2. Let us call this the “long” regression model:

y = X
˜̃� + Z1�1 + vL. (11)

Let us call the OLS estimator of �̃ in (10) as �̂S, and the OLS estimator of ˜̃� in (11) as �̂L,
and note that both are likely to be biased estimators of � because of the possible correlation
between X,Z1 and Z2.6

We would like to address two questions related to the bias of OLS estimators that arise
due the error of excluding relevant variables from the estimated model. First, what is the
omitted variable bias of an included regressor in the short regression when it is estimated
with OLS, i.e. what is the OVB of �̂S? Can we derive su�cient conditions using only signs
of parameters to determine the direction of the OVB? Second, can we compare the omitted
variable bias of an included regressor between the short and long regressions, when both are
estimated with OLS, i.e. can we compare the OVB of �̂S and �̂L? The following proposition
gives a set of results to answer these two questions.

Proposition 1. Conditional on the regressors X,Z, the omitted variable bias in �̂S is given
by

E
⇣
�̂S

⌘
� � =

�
X 0X

��1
X 0Z� =

�
X 0X

��1
X 0Z1�1 +

�
X 0X

��1
X 0Z2�2 (12)

and the omitted variable bias in �̂L is given by

E�̂L � � =
�
X 0X

��1
X 0Z2�2 +

�
X 0X

��1
X 0Z1

�
Z0

1XZ1X

��1
Z0

1XZ2�2. (13)

where
Z1X = �MXZ1 ⌘

h
X
�
X 0X

��1
X 0 � I

i
Z1.

is the N⇥K matrix of the (negative of) the residuals from auxiliary regressions of the columns
of Z1 on X, and MX is the ‘residual maker’ matrix that is symmetric and idempotent.7

Proof. A proof is available in the appendix.
6I assume the standard full-rank conditions - which rule out perfect collinearity among the regressors -

that are necessary to ensure the existence of the OLS estimators.
7Since MX is symmetric and idempotent, and is not the identity matrix, it is noninvertible.
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3 OVB in the Short Regression

Let us begin with an investigation of the first question related to the problem of excluding
relevant variables from an estimated model: what is the OVB of �̂S? Inspecting the expres-
sion for the omitted variable bias in the short regression, we get the familiar formula for the
OVB (Wooldridge, 2002; Angrist and Pischke, 2009; Greene, 2012), as

E
⇣
�̂S

⌘
� � =

�
X 0X

��1
X 0Z� = �̂�. (14)

To interpret this formula for OVB, let �̂
m

denote the m-th column of the J ⇥M matrix �̂.
For m = 1, 2, . . . ,M , let �m denote the coe�cient vector in the auxiliary regression of the
m-th omitted variable, zm, on the whole set of included regressors in the short regression,
i.e.

zm = X�m + vm, (15)

so that the OLS estimator of �m is given by

�̂
m
=
�
X

0
X
��1

X 0zm

and stacking �̂
m
column-wise gives �̂. Hence,

E
⇣
�̂S

⌘
� � = �̂1

�1 + �̂2
�2 + · · ·+ �̂M�1

�M�1 + �̂M
�M , (16)

where �m is the m-th element of the M -vector �. This shows that the OVB of the j-th
included regressor in the short regression, which is the j-th element of the vector in (16), is
given by

OV Bj ⌘ E
⇣
�̂j

⌘
� �j = �1�̂1j + �2�̂2j + · · ·+ �M �̂Mj =

MX

m=1

�m�̂mj (17)

where �̂mj is the j-th element of the coe�cient vector �̂m in (15), with j = 1, 2, . . . , J and
m = 1, 2, . . . ,M . Since this is a sum of M terms, each of which can be of any sign, we
cannot determine the direction of OVB in general. But there are some configurations of
partial e↵ects that allow us to determine the direction of the OVB unambiguously just by

knowing the sign of the partial e↵ects. To see this, let �̂j =
⇣
�̂1j �̂2j · · · �̂Mj

⌘
denote

the j-th row of the J ⇥ M matrix, �̂. Since � is a M ⇥ 1 vector, the expression for the
omitted variable bias in (17) is the inner product of the two vectors, �̂j and �. Hence,

OV Bj = �̂j
.� =

���̂j
�����

�� cos(✓) (18)

where
��x
�� denotes the L2-norm of the vector, x, ✓ is the angle - measured in radians -

between �̂j and �, each considered as an element in RM , and 0  ✓  ⇡.

Definition 1. Let a and b be two vectors in RM with ✓ denoting the angle between the two
vectors.
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1. We will say that a and b are similar in orientation if the angle between them is acute,
i.e., 0 < ✓ < ⇡/2.

2. We will say that a and b are dissimilar in orientation if the angle between them is
obtuse, i.e. ⇡/2 < ✓ < ⇡.

This definition is inspired by the notion of “cosine similarity” in the machine learning
literature and can help us ascertain the direction of OVB.

Proposition 2. The direction of omitted variable bias of the OLS estimator of the j-th
included regressor in a misspecified model with many omitted variables is positive (negative)
if the vectors �̂j and � are (dis)similar in orientation.

Proof. The proof follows from an inspection of (18).

3.1 Unambiguous Sign of OVB

The result in Proposition 2 shows that in general we will not be able to ascertain the sign of
the OVB. Nonetheless, there are special configurations, as noted in Proposition 2, where we
will be able to make unambiguous sign statements. The special configurations will depend
on the signs of the vector �̂j and �. What do these vectors signify? The m-th element of
�̂j gives the OLS estimator of the coe�cient on the j-th included regressor in the auxiliary
regression of the m-th omitted variable, zm, on the whole set of included regressors, X.
Hence, the vector �̂j collects together the OLS estimators of the coe�cients on the j-th
included regressor in auxiliary regressions, successively, of the 1-st, 2-nd, · · · , M -th omitted
variable on the whole set of included regressors. On the other hand, the vector � gives
the partial e↵ects of the omitted variables on the dependent variable in the population
regression function. Hence, �m is the partial e↵ect of the m-th omitted variable on the
dependent variable in the population regression function in (11).

3.1.1 No Bias

We will be able to assert that there is no bias if the M -vectors �̂j and � are orthogonal or
if one of them is a null vector. The two vectors are orthogonal when all omitted variables
are orthogonal to all included regressors, and hence leaving out the omitted variables does
not induce any correlation between the error term and the included regressors. That is why
OLS is able to consistently estimate all the parameters. On the other hand, if either of the
vectors is a null vector, it means that either the omitted variables are irrelevant or that the
included regressors have no partial e↵ect on the omitted variables (in the relevant auxiliary
regression). That is why OLS is able to, once again, estimate the parameters consistently.
Note that this is a multivariate generalization of the simplest case with one omitted variable:
leaving out the omitted variable does not lead to bias if the omitted variable is orthogonal
to all included regressors, or if its partial e↵ect on the dependent variable is zero, or if the
partial e↵ects of included variables are zero.
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3.1.2 Positive Bias

We will be able to unambiguously determine the sign of the OVB to be positive if both the
M -vectors �̂j and � lie in the same orthant of RM . This is because, in this case, the two
vectors will be similar in orientation according to Definition 1. If the two vectors lie in the
same orthant, they will have the same sign for each of their corresponding elements, i.e.

sign(�̂jm) = sign(�m), for m = 1, 2, . . . ,M.

In this case, we will be able to determine the sign of the OVB as positive irrespective of the
magnitude of the elements of the two vectors because the inner product of the two vectors
will be positive. How do we interpret this case? An unambiguously positive OVB will arise
for the OLS estimate of k-th included regressor’s coe�cient in the mis-specified model in
(10) if the partial e↵ect of each omitted variable on the dependent variable has the same
sign as the OLS estimator of the partial e↵ect of the k-th included regressor on that omitted
variable (in a auxiliary regression of the omitted variable on all the included regressors).

It is important to note that this is a multivariate generalization of the simplest case with
one omitted variable. In that case, the OVB is positive if the sample correlation coe�cient
between the omitted and included variable is of the same sign as the partial e↵ect of the
omitted variable on the dependent variable in the population regression function in (2). In
the multivariate case given in (11), we need to consider partial e↵ects of omitted variables on
the dependent variable in the population regression function, as in the univariate case. But,
in place of the sample correlation coe�cient between the omitted and the included regressor,
we need to think in terms of OLS estimators of coe�cients in the auxiliary regressions of
all the omitted variables, in turn, on all the included regressors. And what is relevant is a
comparison of the OLS estimator of the coe�cient on the relevant included regressor in each
of these auxiliary regressions with the partial e↵ect of the corresponding omitted variable on
the dependent variable. If these two are of the same sign, we will be able to assert that the
OVB is positive.

3.1.3 Negative Bias

We will be able to unambiguously determine the sign of the OVB to be negative if the two
M -vectors, �̂j and �, lie in “opposite” orthants, by which I mean that the sign of each
element in �̂j is exactly opposite in sign of the corresponding element in �, i.e.

sign(�̂jm) = �sign(�m), for m = 1, 2, . . . ,M.

This is because, in this case, the two vectors will be dissimilar in orientation, according
to Definition 1. To see this, note that the inner product of the two vectors in this case
will result in a negative scalar because each of the terms in the inner product is negative.
Hence, the angle between the two vectors will be between ⇡/2 and ⇡. How should this case
be interpreted? An unambiguously negative OVB will arise for the OLS estimate of j-th
included regressor’s coe�cient in the misspecified model in (10) if the partial e↵ect of each
omitted variable on the dependent variable has the opposite sign of the partial e↵ect of the
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j-th included regressor on that omitted variable (in a auxiliary regression of the omitted
variable on all the included regressors).

Note, again, that this is a multivariate generalization of the simplest case with one
omitted variable. In that case, the OVB is negative if the sample correlation coe�cient
between the omitted and included variable is of the opposite sign of the partial e↵ect of the
omitted variable on the dependent variable in the population regression function in (2). In
the multivariate case in (11), we need to consider partial e↵ects of omitted variables on the
dependent variable in the population regression function, as in the univariate case. But, in
place of the sample correlation coe�cient between the omitted and the included regressor,
we need to think in terms of the auxiliary regressions of all the omitted variables, in turn,
on all the included regressors. And what is relevant is a comparison of the OLS estimator of
the coe�cient on the relevant included regressor in each of these auxiliary regressions with
the partial e↵ect of the corresponding omitted variable on the dependent variable. If these
two are of exactly the opposite sign, we will be able to assert that the OVB is negative.

3.2 Summary

Suppose the population regression function of y includes x1, x2, . . . , xJ , and z1, z2, . . . , zM .
Consider a scenario where the researcher is able to include only the J regressors, x1, x2, . . . , xJ ,
in the estimated model. To determine the direction of omitted variable bias of the OLS esti-
mator of any included regressor, xj, in this general setting, a researcher can do the following
thought experiment.

1. Form anM -vector, �̂j , where them-th element is the OLS estimator of the partial e↵ect
of xj on zm in an auxiliary regression of zm on all the included regressors x1, x2, . . . , xJ .

2. Form an M -vector, �, where the m-th element is the partial e↵ect of zm on the depen-
dent variable in the population regression function (the correctly specified model).

3. The omitted variable bias of the OLS estimator of xj is the inner product of the two
vectors, �̂j and �. Hence, we have the following:

(a) If �̂j and � lie in the same orthant, the bias is postive.

(b) If �̂j and � lie in opposite orthants, the bias is negative.

(c) If �̂j and � are orthogonal, the bias is zero.

(d) If �̂j and � are neither orthogonal, nor lie in the same orthant or in opposite
orthants, then the direction of bias cannot be determined unambiguously on the
basis of the signs of partial e↵ects only.

3.3 Example: Returns to Education

Let me illustrate the argument outlined above using the canonical example of the returns to
education. Let the population regression function of interest be a wage regression

logwage = �0 + �1educ+ �2age+ �3exper + �1ability + �2motiv + u

10



where logwage is regressed on educ (years of schooling), age (age in years), exper (years in
the labour force), ability (intrinsic ability) and motiv (motivation). Suppose the last two
variables are omitted due to lack of data, so that the following model is estimated with OLS

logwage = �0 + �1educ+ �2age+ �3exper + v.

In this case, the bias of the OLS estimator of the return to education will be

E�̂1 � �1 = �1�̂11 + �2�̂21

where �̂11 is the coe�cient on educ in the auxiliary regression of ability on educ, age, exper

ability = �̂10 + �̂11educ+ �̂12age+ �̂13exper

and �̂21 is the coe�cient on educ in the auxiliary regression of motiv on educ, age, exper

motiv = �̂20 + �̂21educ+ �̂22age+ �̂23exper.

Since the bias of the OLS estimator of the return to education is given by �1�̂11+�2�̂21, which
is the inner product of the two vectors (�1, �2) and (�̂11, �̂21), we can make the following claims:

• The bias is positive if the vectors (�1, �2) and (�̂11, �̂21) lie in the same quadrant, i.e.
sign(�1) = sign(�̂11) and sign(�2) = sign(�̂21).

• The bias is negative if the vectors (�1, �2) and (�̂11, �̂21) lie in opposite quadrants, i.e.
sign(�1) = �sign(�̂11) and sign(�2) = �sign(�̂21).

• The bias is zero if the vectors (�1, �2) and (�̂11, �̂21) are orthogonal or if one of them is
a null vector.

4 Comparison of OVB in Short and Long Regressions

Let us now turn to the second question about the bias of OLS estimators that arise from
excluding relevant variables from an estimated model: can we compare the omitted variable
bias of an included regressor between the short and long regressions, when both are estimated
with OLS, i.e. can we compare the OVB of �̂S, which is the the OLS estimator of �̃ in (10),

and �̂L, which is the OLS estimator of ˜̃� in (11)?

4.1 Expression for Di↵erence in Bias

Proposition 1 allows us find an expression for the di↵erence in bias because we have

E
⇣
�̂S

⌘
� � = A�1 +C�2 (19)

and
E
⇣
�̂L

⌘
� � = C�2 +AB�2 (20)

11



where
A =

�
X 0X

��1
X 0Z1 (21)

is the J ⇥K matrix of the column-wise stacked OLS estimators of the coe�cient vectors for
auxiliary regressions of the columns of Z1 on X, and

B =
�
Z0

1XZ1X

��1
Z0

1XZ2 (22)

is the K ⇥L matrix of the column-wise stacked OLS estimators of the coe�cient vectors for
auxiliary regressions of the columns of Z2 on Z1X , where

Z1X = �MXZ1 ⌘
h
X
�
X 0X

��1
X 0 � I

i
Z1 (23)

is the N ⇥K matrix of the column-wise stacked residuals from auxiliary regressions of the
columns of Z1 on X, and

C =
�
X 0X

��1
X 0Z2 (24)

is the J ⇥L matrix of the column-wise stacked OLS estimators of the coe�cient vectors for
auxiliary regression of the columns of Z2 on X.

Let ⌧S = E
⇣
�̂S

⌘
� � be the bias of the OLS estimator in the short regression in (10),

and ⌧L = E
⇣
�̂L

⌘
�� be the bias in the long regression in (11). Using (19) and (20), we see

that the di↵erence in bias is given by

⌧S = ⌧L +
�
X 0X

��1
X 0Z1

h
�1 �

�
Z0

1XZ1X

��1
Z0

1XZ2�2

i
. (25)

4.2 Sign of the Di↵erence in Bias

From the expression in (25), we see that it is not possible, in general, to make any claims
about bias reduction while comparing the short and long regressions.8 This rather surprising
result has been highlighted in Clarke (2005) and Luca et al. (2018). It arises from the fact
that both the short and the long regressions remain mis-specified, i.e. both su↵er from
omitted variable problems. If the long regression included all the omitted variables - the
regular textbook case - then the bias would be unambiguously reduced in comparison to the
short regression because the bias in the long regression would become zero. We can make
this point by looking at individual elements of � too.

Since the columns of A�1 is a linear combination of the columns of A, and the columns
of C�2 is a linear combination of the columns of C, we have

E
⇣
�̂S

⌘
� � =

⇣
a1

�11 + · · ·+ aK
�1K

⌘
+
⇣
c1�21 + · · ·+ cL�2L

⌘
(26)

8If X and Z1 are orthogonal, then the bias from the short and long regressions are the same. This
is intuitively clear: the part of the omitted variables set that has been included in the long regression is
orthogonal to the regressors that were part of the short regression. Hence, even when they are omitted, that
has no e↵ect on the bias of the included regressors in the short regression.
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where ak and cl are the k-th and l-th columns of J ⇥K matrix A and the J ⇥L matrix C,
and �1k and �2l are elements of the K-vector �1 and the L-vector �2, respectively. Let ⌧Sj
denote the OVB of the j-th included regressor, X, in the short regression. Hence

⌧Sj = aj.�1 + cj.�2 (27)

where aj denotes the j-th row of A, aj.�1 denotes the inner product of the two K-vectors,
aj and �1, cj denotes the j-th row of C, and cj.�2 denotes the inner product of the two
L-vectors, cj and �2.

Using the same facts about matrix multiplication, we get

E
⇣
�̂L

⌘
� � =

⇣
c1�21 + · · ·+ cL�2L

⌘
+
⇣
Ab1�21 + · · ·+AbL�2L

⌘
, (28)

where bk denotes the k-th column of B, with k = 1, 2 . . . , K. Let ⌧Lj denote the OVB of
the j-th included regressor, X, in the long regression. Hence

⌧Lj = cj.�2 +
⇣
aj.b

1
�21 + · · ·+ aj.b

L
�2L

⌘
. (29)

We are interested in finding conditions when absolute value of the bias is reduced as the
researcher moves from the short to the long regression, i.e.

��⌧Lj
�� <

��⌧Sj
��. Comparing the

expressions in (27) and (29), we see that, in general, the bias from the long regression will
not be smaller than the one in the short regression.

Is it possible to use arguments based only on the signs of partial e↵ects, as we did in
the previous section, to identify scenarios when we can make unambiguous claims about
bias reduction? The answer is in the negative. To develop this argument, we will need the
following L-vector

ab =
⇣
aj.b

1 aj.b
2
. . . aj.b

L�1 aj.b
L
⌘
, (30)

where each element of the above vector is an inner product of aj and a column of B.
An investigation of the conditions to ensure

��⌧Lj
�� <

��⌧Sj
�� means that we need to consider

the following four cases: (a) ⌧Lj > 0 and ⌧Sj > 0; (b) ⌧Lj < 0 and ⌧Sj > 0; (c) ⌧Lj > 0 and
⌧Sj < 0; and (d) ⌧Lj < 0 and ⌧Sj < 0.

4.3 Case 1

Consider the case when both biases are positive, i.e. ⌧Lj > 0 and ⌧Sj > 0. When ⌧Lj > 0
and ⌧Sj > 0, the absolute value of the bias will be reduced if ⌧Lj � ⌧Sj < 0.

What are su�cient sign restrictions that will ensure that ⌧Lj > 0 and ⌧Sj > 0? From the
expressions in (27) and (29), we see that ⌧Lj > 0 and ⌧Sj > 0 if the following conditions hold:
(a) the vectors aj and �1 lie in the same orthant of RK , i.e. sign(ajk) = sign(�1k), for k =
1, 2, . . . , K; (b) the vectors cj and �2 lie in the same orthant of RL, i.e. sign(ajl) = sign(�2l),
for l = 1, 2, . . . , L; and (c) ab and �2 lie in the same orthant of RL, i.e. sign(aj.bl) =
�sign(�2l), for l = 1, 2, . . . , L.
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What are su�cient sign restrictions that will ensure that ⌧Lj � ⌧Sj < 0? Using the
expressions from (27) and (29), we see that the absolute value of the bias will be reduced if

aj.�1 �
⇣
aj.b

1
�21 + · · ·+ aj.b

L
�2L

⌘
> 0.

This inequality will be satisfied if the following two conditions hold: (d) ab and �2 lie in
opposite orthants of RL, i.e. sign(aj.bl) = sign(�2l), for l = 1, 2, . . . , L, and (e) the vectors
aj and �1 lie in the same orthant of RK , i.e. sign(ajk) = sign(�1k), for k = 1, 2, . . . , K.

We see that conditions (c) and (d) contradict each other. Hence, it is not possible to
derive su�cient conditions for bias reduction when both biases are positive using only signs
of partial e↵ects.

4.4 Case 2

The second case to consider is when ⌧Lj < 0 and ⌧Sj > 0. From the expression in (29), we
see that ⌧Lj < 0 if the following conditions hold: (a) the vectors cj and �2 lie in opposite
orthants of RL, i.e. sign(ajl) = �sign(�2l), for l = 1, 2, . . . , L; and (c) ab and �2 lie in the
same orthants of RL, i.e. sign(aj.bl) = sign(�2l), for l = 1, 2, . . . , L. From the expressions
in (27), we see that ⌧Sj > 0 if the following conditions hold: (c) the vectors aj and �1 lie in
the same orthant of RK , i.e. sign(ajk) = sign(�1k), for k = 1, 2, . . . , K; (d) the vectors cj
and �2 lie in the same orthant of RL, i.e. sign(ajl) = sign(�2l), for l = 1, 2, . . . , L. Since the
conditions (a) and (c) contradict each other, we cannot generate su�cient conditions for the
biases to be of opposite signs only on the basis of the signs of partial e↵ects.

4.5 Case 3

The third case to consider is when ⌧Lj > 0 and ⌧Sj < 0. Just like in case 2, it is not possible
to derive su�cient conditions in terms of sign restrictions to ensure that ⌧Lj > 0 and ⌧Sj < 0.

4.6 Case 4

The final case to consider is when both biases are negative, i.e. ⌧Lj < 0 and ⌧Sj < 0. In this
case, the absolute value of the bias will be reduced if ⌧Sj � ⌧Lj < 0.

What are su�cient sign restrictions that will ensure that ⌧Lj < 0 and ⌧Sj < 0? From
the expressions in (27) and (29), we see that ⌧Lj < 0 and ⌧Sj < 0 if the following con-
ditions hold: (a) the vectors aj and �1 lie in opposite orthants of RK , i.e. sign(ajk) =
�sign(�1k), for k = 1, 2, . . . , K; (b) the vectors cj and �2 lie in opposite orthants of RL, i.e.
sign(ajl) = �sign(�2l), for l = 1, 2, . . . , L; and (c) ab and �2 lie in opposite orthants of RL,
i.e. sign(aj.bl) = sign(�2l), for l = 1, 2, . . . , L.

What are su�cient sign restrictions that will ensure that ⌧Sj � ⌧Lj < 0? Using the
expressions from (27) and (29), we that the condition reduces to

aj.�1 �
⇣
aj.b

1
�21 + · · ·+ aj.b

L
�2L

⌘
< 0.
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This will be ensured if the following two conditions hold: (d) ab and �2 lie in the same
orthant of RL, i.e. sign(aj.bl) = �sign(�2l), for l = 1, 2, . . . , L, and (e) the vectors aj and
�1 lie in opposite orthants of RK , i.e. sign(ajk) = �sign(�1k), for k = 1, 2, . . . , K.

We see, again, that conditions (c) and (d) contradict each other. Hence, it is not possible
to derive su�cient conditions for bias reduction when both biases are positive only using
signs of partial e↵ects.

4.7 Example: Returns to Education

Let me illustrate the argument outlined in this section by returning to the example of the
returns to education. Let the population regression function of interest be the wage regres-
sion,

logwage = �0 + �1educ+ �2age+ �3exper + �1ability + �2motiv + u,

where logwage is regressed on educ (years of schooling), age (age in years), exper (years
in the labour force), ability (intrinsic ability) and motiv (motivation). Suppose the short
(estimated) regression model excludes both ability and motiv, so that it is given by

logwage = ↵0 + ↵1educ+ ↵2age+ ↵3exper + vS

and the long (estimated) regression model includes ability, so that it is given by

logwage = �0 + �1educ+ �2age+ �3exper + �1ability + vL,

and both these models are estimated by OLS.
In this case, we can express the bias of the OLS estimators from both regressions in

terms of sample variances and sample correlation coe�cients. Thus, the bias of the returns
to schooling in the short regression model will be

E (↵̂1)� �1 =

✓
�̂ability

�̂edu

◆
⇢̂educ,ability�1 +

✓
�̂motiv

�̂educ

◆
⇢̂educ,motiv�2,

and the corresponding bias in the long regression will be

E
⇣
�̂1

⌘
� �1 =

✓
�̂motiv

�̂educ

◆
⇢̂educ,motiv ⇥ �2

+

✓
�̂ability

�̂educ

◆✓
�̂motiv

�̂v̂

◆
⇢̂educ,ability ⇥ ⇢̂v̂,motiv ⇥ �2

where v̂ represent the (negative of) the residuals from an auxiliary regression of ability on
educ. Hence, the di↵erence in the bias is given by

E
⇣
�̂1

⌘
� �1 =

⇥
E (↵̂1)� �1

⇤
+

✓
�̂ability

�̂edu

◆
⇢̂educ,ability�1

�
✓
�̂ability

�̂educ

◆✓
�̂motiv

�̂v̂

◆
⇢̂educ,ability ⇥ ⇢̂v̂,motiv ⇥ �2
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so that, in general, we cannot determine whether including ability in the long regression
model reduces the bias of the OLS estimator of the returns to schooling - as long as motiv

remains omitted. The di�culty of making any claims about bias reduction comes from two
possible correlations: (a) between education and ability, and (b) between motivation and
those factors that determine ability over and above education.

5 A Doubly Misspecified Model

Two specification errors are common and ubiquitous in applied econometric research - the
problems of excluding relevant variables and of including irrelevant variables. In textbook
treatments of these problems, it is common to discuss the two separately (Wooldridge, 2002;
Greene, 2012). This separate treatment is motivated by the well known result that, whereas
exclusion of relevant variables leads to biased OLS estimators, inclusion of irrelevant vari-
ables has no such bias implications. In this section, I demonstrate that this conventional
understanding is not true in a general setting where an estimated model excludes relevant
and included irrelevant variables.

5.1 Expression for Bias

To fix ideas, let the population regression function be given by

y = X� +Z� + u, (31)

and the estimated model be given by

y = X↵+W � + v (32)

where we have
E
�
u|X,Z,W

�
= 0, (33)

withX a N⇥J matrix, Z a N⇥K matrix, W a N⇥Lmatrix, and �, �,↵, �, corresponding
and conformable vectors of coe�cients. Note that the estimated model in (32) is doubly
misspecified: it has excluded the relevant variables, Z, and it has included the irrelevant
variables, W .

Proposition 3. Let ↵̂ denote the OLS estimator of ↵ in the doubly misspecified model (32).
Then ↵̂ is a biased estimator of � in (31) and, conditional on X,Z,W , the bias is given
by

E (↵̂)� � =
�
X 0X

��1
X 0Z� +

�
X 0X

��1
X 0W

�
W 0

XWX

��1
W 0

XZ�. (34)

where
WX = �MXW ⌘

h
X
�
X 0X

��1
X 0 � I

i
W

is the (negative of) the matrix of residuals that comes from the auxiliary regressions of the
columns of W on the full set of included regressors X, and MX is the ‘residual maker’
matrix that is symmetric and idempotent.
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Proof. A proof is given in the appendix.

The expression for bias in (34), shows that the bias of the OLS estimator of the doubly
misspecified model - exclusion of relevant variables and inclusion of irrelevant variables - is
the sum of two terms. The first term represents the direct e↵ect on bias caused by omitting
the relevant variables, Z, and the second term represents the indirect e↵ect on bias caused
by omitting the relevant variable, which works through its interaction with the irrelevant
variables, W .

5.2 Two Special Cases

Two special cases immediately fall out of the general result in (34). The first special case is
one where the estimated model in (32) does not include any irrelevant variables, even though
it might have excluded relevant variables. We can capture this with the restriction M = 0

in (32). Hence, the expression for bias, in this special case, can be derived by plugging in
M = 0 in (34):

E (↵̂)� � =
�
X 0X

��1
X 0Z�.

This is the standard expression for omitted variable bias, as we have seen in section 2.
The second special case is one where the estimated model does not exclude any of the

relevant variables, even though it might include irrelevant variables. We can capture this
special case with the restriction � = 0 because this implies that that estimated model in
(32) has not excluded any of the variables of the population regression function in (31).
Hence, the expression for the bias in this case can be derived by plugging in � = 0 in (34):

E (↵̂)� � = 0.

Here we get the familiar textbook result: inclusion of irrelevant variables does not give biased
OLS estimators (Greene, 2012, pp. 58).

5.3 Interpretation of Bias

Let us now turn to interpreting the expression for bias appearing in (34). The first component
is the familiar OVB. It is the direct e↵ect of the omitted variables, Z, on the bias of the
OLS estimators of the coe�cients on the included variables, X. As long as the two sets of
variables are (partially) correlated, the first component in (34) will be non-zero. Intuitively,
OLS will attribute some of the e↵ect of the components of Z on the components of Z. The
second component is the indirect e↵ect of the omitted variables, Z, on the bias of the OLS
estimators. This indirect e↵ect works through the channel of the irrelevant variables, W -
that is why the inclusion of irrelevant variables has an impact on bias.

To see this in more concrete terms, note that the second term in (32) can be written as

�
X 0X

��1
X 0W

�
W 0

XWX

��1
W 0

XZ� = DE�
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where each column of the J ⇥ L matrix

D =
�
X 0X

��1
X 0W (35)

is the OLS estimator of the coe�cient vector from an auxiliary regression of the corresponding
column of W on the whole set of included regressors X, and each column of the L ⇥ K

matrix
E =

�
W 0

XWX

��1
W 0

XZ (36)

is the OLS estimator of the coe�cient vector from an auxiliary regression of the corresponding
column of Z on WX , where the latter are residuals that come from previous auxiliary
regressions of the columns of W on the full set of included regressors X.

To get an intuitive grasp of the terms, D and E, that comprise the indirect e↵ect,
consider the auxiliary regression of the irrelevant variables, W , on the included regressors,
X. This regression decomposes W into two orthogonal components,

W = PXW +MXW ,

where PX = X (X 0X)
�1 X 0 and MX = I � MX , so that the first component, PXW , is

the projection of W into the column space of X, and the second component, MXW , is
orthogonal to the first component. Thus, the first component is that part of W which can
be explained by X, and the second component is that part of W which cannot be explained
by X, i.e. it represents factors other than X that determine W .

From (34), we see that the indirect e↵ect - the second term on the RHS of (34) - is the
product of three e↵ects:

1. the projection of W into the column space of X,

PXW = XD,

which will be non-zero as long as X has some explanatory power for W ;

2. the partial correlations between MXW and the omitted variables, Z,

�
W 0

XWX

��1
W 0

XZ = E

which will be non-zero as long as factors other than X that determine W are also
correlated with the omitted variables, Z;

3. the partial e↵ect of the omitted variables, Z, on the dependent variable in the popu-
lation regression function, �.

If the omitted variables are relevant, then � 6= 0. In this case, the indirect e↵ect of these
omitted variables on the dependent variable show up in terms of non-zero partial correlations
with MXW (factors other than X that determine W , and the omitted variables, Z), which
is then relayed to the dependent variable through its product with the projection of W into
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the column space of X. If these latter e↵ects are non-zero, this indirect e↵ect of the omitted
variables will be ascribed to the included regressors, X, and will thereby impact the overall
bias of OLS estimators.

As long as the omitted variables are actually relevant, so that � is nonzero, there are only
two situations in which inclusion of irrelevant variables will not have any impact on bias.9

The first case will arise when the partial correlations between the included regressors, X,
and the irrelevant variables, W , are zero. In this case, the columns of W will be orthogonal
to the column space of X, so that X 0W = 0. Thus, the second term in (34) will be zero.
The second case will arise when the partial correlation between the omitted variables, Z,
and WX (the part of the irrelevant variables that is not explained by the included regressors)
are zero. In this case the columns of Z will be orthogonal to the column space of WX , so
that W 0

XZ = 0. Thus, the second term in (34) will be zero.

5.4 Example: Returns to Education

Let me illustrate the argument outlined above using a simple version of the canonical wage
regression. Let the population regression function of interest be a wage regression

logwage = �0 + �1educ+ �1ability + u

where logwage is explained by educ (years of schooling) and ability (intrinsic ability). Sup-
pose the estimated model leaves out ability and includes coding (proficiency in writing
computer codes)

logwage = �0 + �1educ+ �2coding + v.

In this case, the estimated in doubly misspecified: it leaves out a relevant variable, ability,
and includes an irrelevant variable, coding.

Let us think of the following auxiliary regression:

coding = a0 + a1educ+ "1.

It is plausible to argue that the OLS estimator of the coe�cient on educ in the auxiliary
regression, â1, will be non-zero. This is because those who have more years of schooling,
will, on average be more proficient in coding - just because they might have been exposed to
computer programming. Now let us think of some factors which determine the proficiency
in coding that have been left out of the above auxiliary regression. The aptitude for logical
reasoning might be one such omitted factor. It is plausible to argue that the aptitude for
logical reasoning - which leads to better coding skills - is correlated with ability, the variable
that has been omitted from the estimated model. If this were to be the case then the overall

9Note that WX , the part of W that is orthogonal to the column space of X, cannot be 0 as long as we
rule out perfect collinearity between X and W - which we do, to ensure the existence of the OLS estimator.
This is because the columns of WX are orthogonal to the column space of X. If W is not perfectly linearly
related to X, then it’s columns do not lie in the column space of X. Hence, WX 6= 0.
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bias of the OLS estimator for the returns to schooling would be impacted by the inclusion
of the irrelevant variable, coding, in the estimated model. Moreover,

E
⇣
�̂1

⌘
� �1 =

✓
�̂abil

�̂educ

◆
⇢̂educ,abil ⇥ �1

+ ⇢̂educ,coding

✓
�̂coding

�̂educ

◆
⇢̂abil,codingeduc

 
�̂abil

�̂codingeduc

!
⇥ �1,

where �̂educ, �̂abil, �̂coding are the sample standard deviations of years of schooling, ability and
coding proficiency, codingeduc denotes the residuals that come from the regression of coding
on educ, ⇢̂abil,codingeduc denotes the sample correlation coe�cient of abil and coding

educ. The
first term on the RHS of the above expression for bias of the OLS estimator of the coe�cient
on educ is the direct e↵ect of omitting ability on the bias; the second term is the indirect
e↵ect of omitting ability. This latter e↵ect works through the correlation of ability with
those factors that determine coding, over and above educ, which is then relayed to log(wages)
through its product with the correlation between educ and coding.

Hence, we can make the following claims.

• If the correlation between years of schooling and coding proficiency, in the sample, is
zero, then the inclusion of the irrelevant variable, coding, in the estimated model will
not have any impact on the bias of the OLS estimator of the returns to schooling.

• If those factors that determine the proficiency of coding, over and above years of
schooling, are not correlated, in the sample, with ability, then the inclusion of the
irrelevant variable, coding, in the estimated model will not have any impact on the
bias of the OLS estimator of the returns to schooling.

• If neither of the above two conditions hold, which seems likely, then the inclusion of
the irrelevant variable, coding, in the estimated model will have an impact on the
bias of the OLS estimator of the returns to schooling. In general, it is not possible to
determine the sign of this e↵ect.

5.5 Direction of the E↵ect on Bias

While we cannot determine the direction of impact of irrelevant variables in the general case,
there are some special cases where we might be able to use sign restrictions to pin it down
using the methodology used in previous sections. To see this, let dj denote the j-th row of
the matrix D defined in (35), and let ek denote the k-th column of the matrix E defined in
(36). Then, the j-th element of the second term in (34) will be given by

⇣
dj.e

1
�1 + dj.e

2
�2 + · · ·+ dj.e

K�1
�K�1 + dj.e

K
�K

⌘
.

To proceed, let us define the following K vector

dej =
⇣
dj.e

1 dj.e
2
. . . dj.e

K�1 dj.e
K
⌘
, (37)
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where the k-th element of the above vector is the inner product of dj and ek, with k =
1, 2, . . . , K. Then, we have the following results:

• if the K vectors dej and � lie in the same orthant then the inclusion of irrelevant
variables in the model with omitted variables will contribute a positive magnitude to
the overall bias; this is because each of the terms in the j-th element of the second
term in (34),

⇣
dj.e

1
�1 + dj.e

2
�2 + · · ·+ dj.e

K�1
�K�1 + dj.e

K
�K

⌘
,

will be positive; if the OVB was positive, to begin with, this will increase the bias of
the OLS estimator of the j-th included regressor;

• if the K vectors dej and � lie in opposite orthants, i.e. if each element of dej is
opposite in sign from the corresponding element of �, then the inclusion of irrelevant
variables in the model with omitted variables will contribute a negative magnitude to
the overall bias; this is because each of the terms in the j-th element of the second
term in (34),

⇣
dj.e

1
�1 + dj.e

2
�2 + · · ·+ dj.e

K�1
�K�1 + dj.e

K
�K

⌘
,

will be negative; if the OVB was negative, to begin with, this will increase the bias of
the OLS estimator of the j-th included regressor;

• if the K vectors dej and � are orthogonal or one of them is a null vector, then the
inclusion of irrelevant variables in the model with omitted variables will have no impact
on the bias of the OLS estimator of the j-th included regressor.

6 Conclusion

In this paper, I have studied three issues related to the bias of OLS estimators arising from
errors of exclusion (of relevant variables) and inclusion (of irrelevant variables): (1) omitted
variable bias; (2) possible reduction of omitted variable bias with the inclusion of some of
the omitted variables; (3) possible impact of the inclusion of irrelevant variables on the bias
of OLS estimators in a model with omitted variables.

The first result of this paper is a derivation of some su�cient conditions, in terms of sign
restrictions on parameters, to determine the direction of OVB. These are natural multivariate
generalizations of the univariate case of one omitted variable and can partly address the
longstanding problem of the di�culty of ascertaining the sign of OVB of OLS estimators
in a multivariate context (Forbes, 2000; Greene, 2012). The second result of this paper
is a reiteration of the results in Clarke (2005) and Luca et al. (2018) that inclusion of
some omitted variables will not necessarily reduce the magnitude of OVB when some other
relevant variables remain omitted. Moreover, we cannot derive su�cient conditions for bias
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reduction using sign restrictions only. The third result of this paper is to show that inclusion
of irrelevant variables will have an impact, in general, on the bias of OLS estimators in a
model with omitted variables. To the best of my knowledge, this is a novel result and is at
odds with the common perception that inclusion of irrelevant variables does not have any
impact on the bias - though they might have an impact on the variance - of OLS estimators
(Fomby, 1981; Greene, 2012). At least three implications of this analysis are worth noting.

In discussing the problem of OVB, and of strategies to deal with it, researchers have
frequently relied on arguments about the direction of the bias (Blackburn and Neumark,
1995; Tootell, 1996; Card, 2001; Hertz, 2003; Ahenfelter and Greenstone, 2004; Banerjee and
Iyer, 2005; Autor et al., 2013). The first implication of the analysis in this paper is that
researchers should use direction-of-bias arguments with caution because in most realistic
cases, it is not possible to determine the sign of the OVB of OLS estimators. Unless the
researcher carries out a detailed analysis of signs of parameters along the lines developed in
section 3.1, it will not be possible to make any assertions about the direction of the OVB.

One common strategy to deal with the bias caused by omitted variables is to use in-
strumental variables estimators. In such contexts, it is standard in the literature to make
comparisons of the direction and magnitude of bias of OLS and IV estimators (Angrist and
Krueger, 2001, pp. 79). The second implication of the analysis in this paper points to the
di�culty of making such comparisons - other than in very simple cases. If, in general, nei-
ther the magnitude nor the sign of OLS bias can be determined, then it is not clear how one
would compare it with the possibly large bias of the IV estimator caused, for instance, by
the use of weak instruments.

The third implication of the analysis in this paper is that the commonly used strategy to
deal with bias of OLS estimators with the inclusion of more variables in regression models
should be used with caution. Researchers should be aware of two important possibilities
related to the inclusion of variables. First, if the estimated model continues to exclude some
relevant variables, then inclusion of irrelevant variables will have an impact on the bias of
OLS estimators - quite apart from the impact on its e�ciency (Fomby, 1981; Greene, 2012).
Second, if the estimated model continues to exclude relevant variables, then the inclusion of
relevant variables cannot, in general, guarantee reduction in bias of OLS estimators.
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Appendix A

Proof of Proposition 1.

Proof. For the omitted variable bias in �̂S, conditional on the regressors, X,Z, note, from
the model in (10), that

�̂S =
�
X

0
X
��1

X
0
y,

so that
E�̂S = E

h�
X

0
X
��1

X
0
y

i
= � +

�
X 0X

��1 �
X 0Z

�
�,

where we have plugged in the expression for y from the true model in (11), and the last step
follows from the orthogonality of the error term given in (8).

Using the algebra of partitioned matrices, that

X 0Z = X 0
h
z1 z2 · · · zM

i
=
h
X 0z1 X 0z2 · · · X 0zM

i

where zm refers to the N⇥1 vector representing them-th column of Z, withm = 1, 2, . . . ,M .
Hence

E�̂S � � =
�
X

0
X
��1 �

X 0Z
�
�

=
h�
X

0
X
��1

X 0z1 · · ·
�
X

0
X
��1

X 0zM
i
�

=
h
�̂
1 · · · �̂

M
i
�

= �̂�

where, for m = 1, 2, . . . ,M , �̂
m

is OLS estimator of the coe�cient vector in the linear
projection of the m-th omitted variable on the whole set of included regressors, i.e.

zm = X�m + vm, (38)

with E
�
X 0

vm

�
= 0, so that

�̂
m
=
�
X

0
X
��1

X 0zm
.

Columnwise stacking of �̂m, then gives the J ⇥M matrix �̂.
For the omitted variable bias in �̂L, conditional on the regressors, X,Z, consider the

model in (11) and note that  
�̂L

�̂1

!
=
�
U

0
U
��1

U
0
y

where U = [X Z], so that

 
�̂L

�̂1

!
=

"
X 0X X 0Z1

Z0
1X Z0

1Z1

#�1 "
X 0y
Z0

1y

#
.
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Substituting for y from (11) and using the fact that E
�
u|X,Z

�
= 0, we have

 
E�̂L � �
E�̂1 � �1

!
=

"
X 0X X 0Z1

Z0
1X Z0

1Z1

#�1 "
X 0Z2

Z0
1Z2

#
�2. (39)

Hence, using the expression for the inverse of partitioned matrices in Greene (2012, pp.
993–994 ), we have  

E�̂L � �
E�̂1 � �1

!
=

"
W 11 W 12

W 21 W 22

#"
X 0Z2

Z0
1Z2

#
�2 (40)

where
W 11 =

�
X 0X

��1
+
�
X 0X

��1
X 0Z1FZ0

1X
�
X 0X

��1
,

W 12 =
�
X 0X

��1
X 0Z1F ,

W 22 = F ,

and

F =
⇣
Z0

1Z1 �Z0
1X

�
X 0X

��1
X 0Z1

⌘�1

.

Hence,
E�̂L � � = W 11X 0Z2�2 +W 12Z0

1Z2�2.

Note that

F =
⇣
Z0

1Z1 �Z0
1X

�
X 0X

��1
X 0Z1

⌘�1

=
⇥
Z0

1MXZ1

⇤�1
,

where MX = I � X (X 0X)�1 X 0 is the “residual maker” matrix that is symmetric and

idempotent (Greene, 2012, pp. 31). Hence F =
�
Z0

1XZ1X

��1
, where Z1X = �MXZ1.

Collecting terms, we get

E�̂L � � =
�
X 0X

��1
X 0Z2�2 �

�
X 0X

��1
X 0Z1

�
Z0

1XZ1X

��1
Z0

1XZ2�2,

which is the expression in (13).

Proof of Proposition 3.

Proof. The estimated model in (32) is

y = X� +W � + v,

which can be written as
y = U↵+ v,
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where U = (X W ) and ↵ = (�0 �0)0. Let �̂ and �̂ denote the OLS estimators of � and
�, respectively. Then, we have, conditional on X,Z,W ,

 
E�̂
E�̂

!
=

"
X 0X X 0W
W 0X W 0W

#�1 "
X 0X
W 0Z

#
� +

"
X 0X X 0W
W 0X W 0W

#�1 "
X 0Z
W 0Z

#
�, (41)

where we have used the fact that E
�
u|X,Z,W

�
= 0. Using the results for the inverse of

partitioned matrices, as in the previous proof, we get

E�̂ � � =
�
W11X

0X� +W12W
0X�

�
+
�
W11X

0Z� +W12W
0Z�

�

where
W11 =

�
X 0X

��1
+
�
X 0X

��1
X 0WFW 0X

�
X 0X

��1
,

W12 =
�
X 0X

��1
X 0WF , W22 = F ,

and

F =
h
W 0W �W 0X

�
X 0X

��1
X 0W

i�1

.

Using the expressions for W11 and W12, and simplifying gives

E�̂ � � =
�
X 0X

��1
X 0Z� +

�
X 0X

��1
X 0WFW 0

h
X
�
X 0X

��1
X 0 � I

i
Z�.

Using MX = X (X 0X)�1 X 0 � I and WX = �MXW , we get

E�̂ � � =
�
X 0X

��1
X 0Z� +

�
X 0X

��1
X 0W

�
W 0

XWX

��1
W 0

XZ�,

which is the expression in (34).

Appendix B

In discussing the problem of omitted variable bias, and of strategies to deal with it, re-
searchers have frequently relied on arguments about the direction of the bias. Here are some
examples of the use of direction-of-bias arguments in papers published over the last few
decades.10

• “One of the longest-running debates in empirical labor economics regards bias in OLS
estimates of the economic return to schooling. The overriding concern pertains to
individual-specific productivity components not reflected in the usual human-capital
measures, as these ability components may be positively correlated with both wages
and schooling. If the return to schooling is estimated with no account taken of the
role of ability, the estimate is generally expected to be biased upward. (Blackburn and
Neumark, 1995, pp. 217, emphasis added).

10This list of examples is purely for the purposes of illustration and does not pretend to completeness.

26



• “Equation (7) generalizes the conventional analysis of ability bias in the relationship
between schooling and earnings. Suppose that there is no heterogeneity in the marginal
benefits of schooling (i.e., bi = b̄) and that log earnings are linear in schooling (i.e.
k1 = 0). Then (7) implies that

plim bols � b̄ = �0

which is the standard expression for the asymptotic bias in the estimated return to
schooling that arises by applying the omitted variables formula to an earnings model
with a constant schooling coe�cient b̄. According to the model presented here, this
bias arises through the correlation between the ability component ai and the marginal
cost of schooling ri. If marginal costs are lower for people who would tend to earn
more at any level of schooling, then �ra < 0, implying that �0 > 0.” (Card, 2001, pp.
1134).

• “Ordinary least-squares (OLS) estimates of the proportionate increase in wages due
to an extra year of education in the United States (the Mincerian rate of return) are
believed to be reasonably consistent. It appears that upward bias due to omitted
variables is roughly o↵set by attenuation bias due to errors in the measurement of
schooling. Orley Ashenfelter and Cecilia Rouse (1998) find a net upward bias on the
order of just 10 percent of the magnitude of the OLS estimate. David Card’s (2001)
survey of instrumental variables-based estimates reaches a similar conclusion, as do
Ashenfeiter et al. (1999).” (Hertz, 2003, pp. 1354, emphasis added).

• “Our IV results, together with the results on neighboring districts and the historical
data, lead us to conclude that our OLS results are not biased upward due to omitted
district characteristics.” (Banerjee and Iyer, 2005, pp. 1206, emphasis added).

• “There are several possible threats to our strategy. One is that product demand shocks
may be correlated across high-income countries. In this event, both our OLS and IV
estimates may be contaminated by correlation between import growth and unobserved
components of product demand, making the impact of trade exposure on labor-market
outcomes appear smaller than it truly is.” (Autor et al., 2013, pp. 2129, emphasis
added).
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