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ABSTRACT 

 

 This study considers the relationship between temperature and occupational health. The 

results indicate that both high and low temperatures increase injury rates and that high 

temperatures have more severe adverse effects in warmer climates, which suggests that avoiding 

the adverse effects of high temperatures may be easier for workers when hot days are rarer. 

While research on the effect of temperature on mortality finds substantial capacity for adaption 

with current technology, the results presented here suggest that outdoor workers face challenges 

in adapting to high temperatures. 
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1 Introduction

The greenhouse gasses accumulating in the earth’s atmosphere are poised to raise global

temperatures considerably in a relatively short period of time. While air conditioning and out-

door avoidance are promising strategies for mitigating the adverse effects of high temperatures

in many contexts, these approaches are not feasible in all situations. In particular, the hundreds

of millions of workers around the world exposed to outdoor temperatures as part of their jobs

may face additional adaptation challenges relative to the rest of the population. The health of

workers matters because health and productivity are linked and because occupational injuries

and illnesses have an estimated annual cost of nearly $300 billion in the United States (Leigh

2011) and approximately $3 trillion globally (Takala et al. 2014). Knowing if high tempera-

tures affect occupational health and understanding how workers respond to high temperatures

have important implications for preparing for climate change, for assessing the social costs of

greenhouse gas emissions, and for developing a deeper understanding of the health effects of

temperature more broadly. But despite considerable attention being devoted to understanding

the impact of temperature on a variety of outcomes and behaviors, little is currently known

about the effect of temperature on workers’ health.1

An important finding from much of the economics research on the effect of temperature

on health is that while both high and low temperatures have adverse health effects, people

have demonstrated a substantial capacity to adapt to their climates. One piece of evidence that

adaptation has occurred is that hot days have less severe effects in warmer climates than in

cooler climates, largely because the higher frequency of hot days in warmer climates has led to

greater investments in air cooling technology in these places (Barreca et al. 2016; Heutel, Miller,

and Molitor 2017). Given that air conditioning technology appears to be the main adaptive

mechanism, though, workers’ capacity for adapting to a higher distribution of temperatures

remains unclear.

1Discussions of the lack of research on the potential effects of climate change on occupational health are
common. For example, on the National Institute for Occupational Safety and Health’s science blog, Kiefer
et al. (2014) state, “There has been considerable research and planning with regard to the public health and
environmental aspects of climate change, but little on its effects on workers.”
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Data limitations present a major challenge for studying the impact of temperature on occu-

pational health. Linking temperature to occupational health requires data on workers’ health

outcomes that can be matched closely to the weather that workers experienced on a particular

day, but most publicly available data with occupational health information (e.g. the National

Health Interview Survey; the Survey of Occupational Injuries and Illnesses) only contain state

or region identifiers and the year of illnesses and injuries.

To assess the effects of temperature on occupational health, I construct two data sets with

daily occupational health outcomes matched to daily weather information. The first data set

draws on workers’ compensation (WC) administrative data from Texas and consists of daily

Metropolitan Statistical Area (MSA) claim rates for each of Texas’s 66 self-contained MSAs

matched to weather data from the National Climatic Data Center.2 An advantage of using

data from Texas is that climate change will result in many places in the United States moving

towards rather than away from the Texas climate, which means the results provide insights

into the effect of temperature on workers in a climate that more places will resemble in the

future. However, focusing only on a place with a climate that is warmer than most of the rest

of the United States would limit the study’s ability to provide insights into the degree to which

adaptation or avoidance behaviors can mitigate the adverse effects of temperature. To consider

the effects of temperature on occupational health for a wider variety of climates, I draw on data

on injuries and illnesses from the mining industry to create a data set with daily injury rates

for various outdoor, above-ground mining sites across the United States along with the weather

experienced at the site each day.

I use these data sets to estimate models with time and place fixed effects to identify the

effect of temperature on occupational health measures through plausibly random short-run

variations in temperature. Using the Texas data set, I find evidence that both high and low

temperatures are detrimental to workers’ health. A day with a high temperature of 86◦F to

88◦F increases three-day claim rates by 2.1 to 2.8 percent relative to days with temperatures

2I use the term MSA to mean Core Based Statistical Areas, which include both metropolitan and micropoli-
tan statistical areas as identified by the Census Bureau. Micropolitan areas are urban clusters of at least 10,000
and fewer than 50,000 people, while metropolitan areas are urban clusters of at least 50,000 people.
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of 59◦F to 61◦F, while a day with temperatures over 100◦F increases three-day claim rates by

3.5 to 3.7 percent. A day with a high temperature under 35◦F increases three-day claim rates

by 3.4 to 5.8 percent relative to days with temperatures of 59◦F to 61◦F. With the mining

analysis, I test for heterogeneous effects of temperature based on a site’s temperature norms.

Whereas adaptation and acclimation hypotheses would predict that the adverse effects of a hot

day would be smaller in warmer climates, the results from the mining analysis suggest that a

hot day has more detrimental effects on occupational health in warmer climates than in cooler

climates. With the mining data, I find no evidence that cold temperatures affect injury rates,

though as I discuss later, the mining data have limitations in picking up injuries and illnesses

that the cold is likely to affect

Overall, these results provide strong evidence that extreme temperatures affect occupational

health. While in other aspects of life, people have been able to adapt to high temperatures

through air conditioning technology, many workers do not appear to be able to do so. Instead,

finding that hot days are more harmful in warmer climates suggests that the potential for work-

ers to engage in avoidance behavior may be more limited in places where extreme temperatures

are common. To test for differences in avoidance behavior based on temperature norms, I draw

on data on hours worked from the monthly Current Population Survey (CPS). Estimating mod-

els with MSA and year-month fixed effects, I find statistically significant differences in the effect

of hot and cold days on hours worked based on climate for a sample of temperature-exposed

workers. An additional day above 90◦F decreases weekly hours worked more in cooler climates

than in warmer climates, while an additional day with a high below 40◦F decreases weekly

hours worked more in warmer climates than in cooler climates.

These results are relevant for assessing the costs of climate change, as they indicate that

the health effects of extreme temperatures go beyond the illnesses that often dominate the

discussion of the potential health effects of climate change. Furthermore, much research indicates

that people can adapt to warm climates, which means that using the estimated effects of high

temperatures now to assess damages from future distributions of temperatures likely overstates

some of the costs of climate change. But the results from this study highlight that workers
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who have to be outside as part of their jobs may face additional challenges in adapting to high

temperatures relative to the rest of the population.

2 Background

2.1 Related Literature

Most relevant to this paper is the research that examines the impact of temperature on labor

force participation and economic output, which includes Behrer and Park (2017), Deryugina and

Hsiang (2014), and Graff Zivin and Neidell (2014). This research finds that high temperatures

lower economic output and lead outdoor workers to reduce their hours worked. Other studies

consider how other environmental factors, such as pollution (e.g., Chang et al. 2016; Graff Zivin

and Neidell 2012; Hanna and Oliva 2015; Isen, Rossin-Slater, and Walker 2017) and rain (e.g.,

Connolly 2008), affect workers and show that other environmental factors affect labor force

participation and productivity as well.3 This study contributes to this literature by examining

the impact of temperature on workers’ health and by assessing workers’ ability to adapt to their

environments with currently available technology.

Also relevant to this study is the epidemiology literature that has considered the impact of

temperature on occupational health. The vast majority of these studies focus only on illnesses

related to high temperatures and find that higher temperatures are associated with more heat-

related illnesses (e.g., Adam-Poupart et al. 2014; Argaud et al. 2007; Hajat, O’Connor, and

Kosatsky 2010; Luber and McGeehin 2008; Nelson et al. 2011; Xiang et al. 2014a). The few

studies that consider the impact of temperature on a broader set of occupational health out-

comes use data from a single city or from a small area and identify the impact of temperature

using time-series variation in temperature in summer months (e.g., Morabito et al. 2006; Xiang

et al. 2014b). These studies yield mixed evidence about the impact of temperature on non-illness

3Refer to Dell, Jones, and Olken (2014), Deschenes (2014), and Heal and Park (2015) for excellent reviews
of the economics research on climate. Refer to Graff Zivin and Neidell (2013) for a review of research on the
effects of other environmental factors.
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health issues.4 My contributions relative to these studies are to use econometric methods that

account for seasonality and other confounding factors, to consider how mitigating responses

may lead to different effects of temperature in different climates, and to characterize the effects

of a full range of temperatures, including low temperatures.

Another related economics literature examines the relationship between work and health

more generally (e.g., Anderson and Marmot 2012; Case and Deaton 2005; Fletcher, Sindelar,

and Yamaguchi 2011; Guardado and Ziebarth 2018; Morefield, Ribar, and Ruhm 2012; Schmitz

2016). This paper contributes to this literature by providing evidence on how the environment

factors into this relationship. Additionally, as people with lower incomes and less education

comprise a disproportionate share of workers exposed to outdoor temperatures, this study

also has implications for the literatures that examine the income-health and education-health

gradients (e.g., Clark and Royer 2013; Conti, Heckman, and Urzua 2010; Lleras-Muney 2005).

Finally, this paper also relates to the economics research on the effects of temperature on health

more broadly by focusing on a setting that is not conducive to some of the primary methods

for mitigating the effects of high temperatures.5

2.2 Physiological Effects of Temperature and Mitigating Factors

The physiological health effects of extreme temperatures arise because these temperatures

can push the body’s core temperature outside of its healthy ranges (Seltenrich 2015). High

temperatures can increase heart and respiratory rates, reduce blood pressure, and damage

internal organs, which can lead to sunstroke, syncope, cramps, exhaustion, and fatigue, as well as

4For example, Morabito et al. (2006) find that work-related hospital admissions in Tuscany are highest
when daytime temperatures are in the high 70s and that daytime temperatures around 90◦F are associated with
as many hospitalizations as daytime temperatures around 70◦F, while Xiang et al. (2014b) find no evidence
that consecutive days with temperatures above 95◦F lead to more injuries in Adelaide for workers on average.
Focusing on a single temperature indicator variable as in Xiang et al. rather than characterizing the full effect of
temperature makes interpreting the estimates difficult because the reference days likely have high temperatures
as well. These studies’ reliance on time series variation is also problematic if there is seasonality in the nature
of work and in work-related injuries.

5The literature on the health effects of temperature has grown in recent years and includes Barreca (2012),
Barreca et al. (2016), Burgess et al. (2014), Deschenes and Greenstone (2011), Deschenes and Moretti (2009),
Heutel, Miller, and Molitor (2017), Karlsson and Ziebarth (2017), Mullins and White (2018), and White (2017).
Much of this research focuses on the mortality effects of temperature, though some of the more recent studies
consider the effects of temperature on non-mortality health outcomes as well.
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acute cardiovascular and respiratory failure. As fatigue is often a contributing factor for injuries,

high temperatures also have the potential to increase injury rates. Cold temperatures cause veins

and arteries to narrow, blood to become more viscous, and the body to lose heat, which depletes

energy. The direct adverse effects of cold temperatures include frostbite and hypothermia. As

cold weather causes muscles to tighten and restricts blood flow, cold temperatures can lead to

muscle strains and sprains as well as other injuries (Scott et al. 2016). At temperatures below

32◦F, ice may form, which may increase the prevalence of falls or motor vehicle accidents.

In addition to temperature having direct effects on health, a number of lab experiments

show that people’s ability to perform various tasks declines at both high and low temperatures

(Hancock, Ross, and Szalma 2007; Hancock and Vasmatzidis 2003; Pilcher, Nadler, and Busch

2002). This performance decline appears to occur for a variety of tasks, including psychomotor,

perceptual, and cognitive tasks, and has the potential to lead to increased injury rates.6

Despite the physiological effects of temperature extremes, people can mitigate temperature’s

potential adverse effects in several ways. Air conditioning has proven to be an especially effective

way to adapt to high temperatures. Another way to mitigate temperature’s adverse effects is to

avoid being outside during extreme temperatures. Consistent with workers being able to engage

in avoidance behavior, Graff Zivin and Neidell (2014) find that workers in outdoor industries

reduce their labor supply on hot days.7

Mitigation decisions are influenced by the distribution of likely temperatures. For example,

as the expected number of hot days rises, the benefits from purchasing an air conditioner rise,

which is why people in warmer climates are more likely to have residential air conditioning than

people in cooler climates. Differences in the adoption of air conditioning can explain almost all

of the differential effects of high temperatures on mortality across time and space (Barreca et al.

6A number of recent studies show that students perform worse on tests on particularly hot days, which
is consistent with high temperatures affecting cognitive task completion (Cho 2017; Garg, Jagnani, and Taraz
2017; Goodman et al. 2018; Graff Zivin, Hsiang, and Neidell 2015; Park 2017).

7While this section focuses on air conditioning and labor supply responses, there are many potential ways of
adapting to extreme temperatures. Appendix A discusses the possibility that MSAs where dangerous tempera-
tures are common have adapted by specializing in work that can be performed in climate-controlled environments
and presents evidence that is inconsistent with climate-based specialization of labor having already shaped the
distribution of temperature-exposed jobs in the United States.
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2016; Heutel, Miller, and Molitor 2017). But the interaction between temperature distributions

and mitigation decisions is complex and does not necessarily imply less detrimental effects

of high temperatures where high temperatures are common. For example, the temperature

threshold at which people will engage in avoidance behavior to mitigate the adverse effects of

high temperatures will rise as high temperatures become more common if the marginal cost of

avoidance increases with avoidance duration. Construction workers in states like Washington

or Wisconsin may be able to avoid working or to avoid doing their most dangerous work on

the relatively small number of days each year that temperatures reach 90◦F, while construction

workers in Texas will likely have higher thresholds for engaging in avoidance behavior.

Whether a 95◦F day will have a more detrimental effect on occupational health in a warmer

climate or in a cooler climate is unclear for two reasons. First, air conditioning technology,

which is the adaptive mechanism that appears to be responsible for hot days having less severe

mortality effects in warmer climates, is less effective outside than inside. Thus, for outdoor

workers the benefits of pursuing adaptive technologies may be small relative to the costs, even

in places where dangerously high temperatures are common. Second, the marginal cost of

engaging in avoidance behavior likely increases faster for work than for non-work settings.

While people who do not work outside can likely engage in avoidance behavior for long periods

of time without repercussions, firms may discourage extended or repeated delays that arise from

workers engaging in avoidance behaviors.

It should be noted that temperature affecting occupational health does not necessarily imply

the existence of frictions that make the adverse impact of temperature on occupational health

sub-optimally high. The theory of compensating wage differentials suggests that firms must

pay workers higher wages to take additional risks, meaning that workers are likely paid more

for outdoor work in places where dangerous temperatures are common. Moreover, firms with

experience-rated WC premiums would be expected to internalize the costs of temperature’s

effect on occupational health because they pay for the increased WC costs of occupational

health incidents from extreme temperatures through higher premiums. However, the many firms

that are not fully experience-rated likely do not bear the entire cost of the occupational health
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effects of temperature that their workers experience, which likely provides them with incentives

to take a sub-optimal number of precautions to protect workers from extreme temperatures.8

2.3 Temperature-Exposed Workers in the United States

I now characterize temperature-exposed workers in the United States using the 2014 Amer-

ican Community Survey (ACS), which is the Census Bureau’s annual survey that collects de-

mographic, social, economic, and housing information on one percent of the U.S. population. I

classify workers’ exposure to temperature in two ways. First, I classify workers in the following

industries as being exposed to outdoor temperatures: agriculture, forestry, fishing, and hunting;

construction; manufacturing; mining; and transportation. These industries are often listed in

government reports as being exposed to outdoor temperatures and vulnerable to climate change

(e.g., Jacklitsch et al. 2016), and this classification has been used elsewhere in the research lit-

erature (e.g., Graff Zivin and Neidell 2014). Under this classification, 23 percent of the U.S.

workforce is employed in an industry with high exposure to outdoor temperatures.

A drawback of characterizing workers’ temperature exposure using industry is that there is

considerable heterogeneity in exposure within industry. For example, the construction industry

consists of laborers, carpenters, civil engineers, accountants, and secretaries. While laborers and

carpenters are likely exposed to outdoor temperatures frequently, accountants and secretaries

likely rarely are and civil engineers are likely only occasionally exposed. Classifying workers

based on industry means that many workers who are rarely exposed to outdoor temperatures are

classified as being exposed to them regularly. To obtain a more granular measure of temperature

exposure, I match the ACS data to data from the Occupational Information Network (O*NET),

which is a Bureau of Labor Statistics (BLS) tool that collects and summarizes occupational

information from job incumbents, occupational experts, and occupational analysts. Relevant to

8For more information on compensating wage differentials, refer to Guardado and Ziebarth (2018), Kniesner
et al. (2012), Powell and Shan (2012), and Viscusi and Aldy (2003). For more information on experience rating
in WC and its effects on firms’ and workers’ safety incentives, refer to Campolieti and Hyatt (2006), Hunt and
Dillender (2017), and Ruser (1991). For discussions about how insurance and institutions can lead to frictions
that prevent people and firms from internalizing the full costs of weather events, refer to Annan and Schlenker
(2015) and Kahn (2005).

8



this study are O*NET’s variables about how often an occupation is outside and how often an

occupation works in a non-climate-controlled building, both of which are measures of exposure

to outdoor temperatures.9

Panel A of Table 1 shows characteristics of U.S. workers by their occupational temperature

exposure. The first column displays characteristics of workers in industries with high exposure to

outdoor temperatures, the second column displays characteristics of workers in other industries,

the third column displays characteristics of workers in occupations that are exposed to outdoor

temperatures more than one day per week, and the fourth column displays characteristics of

workers in occupations that are never exposed to outdoor temperatures as part of their jobs.

Panel B of Table 1 shows the equivalent information for Texas workers. The main differences

in the demographic characteristics of workers with different temperature exposures come from

their gender and education. Only 22 percent of workers in high-exposure industries are female

and only 19 percent have bachelors’ degrees, while 55 percent of workers in other industries are

female and 37 percent have bachelors’ degrees. The differences are even starker when workers’

temperature exposure is characterized using O*NET data. Just 9 percent of U.S. workers in

high-exposure occupations have a bachelor’s degree, and only 9 percent are female. In contrast,

70 percent of U.S. workers who are never exposed to outdoor temperatures are female and 38

percent have a bachelor’s degree.

Texas has similar characteristics to the nation as a whole except for Texas’s high share of

Hispanic workers. In Texas, 37 percent of workers are Hispanic, while only 17 percent of workers

in the United States as a whole are Hispanic. Among Hispanic people, the shares with high

exposure to temperature are similar in both Texas and the rest of the nation. The difference

in the Hispanic share between Texas and the rest of the nation has the potential to affect the

generalizability of the results that use Texas WC data if temperatures affect Hispanics differently

9Since the ACS classifies occupations using Census occupation codes and the O*NET classifies occupations
using the Standard Occupational Classification (SOC) codes, merging O*NET data to the ACS requires a
crosswalk between Census codes and SOC codes, which I obtain from the BLS. When the Census occupation
codes cannot be matched to the level of granularity in O*NET, I assign the temperature exposure of the least-
exposed occupation in the broader set of SOC matches. In Section 4, I follow the same approach with CPS data,
which also uses Census occupation codes.
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than non-Hispanics. While I am unaware of any research that suggests that biological reactions

to temperature vary by race or ethnicity, Hispanics are much more likely to lack documentation

and therefore may not file for WC at the same rate conditional on being injured as non-Hispanic

workers. Texas having a larger share of undocumented immigrants likely biases the estimates

of the level effects downward with the Texas WC analysis but should not have an effect in

percentage terms as long as Hispanic workers’ participation in WC conditional on being injured

is unrelated to temperature.

3 The Effect of Temperature on Occupational Health

3.1 Evidence from Texas Workers’ Compensation Medical Claims

Data

Texas Workers’ Compensation Insurance and the Medical Claims Data

To examine the effect of temperature on workers’ health, I first use WC administrative data

that contain information on all medical bills paid for by WC insurers in Texas. WC insurance

is regulated at the state level, and benefits to injured workers are set by the state. While WC

insurance pays for medical care immediately after an injury occurs, injured workers become

eligible for income replacement benefits after missing 3-7 days of work, depending on the state.

In Texas, injured workers become eligible for income replacement benefits after missing at least

seven days of work.

The raw data consist of all medical bills paid for by Texas WC from 2006 to 2014. Each

bill contains the cost of the bill, the International Classification of Diseases (ICD-9) code for

the bill, the zip code where treatment was received, the date treatment was received, the birth

month of each claimant, the gender of the claimant, and a unique identifier for each claim. Since

the data contain information about the underlying claims as well as all treatment, they allow

for distinguishing between claims and bills. Each injury or illness has one claim associated with

it, while each claim generally consists of multiple bills. I create an intermediate data set with
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claims as the unit of observation and restrict attention to claimants ages 18 to 64. I define the

claim’s MSA as the MSA of the first place of treatment.

As the data do not contain the date that the injury occurred, I define the claim’s start date

to be the first day that medical treatment was received. For certain kinds of injuries, the injury

date and the date of first treatment likely coincide. For other types of injuries, workers may

not receive treatment immediately. As discussed in more detail below, the empirical strategy

accounts for the possible mismeasurement of the date that occupational health incidents began

by allowing workers multiple days to report injuries.

I use ICD-9 codes from the first day of treatment to create a series of indicator variables

that describes the medical issue that underlies each claim. First, I create an indicator equal

to one if the provider specifically identifies a condition as being an illness stemming from the

heat. To consider the possibility that temperature affects injury rates, I create another indicator

variable equal to one if the claim is for an injury. Because research often finds differences in

treatment and reporting patterns based on how traumatic and visible injuries are, I create an

indicator equal to one if the claim is related to an open wound, a crushing injury, or a fracture

and another indicator variable equal to one if the claim is for a strain, sprain, bruise, or other

muscle-related issue.10

Table 2 contains descriptive statistics for this intermediate data set, which consists of

1,916,590 claims. Males account for 60 percent of all claims in Texas, likely because males

tend to work in more dangerous and physical jobs. Injury ICD-9 codes account for the vast

majority of claims at 91.3 percent. I next collapse this intermediate data set to the MSA level

to produce daily counts of claims. I then combine the counts of claims with monthly MSA em-

ployment data from the BLS’s Local Area Unemployment Statistics (LAUS) and create daily

rates of claims per 100,000 workers for all 66 self-contained MSAs in Texas.

10For examples of research that considers differences based on visibility/trauma of an injury, refer to
Bronchetti and McInerney (2017), Campolieti and Hyatt (2006), Card and McCall (1996), Dillender (2015),
and Hansen (2016). The corresponding ICD-9 codes are as follows: illnesses from the heat: 992; injuries: 710 to
740 and 800 to 959; open wound, crushing, and fracture injuries: 800 to 829, 870 to 898, and 925 to 929; sprain,
strain, bruise, and muscle-related injuries: 710 to 739, 840 to 848, and 920 to 924. Claims can have multiple
ICD-9 codes on the first day of treatment, so some claims fall into multiple classifications.
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An important feature of the Texas WC system is that purchasing WC insurance is optional.

While several states exempt small firms from the requirement to purchase WC insurance, Texas

and Oklahoma are the only states that do not require firms to purchase WC insurance regardless

of their size. As firms that do not purchase WC insurance can be sued for negligence by injured

employees, WC insurance is still widely purchased in Texas despite not being mandatory, and

81 percent of Texas workers work for firms with WC insurance as of 2012 (Texas Department

of Insurance 2012). Given that non-subscription is unlikely to be related to transitory tem-

perature fluctuations, the empirical approach will still yield unbiased estimates of the effect

of temperature on WC claims in Texas. As the baseline estimates are calculated per 100,000

workers, the estimates in levels are a lower bound of what the effect of temperature would be if

everyone in Texas was covered by WC insurance. If temperature has the same effect on workers

covered by WC insurance and on those not covered by WC insurance, then the estimates could

be proportionately scaled to account for the fact that 19 percent of Texas workers are not cov-

ered. But as firms with fewer than ten employees comprise a majority of non-subscribing firms

(Texas Department of Insurance 2012) and as small firms tend to have much lower injury rates

than larger firms (Bureau of Labor Statistics 2016), it is likely the case that injury rates are

lower at non-subscribing firms. To be conservative, I do not scale the estimates to account for

non-subscription.

The estimates in percent terms will not be majorly affected by non-subscription if non-

subscribing firms account for a disproportionately small share of overall injuries or if the effect

of temperature is similar for non-subscribing firms in percent terms. If, however, workers who

are more sensitive to temperature select into work at firms without WC insurance or if firms that

do not purchase WC insurance take fewer precautions to protect their workers from extreme

temperatures, the estimates in percent terms would likely be larger if everyone in the state was

covered by WC insurance. As noted above, though, small firms are more likely to opt out of

WC insurance and have lower injury rates, which suggests the results may not be dramatically

different if all workers in Texas were covered by WC insurance. Still, it is important to remember

that while non-subscription does not hinder the ability of this study to produce valid estimates
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of the effect of temperature on WC claims in Texas, it does mean that some injuries arising

from temperature are likely not reflected in the estimates. Other than not being compulsory,

Texas WC is generally similar to other states’ WC programs along most dimensions (Morantz

2010).

The weather data come from the National Climatic Data Center Summary of the Day Data.

These data contain the daily maximum temperatures, the daily minimum temperatures, and

daily precipitation for numerous weather stations throughout the United States. I incorporate

all of this information into the analysis but focus on the maximum temperatures since most

work is done during the day, meaning that more work is done closer to the day’s maximum

temperature than to the day’s minimum temperature. To calculate an MSA’s weather measures,

I take an inverse-distance weighted average of all the valid measurements from stations that

are located within 124 miles (200 kilometers) of each MSA’s centroid.11 I restrict the sample to

include only weekdays since most work is done during the week.12 The main analysis sample

includes 154,968 MSA-days.

Texas’s size means that different parts of the state can experience substantially different

weather than other parts on any given day. Appendix B contains figures that display the total

number of days of 100◦F or more and the total number of days with low temperatures below

32◦F for selected MSAs and illustrates the variation in temperature across Texas.

Estimation and Results

Graph A of Figure 1 shows means of monthly claim rates per 100,000 workers for all claims

and for claims for injuries. For both series, mean rates peak in August. Graph B of Figure 1

shows means of monthly heat-related claim rates per 100,000 workers and shows that these

types of claims peak in the summer and do not occur in the winter. Drawing causal inferences

from these graphs is difficult because different types of work are done in different seasons. Also,

11This approach follows Deschenes and Greenstone (2011). Results are similar if I simply use information the
weather station closest to each MSA’s centroid. Also following Deschenes and Greenstone, I only use a station’s
information for years in which the station has valid measurements for the full year.

12This sample restriction is made at the end of the construction of the analysis data set, so the claims and
weather for the day after a Friday are Saturday’s claims and weather rather than Monday’s claims and weather.
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some months have more holidays and missed work, which results in lower injury rates in those

months for reasons unrelated to temperature.

To obtain estimates of the effect of temperature, I estimate fixed effect models of the fol-

lowing form:

yjt = δt + γjm + α ∗ othweatherjt + β ∗ temperaturejt + εjt, (1)

where j indexes the MSA, t indexes the calendar date, m indexes the year and month, y

represents the various dependent variables, δ is a vector of calendar date fixed effects, γ is a

vector of MSA-year-month fixed effects, othweather is a vector that includes controls for the

day’s precipitation as well as for the precipitation and temperature on the days surrounding

the day of observation, and temperature represents the day’s temperature. For specifications

that include days with precipitation, I control for indicator variables for a day’s precipitation

falling into one of the following bins: greater than or equal to 0.05 inches but less than 0.50

inches, greater than or equal to 0.50 inches but less than 1.00 inch, greater than or equal to

1.00 inch but less than 2.00 inches, and greater than or equal to 2.00 inches.13

I specify temperature as a vector of indicator variables for the day’s high temperature falling

into three-degree temperature bins. I include all temperatures below 35◦F in one bin and all

temperatures over 100◦F in another. The indicator variable for 59◦F to 61◦F is omitted, so

all estimates can be interpreted as the effect of a given temperature bin relative to the effect

of a day with a high temperature of 59◦F to 61◦F. I weight the regressions by the number

of employed people in the MSA in the month of the observation. I display the temperature

coefficients in graphs along with 95-percent confidence intervals for each estimate calculated

using robust standard errors clustered at the MSA level. Standard errors and point estimates

are shown in tables in Appendix C.

The controls in Equation (1) are extensive. The δ coefficients account for the fact that

baseline injury rates may be different on Tuesdays and Fridays, that baseline injury rates are

13To avoid classifying days with heavy dew or a light drizzle as being rainy, I consider a day to have positive
precipitation if it has at least 0.05 inches of precipitation. When the sample is restricted to days without
precipitation, the controls for the day’s precipitation are excluded.
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different in December versus June, and that injury rates may be different in 2011 compared to

2006 for idiosyncratic reasons other than temperatures. The γ coefficients account for the fact

that MSAs may have different economic conditions or employment patterns in July of 2011

versus March of 2011 as well as the fact that MSAs may have different baseline claim levels

for reasons unrelated to temperature. These controls mean that identification of the effect of

temperature comes from different MSAs experiencing different temperatures on the same day.14

As explained earlier, the claim’s start date is defined as the earliest date medical treatment

was received. Since treatment may not be received on the day that an injury occurs, a critical

decision for the empirical implementation is how long to allow workers to report and receive

treatment for an occupational health incident. Not allowing enough time for workers to receive

treatment for their injuries might fail to produce valid estimates of the effect of temperature

because health issues from one day’s temperature could be attributed to another day’s temper-

ature. But allowing too much time for workers to receive treatment will introduce unnecessary

noise into the estimation.

To consider how a day’s temperature affects claim rates over the next several days, I begin

by controlling for the weather during the five days before and the four days after the day of

observation and estimating separate regressions of the effect of a day’s temperature on health

outcomes the day of the temperature as well as up to four days after the day’s temperature.

Figure 2 shows the various estimates separately for all days and for days without precipitation.

The first two graphs in Figure 2 display estimates of the effect of a day’s temperature on that

day’s WC claims. The results suggest that same-day claim rates start rising with temperature

once temperatures reach the 70s. A day of 86◦F to 88◦F increases claim rates by 0.309 to 0.329

per 100,000 workers, or by 5.0 to 5.2 percent, relative to a day with a high temperature of

59◦F to 61◦F, while a day above 100◦F increases claim rates by 0.484 to 0.507, or by 7.6 to

8.2 percent. The results do not provide strong evidence that low temperatures affect same-day

14As temperature is plausibly exogenous in the short run, less extensive controls than those in Equation (1)
should produce similar results. Appendix B verifies that the results are robust across a variety of specifications.
Appendix B also assesses the validity of Equation (1) by focusing on settings where temperature would be
expected to have smaller or no effects on occupational health and verifies that the empirical strategy indeed
estimates smaller effects of temperature in these settings.
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claim rates.

Graphs C and D display estimates of the effect of a day’s temperature on the next day’s

claim rates. For days with high temperatures in the mid-forties and below, claim rates rise as

the daily high falls. Graphs C and D provide no evidence that high temperatures have next-

day effects. These results are consistent with cold weather being more likely to affect strains,

sprains, and other muscle-related issues (Scott et al. 2016), which are often not treated on the

day of the injury. Graphs E and F display estimates of the effect of a day’s temperature on

claims two days later and indicate that cold temperatures still increase claim rates two days

after the day of the original temperature observation. The estimates of the effect of a day’s

temperature on claim rates three and four days later are displayed in graphs G through J and

do not suggest that temperature still affects claims three and four days later, suggesting that

all of the effect of a day’s temperature appears to have been realized by the third day after the

day of the temperature observation.

Since the effect of a day’s temperature is realized during that day and the subsequent two

days, I focus on three-day claim rates for the remainder of the analysis rather than show the

analysis separately for each day after a day’s temperature. To account for the serial correlation

of weather, I control for the temperature and precipitation two days prior to and two days

after the day of the observation, which means that the previous weather that affects today’s

three-day claim rates is controlled for as is the subsequent two days’ weather that is correlated

with today’s temperature and also affects today’s three-day claim rates. The coefficients on the

current day’s temperature bins isolate the effect of a day’s temperature on claiming over the

next three days. Given the similarities between the analysis that controls for precipitation and

the analysis that excludes days with precipitation in Figure 2, I include days with precipitation

for the remainder of the analysis and control for the precipitation indicator variables.

It is important to note that this empirical strategy will not capture the impact of tempera-

ture on occupational health issues that take years to develop or on occupational health issues

that are not treated until after three days have passed since they occurred. As long as the date

of first treatment of past medical issues or of slow-developing medical issues is not related to
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a day’s high temperature in a way that is not captured by the controls for the previous two

days’ high temperatures, the main implication of these health issues not being captured by the

empirical strategy is that the estimates will be attenuated.

Figure 3 shows coefficients on the temperature indicators for a variety of specifications

with three-day claim rates per 100,000 workers as the dependent variable. Graph A displays

the baseline temperature coefficients from Equation (1) and confirms that both high and low

temperatures have harmful effects on occupational health. A day with a high temperature

of 86◦F to 88◦F raises three-day claim rates by 0.333 per 100,000 workers, or by about 2.1

percent relative to claim rates when temperatures range from 59◦F to 61◦F. A day with a

high temperature above 100◦F raises three-day claim rates by 0.553 per 100,000 workers, or by

about 3.5 percent relative to when temperatures range from 59◦F to 61◦F. A day with a high

temperature below 35◦F increases three-day claim rates by 0.922 claims per 100,000 workers,

or by about 5.8 percent.

Graphs B through F consider a variety of alternative specifications. An alternative to com-

puting rates as in the baseline specification is to set the dependent variable to be the log or

inverse hyperbolic sine (IHS) of claims. A concern with specifying the dependent variable in

rates is that regressions with the rate as the dependent variable may be more sensitive to out-

liers than a regression that uses a log or IHS transformation as the dependent variable because

these alternative transformations tend to downweight outliers. Taking the log or IHS of the

dependent variable also allows the coefficients to be interpreted as percent changes in three-day

claim rates. The estimates with IHS of three-day claim counts as the dependent variable are

shown in graph B of Figure 3 and follow a similar pattern as the estimates that use claim

rates as the dependent variable. These estimates indicate that high temperatures of 86◦F to

88◦F increase three-day claim rates by 2.8 percent, that high temperatures above 100◦F increase

three-day claim rates by 3.7 percent, and that high temperatures below 35◦F increase three-day

claim rates by 3.4 percent.

As previously explained, I focus on high temperatures because high temperatures are most

likely more relevant to occupational health than low temperatures are since more work is done
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during the day. In graphs C through E, I consider the implications of this decision. While

the point estimates may fall and the standard errors may become larger with the inclusion

of controls for the day’s low temperatures because daily high and low temperatures are highly

correlated with each other, the coefficients on the high temperatures falling to zero might suggest

that the daily low temperatures are more relevant than assumed by the main specification. In

graph C, I set the dependent variable to be three-day claim rates and control for the daily low

temperature. The point estimates on colder daily highs fall, but the point estimates display

a similar pattern. Graphs D and E display coefficients on low temperatures in three-degree

temperature bins. The regression for graph E controls for the day’s high temperatures, while

the regression for graph D does not. When daily high temperatures are not controlled for, the

distribution of coefficients follows a similar pattern as the main estimates. When controls are

included for high temperatures, the coefficient estimates on the daily low temperature bins fall

towards zero and are no long statistically significant. Overall, these estimates suggest that high

temperatures are the relevant temperatures to consider.

Figure 2 showed that the qualitative conclusions are unaltered regardless of whether days

with precipitation are included or excluded from the analysis, suggesting that precipitation

does not confound the analysis. Apart from precipitation confounding the analysis, though, the

interaction between temperature and precipitation may matter. For instance, cold weather may

be especially harmful on days with precipitation, since ice may form. In contrast, though, a day

with extreme temperatures may not have similar effects when it is raining because people may

be less likely to work. As climate change will alter precipitation patterns, interactive effects of

temperature and precipitation are relevant for assessing the potential impacts of climate change.

To test for differential effects of temperature on days with precipitation, I allow days with

precipitation to have separate day, MSA-year-month, and other weather effects in Equation

(1) and then supplement Equation (1) with terms for the interaction of each temperature

bin with an indicator variable for the day having precipitation. Graph F of Figure 3 displays

the estimates on the temperature-precipitation interaction terms, which are estimates of the

differential effects of temperature on days with precipitation. The profile of estimates does not

18



provide strong evidence that temperature has interactive effects with precipitation.

While hot temperatures are common across Texas, humidity levels vary. According to the

Köppen classification, which is a climate classification scheme that divides the earth into five

basic climates, the eastern side of the state consists of mostly humid subtropical climates, while

the western side of the state consists of semi-arid and desert climates. As the names imply,

humid subtropical climates are much more humid than desert and semi-arid climates. Based

on the Köppen climate regions, I test for differential effects of temperature for MSAs in humid

climates by interacting an indicator for an MSA being in a humid climate with the day fixed

effects and the weather variables. Graph G displays the coefficients on the interaction of the

temperature bins and the indicator for being in a humid climate and provides no evidence of

differential effects of temperature based on an MSA’s typical humidity.

Temperatures may have different effects depending on previous days’ weather. For instance,

extreme temperatures may have larger effects if they are a shock than if people have time

to acclimate to them. Alternatively, consecutive days of extreme temperatures may intensify

their effects or may make avoiding working during the temperature extremes more difficult.

In graph H of Figure 3, I test for differential effects of a cold day in the fall or of a hot day

in the spring by supplementing Equation (1) with interactions of select temperature bins with

indicator variables for spring and fall. As spring and fall are seasons when temperatures are

in transition, extreme temperatures are much less common and are more likely to be shocks

during these seasons. While the results are imprecisely estimated for lower temperatures, the

estimates of the effect of hot days in spring are negative and marginally statistically significant,

suggesting that hot days may have less of an effect in spring than in the rest of the year.

These results are inconsistent with acclimation being a major mitigating factor of the effect of

temperature on occupational health.

Figure 4 considers the types of claims that temperature affects. As explained earlier, high

temperatures can have direct physiological effects, which can include heat stroke, sunstroke, heat

syncope, heat cramps, heat exhaustion, and heat fatigue. Graph A focuses solely on claims with

ICD-9 codes of 992, which is the ICD-9 code for illnesses from the heat. The results show a strong
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effect of high temperatures on these kinds of claims. The estimates first become statistically

significant once temperatures reach the mid-80s and appear to rise non-linearly as temperatures

rise. A day with a high temperature above 100◦F increases the rate of heat-related claims by

0.072 per 100,000 workers.

As explained in Section 2, temperatures also have the potential to affect injury rates.

Whether or not injuries are affected is important since injuries comprise the majority of work-

related medical issues. Graph B considers the effect of temperature on injury claims and reveals

a pattern that mirrors the estimates for all claims. While the effects do not increase as dra-

matically as they do for claims identified by medical providers as being heat-related, the level

effects for injuries are much higher.

Graphs C and D consider two broad types of injuries. Graph C focuses on the effect of

temperature on claims for open wounds, crushing injuries, and fractures, which are injuries that

are visible, traumatic, or require immediate care. Graph D focuses on the effect of temperature

on claims for sprains, strains, bruises, and muscle issues, which are typically less visible on the

day of the injury and may not be debilitating until they have had time to swell. The results

presented in graphs C and D confirm that the main effects of low temperatures appear to be

accounted for by increases in swelling injuries, while high temperatures appear to result in

larger percent increases in more traumatic injuries.

Even with the large increases in claim rates arising from temperatures at both extremes,

if the medical issues caused by temperature extremes are not costly to treat or do not result

in the need for further treatment, then climate change may still not have major occupational

health implications. Graphs A and B of Figure 5 consider medical treatment 3 to 30 and 31

to 180 days after claims begin. Both sets of results indicate that high and low temperatures

lead to medical issues that require subsequent treatment. A day below 35◦F increases the rate

of claims that require treatment 3 to 30 days later by 6.3 percent and the rate of claims that

require treatment 31 to 180 days later by 7.0 percent. The equivalent numbers are 1.7 percent

and 2.4 percent for days with highs of 86◦F to 88◦F and 3.0 and 2.6 percent for days with highs
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above 100◦F.15

Graphs C and D of Figure 5 examine whether the claims that arise from temperature ex-

tremes have six-month medical costs that are above or below the median six-month spending,

which is $1,257 in 2014 dollars. The estimates suggest that a majority of the claims result-

ing from low temperatures have above-median spending, while the claims resulting from high

temperatures are more evenly split.16

Appendix B considers heterogeneous effects of temperature based on age. The results show

similar patterns for younger and older workers, though the estimated effects of cold temperatures

appear to be larger for older workers than for younger worker. The effects of high temperatures

appear to be similar for younger and older workers.

3.2 Evidence from Mining Injury Data

Mining Safety and Health Administration Data

The preceding analysis indicates that high temperatures have sizable effects on occupational

health in a warm climate. To extend the analysis beyond Texas, I now draw on data from the

U.S. Department of Labor’s Mining Safety and Health Administration (MSHA), which is tasked

with tracking and improving workplace safety for the U.S. mining industry. To construct the

analysis data set, I combine information from three MSHA data sets. The first is a site-level

data set that has basic information about each site, including its zip code and whether the site

is an underground mine, a surface mine, or a facility. The second data set contains quarterly

employment information for each site, including the number of workers working in a mill,

an open pit quarry, and an office. To restrict attention to workers who are likely experiencing

15A potential concern with the interpretation of the results as presenting evidence that extreme temperatures
affect occupational health is that workers may falsely report injuries to avoid working in uncomfortable tem-
peratures. Given that low temperatures do not have same-day effects, that high temperatures affect fractures
and open wounds, both of which would be difficult to fake, and that many of these medical issues are still being
treated throughout the year, malingering does not seem to be a plausible explanation for the increase in claim
rates.

16The WC data used for this project cover most of 2015, which allows for follow-up care and six-month costs
to be calculated for claims that occur throughout the whole sample period. I did not include 2015 data in most
of the analysis because the data for the last few months of 2015 are incomplete and because the diagnosis codes
switch from ICD-9 to ICD-10 in the middle of 2015.
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temperatures reflective of the temperatures at the weather stations, I focus on non-office workers

working at surface mines. In contrast to work in underground mines, work at surface mines is

performed outdoors in the open air.

The third data set consists of information on injuries and illnesses that occur at each site.

Federal law requires all employers in the mining industry to notify MSHA of all occupational

injuries and illnesses that require medical treatment beyond first aid. Site operators must report

certain types of injuries immediately and must submit a form for all other injuries within ten

business days of the injury. Reporting can be done online and is estimated by MSHA to take

half an hour. Site operators who fail to report injuries are subject to fines. These data contain

information on the date of the injury, the site where the injury occurred, and the injured

worker’s occupation. As with the employment data, I focus on injuries and illnesses for non-

office workers.

I merge these three data sets with the weather data to create a site-day level data set

with daily injury rates per 100,000 workers, the weather of each day, and the weather of the

surrounding days.17 I focus the analysis on sites that operate each year from 2006 to 2014

so that the time period is consistent with the Texas WC analysis. To ease the computational

burden of the analysis, I restrict the sample to sites that employ at least 5 workers each year,

which leaves 1,114 sites. As with the previous analysis, I focus only on weekdays. From 2006

to 2014, these sites had 13,013 weekday injuries. The resulting data set consists of 2,538,188

site-days.

The Texas data have several advantages over the MSHA data. One is that the Texas WC

data represent a much wider set of occupations and industries than the mining data, making

the results more generalizable.18 Another advantage is that the WC data contain information

on approximately two million injuries from an underlying population of over 10 million workers,

17For ease of discourse, I use the term injuries to refer to injuries and illnesses. I compute the rate per
100,000 workers to make the results comparable to the Texas WC results, though most sites employ fewer than
100 workers at a time. As with all the analysis for this study, I include only information from the continental
United States, meaning sites in Alaska, Hawaii, Puerto Rico, and the Virgin Islands are excluded.

18While a disadvantage in some ways, the mining data representing a few occupations from a single industry
has the advantage of demonstrating the effect of temperature on some of the most temperature-exposed workers.

22



which facilitates the thorough analysis presented in the previous section. A third advantage is

that the WC data capture a fuller set of injuries. Compared to WC data, injury data recorded by

employers tend to miss illnesses and injuries that are often not treated on the day of the injury.

Instead, employer-recorded data are better at capturing traumatic injuries that are easier to

observe and relate to the workplace, such as surface and open wounds and traumatic injuries

to bones. Injuries like strains, sprains, and other muscle-related injuries—i.e., cold-weather

injuries—as well as most illnesses are underreported in these data (Boden and Ozonoff 2008;

Rosenman et al. 2006; Ruser 2008). For this reason, the main analysis focuses on same-day

injury rates and the discussion centers on the effects of high temperatures.19

Despite the drawbacks of the mining data, they have a major advantage over the WC data

in that the mining sample spans 47 states, which allows for testing for heterogeneous effects

based on temperature norms. As explained earlier, it is possible that workers in warmer climates

may be able to adapt or acclimate to the heat and that the effects of a hot day will be much

more severe in other parts of the country. Alternatively, it is also possible that workers in cooler

parts of the country may have better options in terms of shifting work to avoid dangerous work

on hot days.

Several features of the mining industry are relevant for interpreting the analysis. One is that

safety in the mining industry is regulated by the Mining Safety and Health Act while safety

in other industries is regulated by the Occupational Safety and Health Act. Despite a different

law regulating safety in the mining industry, safety regulations tend to be similar for mining

and for other industries, though the mining industry has additional safety regulations that are

specific to mining risks (Johnson 1987). One of the most meaningful differences between mining

jobs and other jobs is that mining jobs tend to be more physically demanding than other jobs.

For example, according to O*NET data, quarry work is more physically demanding than 89

percent of jobs, while being a millwright is more physically demanding than 97 percent of other

occupations. High physical demands have the potential to exacerbate the risks from extreme

19Estimates of the effect of temperature on subsequent days do not provide evidence of delayed effects and
are shown in Appendix D.
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temperatures, meaning occupational health in the mining industry might be especially sensitive

to temperature.

Estimation and Results

The empirical approach with the mining data can still be represented by Equation (1),

except that j now indexes the site rather than the MSA. The basic models include controls for

precipitation, the weather of the previous two days and subsequent two days, site-year-month

fixed effects, and day fixed effects. As the goal of this analysis is to provide separate estimates

for sites in different climates, I first calculate the mean daily high temperature in June through

September for each site and then categorize sites as being in warmer or cooler climates based

on their location in this distribution. I consider sites in the top quartile of this distribution

to be in warmer climates and sites in the bottom quartile of this distribution to be in cooler

climates. The top quartile includes all sites with a mean summer high temperature of 89.9◦F

or above, while the bottom quartile includes all sites with a mean summer high temperature of

81.3◦F or below.

Figure 6 displays the estimates of the effect of temperature on same-day claim rates sepa-

rately for sites in warmer climates, cooler climates, and the middle 50 percentiles of the summer

temperature distribution, both for the sample of all days and for the sample of days with no

precipitation. As can be seen in graphs A and B, injury rates begin rising with temperature

once temperatures reach the mid-70s or mid-80s at sites in warmer climates. A day with tem-

peratures over 100◦F increases injury rates by 6.92 per 100,000 workers, which is a 67.0 percent

increase from when the temperature is 59◦F to 61◦F. Note that the estimated effects of tem-

perature are likely larger with the mining data because the mining analysis focuses exclusively

on workers with high exposure to outdoor temperatures and because mining jobs are physically

demanding.

Graphs C and D of Figure 6 display the equivalent estimates for sites in the middle of the

summer temperature distribution, while graphs E and F show estimates for sites in the bottom

quartile of the summer temperature distribution. A similar pattern of estimates is not observed
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for sites in cooler climates, regardless of whether or not days with precipitation are included.

These results are consistent with the notion that adapting to high temperatures through air

conditioning is not an option for outdoor workers and that engaging in avoidance behavior to

prevent the adverse effects of high temperatures becomes more difficult for workers as high

temperatures become more common.

The final two graphs in Figure 6 display estimates of the differential effects of temperature

at sites in warmer climates versus all other sites in a single regression. To obtain these estimates,

I allow sites in warm climates to have separate day fixed effects and separate effects for each

weather variable. The interactions between the temperature bins and the warm climate indicator

are estimates of the differential impact of temperature on sites in warmer climates. The point

estimates indicate that the effects of higher temperatures are statistically significantly larger in

warmer climates at at least the ten-percent level for three out of the five hottest temperature

bins. For days with no precipitation, the estimated effects of high temperatures are statistically

significantly larger in warmer climates at the five-percent level for three out of four of the

hottest temperature bins.

Unlike with the Texas WC data, the mining data have information on whether injuries

resulted in missed work. Figure 7 replicates the analysis in Figure 6 using the rate of time-loss

injuries as the dependent variable. The results show that high temperatures affect time-loss

injuries in warmer climates, which supports the finding from the Texas WC analysis that many

of the injuries that are caused by high temperatures are not trivial. Again, the results provide

no evidence that high temperatures have similar effects in cooler climates.

A potential concern with analysis that uses data for the whole United States is that while

many regions have experienced warming over the past few decades, others have experienced

slight cooling (Burke and Emerick 2016). Failing to account for these trends could lead to

biased estimates if these trends are correlated with trends in injury rates. Note that the site-

year-month fixed effects in the main specifications account for any region- or site-specific trends

because including site-year-month fixed effects means that identification of the temperature

coefficients comes from comparing injury rates within a site-year-month combination. To assess
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the possibility that regional trends would hinder the analysis without the site-year-month fixed

effects and to consider the robustness of the estimates more generally, Appendix D displays

estimates from models that replace the site-year-month fixed effects with site fixed effects and

from models that replace the site-year-month fixed effects with site fixed effects and with state-

year fixed effects. Regardless of the level of fixed effects included, the estimates are generally

similar to the original estimates, which suggests that regional trends in warming are not a major

concern for the analysis.

4 Extensions

4.1 Avoidance Behavior: The Effect of Temperature on Hours Worked

The results presented in Section 3.2 indicate that the occupational health effects of high

temperatures are larger in warmer climates, which is consistent with adapting to high tem-

peratures through air conditioning being difficult for outdoor workers and with engaging in

avoidance behavior to prevent the adverse effects of high temperatures being easier when high

temperatures are rare. Avoidance behavior can take many forms. If a worker divides her time

between a climate-controlled space and a non-climate-controlled space, one possible avoidance

strategy for the worker would be to arrange her work so that she is in the climate-controlled

space when outdoor temperatures are at their most dangerous levels. Alternatively, even if

workers spend all their time outside, they can redistribute their tasks so that they do more

dangerous tasks during more favorable temperatures. For instance, a construction worker may

avoid high-beam work on particularly hot days and may instead do tasks on the ground, where

dizziness or fatigue would have less severe effects. Finally, a worker may simply work less once

temperatures reach dangerous levels. In this section, I use basic monthly CPS data to examine

this third type of avoidance behavior.

To consider the effect of temperature on hours worked, I use data from the 2006 to 2014

basic monthly CPS collected by the BLS. Each month the CPS asks respondents to report their
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hours worked at their main jobs as well as their hours worked at all other jobs during the week

that contains the twelfth day of the month. The systematic reference week of the CPS is crucial

to this analysis as it allows the temperature conditions faced by workers to be matched to the

week for which they report hours worked.20

Only one other study has examined the effect of temperature on time use. Using the 2003

to 2006 American Time Use Surveys (ATUS), Graff Zivin and Neidell (2014) examine how

temperature affects people’s time allocation among indoor leisure, outdoor leisure, and work.

Most relevant to the current study are their findings about the effect of temperature on hours

worked, which indicate that a day with a high temperature above 85◦F decreases time allocated

to labor. Graff Zivin and Neidell do not find evidence of an effect of low temperatures on hours

worked, though they cannot rule out meaningful effects.

As its name implies, the ATUS is uniquely suited to studying many dimensions of time use.

In addition to allowing for matching a day’s time use to the same day’s weather, the ATUS

also allows Graff Zivin and Neidell (2014) to consider the effects of temperature on leisure and

on intraday labor substitution.21 Despite the ATUS’s advantages, the basic monthly CPS has

a major advantage over the ATUS in that the sample sizes in the basic monthly CPS are much

larger than those in the ATUS, which makes the CPS more conducive to heterogeneity analysis.

To evaluate the effect of temperature on hours worked, I restrict the CPS sample to workers

ages 18 to 64 who report their hours worked and their occupations in the previous week and

are located in one of the 254 MSAs consistently identified in the CPS during the time period

20Refer to Bureau of Labor Statistics (2017a) for an overview of the CPS and its collection procedures. To
avoid interviewing households during holidays, November and December sometimes have reference weeks that
do not include the twelfth day of the month. To avoid assigning workers the wrong temperatures, I exclude
observations from November and December from the analysis.

21Having hours worked at the day level also facilitates the study of interday substitution, which is not possible
with hours worked at the week level. For instance, if a particularly hot day results in zero hours being worked
on that day but twice as many hours being worked the following day, daily data can identify this interday
substitution, while the strongest conclusion that could be reached with weekly data would be that the hot day
did not affect weekly hours worked. Graff Zivin and Neidell (2014) find no evidence that high or low temperatures
cause interday substitution of labor.
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studied.22 I match the CPS data to the O*NET data and focus on the subset of workers who are

in occupations that are exposed to outdoor temperatures more than one day per week. Since

the CPS only contains information about one week in each month, the estimation strategy can

no longer rely on within-month variation to identify the impact of temperature. Instead, I now

estimate models of the following form:

yijm = γj + δm + λ ∗Xijm + α ∗ othweatherjm + β ∗ temperaturejm + εijm, (2)

where i indexes the individual, γ is a vector of MSA fixed effects, δ is a vector of year-month

fixed effects, X is a vector of demographic and job characteristics that includes controls for race,

sex, age, years of education, usual hours worked, occupation, and industry, and othweather is

the number of weekdays in the reference week that fell into each precipitation bin and the

number of weekend days in each temperature and precipitation bin. The temperature variable

is now the number of weekdays in the reference week with highs in each temperature bin.

This part of the analysis ultimately seeks to test for heterogeneous effects of high or low

temperatures in places where they are rare compared to places where they are common. By

definition, places experience uncommonly high or low temperatures rarely, meaning cooler MSAs

experience only a few days over 100◦F over the time period. Also, unlike with the occupational

health analysis, the CPS data also must be aggregated to the week level rather than to the day

level, which introduces noise into the estimation. Thus, despite the CPS’s large sample sizes,

precision remains an issue. To improve precision, I use ten-degree temperature bins and set

90◦F and above as the hottest bin and 40◦F and below as the coldest temperature bin. I omit

the number of days that are 50◦F to 59◦F, so the coefficients on the temperature bins can be

interpreted as the effect of an additional day with a temperature in that bin on hours worked

relative to hours worked when all five workdays are in the 50s.

22I drop workers with imputed hours or occupations because the Census “hot deck” matching procedure used
for imputation does not restrict donor matches to individuals in the same local area, which can result in biased
estimates in area-level analysis. Refer to Autor, Katz, and Kearney (2008), Buchmueller, DiNardo, and Valletta
(2011), and Lemieux (2006) for discussions about potential bias of the hot decking procedure. Despite concerns
about bias from imputation, the results are very similar when observations with imputed hours and occupations
are included.
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The coefficients on the temperature bins from estimating Equation (2) are shown in Figure 8.

Graph A shows the basic results for all MSAs. Each day with a high below 40◦F decreases weekly

hours worked by 0.185 hours on average, which is a 0.5 percent decline from when temperatures

are in the 50s. The estimated effect of a day above 90◦F is a statistically insignificant -0.045

hours per week. Graphs B, C, and D display the results separately for MSAs with different

temperature norms.23 The coefficient estimates on the number of days below 40◦F are negative

for all three climates, but the point estimate is largest in warmer climates. The point estimate

for the effect of an additional day with a high below 40◦F is -1.011 for warmer MSAs, -0.160

for cooler MSAs, and -0.107 for all other MSAs. The point estimate of -1.011 translates into

a 2.6 percent decline in weekly hours worked for each day with highs below 40◦F in warmer

climates. The results in graph D suggest that additional hot days decrease hours worked in

cooler climates. An additional day with a high above 90◦F decreases weekly hours worked in

cooler climates by 0.364 hours per week, which is equivalent to a 0.9 percent decline in weekly

hours worked. I do not find evidence that high temperatures affect weekly hours worked in

other MSAs.

To compute estimates of the differences in effects, I allow MSAs in different climates to

have separate year-month fixed effects and othweather effects and then supplement Equation

(2) with the interaction of the number of days in each ten-degree temperature bin with an

indicator for the specific climate type in question. Graph E displays estimates of the differences

in the effects of temperature in warmer MSAs compared to all other MSAs. A day with a

high below 40◦F decreases hours worked by 0.602 per week more in warmer MSAs than in all

other MSAs. Graph F shows estimates of the differential effects of temperature in cooler MSAs

relative to all other MSAs. A day with a high above 90◦F decreases hours worked in a week by

0.392 more in MSAs in cooler climates than MSAs in other climates.

Since all people in a year-month-MSA combination experience the same temperatures in the

CPS, the CPS analysis cannot rely on temperature variation from within a year-month-MSA

23To keep the results comparable, I use the same cutoffs for characterizing temperature norms as in the
mining analysis of 81.3◦F and 89.9◦F.
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combination. Instead, the baseline CPS specification assumes that any MSA-specific shocks

or trends are not systematically correlated with both temperatures and hours worked. To re-

lax the assumption of no region-specific trends, Figure 9 displays estimates from models that

supplement Equation (2) with state-year fixed effects. The estimates being sensitive to these

additional controls might suggest that states with MSAs that experienced temperature shocks

in a particular year experienced broader changes to hours worked and would raise doubts about

the empirical strategy’s ability to isolate the effects of temperature. The estimates in Figure

9, however, are similar to their corresponding estimates from Figure 8, providing no evidence

that unobserved state-level trends hinder the empirical strategy.

The results presented in this section provide evidence that outdoor workers in warmer

climates reduce their hours worked more in response to low temperatures while outdoor workers

in cooler climates reduce their hours more in response to high temperatures.24 These results

are consistent with three possible explanations. First, workers in warmer areas may be able to

avoid working on colder days more easily than they can avoid working on hot days since hot

days are too common to avoid. Second, workers in warmer areas may be able to acclimate to

high temperatures, and since high temperatures do not affect them, they do not need to adjust

their labor force participation. Third, workers in warmer areas may have been able to adapt to

high temperatures in ways that mean they do not have to adjust their hours worked, whereas

workers in cooler climates have not adapted in the same ways and therefore have to reduce

hours. While this study cannot rule out the possibility of acclimation or differential technology

adoption, considering these hours-worked results along with the occupational health results

suggests that differences in the feasibility of avoidance behavior explain part of the differential

hours-worked responses between workers in warmer and cooler environments.

The estimates imply that all five weekdays being over 90◦F would reduce hours worked for

outdoor workers in cooler climates by approximately 4.5 percent, which may seem small relative

24These results differ from Graff Zivin and Neidell (2014) in two main ways. First, I find evidence that workers
adjust their hours in response to cold temperatures. Second, I find evidence of heterogeneous effects based on
temperature normals. It should be noted that our studies use different samples and have different focuses. Also,
neither finding from this analysis is ruled out by their confidence intervals.
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to the reduced effect of high temperatures on injury rates in cooler climates relative to warmer

climates documented in the mining analysis. But three factors are important to remember when

comparing the effect sizes from the mining analysis and the CPS analysis. First, even though the

CPS analysis focuses on temperature-exposed workers, workers in the mining analysis still have

higher levels of temperature exposure than the majority of the workers in the CPS sample.

Presumably, workers with more exposure to outdoor temperatures experience greater hours

reductions in response to higher temperatures in cooler climates. A direct comparison of the

effect sizes in mining analysis and the CPS analysis would require replicating the CPS analysis

with only miners at surface mines, which is not possible because the CPS does not contain

enough observations of miners for meaningful analysis and because the types of mines that

miners work at are not observable in CPS data. Second, not working is just one type of avoidance

behavior. Other types of avoidance behavior, like delaying certain kinds of work, cannot be

measured in the CPS but would also likely be able to mitigate the impact of high temperatures

on injury rates in cooler climates. Finally, the hours reductions coming from temperature would

arguably be the most dangerous hours, meaning the likelihood of experiencing an injury during

the marginal hour likely would have been high relative to the typical hour of work.

While the main analysis focused on the effect of temperature on hours worked for workers

exposed to outdoor temperatures at least one day per week, temperature also has the poten-

tial to affect hours worked for indoor workers since low temperatures can be associated with

dangerous driving conditions, which can increase travel costs to work. Indoor workers may also

adjust their hours worked in response to extreme temperatures if the buildings where they work

are not climate-controlled or are costly to climate control. However, the effect of temperature

being the same for all workers regardless of their temperature exposure would cast doubt on

the hypothesis that the effect temperature on hours worked is largely driven by workers with

high exposure to outdoor temperatures engaging in avoidance behavior.

To consider the effect of temperature on workers with less exposure to outdoor temperatures,

Figure 10 replicates the analysis shown in Figure 8 with the sample of workers from the CPS

that is exposed to outdoor temperatures less than one day per week. None of the specifications
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in Figure 10 show any effect of high temperatures on hours worked. While there is some evidence

that low temperatures reduce hours worked in warmer climates, the size of the effects is small

relative to the size of the effects for outdoor workers. For instance, the estimated effect of a day

with a high below 40◦F in a warm climate of -0.266 shown in graph B is statistically insignificant

and roughly one-fourth of the magnitude of the estimated effect on outdoor workers. Overall,

these results do not suggest that the effect of temperature on hours worked is the same for

workers with less exposure to outdoor temperatures and for workers with more exposure to

outdoor temperatures.

4.2 The Costs of Extreme Temperatures

The estimates from this study allow for a back-of-the-envelope calculation of the total costs

of extreme temperatures that currently arise from avoidance and from occupational health

issues in a warm climate like Texas. The estimates presented in Section 3.1 suggest that WC

claims arising from extreme temperatures do not have dramatically different costs than other

WC claims. Under the assumption that WC claims arising from temperature have the average

cost of a work-related injury of $20,500 in 2014 dollars (Leigh 2011), each day with a high

temperature above 90◦F leads to costs from occupational health incidents of $0.08 per worker,

and each day with a high temperature below 40◦F leads to costs from occupational health

incidents of $0.15 per worker.25 As about 10 percent of workers work outside at least one day

per week and as these workers have an average hourly wage of $18 in 2014 dollars, the implied

cost of the reduction in hours worked from each day with a high below 40◦F is about $1.82 per

worker in warmer climates when averaged across all workers.26

25To make the estimates from the Texas WC analysis comparable to the estimates from the CPS analysis,
I estimate a model for the Texas WC analysis that computes estimates of the effect of a day with a high
temperature below 40◦F and the effect of a day with a high temperature above 90◦F. Appendix B discusses this
specification and displays the estimates.

26The share of workers who work outside at least one day per week and their average hourly wage come from
the 2014 ACS. Note that this calculation assumes that the hours reductions from the CPS come entirely from
avoidance rather than from missed work due to an occupational injury. Even if the injuries documented in the
WC analysis result in a full week of work being missed on average, the estimated impact of a day with a high
below 40◦F on hours worked coming from occupational injuries could only account for about 0.3 percent of the
hours effect documented in the CPS analysis.
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Combining the costs from avoidance and occupational health incidents indicates that a day

with a high temperature below 40◦F increases costs by $1.97 in warm climates. Given that

Texas MSAs averaged 4.5 weekdays with highs below 40◦F from 2006 to 2014, these estimates

imply that days with highs below 40◦F resulted in $8.87 in costs coming from avoidance and

occupational health issues per worker per year from 2006 to 2014 in Texas. As the CPS analysis

did not indicate that outdoor workers in warmer climates reduced their hours worked in response

to high temperatures, the entire cost of a day above 90◦F in warmer climates comes from

occupational health incidents. From 2006 to 2014, Texas MSAs averaged 79.2 weekdays with

highs above 90◦F each year, which implies an average annual cost of days above 90◦F of $6.34

per worker. As Texas averaged about 11 million workers from 2006 to 2014, these estimates

imply average total annual costs of days with high temperatures above 90◦F of $69.7 million

in Texas and average total annual costs of days with high temperatures below 40◦F of $97.6

million. As has been discussed elsewhere in this paper, this study likely does not capture all of

the adverse effects of temperature on occupational health or the full effect of temperature on

different types of avoidance behaviors, meaning that these cost calculations are lower-bound

estimates of the current cost of days with extreme temperatures in a warm climate.

4.3 Implications of Climate Change

Despite its size giving it more climate variation than most other states, Texas is still one

of the hottest states in the country. However, as asserted in the introduction, considering the

impact of temperature in Texas is useful since climate change is expected to lead to other states’

climates more closely resembling Texas’s current climate, which would lead to the results from

the Texas analysis pertaining to a higher share of U.S. workers in the future.

Figure 11 illustrates the shift of the rest of the United States towards the Texas climate.

Graph A of Figure 11 displays the average share of days with highs that fell into various temper-

ature bins for the nine Census divisions from 2006 to 2014, while graph B graphs the predicted

distribution of daily high temperatures for 2070 to 2099 for each Census division calculated
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from the Hadley Climate Model 3 under the assumption of no major emission changes.27 In

both graphs, Texas’s temperature distribution in 2006 to 2014 is represented by a thick red line.

Figure 11 shows that while Texas currently averages more hot days than all Census divisions,

by the end of the century, the temperature distribution in the rest of the United States will

match Texas’s current temperature distribution much more closely than it does now.

5 Discussion and Conclusion

This study constructs and studies two data sets that link temperature and a broad set of

occupational health outcomes. Using a data set derived from Texas WC claims, I find strong

evidence that both hot and cold temperatures have adverse effects on workers’ health. Once

daily high temperatures reach the 70s or low 80s, higher temperatures are associated with

worse health outcomes. Illnesses identified by medical professionals as being directly related to

the heat see the sharpest increase, but higher temperatures appear to affect a broad swath of

injuries. A day with a high temperature over 100◦F increases same-day claim rates by 7.6 to

8.2 percent and three-day claim rates by 3.5 to 3.7 percent. Three-day claim rates also begin to

rise as high temperatures fall below 40◦F. A day with a high temperature below 35◦F increases

three-day claim rates by 3.4 to 5.8 percent.

To be able to consider heterogeneous effects of high temperature on occupational health

based on temperature norms, I draw on injury data from the mining industry. These data

confirm that high temperatures are harmful to workers’ health in warm climates like Texas,

but they provide no evidence that high temperatures harm workers’ health in cooler climates,

which indicates that workers in climates where hot days are rare are better able to deal with a

hot day than workers in climates where hot days are common.

These results are consistent with avoidance behavior being more feasible when high tem-

peratures are rare. Using CPS data, I provide evidence that avoiding working during extreme

27The Hadley climate model is a general circulation model that uses both atmospheric and oceanic data
for its forecasts and was one of the main models used by the International Panel on Climate Change’s Special
Report on Emissions Scenarios. For more information on this model, refer to Collins, Tett, and Cooper (2001).
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temperatures is easier when extreme temperatures are rare. The CPS analysis indicates that

high temperatures result in larger decreases in hours worked in cooler places than in warm

places. Similarly, cold temperatures reduce hours worked more in places that are normally

warm than they do in places that often experience cold temperatures.

These results are policy-relevant as countries around the world continue to grapple with

climate change and decide what actions to take now to prevent temperatures from continuing

to rise in the future. The evidence of adaptation from the literature on the mortality effects of

temperature suggests reason for optimism that the negative effects of high temperatures can be

mitigated using currently available technology. But the analysis presented in this paper suggests

less cause for optimism in terms of our ability to deal the occupational health effects of high

temperatures.
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Table 1: Demographic Characteristics of Temperature-Exposed Workers

High-Exposure Other High-Exposure Low-Exposure
Industries Industries Occupations Occupations

A. United States

% Male 78 45 91 30
% Ages 18 to 35 32 41 36 38
% Ages 36 to 50 38 33 37 34
% Ages 51 to 64 30 26 27 27
% with High School Degree 85 93 82 95
% with Bachelor’s Degree 19 37 9 38
% White 77 74 79 75
% Black 9 12 8 12
% Hispanic 21 16 24 14

n 300,390 1,010,158 133,706 396,584

B. Texas

% Male 81 46 93 31
% Ages 18 to 35 35 43 38 41
% Ages 36 to 50 38 34 38 34
% Ages 51 to 64 27 23 24 24
% with High School Degree 78 90 70 93
% with Bachelor’s Degree 20 33 7 33
% White 78 74 80 74
% Black 9 13 7 13
% Hispanic 43 35 53 32

n 26,236 79,831 10,969 31,580

Notes: The data come from the 2014 ACS. High-exposure industries include agriculture,
forestry, fishing, and hunting; construction; manufacturing; mining; and transportation. High-
exposure occupations are those that are exposed to outdoor temperatures at least one day per
week according to O*NET data. Low-exposure occupations are those that are never exposed to
outdoor temperatures according to O*NET data. The means are weighted using ACS weights.
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Table 2: Characteristics of WC Claims

% Male 60.0
% Ages 18 to 35 39.5
% Ages 36 to 50 37.7
% Ages 51 to 64 22.8
% Claims for Illnesses from the Heat 0.4
% Injury Claims 91.3
% Open Wound, Crushing, and Fracture Claims 23.0
% Sprain, Strain, Bruise, and Muscle-Related Claims 65.0

n 1,916,590

Notes: The data come from 2006 to 2014 Texas WC claims.
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Figure 1: Mean of Daily Claims per 100,000 Workers by Month
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B. Claims for Illnesses from the Heat

Notes: The graphs show means of daily claims per 100,000 workers by month. The sample includes 154,968
MSA-days. The underlying claim data come from 2006 to 2014 Texas WC claims and contain information on
1,916,590 claims, 1,749,452 claims for injuries, and 6,760 claims for illnesses from the heat. The means are
weighted by the MSA’s employment during the month of the observation from LAUS data.
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Figure 2: The Effect of Temperature on Daily Claim Rates per 100,000 Workers
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A. Effect of Today's Temperature on Today's Claims
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B. Effect of Today's Temperature on Today's Claims, Only Dry Days
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C. Effect of Today's Temperature on Tomorrow's Claims
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D. Effect of Today's Temperature on Tomorrow's Claims, Only Dry Days
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on the Day after Tomorrow's Claims, Only Dry Days
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G. Effect of Today's Temperature
on 2 Days after Tomorrow's Claims
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H. Effect of Today's Temperature
on 2 Days after Tomorrow's Claims, Only Dry Days
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I. Effect of Today's Temperature
on 3 Days after Tomorrow's Claims
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J. Effect of Today's Temperature
on 3 Days after Tomorrow's Claims, Only Dry Days

Notes: Each graph displays coefficient estimates from a single regression of Equation (1) along with 95-percent
confidence intervals calculated using standard errors clustered at the MSA level. The sample includes 154,968
MSA-days and 124,964 MSA-days without precipitation. The underlying claim data come from 2006 to 2014
Texas WC claims and contain information on 1,916,590 claims. All regressions control for day fixed effects, year-
month-MSA fixed effects, precipitation indicator variables, and high temperature and precipitation indicator
variables for each of the previous five days and subsequent four days. The mean of the D.V. at 59◦F to 61◦F for
each graph is as follows: A: 6.2; B: 6.2; C: 5.4; D: 5.4; E: 4.3; F: 4.4; G: 4.2; H: 4.2; I: 4.5; J: 4.5. Each regression
is weighted by the MSA’s employment during the month of the observation from LAUS data.
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Figure 3: The Effect of Temperature on Three-Day Claim Rates per 100,000 Workers
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B. IHS of Claims as Dependent Variable
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C. Controlling for Low Temperatures
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D. Coefficients on Low Temperatures
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E. Coefficients on Low Temperatures with Controls for High Temperatures
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F. Temperature Interacted with Rainy Day Indicator
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G. Temperature Interacted with Humid Climate Indicator
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H. Time of Year Heterogeneity

Notes: Each graph displays coefficient estimates from a single regression of Equation (1) along with 95-percent
confidence intervals calculated using standard errors clustered at the MSA level. The sample includes 154,968
MSA-days. The underlying claim data come from 2006 to 2014 Texas WC claims and contain information
on 1,916,590 claims. All regressions control for day fixed effects, year-month-MSA fixed effects, precipitation
indicator variables, and high temperature and precipitation indicator variables for the previous two days and
subsequent two days. The regressions for graphs C through E also include controls for low temperatures for the
day of observation and for the previous two days and subsequent two days. The regression in graph D omits
high temperature controls. The regression for graph F also includes interactions of the weather controls, of the
day fixed effects, and of the year-month-MSA fixed effects with a rainy day indicator, while the regression for
graph G also includes interactions of the weather controls and of the day fixed effects with an indicator for being
in a humid climate. The mean of the three-day claim rate per 100,000 workers at 59◦F to 61◦F is 15.8. Each
regression is weighted by the MSA’s employment during the month of the observation from LAUS data.
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Figure 4: The Effect of Temperature on Three-Day Claim Rates per 100,000 Workers for Dif-
ferent Types of Claims
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A. Claims for Illnesses from the Heat
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C. Open Wound, Crushing, and Fracture Claims
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D. Sprain, Strain, Bruise, and Muscle-Related Claims

Notes: Each graph displays coefficient estimates from a single regression of Equation (1) along with 95-percent
confidence intervals calculated using standard errors clustered at the MSA level. The sample includes 154,968
MSA-days. The underlying claim data come from 2006 to 2014 Texas WC claims. The underlying number of
claims for each regression is as follows: A: 6,760; B: 1,749,452; C: 441,553; D: 1,244,996. All regressions control
for day fixed effects, year-month-MSA fixed effects, precipitation indicator variables, and high temperature and
precipitation indicator variables for the previous two days and subsequent two days. The mean of the D.V. at
59◦F to 61◦F for each graph is as follows: A: 0.0; B: 14.6; C: 3.6; D: 10.6. Each regression is weighted by the
MSA’s employment during the month of the observation from LAUS data.
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Figure 5: The Effect of Temperature on Three-Day Claim Rates per 100,000 Workers, Follow-Up
Treatment and Medical Costs
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A. Continued Treatment 3 to 30 Days Later
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B. Continued Treatment 31 to 180 Days Later
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C. Claims in Bottom Half of Cost Distribution
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D. Claims in Top Half of Cost Distribution

Notes: Each graph displays coefficient estimates from a single regression of Equation (1) along with 95-percent
confidence intervals calculated using standard errors clustered at the MSA level. The sample includes 154,968
MSA-days. The underlying claim data come from 2006 to 2014 Texas WC claims. The underlying number of
claims for each regression is as follows: A: 678,621; B: 266,236; C: 958,295; D: 958,295. All regressions control
for day fixed effects, year-month-MSA fixed effects, precipitation indicator variables, and high temperature and
precipitation indicator variables for the previous two days and subsequent two days. The mean of the D.V. at
59◦F to 61◦F for each graph is as follows: A: 11.6; B: 6.2; C: 8.9; D: 8.8. Each regression is weighted by the
MSA’s employment during the month of the observation from LAUS data.
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Figure 6: The Effect of Temperature on Daily Injury Rates per 100,000 Workers in Mining Data
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A. Effect of Today's Temperature on
Today's Injuries/Illnesses, Warmer Climates
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B. Effect of Today's Temperature on
Today's Injuries/Illnesses, Only Dry Days--Warmer Climates
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C. Effect of Today's Temperature on
Today's Injuries/Illnesses, Middle Climates
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E. Effect of Today's Temperature on
Today's Injuries/Illnesses, Cooler Climates
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F. Effect of Today's Temperature on
Today's Injuries/Illnesses, Only Dry Days--Cooler Climates
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G. Differential Effect of Today's Temperature
on Today's Injuries/Illnesses
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H. Differential Effect of Today's Temperature
on Today's Injuries/Illnesses, Only Dry Days

Notes: Each graph displays coefficient estimates from a single regression of Equation (1) along with 95-percent
confidence intervals calculated using standard errors clustered at the site level. The sample size for each regression
is as follows: A: 652,744; B: 504,027; C: 1,310,184; D: 899,973; E: 652,744; F: 416,433; G: 2,615,672; H: 1,820,433.
The underlying injury data come from 2006 to 2014 MSHA logs. The underlying number of injuries for each
regression is as follows: A: 4,100; B: 2,853; C: 4,786; D: 3,334; E: 4,127; F: 2,862; G: 13,013; H: 9,049. All
regressions control for day fixed effects, year-month-site fixed effects, precipitation indicator variables, and high
temperature and precipitation indicator variables for the previous two days and subsequent two days. The
regressions for graphs G and H also include interactions of the weather controls and of the day fixed effects with
an indicator for a site being in a warmer climate. The mean of daily injury rates at 59◦F to 61◦F for each graph
is as follows: A: 10.3; B: 10.9; C: 10.9; D: 10.1; E: 10.1; F: 9.0; G: 10.5; H: 9.9. Each regression is weighted by
the number of workers at each site.
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Figure 7: The Effect of Temperature on Daily Time-Loss Injury Rates per 100,000 Workers in
Mining Data
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A. Effect of Today's Temperature on
Today's Injuries/Illnesses, Warmer Climates
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B. Effect of Today's Temperature on
Today's Injuries/Illnesses, Warmer Climates Only Dry Days
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C. Effect of Today's Temperature on
Today's Injuries/Illnesses, Middle Climates
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D. Effect of Today's Temperature on
Today's Injuries/Illnesses, Middle Climates Only Dry Days
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E. Effect of Today's Temperature on
Today's Injuries/Illnesses, Cooler Climates
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F. Effect of Today's Temperature on
Today's Injuries/Illnesses, Cooler Climates Only Dry Days
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G. Differential Effect of Today's Temperature
on Today's Injuries/Illnesses
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H. Differential Effect of Today's Temperature
on Today's Injuries/Illnesses, Only Dry Days

Notes: Each graph displays coefficient estimates from a single regression of Equation (1) along with 95-percent
confidence intervals calculated using standard errors clustered at the site level. The sample size for each regression
is as follows: A: 652,744; B: 504,027; C: 1,310,184; D: 899,973; E: 652,744; F: 416,433; G: 2,615,672; H: 1,820,433.
The underlying injury data come from 2006 to 2014 MSHA logs. The underlying number of injuries for each
regression is as follows: A: 2,791; B: 1,923; C: 3,068; D: 2,174; E: 2,395; F: 1,635; G: 8,254; H: 5,732. All
regressions control for day fixed effects, year-month-site fixed effects, precipitation indicator variables, and high
temperature and precipitation indicator variables for the previous two days and subsequent two days. The
regressions for graphs G and H also include interactions of the weather controls and of the day fixed effects
with an indicator for a site being in a warmer climate. The mean of daily injury rates at 59◦F to 61◦F for each
graph is as follows: A: 7.0; B: 7.3; C: 7.3; D: 7.0; E: 6.8; F: 5.6; G: 7.1; H: 6.6. Each regression is weighted by
the number of workers at each site.
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Figure 8: The Effect of Temperature on Weekly Hours Worked for Workers Exposed to Outdoor
Temperatures More than One Day per Week

   

 

  

Notes: Each graph displays coefficient estimates from a single regression of Equation (2) along with 95-percent
confidence intervals calculated using standard errors clustered at the MSA level. The sample size for each
regression is as follows: A: 325,395; B: 65,758; C: 145,549; D: 114,088; E: 325,395; F: 325,395. The data on workers
come from the 2006 to 2014 monthly CPS. The sample includes workers exposed to outdoor temperatures more
than one day per week. All regressions control for MSA fixed effects, year-month fixed effects, the number of
days in each precipitation bin, the number of weekend days in each temperature and precipitation bin, and the
individual’s race, sex, age, education, usual hours worked, occupation, and industry. The regression for graph
E also includes interactions of the weather controls and of the year-month fixed effects with an indicator for an
MSA being in a warmer climate. The regression for graph F also includes interactions of the weather controls
and of the year-month fixed effects with an indicator for an MSA being in a cooler climate. The mean of hours
worked when each day of the reference week has high temperatures of 50◦F to 59◦F for each graph is as follows:
A: 39.1; B: 38.7; C: 39.0; D: 39.2; E: 39.1; F: 39.1. Each regression is weighted using CPS weights.
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Figure 9: The Effect of Temperature on Weekly Hours Worked for Workers Exposed to Outdoor
Temperatures More than One Day per Week, Robustness to Including State-Year Fixed Effects

  

  

  

Notes: Each graph displays coefficient estimates from a single regression of Equation (2) along with 95-percent
confidence intervals calculated using standard errors clustered at the MSA level. The sample size for each
regression is as follows: A: 325,395; B: 65,758; C: 145,549; D: 114,088; E: 325,395; F: 325,395. The data on workers
come from the 2006 to 2014 monthly CPS. The sample includes workers exposed to outdoor temperatures more
than one day per week. All regressions control for MSA fixed effects, year-month fixed effects, state-year fixed
effects, the number of days in each precipitation bin, the number of weekend days in each temperature and
precipitation bin, and the individual’s race, sex, age, education, usual hours worked, occupation, and industry.
The regression for graph E also includes interactions of the weather controls and of the year-month fixed effects
with an indicator for an MSA being in a warmer climate. The regression for graph F also includes interactions of
the weather controls and of the year-month fixed effects with an indicator for an MSA being in a cooler climate.
The mean of hours worked when each day of the reference week has high temperatures of 50◦F to 59◦F for each
graph is as follows: A: 39.1; B: 38.7; C: 39.0; D: 39.2; E: 39.1; F: 39.1. Each regression is weighted using CPS
weights.
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Figure 10: The Effect of Temperature on Weekly Hours Worked for Workers Exposed to Outdoor
Temperatures Less than One Day per Week

  

  

  

Notes: Each graph displays coefficient estimates from a single regression of Equation (2) along with 95-percent
confidence intervals calculated using standard errors clustered at the MSA level. The sample size for each
regression is as follows: A: 3,078,897; B: 531,363; C: 1,403,654; D: 1,143,880; E: 3,078,897; F: 3,078,897. The
data on workers come from the 2006 to 2014 monthly CPS. The sample includes workers exposed to outdoor
temperatures less than one day per week. All regressions control for MSA fixed effects, year-month fixed effects,
the number of days in each precipitation bin, the number of weekend days in each temperature and precipitation
bin, and the individual’s race, sex, age, education, usual hours worked, occupation, and industry. The regression
for graph E also includes interactions of the weather controls and of the year-month fixed effects with an indicator
for an MSA being in a warmer climate. The regression for graph F also includes interactions of the weather
controls and of the year-month fixed effects with an indicator for an MSA being in a cooler climate. The mean
of hours worked when each day of the reference week has high temperatures of 50◦F to 59◦F for each graph is
as follows: A: 37.4; B: 37.0; C: 37.8; D: 37.3; E: 37.4; F: 37.4. Each regression is weighted using CPS weights.
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Figure 11: Temperature Distributions of Texas and Census Divisions
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A. Census Divisions and Texas in 2006 to 2014
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B. Census Divisions in 2070 to 2099; Texas in 2006 to 2014

Notes: The thick red line in both graphs represents the distribution of daily high temperatures of Texas from
2006 to 2014. Graph A also displays the distribution of daily high temperatures for each Census region from
2006 to 2014, while graph B displays the predicted distribution of daily high temperatures for each Census
region from 2070 to 2099 using the Hadley 3 climate forecast model.
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Appendices

A Appendix: Industrial and Occupational Distributions

by Temperature Normals

The results from this study suggest that temperatures at either tail of the temperature

distribution are harmful to workers and provide little evidence that temperature-exposed work-

ers can adapt to temperature extremes. A type of adaptation that the main analysis does not

consider could involve specialization of labor based on the distribution of temperature norms.

Climate-based specialization of labor might involve today’s warmer areas shifting towards work

that is conducive to climate-controlled environments as the earth warms and today’s cooler

areas shifting towards temperature-exposed work. Though this type of specialization may be

able to mitigate the harmful effects of climate change on workers, the potential for this type of

specialization may be limited as many temperature-exposed jobs are location-dependent. For

instance, many jobs are based on the locations of natural resources, while construction and

transportation jobs are typically required broadly.1 Furthermore, non-climate-related factors,

such as the availability of cheap land, also factor into firms’ location decisions. In addition,

much of the industrial composition of the United States has likely arisen for historical reasons,

and relocating can be costly for both firms and workers.

If occupational specialization based on climate is cost-effective, it plausibly would have

already partially occurred. To consider the presence of and potential for this type of special-

ization, I examine the correlation between an MSA’s frequency of dangerous temperatures and

its share of temperature-exposed jobs. A strong negative correlation between the number of

days with dangerous temperatures and temperature-exposed employment shares would provide

1Climate change will not shift the distribution of mineral resources. However, as agriculture often requires
specific climates, the location of the agriculture industry may shift as the climate changes. Construction and
transportation will still be required broadly as the climate changes, though demand for these industries is
affected by the distribution of people, which may be altered by climate change. Because tourism is likely heavily
influenced by climate, climate change will likely alter the location of tourism jobs. Refer to Butsic, Hanak, and
Valletta (2011) for a discussion about how climate change could affect the locations of tourism jobs.
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suggestive evidence that temperature-based specialization of labor is cost-effective, that it has

already occurred, and that it can continue to occur as the distribution of temperatures changes.

No correlation between dangerous temperature shares and temperature-exposed employment

shares may suggest that the potential for adaptation through specialization is currently limited.

Figure A.1 plots the share of workers in high-exposure industries and occupations for each

MSA identifiable in the ACS along with the MSA’s share of days from 2006 to 2014 with

highs above 90◦F or below 40◦F. Regardless of how temperature-exposed jobs are defined,

the correlation coefficient between temperature-exposed work and dangerous temperatures is

small. When defining temperature exposure based on industry, the correlation coefficient is

0.108. When defining temperature exposure based on occupation, the correlation coefficient

is -0.009. While this descriptive analysis does not rule out specialization either now or in the

future, these patterns are not supportive that climate-based specialization of labor has already

shaped the distribution of temperature-exposed jobs in the United States.
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Figure A.1: Correlation between MSAs’ Share of Days with Dangerous Temperatures and Share
of Workforce in Temperature-Exposed Jobs
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Notes: The share of dangerous days is from 2006 to 2014. The industry shares come from the 2014 ACS. The
occupation shares come from the 2014 ACS and the O*NET.
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B Appendix: Additional Analysis of Texas Climate and

Data

B.1 Texas Temperatures

Figure B.1 shows the total number of days of 100◦F or more by year for Amarillo, Austin,

Dallas-Ft. Worth, Laredo, and Lubbock. Laredo experienced more days 100◦F or more than

the other MSAs most years, but the magnitudes of the difference vary by year. Other MSAs’

relative rankings vary more over time. For example, while Austin usually has more days 100◦F

or more than Dallas, Dallas has more in some years. The rankings of Amarillo and Lubbock

also vary by year. Figure B.2 shows the total number of days with low temperatures below 32◦F

for each of the five MSAs and also displays variation in temperature across time and geography.
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Figure B.1: Total Days with Highs over 100◦F by Year for Selected MSAs
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Figure B.2: Total Days with Lows Less than 32◦F by Year for Selected MSAs
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B.2 Alternative Specifications with Daily Data

Figure B.3 considers additional specifications for the Texas WC results. For comparison,

graph A of Figure B.3 displays the original estimates with three-day claim rates as the dependent

variable. The regression underlying graph A controls for day fixed effects, year-month-MSA

fixed effects, precipitation indicator variables, and high temperature and precipitation indicator

variables for each of the previous two days and subsequent two days. The year-month-MSA fixed

effects in this main specification allow each MSA to have a different baseline claim rate in each

year and month combination and thus account for MSA-specific shocks that are correlated with

temperature. These shocks could arise from chance, which in principle should not hinder the

empirical strategy even absent the year-month-MSA fixed effects, or from temperature affecting

economic conditions, which could lead to more or less work being done in hot or cold months.

Two potential concerns arise with the inclusion of these controls. First, one may be interested in

temperature’s effects on health through its effect on economic conditions. That is, a heat wave

or cold wave reducing agricultural yields and therefore lowering injuries for an entire season

because fewer workers are needed is an indirect effect of extreme temperatures on occupational

health that may be important to document. Second, the year-month-MSA fixed effects may

absorb the effect of multiple hot or cold days occurring together in a particular month, which

could be problematic if multiple days of extreme temperatures have interactive effects.

To consider the sensitivity of the results to these controls, graph B in Figure B.3 shows

temperature coefficients from a specification that replaces the year-month-MSA fixed effects

with separate year-MSA fixed effects and month-MSA fixed effects. This specification no longer

allows each year, month, and MSA combination to have a different baseline claim rate, but

it still allows MSAs to have different economic conditions each year and different monthly

seasonality. The results from this specification are very similar to the original results. Graph

C shows temperature coefficients from a specification that replaces the year-month-MSA fixed

effects from the original specification with MSA fixed effects. Thus, this specification allows

MSAs to have different baseline claim rates but assumes common time trends and seasonality
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across Texas. The estimated effects of hotter temperatures rise slightly in this specification, but

the coefficients are still generally similar to those in the original specification.

Another set of extensive controls in Equation (1) is the fixed effects for each calendar

date. One advantage of these fixed effects is that they control for seasonality and state-wide

economic conditions very flexibly. However, given that weather is plausibly random within a

given month, such extensive controls are likely unnecessary. Another advantage of the day

fixed effects is that they can account for certain days having fewer injuries regardless of their

temperature because less work is done on them. For instance, far fewer claims occur during

Christmas and the surrounding days relative to other times of the year because less work

is done during Christmastime, which could be problematic if not accounted for because late

December is prone to cold shocks but not to heat shocks. Again, though, as temperature is

plausibly random within a given month, less exhaustive time controls should be sufficient for

obtaining unbiased estimates even if some of the identifying variation comes from claim rates

on non-holidays being compared to claim rates on holidays.

To consider the sensitivity of the results to the day fixed effects, graph D of Figure B.3

displays temperature coefficients from the same specification as in graph C but with the day

fixed effects replaced with day-of-week fixed effects and with year-month fixed effects. Rather

than try to make individual judgments about each holiday, I exclude days with 500 or fewer

state-wide claims (4.7 percent of the sample) from this specification as well as days from De-

cember 22 to January 5 (an additional 1.8 percent of the sample).1 Even with this drastically

different specification, the results in graph D are very similar to the original estimates, especially

for the effects of high temperatures. While only one of the coefficients on low temperatures is

statistically significant in this specification, the point estimates for low temperatures follow a

pattern that is similar to the original estimates.

Graphs A through D of Figure B.3 show that the results are not sensitive to model speci-

fication. Even with drastically different levels of fixed effects, the results remain similar, which

is reassuring about the validity of the approach taken in the main text.

1The results are similar if I do not make these restrictions.
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As another way to assess the validity of the main specification, I next focus on settings

where extreme temperatures would be expected to have smaller effects or no effect at all on

occupational health and verify that the empirical strategy indeed finds smaller effects of tem-

perature in these settings. Graph E of Figure B.3 shows baseline estimates of the effect of

a day’s temperature on same-day claim rates from a specification that controls for day fixed

effects, year-month-MSA fixed effects, precipitation indicator variables, and the precipitation

and temperature during the two days before and two days after the day of observation.2

As with all the specifications in the main analysis, the regression underlying graph E excludes

weekends since less work is done on weekends, meaning that the effects of temperature on

occupational health during weekends would be expected to be considerably lower than its

effects during the week. As a credibility test of the main specification, I next estimate the effect

of a weekend day’s temperature on that day’s claim rates by restricting the sample to include

only weekends. These effects being larger than or similar in size to the estimated effects of

temperature on weekdays would raise concerns about the ability of Equation (1) to isolate the

effect of a day’s temperature. The estimated effects of temperature on same-day claim rates for

weekends are shown in graph F of Figure B.3. As would be expected, the estimates are much

smaller than the estimated effects of temperature on weekdays.

Graphs G through J of Figure B.3 display estimates of the effect of future temperatures

on previous days’ same-day claim rates. Future temperatures have the potential to affect the

current day’s claims if people are forward looking and do more work or do more dangerous work

on the current day if the weather during the next few days is predicted to be extreme. Still, large

effects of future weather could also raise concerns that Equation (1) does not isolate the effects

a given day’s temperature. In graphs G through J, the sample is again restricted to weekdays.

Graphs G and H report coefficients on the next day’s temperature bins, while graphs I and J

report coefficients on the temperature bins two days after the day of observation. To account

for the fact that future days’ high temperatures may be correlated with the current day’s low

temperatures, the specifications in graphs H and J include controls for low temperatures for the

2These estimates are equivalent to graph A of Figure 2 without as many weather leads and lags.
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day of the observation as well as for the surrounding days. Overall, the coefficients on future

high temperatures are small and are mostly statistically insignificant, which is reassuring that

Equation (1) isolates the effect of the current day’s temperature.

An alternative to estimating the impact of a day’s temperature on three-day claim rates is to

sum the lagged temperature indicator variables when the dependent variable is the daily claim

rates to obtain estimates of the full impact of temperature. An example of a study adopting

this approach is Barreca et al. (2016), who use monthly data and sum the effect of the current

month’s estimated effect of temperature on monthly mortality and the lagged month’s estimated

effect of temperature on monthly mortality to obtain the full effect of temperature on mortality.

Graph K shows estimates of the effect of temperature on claim rates obtained from estimating

the impact of temperature on daily claim rates with temperature lags and then summing the

effect of today’s temperature on today’s claim rates, the effect of yesterday’s temperature on

today’s claim rates, and the effect of the day before yesterday’s temperature on today’s claim

rates. The estimated effect of a day with a high below 35◦F rises, but the estimates are generally

similar to the main estimates.

Finally, estimates of the effect of a day’s high temperature being above 90◦F and of the

effect of day’s high temperature being below 40◦F are necessary for the back-of-the-envelope

cost calculation in Section 4.2. To obtain these estimates, I set the highest temperature bin

equal to one for days with highs of at least 90◦F and the lowest temperature bin equal to one

for days with highs below 40◦F. I set the second highest temperature bin equal to one for days

with highs of 86◦F to 89◦F so that the reference group is still days with high temperatures of

59◦F to 61◦F. As with the main analysis, I set the dependent variable to be three-day claim

rates. The results are shown in graph L of Figure B.3. The estimates imply that each day with

a high below 40◦F increases three-day claim rates by 0.746 per 100,000 workers and that each

day with a high above 90◦F increases three-day claim rates by 0.391 per 100,000 workers.
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Figure B.3: Alternative Specifications of the Effect of Temperature on Claim Rates per 100,000
Workers

   

   

     

   

-1

-.5

0

.5

1

1.5

2

2.5

be
lo
w
 3

5

35
 - 

37

38
 - 

40

41
 - 

43

44
 - 

46

47
 - 

49

50
 - 

52

53
 - 

55

56
 - 

58

62
 - 

64

65
 - 

67

68
 - 

70

71
 - 

73

74
 - 

76

77
 - 

79

80
 - 

82

83
 - 

85

86
 - 

88

89
 - 

91

92
 - 

94

95
 - 

97

98
 - 

10
0

gr
ea

te
r t

ha
n 

10
0

A. Basic Specification
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B. Controls for MSA-Year and MSA-Month
Instead of MSA-Year-Month
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C. Controls for MSA Instead of MSA-Year-Month
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D.  Controls for MSA Instead of MSA-Year-Month
and for Day of Week and Year-Month Instead of Calendar Date
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E. Effect of Today's Temperature on Today's Claims
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F. Effect of Today's Temperature
on Today's Claims, Only Weekends
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G. Effect of Tomorrow's Temperature on Today's Claims
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H. Effect of Tomorrow's Temperature on Today's Claims
with Controls for Low Temperatures
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I. Effect of Day after Tomorrow's Temperature on Today's Claims
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J. Effect of Day after Tomorrow's Temperature on Today's Claims
with Controls for Low Temperatures

Notes: Each graph displays coefficient estimates from a single regression of Equation (1) along with 95-percent
confidence intervals calculated using standard errors clustered at the MSA level. The sample size for each
regression is as follows: A-C, E, and G-L: 154,968; D: 144,804; F: 61,974. The underlying claim data come from
2006 to 2014 Texas WC claims and contain information on 1,916,590 claims. In graphs A through D and L,
the dependent variable is three-day claim rates. In graphs E through K, the dependent variable is same-day
claim rates. The baseline specification controls for day fixed effects, year-month-MSA fixed effects, precipitation
indicator variables, and high temperature and precipitation indicator variables for the previous two days and
subsequent two days. Alterations to the baseline specification are described in the text. The mean of the D.V.
at the omitted category for each graph is as follows: A-C: 15.8; D: 17.1; E: 6.2; F: 1.1; G: 6.2; H: 6.2; I: 6.3; J:
6.3; K: 6.2; L 15.8. Each regression is weighted by the MSA’s employment during the month of the observation
from LAUS data.
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B.3 Aggregating Data to the Annual Level

Economics research on the effect of temperature on mortality often aggregates temperature

and mortality information to the annual level and then estimates fixed effects models using data

with a long panel of years. With mortality, conducting the analysis at the annual level has an

advantage over conducting the analysis at the daily level in that the annual approach estimates

the effect of temperature on mortality rates net of any near-term displacement effects. As older

and sicker people are most susceptible to dying from temperature shocks, netting out near-term

displacement allows mortality studies to focus on deaths that would not have occurred soon

absent the temperature shock. Compared to mortality analysis at the annual level, analysis of

mortality with daily data would have to be much more careful in considering the time profile of

the effects. With occupational health, analysis with annual data would still have an advantage

over analysis with daily data in terms of potentially capturing more claims. As explained in the

main text, the baseline specification does not capture effects of temperature on occupational

health issues that take years to develop or on occupational health issues that are not treated

until after three days have passed since they occurred.

Despite the advantages of annual data, daily data also have advantages over more aggregated

data. As Deschenes (2014) explains, daily data allow for a more detailed characterization of

the effect of temperature than annual data do. Aggregating to the annual level also has a

complication with occupational health in that year-to-year temperature fluctuations may affect

economic conditions, which means that temperature has the potential to affect occupational

injuries indirectly through its effect on employment. As the goal of this study is to consider

the effect of temperature on workers facing the same economic conditions, daily data are useful

because they allow for estimating models that hold economic conditions fixed. Perhaps most

importantly, daily data can also help with precision, which is especially useful for outcomes

that have not been reasonably well-documented across the country for decades, as is the case

with mortality.

As Figure 2 of the main text shows, the effect of temperature appears to be realized soon
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after the day of observation, so aggregating temperature and WC claim information to the

annual level has the potential to introduce noise into the estimation. To consider the feasibility

of conducting the Texas WC analysis at the annual level, I aggregate the Texas WC data to

the annual level and then estimate models of the following form:

yjt = δt + γj + α ∗ precipitationjt + β ∗ temperaturejt + εjt, (3)

where j indexes the MSA, t indexes the year, y is the annual rate of claims per 100,000 workers,

precipitation is the number of days in the year with precipitation in each precipitation bin, and

temperature is the number of days in the year with high temperatures in each temperature

bin. I use the same bins and omitted category as with the CPS analysis, so the coefficient on a

given temperature bin can be interpreted as the effect of an additional day with a temperature

in that bin relative to an additional day in the 50s.

Each regression with the annual data has 594 observations. Figure B.4 displays temperature

coefficients from separate regressions of Equation (3). In graph A, the dependent variable is the

annual claim rate per 100,000 workers. The estimated effects of temperature shown in graph

A of Figure B.4 are all statistically insignificant and have wide confidence intervals. The 95-

percent confidence interval for the effect of an additional day with a high above 90◦F is -2.7

to 2.9 claims per 100,000 workers, while the 95-percent confidence interval for the effect of an

additional day with a high below 40◦F is -5.0 to 4.1 claims per 100,000 workers. Thus, these

estimates cannot come close to ruling out meaningful effect sizes, including the effect sizes

documented in the main analysis.

Graph B focuses solely on the effect of temperature on rates of claims for illnesses arising

from the heat, as these types of claims would likely be easier to tie to temperature. Even

with this outcome, though, Equation (3) can neither identify nor rule out meaningful effects

of temperature. Graphs C and D broaden the size of the reference group by replacing the

temperature vector in Equation (3) with only two variables, one equal to the number of days

in the year with highs below 40◦F and another equal to the number of days in the year with
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highs above 90◦F. With claim rates as the dependent variable, the coefficients on the two

temperature variables are still imprecise and can neither identify nor rule out meaningful effects

of temperature. With rates of claims for illnesses arising from the heat as the dependent variable,

the point estimate of the effect of a day with a high above 90◦F is now statistically significant

and indicates that each additional day with a high above 90◦F increases the annual rate of

claims for illnesses arising from the heat by 0.05 per 100,000 workers, which is in line with the

estimates from the daily analysis.

Other levels of aggregation in between annual and daily levels are also possible. For exam-

ple, the data could be aggregated to the semiannual, year-month, or week level. As would be

expected, the analysis becomes more precise as the level of aggregation becomes finer. However,

the estimates are still generally too imprecise for meaningful analysis even at the year-month

level.

This analysis in this appendix highlights the advantage of using daily data to study the

occupational health effects of temperature. To the best of my knowledge, no data set exists

with high quality occupational health measures, narrowly identifiable geographies, a long time

series, and wide geographic coverage. As such, daily data enables analysis that would not

otherwise be possible.
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Figure B.4: The Effect of Temperature on Annual Claim Rates per 100,000 Workers, Analysis
at the Annual Level
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A. The Effect of Temperature on Annual Claim Rates
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B. The Effect of Temperature on Annual
Rates of Claims for Illnesses from the Heat
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C. The Effect of Temperature on Annual Claim Rates
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D. The Effect of Temperature on Annual
Rates of Claims for Illnesses from the Heat

Notes: Each graph displays coefficient estimates from a single regression of Equation (3) along with 95-percent
confidence intervals calculated using standard errors clustered at the MSA level. The sample includes 594 MSA-
years. The underlying claim data come from 2006 to 2014 Texas WC claims. The underlying number of claims
for each regression is as follows: A and C: 1,916,590; B and D: 6,760. All regressions control for MSA fixed
effects, year fixed effects, and the number of days in the year with precipitation in each precipitation bin. The
mean of the D.V. for each graph is as follows: A and C: 1,977; B and D: 7.0. Each regression is weighted by the
number of workers in an MSA during the year of the observation from LAUS data.
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B.4 Heterogeneity by Age

Previous research has found that elderly people and young children are most susceptible to

the effects of temperature. If the effects of high temperatures are driven solely by older workers,

then a possible avenue for adaptation to climate change would be for workers to shift out of

temperature-exposed jobs as they age. But younger workers being sensitive to high temperatures

too suggests fewer options in terms of shifting younger workers to temperature-exposed jobs. I

now test for differential effects of temperature based on age.

As the LAUS employment data do not contain separate MSA-level employment estimates

by age, I use employment information from the ACS to compute the claim rates and weights.

Because of confidentiality concerns, the ACS does not provide identifiers for small areas, so only

28 MSAs are included in the analysis.3 Graph A of Figure B.5 considers how the results from

using information available in the ACS compare to the baseline results when not accounting

for age. The coefficients presented in graph A follow a similar pattern as the baseline results

presented in Figure 3 and indicate that using information from the ACS does not drastically

alter the results.

Graph B shows estimates separately for workers ages 18 to 40, while graph C shows estimates

separately for workers ages 41 to 64. The estimated effects of cold temperatures appear to

be larger for older workers than for younger workers, while the effects of high temperatures

appear to be similar for both age groups. Graph D shows estimates of the differential effects

of temperature on older workers from a single regression and confirms that the effects of cold

temperatures are statistically significantly larger for older workers than for younger workers.4

High temperatures appear to have similar adverse effects on both age groups.

3I assign people to MSAs using the ACS’s Public Use Micro Areas (PUMAs) variable. I obtain the crosswalk
from PUMAs to MSAs from the Missouri Census Data Center. As the ACS does not include the month of the
observation, all employment estimates are at the year level, meaning that the MSA-year-month fixed effects
now absorb variation in employment across months within a year.

4To obtain the estimates in graph D, I create a sample with two observations for each MSA and day
combination, one that includes claim rates and employment for older individuals and another that includes
claim rates and employment for younger individuals. I include the daily high temperatures as controls and allow
older and younger age groups to have different day and year-month-MSA fixed effects, as well as different effects
from the surrounding weather.
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Figure B.5: The Effect of Temperature on Three-Day Claim Rates per 100,000 Workers, Het-
erogeneity by Age
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A. Calculating Claim Rates Using Employment from ACS
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B. 40 or Younger
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C. Older than 40
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D. Differential Effects of Temperatures on Older Workers

Notes: Each graph displays coefficient estimates from a single regression of Equation (1) along with 95-percent
confidence intervals calculated using standard errors clustered at the MSA level. The sample size for each
regression is as follows: A through C: 62,614; D: 125,228. The underlying claim data come from 2006 to 2014
Texas WC claims. The underlying number of claims for each regression is as follows: A and D: 1,808,773; B:
936,486; C: 872,287. All regressions control for day fixed effects, year-month-MSA fixed effects, precipitation
indicator variables, and high temperature and precipitation indicator variables for the previous two days and
subsequent two days. The regression for graph D also controls for interactions of being an observation from the
over-40 sample. The mean of three-day claim rates at 59◦F to 61◦F for each graph is as follows: A and D: 16.2;
B: 15.4; C: 17.3. Each regression is weighted by the number of workers in age group in an MSA during the year
of the observation estimated from ACS data.
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B.5 Carpal Tunnel Syndrome Claims

Figure B.6 shows estimates of the effect of temperature on three-day claim rates for carpal

tunnel syndrome. Since carpal tunnel syndrome develops over an extended period of time,

the empirical strategy indicating that a day’s temperature affects claims for carpal tunnel

syndrome would raise doubts about the validity of the empirical strategy and may suggest

that temperature merely affects the timing of reporting of injuries without actually affecting

occupational health. But regardless of whether the analysis focuses on all days or just on

days without precipitation, the results shown in Figure B.6 do not suggest that temperature

extremes are associated with changes in the reporting of carpal tunnel syndrome. The lack of a

relationship holds when the three-day claim rate per 100,000 workers is the dependent variable

and when the IHS of three-day claim counts is the dependent variable.
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Figure B.6: The Effect of Temperature on Three-Day Carpal Tunnel Syndrome Claims per
100,000 Workers

  

  
Notes: Each graph displays coefficient estimates from a single regression of Equation (1) along with 95-percent
confidence intervals calculated using standard errors clustered at the MSA level. The sample includes 154,968
MSA-days and 124,964 MSA-days without precipitation. The underlying claim data come from 2006 to 2014
Texas WC claims and contain information on 8,903 carpal tunnel claims. All regressions control for day fixed
effects, year-month-MSA fixed effects, precipitation indicator variables, and high temperature and precipitation
indicator variables for the previous two days and subsequent two days. The mean three-day carpal tunnel claim
rate per 100,000 workers at 59◦F to 61◦F is 0.1. Each regression is weighted by the MSA’s employment during
the month of the observation from LAUS data.
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C Appendix: Estimates Corresponding to Figures

Table C.1: Estimates from Figure 2, Graphs A through F

Dependent variable: daily claims per 100,000 Day after Two days after
workers relative to day temperature observed Day of temperature day of temperature day of temperature

below 35 -0.302 -0.085 0.921*** 0.913*** 0.337** 0.231
(0.192) (0.246) (0.168) (0.195) (0.164) (0.197)

35 - 37 -0.101 0.179 0.562*** 0.529** 0.406** 0.237
(0.195) (0.269) (0.211) (0.230) (0.154) (0.163)

38 - 40 -0.130 -0.183 0.567*** 0.534*** 0.158** 0.012
(0.116) (0.154) (0.118) (0.182) (0.078) (0.112)

41 - 43 -0.091 0.018 0.232** 0.320*** 0.052 0.011
(0.077) (0.094) (0.094) (0.113) (0.059) (0.106)

44 - 46 -0.150** -0.094 0.105 0.141 0.083 0.002
(0.069) (0.103) (0.069) (0.090) (0.055) (0.081)

47 - 49 -0.142* -0.073 0.124* 0.141* 0.032 0.066
(0.080) (0.090) (0.064) (0.080) (0.045) (0.069)

50 - 52 -0.111 0.046 0.120 0.183** 0.071 0.130*
(0.092) (0.094) (0.081) (0.077) (0.063) (0.067)

53 - 55 -0.060 0.005 -0.021 -0.013 -0.018 0.008
(0.052) (0.054) (0.067) (0.046) (0.050) (0.065)

56 - 58 -0.103** -0.076 0.016 0.000 0.046 0.060
(0.049) (0.062) (0.059) (0.056) (0.038) (0.042)

62 - 64 -0.029 -0.016 -0.043 -0.041 0.005 0.049
(0.050) (0.052) (0.051) (0.041) (0.046) (0.048)

65 - 67 0.049 0.064 -0.017 0.016 -0.039 -0.009
(0.032) (0.044) (0.052) (0.047) (0.041) (0.048)

68 - 70 0.094** 0.087** -0.042 -0.010 -0.019 0.009
(0.035) (0.037) (0.049) (0.047) (0.060) (0.055)

71 - 73 0.107** 0.052 -0.079* -0.027 -0.001 0.060
(0.048) (0.051) (0.045) (0.059) (0.052) (0.065)

74 - 76 0.139*** 0.108** 0.005 0.054 -0.018 0.037
(0.045) (0.054) (0.058) (0.048) (0.045) (0.049)

77 - 79 0.195*** 0.196*** -0.058 0.011 -0.062 -0.015
(0.048) (0.056) (0.055) (0.063) (0.055) (0.056)

80 - 82 0.230*** 0.234*** -0.031 0.050 0.005 0.074
(0.054) (0.074) (0.068) (0.060) (0.063) (0.069)

83 - 85 0.277*** 0.286*** -0.034 0.057 0.040 0.083
(0.057) (0.069) (0.074) (0.065) (0.064) (0.075)

86 - 88 0.309*** 0.329*** 0.023 0.093 -0.004 0.072
(0.057) (0.067) (0.057) (0.061) (0.075) (0.081)

89 - 91 0.414*** 0.489*** 0.035 0.079 0.032 0.120
(0.049) (0.073) (0.065) (0.072) (0.072) (0.083)

92 - 94 0.429*** 0.458*** -0.073 -0.037 -0.033 -0.006
(0.072) (0.106) (0.075) (0.087) (0.078) (0.093)

95 - 97 0.477*** 0.473*** 0.016 0.061 0.047 0.062
(0.063) (0.105) (0.087) (0.088) (0.075) (0.087)

98 - 100 0.426*** 0.411*** 0.014 0.032 -0.005 0.021
(0.065) (0.100) (0.096) (0.107) (0.086) (0.101)

greater than 100 0.507*** 0.484*** 0.050 0.088 -0.029 0.046
(0.105) (0.140) (0.111) (0.134) (0.075) (0.090)

Corresponding graph A B C D E F
Unit of observation MSA-day MSA-day MSA-day MSA-day MSA-day MSA-day
Number of MSAs 66 66 66 66 66 66
n 154,968 124,964 154,968 124,964 154,968 124,964

Fixed effects
yr-mth-MSA yr-mth-MSA yr-mth-MSA yr-mth-MSA yr-mth-MSA yr-mth-MSA

day day day day day day
Mean of D.V. at 59◦F to 61◦F 6.2 5.2 5.4 5.4 4.3 4.4

Notes: Each column displays coefficient estimates from a single regression of Equation (1). Standard errors are clustered at the
MSA level and are shown in parentheses below the estimates. The underlying claim data come from 2006 to 2014 Texas WC
claims and contain information on 1,916,590 claims. All regressions control for day fixed effects, year-month-MSA fixed effects,
precipitation indicator variables, and high temperature and precipitation indicator variables for each of the previous five days and
subsequent four days. The sample in columns B, D, and F includes only days without precipitation, and thus the regressions do
not include controls for the precipitation on the day of observation. Each regression is weighted by the MSA’s employment during
the month of the observation from LAUS data.
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Table C.2: Estimates from Figure 2, Graphs G through I

Dependent variable: daily claims per 100,000 Three days after Four days after
workers relative to day temperature observed day of temperature day of temperature

below 35 0.192 -0.008 0.163 0.106
(0.149) (0.174) (0.145) (0.157)

35 - 37 -0.012 -0.318** 0.097 0.074
(0.119) (0.153) (0.116) (0.154)

38 - 40 0.109 -0.028 -0.016 -0.091
(0.114) (0.143) (0.136) (0.155)

41 - 43 -0.011 0.090 -0.008 -0.157
(0.092) (0.130) (0.083) (0.113)

44 - 46 -0.132* -0.200* 0.040 -0.028
(0.075) (0.102) (0.059) (0.117)

47 - 49 -0.062 -0.099 -0.023 -0.039
(0.080) (0.082) (0.071) (0.080)

50 - 52 -0.073 -0.130 0.050 -0.010
(0.078) (0.097) (0.070) (0.080)

53 - 55 0.048 -0.003 0.120** 0.112*
(0.048) (0.060) (0.060) (0.067)

56 - 58 -0.068 -0.083 -0.078* -0.087*
(0.061) (0.063) (0.045) (0.050)

62 - 64 -0.048 -0.069 -0.026 -0.073
(0.053) (0.069) (0.031) (0.044)

65 - 67 -0.035 -0.065 -0.033 -0.043
(0.066) (0.072) (0.044) (0.062)

68 - 70 -0.016 -0.039 -0.032 -0.066
(0.062) (0.071) (0.036) (0.049)

71 - 73 0.020 -0.008 -0.028 -0.057
(0.063) (0.075) (0.047) (0.055)

74 - 76 0.026 -0.005 -0.079* -0.089
(0.072) (0.097) (0.044) (0.059)

77 - 79 0.011 -0.026 -0.083** -0.099*
(0.067) (0.089) (0.038) (0.057)

80 - 82 0.067 0.008 -0.094 -0.167**
(0.077) (0.098) (0.057) (0.071)

83 - 85 0.065 -0.000 -0.088* -0.155***
(0.075) (0.096) (0.050) (0.052)

86 - 88 0.021 -0.040 -0.089 -0.133*
(0.077) (0.091) (0.066) (0.078)

89 - 91 0.052 0.039 -0.032 -0.120*
(0.082) (0.098) (0.058) (0.071)

92 - 94 0.069 0.019 -0.054 -0.116
(0.085) (0.110) (0.074) (0.086)

95 - 97 0.050 -0.006 -0.082 -0.154**
(0.086) (0.113) (0.067) (0.072)

98 - 100 0.032 0.010 -0.078 -0.160**
(0.098) (0.118) (0.063) (0.070)

greater than 100 -0.014 -0.043 0.059 -0.016
(0.093) (0.115) (0.078) (0.088)

Corresponding graph G H I J
Unit of observation MSA-day MSA-day MSA-day MSA-day
Number of MSAs 66 66 66 66
n 154,968 124,964 154,968 124,964

Fixed effects
yr-mth-MSA yr-mth-MSA yr-mth-MSA yr-mth-MSA

day day day day
Mean of D.V. at 59◦F to 61◦F 4.2 4.2 4.5 4.5

Notes: Each column displays coefficient estimates from a single regression of Equation (1). Standard
errors are clustered at the MSA level and are shown in parentheses below the estimates. The underlying
claim data come from 2006 to 2014 Texas WC claims and contain information on 1,916,590 claims. All
regressions control for day fixed effects, year-month-MSA fixed effects, precipitation indicator variables,
and high temperature and precipitation indicator variables for each of the previous five days and
subsequent four days. The sample in columns H and J includes only days without precipitation, and
thus the regressions do not include controls for the precipitation on the day of observation. Each
regression is weighted by the MSA’s employment during the month of the observation from LAUS
data.
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Table C.3: Estimates from Figure 3, Graphs A - C and F - H

Three-day IHS(Three-day Three-day Three-day Three-day Three-day
Dependent variable claims per claim claims per claims per claims per claims per

100,000 workers counts) 100,000 workers 100,000 workers 100,000 workers 100,000 workers

below 35 0.922*** 0.034* 0.327 -0.311 0.334 0.293
(0.305) (0.018) (0.390) (0.742) (0.540) (0.672)

35 - 37 0.892** 0.036* 0.552 -1.128 -0.023 -0.429
(0.370) (0.021) (0.341) (0.867) (0.608) (0.823)

38 - 40 0.657*** 0.032*** 0.491*** -0.160 0.599* 0.731
(0.178) (0.011) (0.159) (0.501) (0.335) (0.518)

41 - 43 0.311** 0.022*** 0.199* -0.395 0.156 -0.656
(0.142) (0.008) (0.114) (0.403) (0.340) (0.421)

44 - 46 0.053 0.006 -0.058 0.257 0.544
(0.097) (0.007) (0.109) (0.465) (0.342)

47 - 49 0.045 0.003 0.025 -0.099 0.083
(0.115) (0.008) (0.100) (0.295) (0.240)

50 - 52 0.046 0.003 0.031 -0.884** -0.116
(0.188) (0.007) (0.167) (0.373) (0.305)

53 - 55 -0.102 -0.002 -0.117 -0.522 -0.010
(0.072) (0.004) (0.072) (0.318) (0.183)

56 - 58 -0.046 -0.005 -0.039 -0.016 -0.068
(0.095) (0.007) (0.095) (0.253) (0.196)

62 - 64 -0.072 0.002 -0.051 -0.492** -0.054
(0.081) (0.004) (0.084) (0.224) (0.142)

65 - 67 -0.024 0.002 -0.012 -0.205 0.083
(0.084) (0.005) (0.083) (0.245) (0.199)

68 - 70 0.034 0.006 0.036 -0.306 -0.329
(0.096) (0.003) (0.104) (0.276) (0.202)

71 - 73 0.011 0.007* -0.020 -0.041 -0.021
(0.086) (0.004) (0.096) (0.288) (0.181)

74 - 76 0.120 0.011** 0.067 -0.085 -0.007
(0.089) (0.005) (0.096) (0.289) (0.212)

77 - 79 0.075 0.012** 0.016 -0.306 -0.238
(0.104) (0.005) (0.112) (0.292) (0.237)

80 - 82 0.206* 0.019*** 0.138 -0.408 -0.069
(0.112) (0.005) (0.114) (0.333) (0.247)

83 - 85 0.306** 0.021*** 0.218 -0.370 -0.264
(0.132) (0.006) (0.133) (0.305) (0.282)

86 - 88 0.333*** 0.028*** 0.229** -0.349 -0.081
(0.108) (0.005) (0.105) (0.319) (0.256)

89 - 91 0.501*** 0.032*** 0.384*** -0.316 -0.127
(0.118) (0.005) (0.116) (0.343) (0.286)

92 - 94 0.342** 0.029*** 0.224* -0.015 -0.117 0.017
(0.131) (0.006) (0.117) (0.355) (0.307) (0.112)

95 - 97 0.553*** 0.036*** 0.436*** -0.234 -0.202 -0.265*
(0.139) (0.007) (0.130) (0.397) (0.306) (0.136)

98 - 100 0.454*** 0.029*** 0.325** 0.255 -0.121 -0.327*
(0.150) (0.007) (0.138) (0.438) (0.357) (0.185)

greater than 100 0.553*** 0.037*** 0.421** 0.669 -0.153 -0.436
(0.180) (0.008) (0.174) (0.640) (0.350) (0.290)

Corresponding graph A B C F G H
Unit of observation MSA-day MSA-day MSA-day MSA-day MSA-day MSA-day
Number of MSAs 66 66 66 66 66 66
n 154,968 154,968 154,968 154,968 154,968 154,968

Fixed effects
yr-mth-MSA yr-mth-MSA yr-mth-MSA yr-mth-MSA yr-mth-MSA yr-mth-MSA

day day day day day day
Mean of D.V. at 59◦F to 61◦F 15.8 3.3 15.8 15.8 15.8 15.8

Notes: Each column displays coefficient estimates from a single regression of Equation (1). Standard errors are clustered at the MSA level and are shown
in parentheses below the estimates. The underlying claim data come from 2006 to 2014 Texas WC claims and contain information on 1,916,590 claims.
All regressions control for day fixed effects, year-month-MSA fixed effects, precipitation indicator variables, and high temperature and precipitation
indicator variables for the previous two days and subsequent two days. The regression in column C also includes controls for low temperatures for the
day of observation and for the previous two days and subsequent two days. The regression in column F also includes interactions of the weather controls,
of the day fixed effects, and of the year-month-MSA fixed effects with a rainy day indicator. The regression in column G also includes interactions of
the weather controls and of the day fixed effects with an indicator for being in a humid climate. Column F displays the coefficients on the rainy day
indicator interacted with the temperature bins. Column G displays the coefficients on the indicator for being in a humid climate interacted with the
temperature bins. Column H displays the coefficients on fall and spring indicator variables interacted with the temperature bins. Each regression is
weighted by the MSA’s employment during the month of the observation from LAUS data.

75



Table C.4: Estimates from Figure 3, Graphs D and E

Dependent variable for each specification: Three-day claims per 100,000 workers

below 14 1.536*** -0.070
(0.532) (0.422)

14 - 16 0.874** 0.324
(0.367) (0.333)

17 - 19 0.722 0.189
(0.466) (0.336)

20 - 22 -0.181 -0.332
(0.261) (0.266)

23 - 25 0.164 -0.077
(0.155) (0.153)

26 - 28 -0.139 -0.276
(0.199) (0.177)

29 - 31 -0.096 -0.154
(0.101) (0.107)

32 - 34 -0.152 -0.195**
(0.111) (0.095)

35 - 37 -0.191** -0.198**
(0.084) (0.081)

38 - 40 -0.146* -0.145*
(0.074) (0.074)

41 - 43 -0.300*** -0.285***
(0.068) (0.074)

44 - 46 -0.224*** -0.229***
(0.075) (0.086)

47 - 49 -0.199*** -0.195***
(0.062) (0.062)

53 - 55 -0.047 -0.041
(0.087) (0.082)

56 - 58 -0.102* -0.117**
(0.056) (0.053)

59 - 61 -0.049 -0.080
(0.093) (0.083)

62 - 64 -0.011 -0.054
(0.094) (0.086)

65 - 67 0.164* 0.108
(0.090) (0.081)

68 - 70 0.136 0.062
(0.104) (0.107)

71 - 73 0.225* 0.143
(0.126) (0.125)

74 - 76 0.129 0.032
(0.132) (0.135)

greater than 76 0.082 -0.021
(0.172) (0.170)

Corresponding graph D E
Unit of observation MSA-day MSA-day
Number of MSAs 66 66
n 154,968 154,968

Fixed effects
yr-mth-MSA yr-mth-MSA

day day
Mean of D.V. at 59◦F to 61◦F 15.8 15.8

Notes: Each column displays coefficient estimates on bins for low temperatures
from a single regression of Equation (1). Standard errors are clustered at the MSA
level and are shown in parentheses below the estimates. The underlying claim data
come from 2006 to 2014 Texas WC claims and contain information on 1,916,590
claims. All regressions control for day fixed effects, year-month-MSA fixed effects,
precipitation indicator variables, and low temperature and precipitation indicator
variables for the previous two days and subsequent two days. The regression in
column D also includes controls for high temperatures on the day of observation
and for the previous two days and subsequent two days. Each regression is weighted
by the MSA’s employment during the month of the observation from LAUS data.
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Table C.5: Estimates from Figure 4

Dependent variable: Illnesses Open wounds, Sprains, strains,
claim type per from the crushing injuries, bruises, and
100,000 workers heat Injuries and fractures muscle-related issues

below 35 -0.000 0.996*** 0.082 0.999***
(0.003) (0.283) (0.091) (0.237)

35 - 37 0.004* 0.892** 0.103 0.853**
(0.002) (0.389) (0.117) (0.376)

38 - 40 -0.003 0.676*** 0.147** 0.571**
(0.003) (0.204) (0.059) (0.223)

41 - 43 -0.000 0.323** -0.028 0.342***
(0.002) (0.144) (0.052) (0.112)

44 - 46 -0.000 0.059 -0.024 0.077
(0.001) (0.110) (0.048) (0.105)

47 - 49 -0.000 0.079 -0.041 0.159*
(0.002) (0.115) (0.053) (0.094)

50 - 52 0.001 -0.010 0.028 0.006
(0.001) (0.173) (0.045) (0.152)

53 - 55 0.002 -0.097 -0.024 -0.025
(0.001) (0.067) (0.033) (0.075)

56 - 58 0.001* -0.039 0.013 -0.043
(0.001) (0.084) (0.036) (0.064)

62 - 64 0.001 -0.074 0.047 -0.071
(0.001) (0.082) (0.033) (0.073)

65 - 67 0.001 -0.027 0.036 -0.047
(0.001) (0.077) (0.029) (0.069)

68 - 70 0.002 0.041 0.026 -0.005
(0.002) (0.085) (0.030) (0.069)

71 - 73 -0.002 0.018 0.015 -0.007
(0.001) (0.088) (0.035) (0.074)

74 - 76 0.003* 0.107 0.057* 0.044
(0.002) (0.081) (0.030) (0.065)

77 - 79 0.003* 0.082 0.054* 0.027
(0.002) (0.095) (0.030) (0.086)

80 - 82 0.002 0.197* 0.100** 0.083
(0.002) (0.101) (0.043) (0.090)

83 - 85 0.001 0.305** 0.096** 0.174
(0.003) (0.118) (0.040) (0.108)

86 - 88 0.006* 0.305*** 0.144*** 0.164*
(0.003) (0.100) (0.047) (0.087)

89 - 91 0.009** 0.450*** 0.153*** 0.260***
(0.004) (0.105) (0.036) (0.090)

92 - 94 0.010** 0.316** 0.164*** 0.149
(0.005) (0.122) (0.048) (0.092)

95 - 97 0.026*** 0.476*** 0.212*** 0.229**
(0.006) (0.129) (0.056) (0.109)

98 - 100 0.032*** 0.363** 0.188*** 0.133
(0.011) (0.137) (0.050) (0.115)

greater than 100 0.072*** 0.425*** 0.194*** 0.132
(0.013) (0.156) (0.054) (0.137)

Corresponding graph A B C D
Unit of observation MSA-day MSA-day MSA-day MSA-day
Number of MSAs 66 66 66 66
n 154,968 154,968 154,968 154,968
Underlying number of claims 6,760 1,749,452 441,553 1,244,996

Fixed effects
yr-mth-MSA yr-mth-MSA yr-mth-MSA yr-mth-MSA

day day day day
Mean of D.V. at 59◦F to 61◦F 0.0 14.6 3.6 10.6

Notes: Each column displays coefficient estimates from a single regression of Equation (1). Standard errors are
clustered at the MSA level and are shown in parentheses below the estimates. The underlying claim data come
from 2006 to 2014 Texas WC claims. All regressions control for day fixed effects, year-month-MSA fixed effects,
precipitation indicator variables, and high temperature and precipitation indicator variables for the previous
two days and subsequent two days. Each regression is weighted by the MSA’s employment during the month
of the observation from LAUS data.
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Table C.6: Estimates from Figure 5

Dependent variable: Continued Continued Bottom Top
Claim type per treatment treatment half of half of
100,000 workers 3 to 30 31 to 180 cost cost

days later days later distribution distribution

below 35 0.736*** 0.434*** 0.260 0.662***
(0.238) (0.142) (0.206) (0.177)

35 - 37 0.747** 0.558*** 0.219 0.673***
(0.287) (0.196) (0.193) (0.242)

38 - 40 0.525*** 0.384*** 0.251** 0.406***
(0.177) (0.120) (0.097) (0.142)

41 - 43 0.210* 0.058 0.182** 0.129
(0.108) (0.072) (0.087) (0.099)

44 - 46 0.161* 0.074 -0.099 0.152**
(0.086) (0.053) (0.062) (0.075)

47 - 49 0.078 0.059 -0.029 0.074
(0.071) (0.071) (0.075) (0.088)

50 - 52 0.058 0.057 0.024 0.023
(0.146) (0.083) (0.113) (0.094)

53 - 55 -0.035 -0.013 -0.083 -0.019
(0.050) (0.038) (0.067) (0.050)

56 - 58 0.048 0.037 -0.017 -0.029
(0.074) (0.040) (0.069) (0.052)

62 - 64 -0.084 -0.105** -0.022 -0.050
(0.061) (0.045) (0.052) (0.055)

65 - 67 0.003 -0.010 -0.026 0.003
(0.062) (0.054) (0.070) (0.053)

68 - 70 0.015 -0.014 0.023 0.011
(0.076) (0.058) (0.057) (0.064)

71 - 73 -0.026 -0.024 0.011 0.000
(0.075) (0.059) (0.052) (0.068)

74 - 76 0.037 0.008 0.091* 0.029
(0.079) (0.051) (0.054) (0.060)

77 - 79 0.050 0.014 0.041 0.034
(0.073) (0.061) (0.068) (0.060)

80 - 82 0.112 0.063 0.127* 0.079
(0.078) (0.061) (0.076) (0.067)

83 - 85 0.215** 0.108 0.215*** 0.091
(0.103) (0.066) (0.079) (0.079)

86 - 88 0.201** 0.150** 0.168** 0.165**
(0.091) (0.068) (0.070) (0.068)

89 - 91 0.335*** 0.183** 0.286*** 0.215***
(0.097) (0.074) (0.076) (0.072)

92 - 94 0.216* 0.129 0.203*** 0.139*
(0.110) (0.081) (0.070) (0.080)

95 - 97 0.297** 0.171* 0.346*** 0.207**
(0.119) (0.087) (0.093) (0.085)

98 - 100 0.252* 0.157* 0.253** 0.202**
(0.139) (0.085) (0.097) (0.092)

greater than 100 0.343** 0.160* 0.349*** 0.205**
(0.147) (0.094) (0.121) (0.097)

Corresponding graph A B C D
Unit of observation MSA-day MSA-day MSA-day MSA-day
Number of MSAs 66 66 66 66
n 154,968 154,968 154,968 154,968
Underlying number of claims 678,621 266,236 958,295 958,295

Fixed effects
yr-mth-MSA yr-mth-MSA yr-mth-MSA yr-mth-MSA

day day day day
Mean of D.V. at 59◦F to 61◦F 11.6 6.2 8.9 8.8

Notes: Each column displays coefficient estimates from a single regression of Equation (1). Stan-
dard errors are clustered at the MSA level and are shown in parentheses below the estimates. The
underlying claim data come from 2006 to 2014 Texas WC claims. All regressions control for day
fixed effects, year-month-MSA fixed effects, precipitation indicator variables, and high tempera-
ture and precipitation indicator variables for the previous two days and subsequent two days. Each
regression is weighted by the MSA’s employment during the month of the observation from LAUS
data.

78



Table C.7: Estimates from Figure 6

Dependent variable for all specifications: Daily injury rate per 100,000 workers

below 35 -3.401 -3.444 -1.132 -1.471 0.504 -1.366 -3.935 -2.904
(5.063) (6.580) (2.738) (3.594) (2.081) (2.639) (5.269) (6.857)

35 - 37 -12.855*** -9.801** -0.313 0.952 -0.799 -2.044 -12.706*** -9.676*
(4.247) (4.632) (2.597) (3.317) (1.814) (2.300) (4.463) (4.950)

38 - 40 -2.158 4.078 -0.606 1.528 0.767 1.421 -2.816 2.118
(4.586) (5.362) (2.044) (2.707) (1.636) (2.044) (4.729) (5.561)

41 - 43 2.140 7.980 -2.249 -1.240 2.072 0.495 1.231 7.632
(4.283) (5.524) (2.041) (2.720) (1.640) (2.048) (4.454) (5.720)

44 - 46 1.136 3.304 -2.519 -0.100 0.392 0.586 1.595 2.475
(3.331) (4.549) (1.842) (2.362) (1.501) (1.820) (3.517) (4.746)

47 - 49 1.621 6.010* -0.855 0.638 1.369 1.660 0.846 4.316
(2.633) (3.465) (1.653) (2.182) (1.387) (1.676) (2.842) (3.700)

50 - 52 -0.218 -0.547 -0.789 1.516 0.375 1.853 -0.320 -2.584
(1.951) (2.230) (1.441) (1.815) (1.259) (1.596) (2.156) (2.510)

53 - 55 0.603 1.143 -1.199 -1.813 -0.473 -0.223 1.437 2.197
(2.014) (2.395) (1.263) (1.553) (1.218) (1.437) (2.191) (2.634)

56 - 58 -0.601 -0.181 0.539 0.520 -0.728 -1.825 -0.710 0.139
(1.605) (1.594) (1.399) (1.466) (1.334) (1.616) (1.849) (1.858)

62 - 64 0.378 0.359 1.748 3.198** -2.449* -2.894* 0.329 -0.257
(1.397) (1.579) (1.429) (1.503) (1.253) (1.531) (1.768) (2.035)

65 - 67 0.736 0.252 0.684 2.181 -2.151 -1.320 1.379 -0.339
(1.467) (1.755) (1.290) (1.583) (1.307) (1.544) (1.724) (2.071)

68 - 70 1.268 0.522 -0.150 2.111 -0.727 0.865 1.773 -0.738
(1.636) (1.807) (1.470) (1.838) (1.483) (1.570) (1.916) (2.149)

71 - 73 3.770* 3.260 -1.254 0.053 0.463 0.111 4.341* 3.391
(2.012) (2.343) (1.671) (1.974) (1.568) (1.957) (2.299) (2.712)

74 - 76 4.650** 5.171** -2.112 -0.361 0.079 1.325 5.745** 4.827
(2.187) (2.594) (1.898) (2.137) (1.823) (2.292) (2.519) (3.021)

77 - 79 4.587* 5.438* -0.541 1.368 -1.088 -0.103 5.338** 5.009
(2.395) (3.036) (1.827) (2.246) (1.711) (2.369) (2.678) (3.404)

80 - 82 2.907 2.967 -0.707 0.526 0.301 2.260 3.171 1.704
(2.343) (2.883) (2.158) (2.427) (1.929) (2.637) (2.746) (3.383)

83 - 85 3.589 3.170 -0.667 1.051 0.350 1.670 3.594 1.946
(2.481) (3.197) (2.162) (2.642) (2.125) (3.072) (2.867) (3.722)

86 - 88 5.372* 7.020** -0.980 0.476 0.039 1.694 5.526 5.868
(2.900) (3.552) (2.438) (2.895) (2.630) (3.703) (3.371) (4.183)

89 - 91 4.866* 6.569* -2.865 -2.241 1.050 3.959 5.864* 6.428
(2.806) (3.402) (2.733) (3.205) (3.456) (4.444) (3.447) (4.223)

92 - 94 6.606** 10.452*** -4.509 -4.264 2.964 4.321 8.624** 11.763**
(2.842) (3.688) (2.838) (3.333) (4.291) (5.413) (3.590) (4.583)

95 - 97 8.240*** 12.326*** -1.893 -3.211 9.515 9.317 7.155 11.784**
(3.129) (4.094) (4.127) (4.495) (5.904) (6.642) (4.532) (5.465)

98 - 100 6.481** 10.876** -6.501 -5.865 3.901 0.389 10.358** 14.201**
(3.276) (4.235) (4.577) (5.489) (8.136) (8.501) (4.920) (6.046)

greater than 100 6.924* 12.306** -2.564 -4.416 -2.867 -4.821 6.025 12.834
(4.003) (4.840) (7.713) (8.702) (9.500) (11.403) (7.547) (8.615)

Corresponding graph A B C D E F G H
Climate warmer warmer middle middle cooler cooler all all
Unit of observation site-day site-day site-day site-day site-day site-day site-day site-day
Number of sites 278 278 558 558 278 278 1,114 1,114
n 652,744 504,027 1,310,184 899,973 652,744 416,433 2,615,672 1,820,433
Number of injuries 4,100 2,853 4,786 3,334 4,127 2,862 13,013 9,049

Fixed effects
yr-mth-site yr-mth-site yr-mth-site yr-mth-site yr-mth-site yr-mth-site yr-mth-site yr-mth-site

day day day day day day day day
Mean of D.V. at 59◦F to 61◦F 10.3 10.9 10.9 10.1 10.1 9.0 10.5 9.9

Notes: Each column displays coefficient estimates from a single regression of Equation (1). Standard errors are clustered at the
site level and are shown in parentheses below the estimates. The underlying injury data come from 2006 to 2014 MSHA logs. All
regressions control for day fixed effects, year-month-site fixed effects, precipitation indicator variables, and high temperature and
precipitation indicator variables for the previous two days and subsequent two days. The regressions in columns G and H also include
interactions of the weather controls and of the day fixed effects with an indicator for a site being in a warmer climate. Columns G
and H display interactions between the temperature bins and a warmer climate indicator. Each regression is weighted by the number
of workers at each site.
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Table C.8: Estimates from Figure 7

Dependent variable for all specifications: Daily time-loss injury rate per 100,000 workers

below 35 -0.577 0.717 -0.914 -2.476 -1.544 -2.876 -0.304 2.445
(5.007) (6.439) (2.428) (3.205) (1.649) (1.961) (5.130) (6.605)

35 - 37 -7.511** -5.661 -1.058 -1.936 -2.019 -2.543 -6.863* -4.661
(3.739) (4.221) (2.302) (2.907) (1.515) (1.911) (3.890) (4.459)

38 - 40 -2.882 1.693 -0.855 -0.723 -0.785 0.246 -2.792 0.975
(3.729) (4.503) (1.744) (2.444) (1.476) (1.823) (3.859) (4.708)

41 - 43 0.047 3.996 -1.696 -1.511 -0.596 -1.655 0.204 4.676
(3.134) (3.910) (1.677) (2.268) (1.354) (1.588) (3.269) (4.085)

44 - 46 0.365 2.225 -2.895** -2.204 -2.545* -2.658* 2.295 3.705
(2.761) (3.856) (1.436) (1.877) (1.343) (1.601) (2.904) (4.024)

47 - 49 1.269 3.433 -0.832 -1.139 -0.955 -1.476 1.568 3.967
(2.126) (2.517) (1.307) (1.630) (1.233) (1.539) (2.290) (2.734)

50 - 52 -0.697 -0.976 -0.819 0.227 -0.916 -0.124 -0.291 -1.466
(1.608) (1.810) (1.227) (1.485) (1.138) (1.356) (1.792) (2.042)

53 - 55 -0.119 -0.356 -0.635 -1.384 -2.112** -1.799 1.121 1.138
(1.642) (1.769) (0.998) (1.199) (1.019) (1.160) (1.781) (1.959)

56 - 58 0.346 0.626 -0.204 -0.546 -1.335 -1.516 0.913 1.491
(1.383) (1.327) (0.912) (1.146) (1.071) (1.369) (1.533) (1.532)

62 - 64 0.684 0.960 1.861 2.711** -2.305** -2.149* 0.504 0.216
(1.165) (1.246) (1.194) (1.249) (1.096) (1.214) (1.516) (1.660)

65 - 67 0.661 0.727 0.615 1.504 -2.463** -1.843 1.529 0.719
(1.130) (1.348) (1.006) (1.286) (1.127) (1.212) (1.348) (1.599)

68 - 70 0.910 0.486 0.321 2.247 -1.831 -0.721 1.621 -0.220
(1.317) (1.392) (1.188) (1.520) (1.269) (1.279) (1.562) (1.685)

71 - 73 2.809 2.517 -0.304 0.529 -0.549 -0.529 3.413* 2.631
(1.843) (1.951) (1.312) (1.593) (1.270) (1.470) (2.041) (2.230)

74 - 76 3.147* 3.266 -0.479 0.754 -0.927 0.389 3.933* 2.734
(1.797) (2.080) (1.503) (1.690) (1.478) (1.700) (2.069) (2.411)

77 - 79 2.797 3.186 -0.125 1.021 -1.832 -0.404 3.779 2.926
(2.062) (2.594) (1.591) (1.796) (1.437) (1.763) (2.310) (2.859)

80 - 82 1.450 1.364 0.124 0.749 -1.134 0.587 2.123 0.755
(1.953) (2.310) (1.858) (2.024) (1.657) (2.014) (2.328) (2.743)

83 - 85 1.405 1.293 0.378 1.403 -1.107 -0.360 1.819 0.870
(2.155) (2.682) (1.787) (2.065) (1.760) (2.296) (2.465) (3.039)

86 - 88 2.817 4.021 1.010 1.762 -1.142 -0.681 2.725 3.373
(2.410) (2.906) (1.966) (2.225) (2.319) (3.029) (2.805) (3.392)

89 - 91 2.022 2.944 -0.882 0.240 -0.425 -0.083 2.950 3.077
(2.303) (2.801) (2.218) (2.487) (2.736) (3.563) (2.859) (3.457)

92 - 94 4.199* 6.530** -2.636 -1.133 0.918 0.127 6.357** 7.620**
(2.437) (3.140) (2.250) (2.652) (3.692) (4.693) (3.039) (3.844)

95 - 97 5.478** 7.696** 1.979 0.667 2.625 1.022 3.437 7.118
(2.684) (3.386) (3.302) (3.361) (4.519) (5.292) (3.810) (4.423)

98 - 100 6.247** 9.280** -2.558 -0.793 -2.046 -7.895 9.010** 11.977**
(2.835) (3.606) (3.624) (4.242) (7.040) (7.030) (4.110) (4.963)

greater than 100 5.647 10.407** 0.434 1.165 -10.050 -14.144** 6.176 12.733*
(3.427) (4.181) (6.143) (7.007) (6.631) (7.075) (5.960) (6.801)

Corresponding graph A B C D E F G H
Climate warmer warmer middle middle cooler cooler all all
Unit of observation site-day site-day site-day site-day site-day site-day site-day site-day
Number of sites 278 278 558 558 278 278 1,114 1,114
n 652,744 504,027 1,310,184 899,973 652,744 416,433 2,615,672 1,820,433
Number of injuries 2,791 1,923 3,068 2,174 2,395 1,635 8,254 5,732

Fixed effects
yr-mth-site yr-mth-site yr-mth-site yr-mth-site yr-mth-site yr-mth-site yr-mth-site yr-mth-site

day day day day day day day day
Mean of D.V. at 59◦F to 61◦F 7.0 7.3 7.3 7.0 6.8 5.6 7.1 6.6

Notes: Each column displays coefficient estimates from a single regression of Equation (1). Standard errors are clustered at the
site level and are shown in parentheses below the estimates. The underlying injury data come from 2006 to 2014 MSHA logs. All
regressions control for day fixed effects, year-month-site fixed effects, precipitation indicator variables, and high temperature and
precipitation indicator variables for the previous two days and subsequent two days. The regressions in columns G and H also include
interactions of the weather controls and of the day fixed effects with an indicator for a site being in a warmer climate. Columns G
and H display interactions between the temperature bins and a warmer climate indicator. Each regression is weighted by the number
of workers at each site.
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Table C.9: Estimates from Figure 8

Dependent variable for all specifications: Hours worked in reference week

below 40 -0.185*** -1.011*** -0.107 -0.160*** -0.602** -0.083
(0.066) (0.283) (0.124) (0.059) (0.282) (0.119)

40 - 49 -0.020 0.079 0.029 -0.073 0.228 -0.147
(0.050) (0.186) (0.073) (0.063) (0.199) (0.094)

60 - 69 -0.014 -0.086 0.084 -0.091 -0.081 -0.129*
(0.039) (0.126) (0.053) (0.066) (0.130) (0.074)

70 - 79 0.047 0.115 0.103* -0.024 0.027 -0.121*
(0.039) (0.100) (0.060) (0.068) (0.107) (0.065)

80 - 89 0.038 0.104 0.115 -0.085 -0.021 -0.121*
(0.049) (0.105) (0.076) (0.080) (0.113) (0.071)

greater than 90 -0.045 -0.005 0.103 -0.364*** -0.068 -0.392***
(0.063) (0.127) (0.086) (0.106) (0.124) (0.113)

Corresponding graph A B C D E F
Climate all warmer middle cooler all all
Unit of observation individual individual individual individual individual individual
Number of MSAs 254 60 108 86 254 254
n 325,395 65,758 145,549 114,088 325,395 325,395

Fixed effects
yr-mth yr-mth yr-mth yr-mth yr-mth yr-mth
MSA MSA MSA MSA MSA MSA

Mean of D.V. at 50◦F to 59◦F 39.1 38.7 39.0 39.2 39.1 39.1

Notes: Each column displays coefficient estimates from a single regression of Equation (2). Standard errors
are clustered at the MSA level and are shown in parentheses below the estimates. The data on workers come
from the 2006 to 2014 monthly CPS. The sample includes workers exposed to outdoor temperatures more
than one day per week. All regressions control for MSA fixed effects, year-month fixed effects, the number of
days in each precipitation bin, the number of weekend days in each temperature and precipitation bin, and the
individual’s race, sex, age, education, usual hours worked, occupation, and industry. The regression in column
E also includes interactions of the weather controls and of the year-month fixed effects with an indicator for an
MSA being in a warmer climate. The regression in column F also includes interactions of the weather controls
and of the year-month fixed effects with an indicator for an MSA being in a cooler climate. Column E displays
interactions between the temperature bins and a warmer climate indicator. Column F displays interactions
between the temperature bins and a cooler climate indicator. Each regression is weighted using CPS weights.
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Table C.10: Estimates from Figure 9

Dependent variable for all specifications: Hours worked in reference week

below 40 -0.213*** -0.862*** -0.173 -0.177** -0.502* -0.024
(0.069) (0.257) (0.133) (0.075) (0.283) (0.118)

40 - 49 -0.028 0.086 0.008 -0.080 0.272 -0.146
(0.050) (0.196) (0.073) (0.078) (0.198) (0.095)

60 - 69 -0.011 -0.019 0.055 -0.057 -0.036 -0.092
(0.039) (0.126) (0.057) (0.061) (0.125) (0.074)

70 - 79 0.057 0.154 0.104 -0.013 0.057 -0.111*
(0.042) (0.099) (0.069) (0.073) (0.108) (0.066)

80 - 89 0.055 0.137 0.105 -0.042 -0.014 -0.075
(0.049) (0.104) (0.078) (0.082) (0.109) (0.071)

greater than 90 -0.034 0.035 0.077 -0.318*** -0.043 -0.309***
(0.062) (0.126) (0.089) (0.094) (0.121) (0.109)

Corresponding graph A B C D E F
Climate all warmer middle cooler all all
Unit of observation individual individual individual individual individual individual
Number of MSAs 254 60 108 86 254 254
n 325,395 65,750 145,548 114,080 325,395 325,395

Fixed effects
yr-mth yr-mth yr-mth yr-mth yr-mth yr-mth
MSA MSA MSA MSA MSA MSA
st-yr st-yr st-yr st-yr st-yr st-yr

Mean of D.V. at 50◦F to 59◦F 39.1 38.7 39.0 39.2 39.1 39.1

Notes: Each column displays coefficient estimates from a single regression of Equation (2). Standard errors
are clustered at the MSA level and are shown in parentheses below the estimates. The data on workers come
from the 2006 to 2014 monthly CPS. The sample includes workers exposed to outdoor temperatures more
than one day per week. All regressions control for MSA fixed effects, year-month fixed effects, state-year fixed
effects, the number of days in each precipitation bin, the number of weekend days in each temperature and
precipitation bin, and the individual’s race, sex, age, education, usual hours worked, occupation, and industry.
The regression in column E also includes interactions of the weather controls and of the year-month fixed
effects with an indicator for an MSA being in a warmer climate. The regression in column F also includes
interactions of the weather controls and of the year-month fixed effects with an indicator for an MSA being in
a cooler climate. Column E displays interactions between the temperature bins and a warmer climate indicator.
Column F displays interactions between the temperature bins and a cooler climate indicator. Each regression
is weighted using CPS weights.
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Table C.11: Estimates from Figure 10

Dependent variable for all specifications: Hours worked in reference week

below 40 -0.091*** -0.266 -0.207*** -0.005 -0.034 0.200***
(0.030) (0.206) (0.049) (0.022) (0.212) (0.067)

40 - 49 0.006 -0.025 0.027 0.010 0.089 -0.018
(0.015) (0.072) (0.025) (0.026) (0.076) (0.031)

60 - 69 0.000 0.042 0.001 -0.011 -0.003 0.020
(0.014) (0.038) (0.019) (0.024) (0.045) (0.025)

70 - 79 0.025* 0.064 0.045* 0.005 -0.012 -0.016
(0.015) (0.039) (0.025) (0.022) (0.045) (0.023)

80 - 89 0.011 0.080* 0.021 -0.028 0.039 -0.033
(0.016) (0.046) (0.026) (0.027) (0.043) (0.026)

greater than 90 -0.002 0.044 0.006 0.009 -0.001 0.023
(0.020) (0.050) (0.034) (0.039) (0.050) (0.039)

Corresponding graph A B C D E F
Climate all warmer middle cooler all all
Unit of observation individual individual individual individual individual individual
Number of MSAs 254 60 108 86 254 254
n 3,078,897 531,363 1,403,654 1,143,880 3,078,897 3,078,897

Fixed effects
yr-mth yr-mth yr-mth yr-mth yr-mth yr-mth
MSA MSA MSA MSA MSA MSA

Mean of D.V. at 50◦F to 59◦F 37.4 37.0 37.8 37.3 37.4 37.4

Notes: Each column displays coefficient estimates from a single regression of Equation (2). Standard errors
are clustered at the MSA level and are shown in parentheses below the estimates. The data on workers come
from the 2006 to 2014 monthly CPS. The sample includes workers exposed to outdoor temperatures less than
one day per week. All regressions control for MSA fixed effects, year-month fixed effects, the number of days
in each precipitation bin, the number of weekend days in each temperature and precipitation bin, and the
individual’s race, sex, age, education, usual hours worked, occupation, and industry. The regression in column
E also includes interactions of the weather controls and of the year-month fixed effects with an indicator for an
MSA being in a warmer climate. The regression in column F also includes interactions of the weather controls
and of the year-month fixed effects with an indicator for an MSA being in a cooler climate. Column E displays
interactions between the temperature bins and a warmer climate indicator. Column F displays interactions
between the temperature bins and a cooler climate indicator. Each regression is weighted using CPS weights.
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D Appendix: Additional Analysis of Mining Data

Figure D.1: The Effect of Temperature on Daily Injuries per 100,000 Workers in Mining Data
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A. Effect of Today's Temperature on
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B. Effect of Today's Temperature on
Today's Injuries/Illnesses, Only Dry Days
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C. Effect of Today's Temperature on
Tomorrow’s Injuries/Illnesses
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D. Effect of Today's Temperature on
Tomorrow’s Injuries/Illnesses, Only Dry Days
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E. Effect of Today's Temperature on the Day after
Tomorrow's Injuries/Illnesses
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F. Effect of Today's Temperature on the Day after
Tomorrow's Injuries/Illnesses, Only Dry Days

Notes: Each graph displays coefficient estimates from a single regression of Equation (1) along with 95-percent
confidence intervals calculated using standard errors clustered at the site level. The sample includes 2,615,672
site-days and 1,820,433 site-days without precipitation. The underlying injury data come from 2006 to 2014
MSHA logs and contain information on 13,013 injuries. All regressions control for day fixed effects, year-month-
site fixed effects, precipitation indicator variables, and high temperature and precipitation indicator variables
for the previous two days and subsequent two days. The mean of the D.V. at 59◦F to 61◦F for each graph is as
follows: A: 10.5; B: 9.9; C: 9.3; D: 9.1; E: 7.4; F: 7.6. Each regression is weighted by the number of workers at
each site.
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Figure D.2: The Effect of Temperature on Daily Injuries per 100,000 Workers in Mining Data,
Site Fixed Effects Instead of Site-Year-Month Fixed Effects

   

   

  

Notes: Each graph displays coefficient estimates from a single regression of Equation (1) along with 95-percent
confidence intervals calculated using standard errors clustered at the site level. The sample size for each regression
is as follows: A: 652,744; B: 504,027; C: 1,310,184; D: 899,973; E: 652,744; F: 416,433; G: 2,615,672; H: 1,820,433.
The underlying injury data come from 2006 to 2014 MSHA logs. The underlying number of injuries for each
regression is as follows: A: 4,100; B: 2,853; C: 4,786; D: 3,334; E: 4,127; F: 2,862; G: 13,013; H: 9,049. All
regressions control for day fixed effects, site fixed effects, precipitation indicator variables, and high temperature
and precipitation indicator variables for the previous two days and subsequent two days. The regressions for
graphs G and H also include interactions of the weather controls and of the day fixed effects with an indicator
for a site being in a warmer climate. The mean of daily injury rates at 59◦F to 61◦F for each graph is as follows:
A: 10.3; B: 10.9; C: 10.9; D: 10.1; E: 10.1; F: 9.0; G: 10.5; H: 9.9. Each regression is weighted by the number of
workers at each site.
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Figure D.3: The Effect of Temperature on Injuries per 100,000 Workers in Mining Data, Site
Fixed Effects and State-Year Fixed Effects Instead of Site-Year-Month Fixed Effects

   

   

  

Notes: Each graph displays coefficient estimates from a single regression of Equation (1) along with 95-percent
confidence intervals calculated using standard errors clustered at the site level. The sample size for each regression
is as follows: A: 652,744; B: 504,027; C: 1,310,184; D: 899,973; E: 652,744; F: 416,433; G: 2,615,672; H: 1,820,433.
The underlying injury data come from 2006 to 2014 MSHA logs. The underlying number of injuries for each
regression is as follows: A: 4,100; B: 2,853; C: 4,786; D: 3,334; E: 4,127; F: 2,862; G: 13,013; H: 9,049. All
regressions control for day fixed effects, site fixed effects, state-year fixed effects, precipitation indicator variables,
and high temperature and precipitation indicator variables for the previous two days and subsequent two days.
The regressions for graphs G and H also include interactions of the weather controls and of the day fixed effects
with an indicator for a site being in a warmer climate. The mean of daily injury rates at 59◦F to 61◦F for each
graph is as follows: A: 10.3; B: 10.9; C: 10.9; D: 10.1; E: 10.1; F: 9.0; G: 10.5; H: 9.9. Each regression is weighted
by the number of workers at each site.
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