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Abstract 

Accurate probability-of-distress models are central 

to regulators, firms, and individuals who need to 

evaluate the default risk of a loan portfolio. A num-

ber of papers document that recent machine learn-

ing models outperform traditional corporate dis-

tress models in terms of accurately ranking firms by 

their riskiness. However, it remains unanswered 

whether advanced machine learning models can 

capture correlation in distresses, which traditional 

distress models struggle to do. We implement a 

regularly top-performing machine learning model 

and find that prediction accuracy of individual dis-

tress probabilities improves while there is almost 

no difference in the predicted aggregate distress 

rate relative to traditional distress models. Thus, 

our findings suggest that complex machine learning 

models do not eliminate the need for a latent vari-

able that captures correlations in distresses. In-

stead, we propose a frailty model, which allows for 

correlations in distresses, augmented with regres-

sion splines. This model demonstrates competitive 

performance in terms of ranking firms by their riski-

ness, while providing accurate risk measures.

Resume 

Nøjagtige konkursmodeller er nødvendige for til-

synsmyndigheder, virksomheder og investorer, som 

har brug for at evaluere konkursrisikoen i en låne-

portefølje. En række papirer har vist, at "machine 

learning"-modeller er bedre til at rangere virksom-

heder efter deres kreditrisiko end traditionelle sta-

tistiske modeller. Men det er stadig et åbent 

spørgsmål, om de avancerede modeller kan fange 

korrelation i konkurser, hvilket traditionelle model-

ler har svært ved. Vi implementerer en machine 

learning-model, som generelt har vist sig at være 

god til at forudsige konkurser, og finder, at kon-

kursestimater på virksomhedsniveau forbedres, 

mens de estimerede aggregerede konkursrater 

forbliver næsten uændrede i forhold til de traditio-

nelle konkursmodeller. Vores resultater taler altså 

for, at komplekse machine learning-modeller ikke 

eliminerer nødvendigheden af at inkludere en la-

tent variabel, der fanger korrelation i konkurser. 

Som et alternativ implementerer vi en "frailty"-

model, som direkte introducerer korrelation i kon-

kurser. Modellen er ydermere udvidet med "regres-

sion splines", hvilket medfører, at den er god til at 

rangere virksomheder efter deres kreditrisiko, sam-

tidig med at den vurderer risikoen i en låneporteføl-

je korrekt.  
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Abstract

Accurate probability-of-distress models are central to regulators, firms, and individuals who need
to evaluate the default risk of a loan portfolio. A number of papers document that recent machine
learning models outperform traditional corporate distress models in terms of accurately ranking firms
by their riskiness. However, it remains unanswered whether advanced machine learning models can
capture correlation in distresses, which traditional distress models struggle to do. We implement a
regularly top-performing machine learning model and find that prediction accuracy of individual distress
probabilities improves while there is almost no difference in the predicted aggregate distress rate relative
to traditional distress models. Thus, our findings suggest that complex machine learning models do not
eliminate the need for a latent variable that captures correlations in distresses. Instead, we propose
a frailty model, which allows for correlations in distresses, augmented with regression splines. This
model demonstrates competitive performance in terms of ranking firms by their riskiness, while providing
accurate risk measures.
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1 Introduction

Estimating accurate corporate distress probabilities is of particular interest to central banks in the European

Union the coming years. Following the regulation on the collection of credit risk data of the European Central

Bank (ECB), members of the euro area are obliged to establish central credit registers and to participate

in a joint analytical credit database (“AnaCredit”) shared between the member states. The database will

contain detailed information on lending by commercial banks to corporate borrowers. Consequently, central

banks can closely study the credit risk of a particular bank’s loan portfolio. For that purpose, it is essential

to model the probability of default of a group of individual borrowers jointly accurate in order to estimate

portfolio risk measures, just as modelling jointly accurate corporate distress probabilities is important to

any entity with portfolio risk.

A growing literature focuses on the application of machine learning models, i.e. complex models with

highly non-linear dependency structures between the covariates and the outcome, to predict corporate

bankruptcies (see e.g., Min and Lee 2005, Tinoco and Wilson 2013, Jones et al. 2017). These papers show

applications of one or more complex statistical models which are commonly benchmarked against a logistic

regression. Model performance is then evaluated by rank- or binary-based performance metrics comparing

the models’ ability to classify or predict the distress of a firm. However, the models’ ability to accurately

estimate the aggregated percentage of firms that will default in the next period remains uninvestigated. Nor

is the models’ ability to provide accurate portfolio risk measures addressed.

Another string of literature, pioneered by Duffie et al. (2009), shows that traditional hazard models (e.g.,

logistic regression models) yield too narrow confidence intervals of the aggregated default rate due to the

model assumption that observations are conditionally independent. Duffie et al. (2009) then advocate for

the need for unobservable temporal effects – or frailty – in the models, which add correlations in defaults

after conditioning on covariates, thereby easing the conditional independence assumption. The conditional

independence assumption is also implicitly made in most complex statistical models. However, whether this

affects such models’ ability to accurately estimate the distress rate as well as the risk of a loan portfolio is

an open question.

In this paper we investigate whether complex statistical models, via their sophisticated dependency

structures, can capture the correlation in corporate distress from firm level data alone and thereby eliminate

the need for unobservable temporal effects. We implement a gradient boosted tree model which has displayed

superior performance in both bankruptcy prediction and other fields.1 We find that the model is as unable

to capture the yearly heterogeneity in distress rates as traditional distress model. The gradient boosted
1See Caruana and Niculescu-Mizil (2006) for a comparison in many other fields and Zięba et al. (2016), Jones et al. (2017)

who have applied gradient tree boosting to firm distress or bankruptcy prediction with success.
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tree model is also unable to provide appropriate estimates for the level of uncertainty in a loan portfolio.

Comparing results of the gradient boosted tree model to results of a model with frailty, which models

confidence intervals and risk measures accurately, we show that loan portfolios of, in particular, large banks

can be viewed as too safe in the eyes of the regulator and/or risk manager, if he or she relies on a gradient

boosted tree model.

Our sample consists of annual financial accounts published between 2003 and 2018 of all non-financial

Danish firms both traded and non-traded. Considering both traded and non-traded firms yields a large

sample which allows us to include many covariates and add non-linear effects. The models in the main

body of the paper are based solely on micro level data. In a robustness test we show that models including

macro level data perform better in some periods. However, estimating a model that generalizes well may be

hard with limited amount of cross-sections. Lastly, the unobserved temporal effect is still economically and

statistically significant after the inclusion of the macro variable.

We start the analysis by benchmarking the gradient boosted tree model against a multiperiod logit model

(as in Shumway 2001, Chava and Jarrow 2004, Beaver et al. 2005, Campbell et al. 2008) and a generalized

additive model, which allows for a non-linear relationship between the covariates and the probability of

entering into a distress on the logit scale. Like others before us, we observe improvements in out-of-sample

ranking of firms by their distress probability as we use more complex models, going from an average out-of-

sample area under the receiver operating characteristic curve (AUC) of 0.798 to an AUC of 0.822. Thus, we

find that the more complex model is 2.4 percentage points more likely to predict a higher distress probability

for a random distressed firm than for a random non-distressed firm in each year on average. However, the

gains we find of complex modelling is more than 4 times smaller than what recent papers find.2 Thus, one

may prefer the simpler models if interpretability is desired with only a minor loss of accuracy. Our finding

suggests that earlier papers have used poor baseline models when evaluating the gains of applying complex

machine learning models.

Next, we address the models’ ability to predict the percentage of firms that will enter into a distress in

the following period. We find that all models fail to capture the yearly fluctuations in distress rates and

provide too narrow confidence bounds. In particular, only very few of the 90% confidence intervals contain

the realized percentage of firms entering into distress in the 10 years that we can backtest. We formally test

the models’ ability to provide accurate confidence intervals by backtesting estimated value-at-risk figures of

the distress rates for different portfolios that mimic bank exposures. All three models fail the test at a 1%

significance level with a null hypothesis that the value-at-risk figures have the correct coverage. Thus, none

of the models have wide enough confidence intervals or provide accurate risk measures.
2See Zięba et al. (2016) and Jones et al. (2017).
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The too narrow confidence bounds have several implications. First, they result in a downward bias in

risk measures for a portfolio of exposures to different firms. Secondly, they suggest that the assumption

of conditional independence given the covariates is not satisfied. Violation of the conditional independence

assumption suggests that there may exist an unobservable macro effect that creates correlation in distresses.

That is, the gradient boosted tree model is not sufficiently able to capture correlation in distresses from firm

level data alone.

To relax the conditional independence assumption we estimate a generalized linear mixed model (a frailty

model) with a random intercept which allows for correlation in distresses beyond the correlation introduced

by the covariates. We contribute to the current literature on frailty models by adding non-linear dependencies

between the covariates and the outcome variable. This gives us a frailty model which provides out-of-sample

rankings that are almost as good as the gradient boosted tree model. We show that the random intercept

in the frailty model is both statistically and economically significant.

2 Related Literature

This paper combines two strings of literature in the field of predicting corporate defaults. The first string

focuses on frailty (and/or contagion) or time-varying effects (e.g., see Duffie et al. 2009, Koopman et al. 2011,

Giesecke and Kim 2011, Duan and Fulop 2013, Lando et al. 2013, Nickerson and Griffin 2017, Kwon and Lee

2018, Azizpour et al. 2018). These papers generally show that models with a simple relationship between

observable covariates and distress fail to capture the yearly fluctuations in default rates, i.e. a violation of

the conditional independence assumption. Various forms of unobservable effects are then introduced which

account for the yearly fluctuations. Our contribution to this line of work is a frailty model, where non-linear

dependencies are introduced between some covariates and the outcome variable on the linear predictor scale.

Furthermore, we compare the frailty model to a statistical model that allows for complex dependencies

between covariates and the outcome variable and find that the frailty model shows almost as good ranking

and better coverage of the confidence bounds. Moreover, we provide evidence that the need for frailty effects

is not due to a too simple dependency structure.

The second string of literature that we relate to applies complex statistical models to improve probability

of default estimates (e.g., see Min and Lee 2005, Kim and Kang 2010, Sun et al. 2011, Lin et al. 2012,

Tinoco and Wilson 2013, Zięba et al. 2016, Jones et al. 2017). These papers generally use considerably

more covariates in their models and use methods which allow for more complex relationships compared to

typical frailty models. The main focus of these papers is on ranking or binary classification of firms and not

on whether the models capture the temporal fluctuations. The complex models are typically benchmarked
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against a logistic regression (among other models) with automated model selection and little focus on model

diagnostics. In our paper we use a logistic model as benchmark as well, but we carefully set up the model

using both statistical and economic sense. We add to this literature by evaluating the ability of the complex

model to capture the yearly fluctuation in default rates. We show that the improvements in the forecasts for

each firm do not outweigh the strict conditional independence assumption when one is interested in portfolio

risk.

3 Statistical Models for Predicting Corporate Distress

In this section we go through the four discrete hazard models used in this paper to predict corporate distress.

The discrete hazard models we use are estimated using a panel data set where each observation contains a

set of covariates (financial ratios, age, sector etc.) and an indicator of whether the firm has a distress event

or not in the given year. We will cover the distress event definition and discrete hazard models further in

Section 4.1.

First, we briefly describe the well known multiperiod logit model. The notation introduced in this section

will serve as the basis for the more general models. Secondly, we describe the generalized additive model

which allows for a non-linear dependence between the covariates and the probability of distress on the logit

scale. Thirdly, we describe the gradient boosted tree method we use. Finally, we introduce the generalized

linear mixed model which relaxes the conditional independence assumption.

3.1 Generalized Linear Models

We will use so-called multiperiod logit models, where we employ a logistic regression in the discrete hazard

model described in Section 4.1. Estimation in the multiperiod logit model can be done with maximum

likelihood with iteratively re-weighted least squares. Let Rt ⊆ {1, · · · , n} denote the active firms at time t,

yit denote whether firm i has an event in year t, d denote the number of years, and xit denote the covariates

for firm i in year t. Then the maximum likelihood estimates of the coefficients, β, are

arg max
β

d∑
t=1

∑
i∈Rt

yitβ
>xit − log

(
1 + exp

(
β>xit

))
(1)

where xit includes a constant 1 for the intercept, industry covariates, and potentially macro covariates.

Furthermore, we will refer to Rt as the risk set and let Xt denote the matrix with rows equal to the covariate

vectors xit with i ∈ Rt. Multiperiod logit models are a common choice for distress models since the work of

Shumway (see Shumway 2001). See Chava and Jarrow (2004), Beaver et al. (2005), Campbell et al. (2008)
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for other examples. We will refer to multiperiod logit models as generalized linear models (GLMs) since

estimation is done with regular estimation methods for GLMs.

3.2 Generalized Additive Models

The GLM in Section 3.1 may pose too strict assumptions on the relationship between the covariates and

whether a firm enters into distress. In particular, the assumption that the covariates are linearly related to the

logit of the probability of distress may be too strict for some of the covariates. Generalized additive models

(GAMs) relax this assumption by assuming that some of the covariates have a continuous and non-linear

relationship with the distress probability on the logit scale.

We employ a GAM where non-linear effects are accounted for through natural cubic splines with a penalty

on the second order derivative. The maximization problem with q non-linear effects and with given penalty

parameters λ = (λ1, . . . , λq)
> is

β(λ) = arg max
β

d∑
t=1

∑
i∈Rt

yitηit − log (1 + exp (ηit))− β(s)>S(λ)β(s) (2)

where

ηit = β(f)>x
(f)
it +

q∑
j=1

γ>j fj(x
(s)
itj ), β(s) =


γ1
...

γq

 , β =

β(f)

β(s)

 (3)

fjs are functions that return a basis vector for a natural cubic spline, x(s)itj is firm i’s covariate j with a

non-linear effect at time t, x(f)
it are the covariates with a linear effect for firm i at time t, and S(λ) is a

penalty coefficient matrix which yields a second order penalty on each spline j = 1, . . . , q. The knots for

the natural cubic spline basis are chosen as empirical quantiles. Equation (2) can be solved with penalized

iteratively re-weighted least squares if λ is known.

The penalty coefficient matrix, S(λ), depends linearly on the unknown penalty parameters, λ. The

penalty parameters, λ, have to be estimated. This is done by minimizing the generalized cross-validation

criterion which can be quadratically approximated as

V(λ) =
n
∥∥∥√W (z −Xβ(λ))

∥∥∥2
(n− tr (Fλ))

2

where

Fλ =
(
X>WX + S(λ)

)−1
X>WX (4)
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nt = |Rt| is the number of active firms at time t, n =
∑d
t=1 nt is the total number of observations, and

tr (·) denotes the trace of a matrix. Furthermore, y, X, z, and W denote the stacked matrices and vector

from each year (e.g., y = (y>1 , . . . ,y
>
d )>). The columns of X include the evaluated basis functions, fjs,

for the non-linear effects. W and z are the diagonal matrix with working weights and vector of pseudo-

responses from iterative re-weighted least squares, respectively. They implicitly depend on β(λ), y and X.3

The maximization is done with the so-called performance-oriented iteration. See Wood et al. (2015), Wood

(2017) for further technical details.

The final model also includes tensor product splines to allow for smooths in two dimensions. These are

formed by taking an outer product of two spline basis functions, fjs, and is more general than the model in

Equation (3). The extension to two-dimensional smooths is straightforward, but not covered in Equation (3)

to keep the notation simple. GAMs have received limited attention in the corporate default literature (see

e.g., Berg 2007).

The advantage of the GAM is that the researcher has control over the complexity of the model. For

example, he or she can decide which covariates have a non-linear effect and which do not. Moreover, it is

easy to validate whether the final model makes sense through standard diagnostic plots, to obtain marginal

effects of covariates, to compute confidence intervals, etc. However, the researcher has to consider the effect

and interactions of the covariates which may be hard, especially with higher order non-linear interactions.

3.3 Gradient Tree Boosting

Gradient tree boosting (GB) is a greedy function approximation method that can approximate very complex

models. GB has gained much attention possibly due to its flexibility and easy usability. The researcher

has only few and simple model choices relative to the GAM described in Section 3.2. Furthermore, GB has

shown superior performance in many fields, see e.g., Caruana and Niculescu-Mizil (2006), where an empirical

study is presented on different data sets where GB performs best on average on many metrics. However,

the advantages of GB come at a cost of limiting the researcher’s ability to set the complexity of the effect of

each covariate. Furthermore, it is not clear how to perform inference such as testing significance of partial

effects, and evaluating if the final model is “sensible” for various combinations of covariates may be difficult

if one allows for higher-order interactions (i.e. deep trees). Lastly, figuring out why a given observation gets

the predicted probability is not as easily done as with the GLM and GAM. This is a drawback for a financial

institution that is required to provide an explanation of why a certain probability of distress is predicted.
3Let g denote the link function which maps from the probability of an event to the linear predictors, ηit, in Equation (3),

let p̂it = g−1(ηit) be the expected probability of an event at the current iteration doing estimation or at convergence, and
let V (p) = p(1 − p) denote the map from the probability of an event to the variance. Then zit = ηit + g′(p̂it)(yit − p̂it) and
wiit = 1/g′(p̂it)2V (p̂it).
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We will cover gradient tree boosting in the context of classification with the logit link function. The

interested reader is referred to Friedman (2001), Bühlmann and Hothorn (2007) for more details, Natekin

and Knoll (2013) for a brief tutorial, and Chen and Guestrin (2016) for the software implementation of GB

we use. We use Newton boosting, but in the following we will refer to it as gradient boosting as commonly

done in literature. The estimation is done as follows: Denote the estimated mean probability of a distress

by

p̄ =
1

n

d∑
t=1

∑
i∈Rt

yit

Initialize the linear predictors as η(0)it = f (0)(x) = logit(p̄), where logit(p) = log(p/(1 − p)) is the logit

function. Let X, y, and η(i) denote the stacked matrix and vectors such that e.g., η(i) = (η
(i)>
1 , . . . ,η

(i)>
d )>.

Define the loss function, L, as

L(η) =

d∑
t=1

∑
i∈Rt

l(ηit; yit)

l(η; y) = −yη + log (1 + exp(η))

Then for i = 1, . . . , k

1. compute the first and second order derivatives using the linear predictors from the previous iteration

and denote these by

git = −yit +
(

1 + exp
(
−η(i−1)it

))−1
hit = exp

(
−η(i−1)it

)(
1 + exp

(
−η(i−1)it

))−2
2. fit a regression tree denoted by a(i)(x) which is an approximation to

arg min
a∈C

d∑
t=1

∑
i∈Rt

hit

(
− git
hit
− a(xit)

)2

where C is the set of trees we consider (e.g, trees with a given maximum depth).

3. update the model such that f (i)(x) = f (i−1)(x)+ρa(i)(x), where ρ ∈ (0, 1] is a predetermined shrinkage

parameter.

4. update the linear predictors by computing η(i)it = f (i)(xit).

The final GB model is the function f (k). There are three main parameters in the above algorithm: The

shrinkage parameter ρ, the maximum depth of the trees in step 2, and the number of trees k. We select
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these with 5-fold cross-validation where we sample the firms (not the financial statements) and evaluate

the AUC which is introduced in Section 5. In general, it is preferable to decrease the shrinkage parameter,

ρ, while increasing the number of trees, k, to get a better approximation of the true dynamics. However,

one has a finite budget in terms of computational power, which limits k and thus forces one to select ρ

to get the optimal number of trees around k. We fix k to around 250 and at most 300. We find ρ with

cross-validation on the full sample from 2003-2016 which we will describe in Section 4.1. We find only very

small improvements of decreasing the learning rate and using more trees. This only leaves us with a choice

for the maximum depth of trees.

Usually so-called ‘weak learners’ (biased methods) are used in step 2 above. In our case, this amounts

to shallow trees (trees with a low maximum depth). The weak learners are then combined through gradient

boosting yielding one “good” model with a substantially lower bias than any of the learners while not affecting

the variance much. See Bühlmann and Hothorn (2007) for some simpler examples with theoretical results.

For the aforementioned reasons, we have tried maximum depths of 2-6 in preliminary testing. We used 5-fold

cross-validation as described above. We find little difference in model performance when going from tree

depths of 3 to 6. Thus, we choose a maximum depth of 3.

Given the fixed learning rate and maximum depth of 3, we estimate the optimal number of trees each

year when we run our out-of-sample tests. The estimations are done again with 5-fold cross-validation and

by sampling firms and not financial statements. We note that the estimation of the optimal number of trees

is done on the estimation sample and not the test set.

3.4 Generalized Linear Mixed Models

We can extend the GLM from Section 3.1 to relax the conditional independence assumption by generalizing

to a generalized linear mixed model (GLMM). This can be done by changing the conditional mean in the

GLM from

E (Yit|xit) = g−1(β>xit), g−1(η) = logit−1(η)

to

E (Yit|xit, zit, εt) = g−1
(
β>xit + εt

)
(5)
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where εt ∼ N
(
0, σ2

)
is the random effect at time t, εi ⊥ εj for i 6= j. Thus, the optimization problem

becomes

arg max
β,σ2

d∑
t=1

∫
(−∞,∞)

(∑
i∈Rt

yitηit − log (1 + exp (ηit))

)
ϕ
(
εt;σ

2
)
∂εt (6)

ηit = β>xit + εt (7)

where ϕ(x, σ2) is the density of a normal distribution with zero mean and variance σ2. The log likelihood in

Equation (6) has no closed form solution in general, but can be approximated with a Laplace approximation.

Furthermore, the computational cost of the approximation can be greatly reduced if one exploits the sparsity

of the matrices which are decomposed doing the estimation. See Bates and DebRoy (2004), Bates et al. (2015)

for further details about the estimation method. The linear predictor in Equation (7) is easily modified to

include splines by changing the β>xit part such that

ηit = β(f)>x
(f)
it +

q∑
j=1

γ>j fj(x
(s)
itj ) + εt, β(s) =


γ1
...

γq

 , β =

β(f)

β(s)



which is similar to Equation (3). We call the random effect, εt, frailty though it is not a frailty in the original

sense of frailty as popularized in Vaupel et al. (1979). The random effect variable in Vaupel et al. (1979)

and Duffie et al. (2009) is a multiplicative factor on the hazards. Our random effect is multiplicative on the

odds rather than the hazard since we can factorize Equation (5) when g is the logit function as

E (Yit|xit, zit, εt)
1− E (Yit|xit, zit, εt)

= exp
(
β>xit

)
exp (εt)

Thus, firms have a higher frailty if εt is large in a given year yielding an exp(εt)-factor higher odds of distress.

The case εt = 0 can be seen as a ‘standard’ year. Random effect models have received a lot of attention in

the literature. The focus of these papers is on the structure of the random effects. E.g., Duffie et al. (2009)

and Koopman et al. (2011) let the probability of distress depend on an unobservable order-one autoregressive

process. However, contrary to Duffie et al. (2009), Koopman et al. (2011) assume that groups of firms depend

differently on the unobservable process. We are limited in terms of how many random effects we can estimate

as we only have 14 years of data. Thus, we will only estimate a single random intercept, where we assume

that the εt’s are iid as in Equation (6). An autocorrelation plot of estimated εts does not show signs of

autocorrelation.
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4 Data

Our main data set consists of all non-consolidated financial statements filed by Danish private and public

limited companies in the period 2003 to 2018.4 The financial statements are supplemented with firm char-

acteristics such as age, sector, and legal status from the Danish Central Business Register (CVR). As we

are conducting a prediction exercise we utilize financial statements as of their publication date and not the

accounting period end date. In our sample, financial reports are typically made public 5 months after the

accounting period end date.5 We use only the most recent published accounting data for each firm from year

t− 1 in year t in our models.

We apply standard filters to focus the analysis on the core of the Danish corporate sector. First, we

exclude financial firms. Financial firms are different from other corporate companies in their size and the

complexity of their assets, the accounting standards they comply with, and their special status in the eyes

of the regulators. Furthermore, we exclude holding companies. Holding companies are usually set up with

the sole purpose of extracting and dividing revenue from the firm to one or more owners of the firm, thus

they are structured differently than other firms. We exclude them in order to avoid distorting the model

estimation, but include the companies held by the holding companies. Finally, we exclude a small number of

financial statements which are filed in Denmark in other currencies than DKK, EUR, GBR, USD, or SEK.6

We do not impose any restrictions on firm size as we want to capture the whole economy in the analysis.

One could argue that the analysis should focus merely on “large” firms, as they hold the majority of the

total assets and debt. But instead of estimating models on just large firms we allow for interaction between

firm size and other variables in the GAM and GB model, thereby creating different models for firms of

different sizes. Among the interactions tested we find that the interaction between scaled net profit and the

log of the size variable we introduce later as well as between scaled liquid assets and log size are significant

in the GAM. Including small firms increases our sample size which is important in order to estimate the

non-linear effects in the GAM and GB model. The GLM we estimate does not include any interaction terms

between firm size and other variables. The performance with respect to large firms is improved when we

estimate a separate GLM for large firms, but remains inferior to the performance of GAM and GB model.

For consistency, all results will be of the models estimated on the full sample.
4Financial statements are delivered to us by Bisnode and Experian.
5The exact publication date is used for statements filed from 2012 and onward. Unfortunately, we do not have access to

the publication date of statements filed before 2012. For these statements we set the publication date to 6 months after the
accounting period end date. We have two reasons for doing this. First, Danish law requires that the majority of firms in our
sample must publish their financial statements within 5 months of the accounting period end date. We use 6 months instead
of 5 to be conservative. Secondly, we find that 96% of financial statements are published within 6 months of the accounting
period end date in the sub-sample where we have the publication date.

6Accounting variables reported in other currencies than DKK are converted to DKK as follows. All stock variables are
converted using the end of accounting period exchange rate. All flow variables are converted using the daily average exchange
rate over the accounting period.
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The filtered data set includes 198 929 individual firms and 1.3 million firm years in the 2003 to 2016 period.

Of the 198 929 firms, 43 674 enter into a distress period at least once. The seemingly high rate is due to a

larger distress rate for small firms. An interesting aspect of our sample is that it includes non-traded firms,

which are less studied in the literature.

4.1 Event Definition and Censoring

We obtain information on the full history of each firm’s status from the Danish Central Business Registry

(CVR). The CVR categorizes firm status into 21 categories. We combine categories into three groups:

“normal”, “in distress” and “other”.7 The “in distress” category includes firms in bankruptcy, firms that

went bankrupt, firms under compulsory dissolution, or firms that have ceased to exist due to compulsory

dissolution.

Our definition of “in distress” implies that firms that are “in distress” can become active again. Thus, we

model recurrent events. We choose this framework as creditors are likely to suffer losses when a firm enters

into a distress period, even if the firm becomes active again, due to delayed payments or a write-down of

the debt. 3.4% of the firms in our sample have experienced a prior distress (some before 2003) and have

recovered. Furthermore, 1 352 of these firms enter into more than one distress period during our sample

period.

Distress dates are highly seasonal and reflects a potentially delayed processing time of the authorities.8

Thus, we limit the models to be on a yearly basis. Each year includes all firms that:

1. had a “normal” status at the end of the previous year.

2. published a financial statement within the previous year.

3. (a) enter into “in distress” the following year or

(b) do not publish a new financial statement the following year and enters into the “in distress” status

within two years of the publication date of the latest financial statement or

(c) are still “normal” at the end of the year (i.e. are not censored).

Firms that fulfil all of the above conditions are denoted active at the beginning of the given year. Among

these firms, we say that a firm has an event if it satisfies condition 3a or 3b, or that the firm is a control if

it satisfies condition 3c. Condition 3b is similar to the event definition in Shumway (2001), who defines a

firm as going bankrupt if the firm delists the following year and “files for any type of bankruptcy within 5
7The “other” group includes firms that are under liquidation, liquidated, merged and split.
8Every year, there is a large “peak” in reported distress events in a single month in the fall and this peak does not fall on the

same month every year. This arbitrary peak in reported distress events makes it questionable whether there is any meaning in
the exact reporting month.
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years of delisting”. The difference to our data set is that firms do not delist, but instead do not publish a

new financial statement. We also include a few firms that satisfy 3a or 3b as events if they enter into the

“other” status between the “normal” and the “in distress” status.

In our event definition we have chosen a window of 2 years between the publication date of the last

financial statement and the declaration date of “in distress”. Most distresses in our sample are declared

approximately 1.5 years after the publication date of the last financial statement but some occur later. We

find, across years, that 95% to 99% of all “in distress” statuses are declared within the 2 year window we

have chosen.

4.2 Covariates

It is commen to scale most of the financial statement variables by total assets to get all financial statement

variables on a common scale. However, a non-trivial fraction of the firms in our sample have negative equity

at some point. Thus, using total assets as the denominator will yield extreme covariates which may not fit

well in a GLM. As Campbell et al. (2008) we define a more suitable metric to capture the firm size. We

define firm size as

sizeit = max{debtit, total assetsit} (8)

where debtit and total assetsit refer to the debt and total assets of firm i on the balance sheet from the

financial statement published between year t− 1 and t, respectively. Thus, sizeit equals the total debt of the

firm when equity is negative and otherwise total assets. We use sizeit in the denominator of all the ratios

where we would otherwise use total assets.

Besides the financial statement variables we include some variables that we have constructed ourself. Most

interestingly, we include an industry specific covariate as in Chava et al. (2011) by computing the average

net profit divided by the size variable each year for each leading four digit standard industrial classification

(SIC) group. Unlike Chava et al. (2011), we do not have the stock return so we use the net profit divided

by the size variable. Moreover, Chava et al. (2011) include a dummy for whether median stock return in

the industry is below -20%. We do not believe that the variable has a discrete effect upon exceeding a

pre-specified threshold. Therefore, we include the average value and estimate a slope. We winsorize9 all

covariates at 5% and 95% quantile as in Campbell et al. (2008). Preliminary results showed influential

observations and poorer fits in the GLM when more extreme quantiles were used.

We end up with 44 numerical and 6 categorical covariates. We use the Thresholded Lasso estimator

described in the Appendix A to select the covariates we will use in the GLM, GAM, and GLMM. 3 of the
9Cap values at a given high level quantile and floor at a given low level quantile. We winsorize ratios and not the numerator

and denominator separately for ratio covariates.
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covariates are excluded. All covariates are included in the GB model. The GB model tends to be robust

against redundant covariates (e.g., this model do not have the same issues with multicollinearity as the other

models). Another advantage of the GB model is that the regression trees used in the model are invariant to

monotone transformations of the covariates. Consequently, we include both the non-winsorized ratios and

the original (non-ratio) figures from the financial statements in the GB model. Descriptive statistics of all

of the covariates can be seen in Appendix A.

5 Performance of the GLM, the GAM, and the GB Model

In this section, we perform out-of-sample tests of the GLM, GAM, and GB model presented in Section 3.1,

3.2, and 3.3 respectively. We will use an expanding window of data to estimate the models and forecast the

probability of the firms entering into distress two years after the estimation window closes. As an example,

we use models estimated on 2003 to 2007 data to predict default probabilities on 2009 data. The two-year

gap mimics the true forecasting situation as the definition of the distress event requires a lag of two years.

We measure performance on several different metrics. First, we consider the accuracy of the individual

probability of distress estimates by comparing the AUC and the log score of the individual models. Next, we

consider the performance of the models at an aggregated level by examining the models’ ability to predict

next year’s aggregated percentage of firms in distress as well as the aggregated debt in distress. Finally, we

look at the models’ ability to estimate portfolio risk.

In-sample results on the 2003 to 2016 data set are presented in Appendix B. The appendix also includes

some details of the final model specifications, illustrations of the estimated models, and comparisons between

the models. The in-sample results are left as an appendix to allow the paper to focus on the forecasting

ability of the models.

5.1 Evaluating Individual Distress Probabilities

We start by evaluating the models by their respective AUC. The AUC is a commonly used metric in prediction

models. It measures the probability that a model places a higher risk on a random firm that experiences an

event in a given year than a random firm that does not experience an event in a given year. Hence, 0.5 is

random guessing and 1 is a perfect result.

Figure 1(a) shows the out-of-sample AUCs. In all years we find that the GB model gives the highest

AUC and therefore is best at ranking firms by their distress risk, followed by the GAM and the GLM. This

observation is consistent with the findings in Zięba et al. (2016) and Jones et al. (2017) in the sense that

they also find that GB models are superior in terms of AUC. However, the differences we measure in AUCs
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Figure 1: More complex models have higher AUC and better log scores. The figure shows
performance measures of the three models (GLM ; GAM ; GB ). Panel (a) shows out-of-sample area
under the receiver operating characteristics curve (AUC) for the different models. Panel (b) illustrates the
out-of-sample log scores of the three models. The figures above the center of the grey circles are the log
scores for the GLM and the areas of the circles are proportional to the figures. The points show the log score
of the model minus the log score of the GLM. That is, Ltj −LtGLM where Ltj is defined in Equation (9) and
j ∈ {GLM,GAM,GB model}. The models are estimated on an expanding window of data with a 2-year gap
to the forecasted data set. E.g., the models which are used to forecast the 2011 distresses are estimated on
2003-2009 data.

are much smaller than reported in the aforementioned papers. We find that the average AUC across years

are 0.798, 0.811, and 0.822 for the GLM, GAM, and GB model respectively. Hence, there is an improvement

in AUC between the GLM and the GB model of only 0.024. Comparably, Zięba et al. (2016) and Jones

et al. (2017) find improvements in the AUC between a benchmark logistic regression and boosted tree models

above 0.1. We reckon that the greater improvement in AUC is, to a large extent, due to the GLM used in

Zięba et al. (2016) and Jones et al. (2017).10

As mentioned above, the AUC is only a ranking measure. A model may rank the firms well, but perform

poorly in terms of the level of the predicted probabilities. We are interested in well calibrated probabilities

as well. Thus, we look at the log score which is computed by

Ltj = − 1

nt

∑
i∈Rt

(yit log (p̂itj) + (1− yit) log (1− p̂itj)) , (9)

where Ljt is the log score of model j in year t, yit is a dummy equal to 1 if firm i has an event in year t, p̂itj

is the predicted probability of distress of firm i in year t by model j, Rt is the sample of active firms in year

t, and nt is the number of firms in Rt. A perfect score is zero. The out-of-sample log scores are illustrated

in Figure 1(b). We find that the GB model outperforms the other models in all years. However, as with the

AUCs, we find that the improvements in the log scores with more complex models are relatively small. The
10The data set used in Zięba et al. (2016) is publicly available. We can confirm that the results for the GLM can be greatly

improved with limited effort.
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Figure 2: Models without frailty are unable to predict aggregated distress levels. The figures
compare realized percentage of firms in distress (panel (a)) and realized debt in distress (panel (b)) to model
predicted values (realized ; GLM ; GAM ; GB ; GLMM ). The models are estimated on an expanding
window of data with a 2-year gap to the forecasted data set. E.g., the models which are used to forecast
the 2011 distresses are estimated on 2003-2009 data. The bars indicate simulated 90% confidence interval
where outcomes are simulated using the predicted probabilities for each model.

numbers above the GLM figures are the log scores of the GLM model and illustrate that all models perform

worst during the crisis in 2009-2010.

To summarize, we find evidence that the GB model is the best model at estimating individual default

probabilities. However, the improvements are not large compared to the GAM. Thus, one may prefer the

GAM model if interpretability is important.

5.2 Evaluating Aggregated Distress Probabilities

In this section, we look at the models’ ability to predict the distress risk of the aggregated sample. Figure 2(a)

shows the realized percentage of firms entering into distress as well as the out-of-sample predicted percentage

of firms that will enter into distress each year for each of the models. All four models are included in the

figure for later comparison, but for now we will only discuss results of the GLM, GAM, and GB model. It

is clear that none of the models capture the distress level. Furthermore, none of the models’ 90% confidence

intervals have close to 90% coverage, which indicates that the assumed conditional independence assumption

is violated, i.e. there is some correlation in distress events which is not accounted for in any of the models.

That is, the complex GB model is just as bad at capturing the aggregated distress level as the more simplistic

GLM. We run a formal test of the models’ ability to estimate risk measures in Section 5.3.

The aggregated distress rate of the GB model in 2012 and 2017 is higher, and in 2012 further away

from the realized value than the distress rate of the other models. This raises the question whether the

GB model suffers from overfitting. However, it does not as we use cross validation to select the number of

trees. Furthermore, the out-of-sample aggregate distress rates of the GB model are virtually the same as
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the distress rates of the other models in all the other years, suggesting that the GB model is on aggregate

similar to the other models. Finally, and perhaps most convincingly, we find no improvements in in-sample

results of the GB model compared to the other models in terms of aggregate distress rates. An improvement

would be expected in-sample in the case of overfitting.

The amount of debt varies greatly from firm to firm. The largest 21% of the firms have a size greater

than 10 million DKK and account for 91% of the total debt in the economy. Thus, the percentage of firms

in distress and the amount of debt in distress may differ greatly. Therefore, we also test how the models

predict the amount of debt in distress. We compute the debt in distress each year as

DiDt =
∑
i∈Rt

yit (short debtit + long debtit)

and the predicted debt in distress each year for all models as

D̂iDtj =
∑
i∈Rt

p̂itj (short debtit + long debtit)

where DiDt is an abbreviation for “debt in distress” in year t and short debtit + long debtit is the total debt

of firm i at time t.

Figure 2(b) shows results for the realized and out-of-sample predicted debt in distress. Similarly to the

distress level results shown in Figure 2(a), we find that none of the models get near the actual level or have

90% confidence intervals with 90% coverage. However, the results here depend highly on a few number of

firms. The 25 firms with the largest debt on their balance sheet in 2018 account for 28.47% of the debt.

Thus, Figure 2(b) essentially reflects a non-trivial probability of default for some of these firms. As seen by

Figure 2(b), frailty (the GLMM) has little impact with such unequal distributions of exposures. However,

we do not expect such unequal distribution of exposures in, say, a bank’s loan portfolio.

5.3 Measuring Portfolio Risk Without Frailty

Above we illustrated that all models fail to capture the percentage of firms entering into distress in the next

period. In this section we explore this further by examining the models’ ability to evaluate portfolio risks.

Specifically, we compare the models’ predicted 95% Value-at-Risk (VaR), which is the upper bound in the

90% confidence intervals, to the realized distress rate. If the 95% VaR figures are accurate, we will find that

the realized distress rate is below the VaR figure about 95% of the cases and above about 5% of the cases.

We use bank connections reported by the firms themselves to construct portfolios for each year and bank.

If a firm indicates two bank connections, the firm will appear in the portfolio of both banks. We only include
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Table 1: Likelihood ratio test for coverage of the out-of-sample VaR figures. We form four
portfolios of firms representing bank exposures for each calender year yielding 40 portfolios in total. For
each portfolio we compute the 95% out-of-sample VaR figure for the distress rate in each of the three different
models and perform a test where the null hypothesis is that the VaRs have the correct coverage level. The
“asymptotic p-value” is the p-value from the test in Kupiec (1995) and the “MC p -value” is the monte carlo
corrected p-values used in Berkowitz et al. (2011).

Model Likelihood ratio Asymptotic p-value MC p-value

GLM 49.670 < 0.0000001 < 0.0000001
GAM 25.901 0.0000004 0.0000004
GB 18.005 0.0000220 0.0000190

banks with at least 500 connections to ensure that the portfolio is somewhat diversified. Four banks fulfill

this requirement. The smallest and largest number of connections for a given bank and year are 534 and

5 063 firms and the mean number of connections is 2 196. We track the four banks through 10 years resulting

in a total of 40 portfolios.

The portfolios we have constructed are only a rough proxy for the exposure of the banks in the Dan-

ish economy. Thus, this exercise should be seen as an example of none-random portfolios rather than as

representing the lending risk of the Danish banks.

We estimate the out-of-sample 95% VaR figure of the distress rate in each of the portfolios assuming the

GLM, GAM, and GB model respectively and test the coverage of the VaR figures. Table 1 reports results

of the VaR coverage test introduced by Kupiec (1995) and the Monte Carlo correction from Berkowitz

et al. (2011). We reject the null hypothesis that the coverage has the correct level for all models at a 1%

significance level with both the asymptotic p-values and finite sample Monte Carlo corrected p-values. That

is, we can statistically reject that any of the models including the GB model are able to estimate accurate

risk measures.

Figure 3 illustrates when the realized values are above the VaR figures for each of the portfolios. The

vertical lines represents VaR figures. The lines are green when the realized distress rate is below the VaR

figure and black when the realized value is above the VaR figure. The GLM has 17 VaR breaches, the GAM

has 12 VaR breaches, and the GB model has 10 VaR breaches. Most breaches occur in 2008-2009.

The models’ inability to capture the time-varying distress level and the lack of coverage of the VaR figures

is a sign that the models are misspecified. In order to mitigate this we implement a mixed model in the next

section which allows for a random intercept.
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(c) 95% VaRs of the distress rate in the GB model

Figure 3: Models without frailty estimate too low VaR figures. We form bank portfolios based on
self-reported bank connections in the firms’ financial statements. For each portfolio we compute the 95%
VaR figure by simulation, using the out-of-sample predicted firm probabilities of distress. Panel (a), (b), and
(c) show the VaRs for the GLM, GAM, and the GB model respectively. The dots show the realized level,
bars show the VaR figures. Black bars and dots indicate years where the realized level is not covered by the
confidence interval.

6 Modelling Frailty in Distresses with a Generalized Linear Mixed

Model

In this section we estimate a generalized linear mixed model (GLMM) introduced in Section 3.4 with a

random intercept to relax the conditional independence assumption we have assumed so far. That is, the

model allows for an unobservable macro effect and thus creates correlation in distresses beyond the observed

covariates. Furthermore, we add non-penalized natural cubic regression splines to the model given the higher

AUC and lower Akaike information criterion (AIC) of the GAM compared to the GLM (see Appendix B.1

for the latter). While several others have implemented GLMM with random intercept (e.g., see Duffie

et al. 2009), we differ by including non-linear effects. We use non-penalized splines as software allowing for

penalized splines in a GLMM is not readily accessible to us. Furthermore, we expect a minor difference

between a penalized and a non-penalized model due to our large sample.
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Figure 4: Density plots of the GLMM forecasted 2018 distress rate. We estimate the GLMM on
2003-2016 data and simulate densities of the predicted cross-sectional distress rate in 2018. In panel (a)
the random effect is fixed at the 5%, 50%, and 95% quantile. The three quantiles can be seen as a “good”,
“middle”, and “bad” future state of the unobservable macro effect in 2018. The tall density curves and narrow
confidence intervals are consistent with what a model without a random intercept would predict. Panel (b)
shows a density curve estimate where we simulate both the random intercept term and the outcomes. The
outer dashed lines are 5% and 95% quantiles and the inner line is the mean.

The estimated standard deviation of the random intercept is σ̂ = 0.196 when estimated on the 2003–

2016 data set. That is, a change of one standard deviation in the random intercept implies an exp(0.196) =

1.217 times higher odds of entering into distress for all firms. Thus, there is a non-negligible random effect.

A conservative likelihood ratio test for H0 : σ = 0 is rejected with a test statistics of 1 483 which should be

compared to a χ2 distribution with 1 degree of freedom.11 Thus, we can reject the conditional independence

assumption. We end this section by illustrating what can go wrong if one relies on a model that does not

account for the observed correlation in distresses.

6.1 Predictive Results of the GLMM

Figure 4 shows a forecast for the 2018 distress rate and illustrates how adding a random intercept to the

model affects the confidence bounds of the distress rate. Panel (a) of the figure shows the 2018 forecasts of the

distress rate assuming that the random effect is fixed at three different quantiles of its estimated distribution,

the 5%, 50%, and 95% quantile. The three quantiles can be seen as a “good”, “middle”, and “bad” future

state of the unobservable macro effect in 2018. Panel (b) of the figure shows the unconditional 2018 forecast

density of the distress rate (i.e. without fixing the random intercept). The width of the confidence interval

is much wider than that of the GLM, GAM, and GB model (see Figure 2(a)). Whereas the width of the

confidence interval, when the random effect is assumed to take a specific value, is of the same magnitude as

in the GLM, GAM, and GB model. The large effect of the random intercept on the confidence bounds is
11The p-value is likely conservative (e.g., see the simulations in Pinheiro and Bates 2000). Though, it does not matter in this

case since the p-value is essentially zero already.
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similar to what Duffie et al. (2009) find12 and reflects the large estimated standard deviation of the random

effect.

The GLMM requires a relatively long estimation period, hence we can only backtest results of the GLMM

in 2016 as in Section 5. We will compare these results to results of the GAM in the following, though similar

conclusions can be made for the GLM and GB model. In 2016 we find an AUC of 0.815 in the GLMM,

which is close to the 0.818 AUC of the GAM we find in 2016. Hence, we find evidence that the GLMM is

equally good at ranking the firms in terms of riskiness.

The 90% confidence interval of the distress rate in 2016 is [0.0220, 0.0396] in the GLMM, while we

estimated the same interval to be [0.0302, 0.0317] in the GAM. The realized distress rate in 2016 was 0.0318.

That is, the realized distress rate is not included in the confidence interval of the GAM while it is included in

the confidence interval of the GLMM. Furthermore, the 2016 confidence intervals of the GLMM predicted

debt in distress and the GAM predicted debt in distress are [11.52, 49.28] and [15.60, 43.93] respectively.

The realized debt in distress in 2016 is 12.40 billion DKK.

The confidence intervals of the GLMM and GAM are both illustrated in Figure 2. The confidence intervals

of the two models are much more similar in the debt in distress example than in the distressed rate example.

Again, this is due to a few firms in the sample with large debt, implying that a portfolio of firm debt is less

diversified. The connection between portfolio diversification and the confidence intervals is explained in the

following section.

6.2 Frailty Models and Portfolio Risk

Accounting for frailty is more important for some portfolios with distress risk than others. Particularly,

adding a frailty to a model matters more for portfolios with many exposures of equal size. To illustrate this

point, we randomly sample firms that are active on January 1, 2018 (as defined in Section 4.1) into portfolios

of sizes ranging from 500 to 32 000. Thus, some portfolios are much more diversified than others, which

means that confidence intervals of the predicted distress rate will vary.

For each portfolio, we then compute the distress rate using the estimated GLMM and simulate 90%

confidence intervals of the distress rate. First, we ignore the frailty component by integrating out the

random effect in the firm-specific distress probabilities and draw the firm-outcomes independently using

these probabilities. Secondly, a simulation is done where we account for the frailty component by first

drawing the random effects from its estimated distribution, compute the firm probabilities conditional on

the drawn random effect, and then draw the firm outcomes conditional on these probabilities. The second

method is the same as the one used for the simulated confidence intervals in Figure 4(b), and the width of
12See Figure 5 of the paper.
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Figure 5: Frailty matters more for large portfolios. In panel (a), we split the sample of firms that are
active on January 1, 2018 into portfolios of size 500, 2 · 500, . . . , 32 000 and compute the distress probability
based on the GLMM estimated on the 2003-2016 sample. The dots are the expected unconditional distress
rate of the portfolios. The solid lines are the simulated 90% confidence interval where we integrate the
random effect out on a firm-by-firm level and then simulate the outcomes independently. The dashed lines
are the simulated confidence interval when we do account for frailty. Panel (b) shows 90% confidence intervals
of the distress risk of loan portfolios of two banks. Bank A has 501 clients with distress probabilities evenly
distributed on the interval [0.10, 0.30] in the case of the GLMM where the random effect is equal to zero.
Likewise, Bank B has 10 001 clients with distress probabilities evenly distributed on the interval [0.15, 0.35]
when the random effect is zero. The solid and dashed lines are confidence intervals simulated in a model
without and with frailty respectively.

the confidence intervals of the model without frailty is very similar to the width of the confidence intervals

in Figure 4(a), which again is very similar to the confidence intervals of the GB model.

The results are shown in Figure 5(a). The figure illustrates that the tail risk is generally underestimated

when we do not account for frailty. However, the discrepancy between the two models is much more pro-

nounced for the large portfolios than for the small. This is because the model without frailty drastically

shrinks the confidence intervals of the more diversified large portfolios. The confidence intervals of the model

with frailty are also affected when the portfolio becomes more diversified, but to a much smaller extent.

This is because the frailty model takes into account the correlation in distresses and thereby treats the large

portfolios as less diversified. An economist relying on a model without frailty could then easily conclude

that a well diversified portfolio is much safer than what it is in reality. How this can lead to misperception

of portfolio risk of two banks with different strategies is illustrated in the following example.

Assume that we have two banks: Bank A has a few safe clients and Bank B has many relatively more

risky clients. Specifically, we let Bank A have 501 clients with distress probabilities evenly distributed on

the interval [0.10, 0.30] in the case of the GLMM where the random effect is equal to zero. Bank B has

10 001 clients with distress probabilities evenly distributed on the interval [0.15, 0.35] when the random

effect is zero. Appendix C provides further details regarding the simulation of the two bank portfolios. The

confidence intervals of the distress rate with and without accounting for frailty are illustrated in Figure 5(b).
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The VaR figures of Bank A and Bank B are 0.0319 and 0.0281 respectively, if we do not account for frailty.

Thus, Bank A appears more risky by this metric. However, the correct figures – the ones where we account

for frailty – are 0.0339 and 0.0348 respectively. Hence, Bank B has the highest risk in reality. Thus, if one

relies on a model without frailty, one might wrongly assume that a large bank is exposed to relatively little

risk.

7 Robustness

The GLM, GAM, and GB models implemented in this paper are all unable to produce confidence intervals

of next period’s default rate that accurately capture realized values. In this section, we show that the low

coverage of the confidence intervals are not due to: (1) not accounting for parameter uncertainty in the

estimated confidence bounds and (2) not including macro variables in the models.

7.1 Accounting for Parameter Uncertainty

We have not considered parameter uncertainty in the confidence bounds of the distress rate or the debt-in-

distress we have shown up to this point. To do so, we return to the GLM in Section 3.1 estimated with

the model on the 2003–2016 data set and make a forecast for the debt in distress in 2018. We compute

the observed Fisher information matrix I(β) = X>W(β)X, where W is the diagonal matrix with working

weights as in Section 3.2,13 we have made the dependence on β explicit, and X is the stacked design matrices.

Then we use the large sample approximation

β̂ − β ∼ N
(
0, I(β)−1

)
to sample β̃ ∼ N(β̂, I(β̂)−1) and simulate the outcomes as in Section 5 but using different β̃ instead of the

single estimate β̂. See Wood (2017) for a similar approach for GAMs.

The 90% confidence interval is [15.10, 53.60] billion DKK when we simulate without accounting for pa-

rameter uncertainty as in Section 5, and [15.10, 53.64] if we account for parameter uncertainty. Similar

figures for the distress rate are [0.02831, 0.02990] and [0.02826, 0.02999]. That is, the confidence intervals

remain practically unchanged when parameter uncertainty is accounted for. The uncertainty of the param-

eters is estimated assuming that observations are conditionally independent, which is already assumed in

the GLM, GAM, and GB model. The uncertainty could potentially increase if the conditional independence

assumption was relaxed as we do in the GLMM.
13The matrix X does not include columns for the spline functions as in Section 3.2 since we use a GLM.
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Besides estimating uncertainties of the slopes we also estimate the uncertainty of the standard deviation

of the random intercept, σ̂, in the GLMM. The uncertainty of σ̂ is largely due to the short time series. A

95% profile likelihood-based confidence interval for σ̂ is [0.155, 0.332]. The large uncertainty of σ̂ implies

that the confidence bounds of the distress rate in the GLMM could be considerably more narrow or wider.

7.2 Including Macro Variables in the Models

The models implemented so far are based solely on micro level data. While the models are good at ranking

the individual firms by riskiness they are far from good at estimating the aggregated distress rate in the next

period. This raises the question whether the models could be improved by including some macro variables.

In this section, we show results of models including macro variables, we argue that we may have a potential

candidate for macro variable but estimating an effect of the covariate may be hard with the few number

of cross-sections we have. Lastly, we show that the random effect is still needed in-sample even after the

inclusion of the random effect.

Some common macro variables in the existing literature are return of the S&P 500 index, 3-month

treasury rate, 10-year treasury rate, inflation, GDP growth, and unemployment rate (e.g., see Duffie et al.

2007, Das et al. 2007, Duffie et al. 2009, Chava et al. 2011, Duan et al. 2012, Lando et al. 2013). We include

the Danish equivalent of these variables in our models, except for the stock index return since the majority of

firms in our sample are non-traded, and test if the models’ predictions improve. We lag all macro variables

to ensure predictability. Furthermore, we use a swap rate, a short-term, and a long-term interbank rate

instead of treasury rates, since the Danish government bond market is much smaller than the U.S. Finally,

we include the GDP gap instead of the GDP growth as GDP gap has been included in earlier versions of

the Danish central bank’s internal corporate distress model. While some of the aforementioned papers track

events on a quarterly or monthly basis, we choose to do so only on a yearly basis. This is because the start

date of the “in distress” status can be somewhat arbitrary and reflects a potentially delayed processing time

of the authorities. Thus, we end up with relatively few observations in the time dimension, implying that

we can include at most one macro variable in our models.

We run separate logistic regressions including each of the macro variables one at a time and find that

the model with the unemployment rate has the lowest AIC. We then include the unemployment rate in all

four models and run predictive tests. The inclusion of the unemployment rate in the GB model is done by

estimating a logistic regression with two covariates: the unemployment rate and the linear predictor from

the estimated GB model without the unemployment rate. The motivation for the two-step model is that we

can control the complexity of the unemployment rate. This turned out to be an issue in some preliminary
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(b) In-sample predicted distress rate

Figure 6: Results of models with the unemployment rate. We re-estimate all four models adding the
unemployment rate as a covariate. Panel (a) shows the realized distress rate together with the out-of-sample
predicted values (realized ; GLM ; GAM ; GB ; GLMM ). The bars indicate the simulated 90% confidence
interval where outcomes are simulated using the predicted probabilities for each model respectively. Panel
(b) shows the predicted distress with and without the unemployment rate along 90% confidence intervals for
the GLMM with parameters estimated on the full sample (realized ; GLMM without unemployment rate ;
GLMM with unemployment rate ).

results where a GB model including the unemployment rate as a covariate generalized poorly.

We find improvements in the out-of-sample forecasts when the unemployment rate is included in the

models (see Figure 2(a) and Figure 6(a)). However, Figure 6(a) still shows too narrow confidence bounds for

the GLM, GAM and GB model. The standard deviation of the random intercept of the GLMM estimated

in the period 2003 to 2016 is reduced from 0.196 in a model without the unemployment rate to 0.106 in a

model with the unemployment rate. The reduction shows that the unemployment rate explains some of the

yearly fluctuations. This is also evident from Figure 6(b) which shows a much better in-sample predicted

distress rate for the GLMM with the unemployment rate. However, the random intercept remains significant

with a chi-square test-statistic of 297 with 1 degree of freedom.

The estimated slope on the unemployment rate is negative and statistically significant, which may seem

counter-intuitive. Furthermore, the slope estimate varies a lot during the first out-of-sample forecasts, which

is not surprising given the low number of cross-sections included in this sample. One major question is

whether we will see the same in the future. I.e. if the association we estimate now will generalize. This

is particularly questionable given that we have already considered five potential macro variables with only

14 cross-sections. However, we also estimate a negative slope for the unemployment of the same size on

aggregate defaults for which we have data going back to 1980.14 This provides evidence that the effect we

estimate may generalize. Whether the estimated slope on unemployment generalizes or not does not change

the fact that the random intercept remains significant, i.e. we cannot avoid a frailty component.
14We use the number VAT registered firms (Danmarks Statistik 2018a) as the denominator and the number of defaults

(Danmarks Statistik 2018b) as the numerator in a binomial regression model.
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8 Conclusion

We have shown that gradient tree boosting performs better in out-of-sample ranking of firms in terms of

riskiness compared to more traditional statistical models in a sample containing the majority of Danish

limited liability firms. However, the improvement is only minor compared to what recent papers find.

Furthermore, the out-of-sample tests yield too narrow confidence bounds of the aggregated distress rate for

both traditional statistical models and the gradient boosted tree model. That is, the more complex model

is not better at capturing correlation in defaults across the cross-section of firms. The lack of correlation

leads to too small risk measures for individuals, firms, or regulators who evaluate the riskiness of a portfolio

exposed to multiple firms. We show how to relax this assumption with a generalized linear mixed model. We

including non-linear dependency structures between some of the covariates in the model and the dependent

variable, thereby obtaining competitive firm level performance.
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A Variable Selection with Lasso

We use the so-called Thresholded Lasso estimator to perform variable selection. The Thresholded Lasso

estimator is found by the following steps.

1. Standardize the covariates.

2. Perform K-fold cross-validation to find the penalty variable, λinit, that maximizes

λinit = arg max
λ

max
β

d∑
t=1

∑
i∈Rt

yitβ
>xit − log

(
1 + exp

(
β>xit

))
− λ‖β‖1

where ‖ · ‖1 is the L1 norm. This is the log likelihood from the multiperiod logit model in Equation (1)

with an added L1 penalty.

3. Denote β̂init as the estimated coefficients with penalty parameter λinit and define the sets S(δ) =

{j : |βinit,j | > δ}. Then use K-fold cross-validation to find a threshold value, δ̂, in the range that

maximizes

arg max
δ

max
βS(δ)

d∑
t=1

∑
i∈Rt

yitβ
>
S(δ)xS(δ),it − log

(
1 + exp

(
β>S(δ)xS(δ),it

))
where β>S(δ)xS(δ),it is the linear predictors which only include the covariates in the index set S(δ).

This amounts to fitting a GLM with a subset of the covariates.

Step 1 and 2 yield the common Lasso estimator β̂init. That is, we add an L1 penalty which shrinks

parameters and discards variables where the coefficient is shrunk to 0. Step 3, in addition to the previous,

yields the Thresholded Lasso estimator, where we discard any variables where the coefficient is below the

threshold δ̂. The final estimates are no longer shrunk as we do not apply a penalty. The motivation to use

the Thresholded Lasso estimator rather then the Lasso estimator is to addresses the bias problems with β̂init.

See Zhou (2010), Bühlmann and Van De Geer (2011) for properties of the Thresholded Lasso estimator.

We end with the 6 categorical and 44 numerical covariates listed in Table 2. The numerical variables

are divided by firm size when appropriate and all are winsorized at the 5% and 95% quantile. We exclude

3 numeric covariates in the Lasso estimation while none of the categorical covariates considered are dropped.
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Table 2: Summary statistics for covariates in the data set from 2003 to 2016. Variables divided
by size are in percentages. Size is the maximum of total asset and total debt. The statistics are computed
after winsorizing. There is 1.3 million firm year observations. Panel A shows the numerical covariates that
are left after variable selection with the Thresholded Lasso method and the estimated coefficients where stars
indicate the significance of the effect with a Wald test (∗∗∗ is 1% significance, ∗∗ is 5%, and ∗ is 10%). Panel
B shows the numerical variables that are excluded after variable selection. Panel C shows the binary and
categorical covariates included in the model. Panel D shows variable descriptions of some of the covariates.

Covariate Mean Median St. Dev. Min Max GLM coefficient estimates

Panel A: Numerical covariates included after variable selection

Accounts payable / size 8.06 2.83 10.99 0.00 38.00 0.0246∗∗∗

Accounts receivable / size 12.75 3.34 16.88 0.00 54.00 −0.0097∗∗∗
Change in log size 0.03 0.00 0.24 -0.46 0.58 −0.0901∗∗
Corporation tax / size 1.12 0.00 2.18 0.00 7.60 0.0708∗∗∗

Current assets / size 58.41 66.07 35.50 1.00 100.00 −0.0025∗∗∗
Deferred tax / size 1.16 0.00 2.31 0.00 8.10 −0.0688∗∗∗
Depreciation / size -3.08 -1.11 4.18 -14.00 0.00 0.0140∗∗∗

EBIT / size 4.19 3.44 17.44 -36.00 40.00 −0.0036∗∗∗
Equity / invested capital 6.16 2.27 10.05 -3.90 38.00 −0.0255∗∗∗
Equity / size 33.78 32.32 38.10 -48.00 96.00 0.0032∗∗∗

Expected dividends / size 1.59 0.00 4.08 0.00 15.60 −0.0968∗∗∗
Financial assets / size 6.10 0.00 14.71 0.00 58.00 −0.0117∗∗∗
Financial income / size 0.99 0.17 1.63 0.00 5.80 −0.0531∗∗∗
Financing costs / size 2.22 1.54 2.25 0.00 7.40 0.0479∗∗∗

Fixed costs / size -44.96 -25.09 52.16 -175.00 0.00 0.0002
Immaterial fixed assets / size 1.73 0.00 4.82 0.00 19.00 −0.0169∗∗∗
Ind. EW avg. net profit / size 2.03 2.11 2.94 -39.00 34.00 −0.0279∗∗∗
Interest coverage ratio 0.02 -0.71 21.75 -47.00 48.00 −0.0003
Inventory / size 9.09 0.00 16.45 0.00 56.00 −0.0052∗∗∗
Invested capital / size 20.16 9.40 25.77 0.90 97.00 0.0009∗∗

Land and buildings / size 16.04 0.00 31.17 0.00 95.00 −0.0076∗∗∗
Liquid assets / size 14.94 3.51 21.69 0.00 75.00 −0.0131∗∗∗
log(age) 1.98 2.08 1.16 0.00 4.60 −0.2965∗∗∗
log(size) 7.85 7.82 1.61 4.95 10.91 0.0133∗

Long-term bank debt / size 2.60 0.00 6.98 0.00 26.00 0.0110∗∗∗

Long-term debt / size 11.65 0.00 20.49 0.00 66.00 0.0026∗∗∗

Long-term mortgage debt / size 5.20 0.00 13.24 0.00 47.00 0.0077∗∗∗

Net profit / size 2.04 2.16 16.52 -39.00 34.00 −0.0066∗∗∗
Other operating expenses / size -2.24 0.00 6.08 -23.00 0.00 −0.0094∗∗∗
Other receivables / size 4.33 0.97 7.15 0.00 26.00 −0.0050∗∗∗
Other short debts / size 13.79 8.58 15.01 0.00 53.00 0.0114∗∗∗

Personnel costs / size -34.28 -10.05 45.82 -151.00 0.00 0.0015∗∗∗

Prepayments / size 0.52 0.00 0.96 0.00 3.40 −0.0659∗∗∗
Provisions / size 1.34 0.00 2.60 0.00 9.20 0.0096∗

Quick ratio 2.35 0.98 3.86 0.00 16.00 −0.0040
Receivables from related parties / size 5.61 0.00 12.99 0.00 49.00 0.0014∗∗

Relative debt change 0.10 0.00 0.48 -0.62 1.50 −0.0621∗∗
Retained earnings / size 6.20 6.73 38.71 -91.00 72.00 −0.0049∗∗∗
Return on equity (pct.) -1.05 0.12 4.95 -19.40 3.60 −0.0175∗∗∗
Short-term bank debt / size 7.32 0.00 13.19 0.00 44.00 0.0109∗∗∗

Short-term mortgage debt / size 0.12 0.00 0.38 0.00 1.50 −0.0223
Tangible fixed assets / size 26.17 9.44 32.59 0.00 96.00 −0.0040∗∗∗
Tax expenses / size -1.68 -0.44 3.51 -10.30 3.80 −0.0080∗∗∗
Total receivables / size 26.91 18.69 26.82 0.00 90.00 0.0037∗∗∗

Panel B: Numerical covariates excluded after variable selection

Current ratio 2.58 1.21 3.87 0.00 16.00
max(equity + provisions, 0) / size 39.74 34.79 31.88 0.00 100.00
Short-term debt / size 47.94 45.87 32.11 1.80 100.00

Panel C: Categorical covariates

Is non-stock based 0.73 1.00 0.45 0.3277∗∗∗

Has prior distress 0.03 0.00 0.16 0.9542∗∗∗

Large debt change 0.08 0.00 0.27 0.1936∗∗∗

Negative equity 0.15 0.00 0.36 0.1770∗∗∗

Region
Sector

Continued on next page
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Table 2 – Continued from previous page

Panel D: Variable description

Change in log size The log of firm size as reported in the current financial account minus the log of
firm size as reported in the financial account from the previous year. We use the
size definition in Equation (8). The variable is set to zero if the firm did not hand
in a financial account the previous year.

Current ratio Current assets divided with short-term debt. If the short-term debt is zero or
below 10 000 DKK we divide by 10 000 instead to avoid dividing with zero.

Is non-stock based A dummy variable equal to 1 if the firm is non-stock based (“Anpartsselskab”).
The alternative is a stock-based firm (“Aktieselskab”).

Has prior distress A dummy variable equal to 1 if the firm has previously been “in distress”.
Ind. EW avg. net profit We group firms by their 3-digit SIC code and compute the equally weighted average

net profit of each group each year.
Interest coverage ratio Net profit divided by net financial revenue. If the net financial revenue is zero, we

divide by 1 instead.
Large debt change A dummy variable equal to 1 if the total debt grew more than 100% in the past

year. It is zero if the firm did not hand in a financial account the previous year.
Negative equity A dummy variable equal to 1 if equity is negative.
Region The firms are grouped based on the location of their headquarter into 5 geograph-

ical regions, going from the most to the least densely populated areas.
Relative debt change The firm’s total debt of the current financial account divided by the total debt of

the financial account from the previous year. The variable is set to zero if the firm
did not hand in a financial account the previous year.

Return on equity Net profit divided by equity. If equity is zero or below 10 000 DKK we divide by
10 000 instead to avoid dividing with zero.

Sector The firms are grouped into 7 general sectors: Construction; industrial; farming
and fishing; trade; transport; information; real estate; other.

Quick ratio Current assets minus inventories divided with short-term debt. If the short-term
debt is zero or below 10 000 DKK we divide by 10 000 instead to avoid dividing
with zero.

B Model Estimation

The estimated coefficients of the covariates included in the GLM after variable selection are listed in Table 2.

Figure 7 shows the largest absolute standardized coefficients. Most noticeably, we find a large age effect unlike

Shumway (2001). This is not surprising given that we use the age since incorporation for some potentially

small and risky firms whereas Shumway (2001) uses the age since listing for large corporate firms. The

industry specific covariate mentioned in Section 4.2 has a coefficient estimate of -0.02791 with a standard

error of 0.00176. The negative sign is consistent with the results in Chava et al. (2011) who find a higher

likelihood of a default when the median stock performance in an industry is below 20%.

The GLM uses 61 degrees of freedom whereas the GAM uses 254.7. Hence, the GAM is much more com-

plex than the GLM.15 In-sample estimations on the full sample period (2003-2016) yield Akaike information

criterion (AIC) of the GLM and GAM at 327 625 and 321 388 respectively, which shows an improvement

from the GLM to the GAM in spite of the increased complexity of the model.

B.1 Non-linear Effects in the GAM and the GLMM

The GAM has 11 non-linear effects of which nine have interactions. We include 6 non-linear effects in

the GLMM model with only 2 non-linear interaction. Table 3 shows which non-linear effects are included.

Furthermore, in the GAM, we use 6 to 20 dimensional basis for each (marginal) spline while we only use 5 in
15We use the effective degrees freedom, which is tr (Fλ) from Equation (4) for the GAM.
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Figure 7: Standardized coefficients in the GLM. The plot shows the effect on the linear predictor
from a one standard deviation move in the covariates. Only the 7 largest standardized estimates of non
dummy variables are included in the plot. The outer lines are 95% Wald confidence intervals and the inner
lines are the estimated coefficients.
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Figure 8: Example of non-linear effects in GAM. Panel (a) shows how the logit of the probability
of entering into distress depends on the net profit divided by the size variable defined in Equation (8).
The straight line is the effect in the GLM and the curve is the main effect in the GAM. The dashed lines
are ±2 standard deviations conditional on the estimated penalty variables in λ. The spline is subject to an
identification constrain (sum-to-zero constraint) so only the relative difference of the y-values along the curve
is of interest. Panel (b) shows how the logit of the probability of entering into distress depends on changes
in the net profit divided by the size variable and on changes in the log size variable. All other numerical
covariates are set equal to their median value and categorical covariates are chosen to be the most common
category.

the GLMM. We have reduced the dimension of each spline in the GLMM compared to the GAM as we do

not penalize the splines in the GLMM.

One of the non-linear terms in the GAM and the GLMM is the net profit to size ratio. Figure 8(a) shows

the main effect16of the net profit to size ratio in the GAM and GLM. Allowing for non-linearity, we see that

the distress rate has a strong association to changes in the net profit ratio in the range from -10% to 0%,
16We refer to β>1 f1(x1) as the main effect of x1 in the model η = β>1 f1(x1) + β

>
2 f2(x2) + β

>
3 (f1(x1) ⊗ f2(x2)) where ⊗

denotes the Kronecker product and f1 and f2 are subject to “sum-to-zero” constraint. See Wood (2017) for details.
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Table 3: Non-linear effects in the GAM and the GLMM. All covariates except for log(size), log(age),
and return on equity are divided by the size variable defined in Equation (8). “Varying coefficient” implies
an interaction with a spline basis function for the first covariate and a linear effect for the second covariate.
Hence, the slope of the second covariate “varies” as a function of the first covariate. The included non-linear
effects in the GLMM are those which we deemed “the most non-linear” in the GAM.

First covariate Second covariate Type of term

Non-linear effects in the GAM
Retained profit Spline
Return on equity Spline
Net profit log(age) Varying coefficient
Net profit log(size) Tensor product spline
Net profit Liquid assets Tensor product spline
Net profit Other receivables Tensor product spline
log(size) Short-term bank debt Tensor product spline
log(size) Financial costs Tensor product spline
log(size) Tangible fixed assets Tensor product spline
Liquid assets log(size) Tensor product spline
Liquid assets Fixed costs Tensor product spline

Non-linear effects in the GLMM
Retained profit Spline
Return on equity Spline
Liquid assets Spline
Other receivables Spline
Financial costs Spline
Net profit log(size) Tensor product spline
log(size) Short-term bank debt Tensor product spline

while the dependents of the linear predictor is flat in other regions on the net profit ratio scale. Also, firms

with a very high net profit ratio tend to have a slightly higher rate of distress. A potential explanation is

that firms with relatively large profits are growing fast and may be more volatile firms. The plot highlights

that the association is far from linear as assumed in the GLM. Figure 8(b) shows an example of a smooth in

two dimensions (a tensor product spline). The plot shows that the association between net profit and size is

weaker for small firms. Furthermore, the figure shows that there is weak association between distress rate

and firm size for firms with a large loss relative to their size. Overall there is a clear non-linear interaction

effect.

C Details of the Two Bank Portfolio Example of Section 6.2

We will provide details regarding the simulation example in Section 6.2 in the following. Assume that we

have two banks: one with few low-risk loans (Bank A) and one with many high-risk loans (Bank B). The
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probability of a default for each firm j in the bank portfolio i is

pij = g−1(ηij + ε), ε ∼ N(0, σ2), ηij = g

(
pi(j − 1) + pi(ni − j)

ni − 1

)

where ε is a random effect which we cannot observe and g is the logit function. We fix σ to 0.2 and let Bank

A have nA = 501 clients and Bank B have nB = 10 001 clients. Further we set Bank A’s risk parameters

to (pA, pA) = [0.10, 0.30] and Bank B’s risk parameters to (pB , pB) = [0.15, 0.35]. Thus, the latter bank has

more clients which are more risky on average. We use the mean firm probabilities when we simulate the

firms’ outcome in the model that does not account for frailty. These probabilities are given by

p̃ij =

∫
R
g−1(ηij + ε)ϕ(ε;σ2)dε > g−1(ηij)

where ϕ(·;σ2) is the normal distribution density function with zero mean and variance σ2 and the in-

equality follows from a Jensen’s inequality and holds when ηij < 0. The firm outcomes are then simulated

independently using p̃ij to produce confidence bounds for the portfolios similar to what we do for the GLM,

GAM, and GB model in e.g., Figure 2.
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