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1.       Introduction  

The core challenge of economics research is to provide credible estimates or tests of important 

parameters and theories. Recently, there has been much discussion about a replication crisis in 

the social sciences, largely stimulated by the Open Science Collaboration’s highly-publicized 

failures to replicate many of the 100 well-regarded psychology experiments, amplifying long-

expressed, broader concerns about credibility in many fields (OSC, 2015). Economists have also 

become concerned about research credibility, selective reporting and replication (e.g., Andrews 

and Kasy, 2019; Camerer et al., 2016; Christensen and Miguel, 2018; Ioannidis et al., 2017; 

Maniadis et al., 2015; Maniadis et al., 2107;). Low statistical power and research exaggeration is 

the norm in economics and psychology, explaining the observed difficulties to replicate (OSC, 

2015; Camerer et al., 2016; Ioannidis et al., 2017; Camerer et al., 2018; Stanley et al., 2018; 

Andrews and Kasy, 2019).   

In response, many economists have called for greater application of meta-analysis 

methods to increase statistical power, correct bias, and evaluate the evidence base (e.g., Andrews 

and Kasy, 2019; Banzhaf and Smith, 2007; Christensen and Miguel, 2018; Duflo et al., 2006; 

Ioannidis et al., 2017). Applications of the meta-analysis of economics research have been 

growing for some time—for example, Card and Krueger (1995), Disdier and Head (2008), 

Chetty (2012), Hsiang et al. (2013), Havranek (2015), Lichter et al. (2015), Croke et al. (2016), 

Card et al. (2018), Andrews and Kasy (2019), among numerous others. This study investigates 

the properties of meta-analysis methods under the typical conditions found in economics: low 

power, high heterogeneity, and selective reporting. From over 64,000 economic effects, 159 

meta-analyses and 6,700 research papers, Ioannidis et al. (2017) find that the typical reported 

effect has low statistical power and is exaggerated by a factor of two, which is the same as what 

replications in economics and psychology have found (OSC, 2015; Camerer et al., 2018). Very 

high heterogeneity from one reported effect to the next is the norm in economics (median 

I2=93%).1 Under these conditions, can conventional meta-analysis provide reliable assessments 

of economic theory or empirical effects? Can meta-analysis restore credibility to economics 

research?  

                                                 
1 I2 measures the proportion of the observed variation across reported research results that cannot be explained by 

random sampling error alone (Higgins and Thompson, 2002).  Like R2, 0 < I2 < 1, or between 0 and 100%.    
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In this study, we employ Monte Carlo simulations to investigate whether typical levels of 

statistical power, selective reporting, and heterogeneity found in economics research will cause 

meta-analysis to have notable biases and high rates of false positives; that is, claiming the 

presence of economic effects or phenomena that may not exist. Our simulations are intentionally 

challenging for multiple meta-regression, forcing it to accommodate: random sampling error, 

selective reporting, high levels of random heterogeneity, selected systematic heterogeneity, and 

random systematic heterogeneity.  

The below simulations are very revealing. When there is high heterogeneity and some 

researchers select which results to report based on their statistical significance, we find that 

conventional meta-analysis methods break down; they can have highly inflated type I errors. In 

contrast, we show that the routine use of practical significance in the place of statistical 

significance combined with meta-regression analysis (MRA) diminishes these high rates of false 

positives, restoring the reliability of meta-analysis and the credibility of economics research.  

All applications of meta-analysis report weighted averages, and in some cases, inference 

stops there (e.g. Chetty, 2012, Hsiang et al, 2013, and Disdier and Head, 2008). However, 

authors often fail to caution readers about the low credibility of these meta-averages, potentially 

creating problems for policy and theory development. Our results identify important changes 

needed for current practices. 

2.  Meta-analysis methods, selection bias, and heterogeneity 

Meta-analysis is widely accepted in medicine, psychology, ecology, and other fields as ‘best 

evidence’, delivering the evidence for ‘evidence-based’ practice (Higgins and Green, 2008). The 

role of conventional meta-analysis estimators is to integrate and summarize all comparable 

estimates in a given research record and estimate the mean effect. Our simulations evaluate the 

performance of four methods: random-effects (RE), unrestricted weighted least squares (WLS), 

the weighted average of the adequately powered (WAAP), and the PET-PEESE.  

 

2.1 Simple weighted averages 

Conventional meta-analysis methods – fixed-effect (FE) and random effects (RE) - assume that 

the individual reported effect sizes, (e.g., an elasticity), iη̂ , are randomly and normally 

distributed around some overall mean, η , and estimated by a weighted average: iii ωηωη ΣΣ= ˆˆ , 
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where iω  is the individual weight for c. Fixed- and random-effects employ different weights and 

thereby have different variances. RE is the more widely used method.2 

The unrestricted weighted least squares weighted average, WLS, makes use of the 

multiplicative invariance property implicit in all GLS models (Stanley and Doucouliagos, 2015; 

2017). It is calculated by running a simple meta-regression of an estimate’s t-statistic versus its 

precision: iiiii uSESEt +== )/1(ˆ αη , i=1, 2, . . . , m for SEi as the standard error of iη̂ .  

Simulations show that WLS is practically as good as and often better than random-effects when 

the random-effects model is true (Stanley and Doucouliagos, 2015; Stanley and Doucouliagos, 

2017).3   

The weighted average of the adequately powered (WAAP) makes further use of statistical 

power. Large surveys of economics, psychology, and medical research have found clear 

evidence that typical research studies have low statistical power (Turner, et al., 2013, Ioannidis et 

al., 2017; Stanley et al., 2018). Yet, it has been long acknowledged that low-powered studies 

tend to report larger effects by being “coupled with bias selecting for significant results for 

publication” (Camerer et al., 2018, p.4)—also see OSC (2015), Fanelli et al., (2017), and 

Ioannidis et al., (2017). Thus, overweighting the highest powered estimates might passively 

reduce bias. Ioannidis et al. (2017) and Stanley et al. (2017) introduce a weighted average, 

WAAP, that does exactly this. As the name suggests, WAAP calculates the unrestricted WLS 

weighted average on only those estimates that have adequate power, following the 80% 

convention recommended by Cohen (1977).4 Over a wide range of conditions and types of 

                                                 
2 Fixed effect uses inverse variance weights, iw =1/ 2

iSE , and has variance iwΣ1 ; where SEi is the standard error of 

iη̂ . The random-effects weighted average allows the true effect to randomly vary from study to study and thereby 

has more complex weights, iw′=1/ )ˆ( 22 τ+iSE ; where 2τ̂  is the estimated between-study heterogeneity variance.  
RE’s variance is iw′Σ1 . 
3 The random-effects model assumes that the observed effect equals the true mean effect plus conventional random 
sampling errors and an additional term that causes the true effect to vary randomly and normally around the true 
mean effect, thereby creating random heterogeneity—see equation (7), below.   
4 Estimates are adequately powered (80% or higher) if their standard error is less than the WLS estimate divided by 
2.8: if SE < |WLS|/2.8 (Stanley et al., 2017). Recall that the conventional z-value is 1.96 for a 95% confidence 
interval, and z=0.84 for a 20/80 percent split in the cumulative normal distribution, giving 2.8 when added.  Thus, to 
achieve 80% power, we need: η/σi > 2.8 (Ioannidis et al., 2017). Using WAAP as the estimate of mean effect, the 
reported , iSE as σi and rearranging this inequality implies that an adequately-powered study must have a standard 
error as small as the absolute value of WAAP divided by 2.8. 
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effects sizes, simulations demonstrate that WAAP reduces bias compared to FE, RE, and WLS 

when there is selective reporting (Stanley et al., 2017).  

 

2.2.       Correcting for Selective Reporting and Publication Bias  

The above methods either ignore selective reporting bias (FE and RE) or passively reduce it 

(WAAP). They also largely ignore heterogeneity in the evidence base. For decades, economists, 

psychologists, and medical researchers have acknowledged that the selective reporting of 

statistically significant findings biases the research record and threatens scientific practice.5 

Selective reporting bias (aka: the file-drawer problem, publication bias, small-sample bias, and 

p-hacking) is the result of choosing research results for their statistical significance or 

consistency with theoretical predictions, causing larger effects to be over-represented by the 

research record. A recent survey of over 64,000 economic results finds that reported estimates 

are typically inflated by 100% (or more) and one-third by a factor of four (Ioannidis et al., 2017). 

Replications of 100 psychological experiments find that the effect size of the replication is, on 

average, one half as large as the original experiment; that is, research inflation is 100% (OSC, 

2015), while 21 social science experiments from Science and Nature also shrink by half upon 

replication (Camerer et al., 2018).   

 Although widely acknowledged, economics has done little to reduce selective reporting 

or publication bias until recent years. Of course, many commentaries and surveys have been 

written on subjects surrounding publication bias, selected reporting, and other questionable 

research practices (e.g., Leamer, 1983; DeLong and Lang, 1992; Stanley, 2005; Christensen and 

Miguel, 2018), better guidelines for reporting statistical findings have been advanced (for 

example, Wasserstein and Lazar, 2016), and young researchers have been advised to conduct 

extensive robustness checks and to be more transparent (Leamer, 1983; Christensen and Miguel, 

2018). While all of these are important and worthwhile steps, they do little to reduce or 

accommodate the existing selective reporting biases that inhabit the economics research record. 

Ever-increasing pressures to publish provide strong incentives for the continuation of poor 

research practices when they are perceived to increase publication success. Several meta-analysis 

                                                 
5 To cite a few relevant references: Feige (1975), Leamer (1983, Lovell (1983), De Long and Lang (1992), Card and 
Krueger (1995), Ioannidis (2005), Stanley (2008), Maniadis et al. (2104), Brodeur, et al. (2016), and Andrews and 
Kasy (2019). 
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and meta-regression analysis (MRA) methods has been advanced to reduce these selective 

reporting biases. Here we assess the PET-PEESE meta-regression model. 

Selective reporting for statistical significance may be seen as incidental truncation 

(Wooldridge, 2002; Stanley and Doucouliagos, 2014). When only those estimates that have a 

statistically significant p-value (or test statistic) are reported: 

 
(1)   )()|ˆ( ctruncationE ii λσηη ⋅+= ; i=1, 2, . . . , m            

 
Where is iη̂ is the ith estimated economic effect (e.g., an elasticity), η is the ‘true’ elasticity (or 

economic effect, generally), σi is the standard error of this estimated effect, )(cλ  is the inverse 

Mills ratio, c = a - iση / , and a is the critical value of the standard normal distribution (Johnson 

and Kotz, 1970, p. 278; Green, 1990, Theorem 21.2; Stanley and Doucouliagos, 2014). 

 The estimate of iσ , SEi, is routinely collected in meta-analysis and can replace iσ in 

equation (1). Estimates of effect, iη̂ , will vary by random sampling errors, εi, from the expected 

value expressed in equation (1), giving the meta-regression:  

 
(2)         iii cSE εληη +⋅+= )(ˆ   i=1, 2, . . . , m               

The inverse Mills’ ratio, )(cλ , is generally a nonlinear function of σi. Nonetheless, we know 

that that this selection bias, )(ci λσ ⋅ ,  is a linear function of σi , iσδ1 , when η=0 (Stanley and 

Doucouliagos, 2014). In which case, equation (2) is reduced to the linear meta-regression:  

 
(3)   iii SE εδδη ++= 10ˆ      i=1, 2, . . . , m      

                
Medical researchers use the test of H0: 1δ =0 in (3) as a test for publication or small-sample bias 

(Egger et al., 1997). This test is also called the ‘funnel-asymmetry test’ (FAT) for its relation to 

the ‘funnel’ plot of precision, 1/SEi, against the estimated effect, iη̂ —see the funnel graphs  in 

the appendix (Stanley, 2008, Moreno et al., 2009; Stanley and Doucouliagos, 2012). Although 

FAT is not generally a very powerful test for selective reporting (or publication bias), 

simulations show that it is more powerful than alternative tests (Schneck, 2017).   
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Simulation studies have also shown that the WLS estimate of 0δ  often serves as a useful 

test for whether there is a genuine underlying effect—H0: 0δ = 0 (Stanley, 2008; Stanley and 

Doucouliagos, 2014, Stanley and Doucouliagos, 2017). This ‘precision-effect test’ (PET) tests 

whether the coefficient on precision, 1/SEi, is different than zero in the WLS-MRA version, 

iiiii uSESEt ++== )/1(/ˆ 01 δδη , that divides equation (3) by an estimate of σi.   

As iSE approaches 0 in equation (3), studies become objectively better, more powerful 

and accurate, and the estimated effects approach 0δ . In this way, 0δ may be considered an 

‘ideal’ estimate of effect, where sample sizes are indefinitely large and sampling errors are 

infinitesimally small. Meta-regression model (3) has been employed in hundreds of meta-

analyses across economics, psychology and medical research. 0̂δ  in MRA (3) tends to 

underestimate the true mean effect when there is a nonzero elasticity (i.e., when η≠0), and 

selective reporting bias is no longer linear. In these cases, a restricted quadratic approximation to 

the nonlinear incidental truncation bias term in (3) reduces this bias (Stanley and Doucouliagos, 

2014). Simulations show that replacing the standard error, iSE , in equation (3) by its associated 

variance, 2
iSE , reduces the bias of the estimated intercept, 0γ̂ ,  

 
(4)      =iη̂  γ0 + γ1 2

iSE + υi           i=1, 2, . . . , m                     

with 1/ 2
iSE  as the WLS weight. 0γ̂  from (4) is the precision-effect estimate with the standard 

error (PEESE) (Stanley and Doucouliagos, 2014). When there is evidence of a genuine effect, 

PEESE ( 0γ̂ ) from equation (4) is used; otherwise, the mean effect is better estimated by 0̂δ  from 

equation (3). This conditional estimator is known as ‘PET-PEESE’.   

 

2.3.  Heterogeneity and Multiple Meta-Regression 

Economic phenomena are rich, diverse, complex, and nuanced. Rarely will any single number 

(for example, the elasticity of an alcohol tax) accurately represent the likely response of a policy 

intervention under the varying background circumstances that might arise during its 

implementation. Even for highly-researched, well-understood economics phenomenon, such as 

price or income effects, unforeseen economic conditions or seemingly random political events 

can easily overwhelm the most stable and fundamental economic relation. The practical 
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applicability of any single estimate of a fundamental parameter, no matter how well researched, 

is dubious. Yet, to justify policy interventions, decision makers demand to know the values of 

key policy parameters.   

Past surveys of the literature and meta-analyses routinely find wide differences among 

the reported estimates of the same economic parameter (Stanley and Doucouliagos, 2012; 

Ioannidis et al., 2017). Estimates of well-defined economic effects reported in even highly-

ranked journals often have implausible ranges and extreme values. Great disparity among 

research findings is the norm. For example, the reported employment elasticities of minimum-

wage raises are frequently implausible, ranging from -19 to nearly +5, and their standard 

deviation (1.1) overwhelms the average reported elasticity, -0.19 (Doucouliagos and Stanley, 

2009). Or consider a central parameter for many health, safety, and environmental policies, the 

value of a statistical life (VSL). Estimates vary from $461,958 to $53.6 million in 2000 US 

dollars (Doucouliagos et al., 2012). The average VSL in one meta-analysis is $9.5 million but the 

standard deviation among reported VSL estimates is larger still ($10.3 million). So, what VSL 

should policymakers use when assessing whether to regulate some toxic substance?   

Heterogeneity is the excess variance among the reported research findings that cannot be 

attributed to measured sampling error alone. With heterogeneity, there is no single ‘true’ effect 

size but, rather, a distribution of ‘true’ effects. When there are high levels of heterogeneity, then, 

by definition, the ‘true’ effect of the next research study or policy intervention can vary widely 

from the mean of the true effect distribution, which is what conventional meta-analysis 

estimates. Even if there were no biases, high heterogeneity and small mean true effects will 

cause the next ‘true’ effect to be frequently in the opposite direction as even the best 

econometric, experimental or meta-analysis estimate would indicate. Unless high heterogeneity 

can be largely explained and managed, a potentially effective policy intervention could turn 

counterproductive and cause harm.   

Heterogeneity is often measured by the proportion of observed variation among reported 

research results that cannot be explained by sampling errors alone, I2 (Higgins and Thompson, 

2002, pp.1546-7). I2 is a relative measure of the variance among reported effects that is due to 

differences between the populations from which the samples are drawn, uncontrolled background 

conditions, random biases, model misspecification errors, and any other factor that might cause 

the phenomenon in question to vary. τ2 is random-effects’ between-study heterogeneity variance; 
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its square root (τ) will have the same units of measurement as the economic results (e.g., 

elasticities, growth rates, partial correlations). Thus, τ can be directly compared to the meta-

analysis estimate of mean of the ‘true’ effects distribution. Although the conventional random-

effects meta-analysis estimates of the mean are known to be highly biased if there is selective 

reporting (Moreno et al., 2009; Stanley, 2017), we use the random-effects estimate of τ  to 

calibrate our simulations.     

Typically, in economics, much of the excess heterogeneity is explained through multiple 

meta-regression analysis (MRA). Multiple meta-regression analysis is routinely employed to 

explain the systematic differences observed among reported economic effects (Stanley and 

Jarrell, 1989; Stanley, 2001; Doucouliagos and Stanley, 2009; Stanley et al., 2013; Gechert, 

2015; Havranek, 2016). Multiple meta-regression expands MRA model (3) by adding any 

number of explanatory or moderator variables, kiZ :  

 

(5)     i
k

kikii ZSE εγδδη +++= ∑10ˆ      i=1, 2, . . . , m          

 
See Stanley and Doucouliagos (2012) for a discussion of the theory of meta-regression analysis.  

Moderator variables, kiZ , routinely include dummy (0/1) variables that acknowledge 

whether a particular estimating econometric model omitted a potentially relevant variable in the 

estimation of iη̂ . In addition to omitted-variable dummies, meta-regression analyses include 

variables for: the methods and techniques used, the empirical setting, types of data, and year 

(Stanley et al., 2013). In Section 5 we simulate multiple MRAs with two different sources of 

systematic heterogeneity in addition to potential publication selection bias and random 

heterogeneity in order to capture the richness and complexity of typical MRAs. These 

simulations confirm that multiple MRA is likely to reduce selective reporting bias as well as any 

associated false positive rates. 

 

3. Simulations of Economics Research 

3.1 Calibration and Design 

Past simulation studies have found that the amount of heterogeneity and the incidence of 

selection for statistical significance are the key drivers of the average selective reporting bias and 
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the properties of meta-analysis estimators (Stanley, 2008; Moreno et al., 2009; Stanley and 

Doucouliagos, 2014; Stanley and Doucouliagos, 2017; Stanley et al., 2017; Stanley, 2017). 

Although the range of parameter values used by these past simulation studies are plausible, they 

were not explicitly based on the prevalence of these research characteristics found by a broad 

survey of research results. Recently, Ioannidis et al. (2017) conducted a large survey of bias and 

statistical power among more than 64,000 reported economic effects from nearly 6,700 research 

papers. The average number of estimated effects reported per meta-analysis is just over 400 (the 

median is 191) (Ioannidis et al., 2017, p. F241), the typical relative heterogeneity (I2) is 93%, and 

the median exaggeration of reported effects is 100% (i.e., the median reported effect is twice as 

large as the median WAAP or PET-PEESE).6  

Past simulations have also explored a full range of the incidence of selective reporting 

and find, unsurprisingly, that the greater the proportion of results that have been selected to be 

statistically significant, the greater the exaggeration of the average reported effect (Stanley, 

2008, and Stanley and Doucouliagos, 2014). Here, we focus on a 50% incidence of selective 

reporting because it most closely reproduces the observed biases and heterogeneity typically 

found among the 64,000 estimates surveyed by Ioannidis et al. (2017).  

The distribution of the reported standard errors (SE) is another research dimension that 

can influence the statistical properties of all meta-analysis methods (Stanley, 2017). Needless to 

say, the size of these SEs determines the power that a study, or an area of research, has to find 

the economic effect that it investigates. Furthermore, the reliability of FAT-PET-PEESE meta-

regression depends upon the distribution of SEs. When there is little variation in SE, there is also 

limited information upon which to estimate meta-regression models (3) and (4). Because effect 

sizes and their standard errors are not comparable across different areas of research that employ 

different measures of economic effect: elasticities, wage premiums, growth rates, rates of return, 

monetary values, partial correlations, etc., the below simulations use the distribution of SEs in 

the most commonly used measure of economic effect, elasticity, found by Ioannidis et al. (2017).  

To calibrate our simulations, we focus on the 35 meta-analyses of elasticities from 

Ioannidis et al. (2017) and force the distribution of SEs in the simulations to reproduce closely 

                                                 
6 Many areas of research will have no studies that are adequately powered (Turner et al., 2013; Ioannidis et al., 2017, 
Stanley et al., 2018). Thus, we use a hybrid WAAP estimate in these simulations. It calculates WLS on all reported 
estimates if one or fewer are adequately powered; otherwise, WLS is computed only for those estimates that are 
adequately powered. 
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the distribution of SE found in these 35 reference meta-analyses. The median of the 10th 

percentiles of the SEs is 0.027 across these 35 reference meta-analyses of elasticities, while 

0.056, 0.123, 0.309, and 0.941 are the median 25th, 50th, 75th, and 90th percentiles, respectively. 

The distributions of sample sizes, independent variables, and error variances used in the below 

simulations are chosen to closely mirror this observed distribution of SEs.   

Our simulation design is built upon a foundation laid by past simulation studies but re-

calibrated to better reflect the key research parameters found among 17,160 elasticity estimates, 

reported in 1,722 studies and 35 reference meta-analyses.7 First, our simulations generate 

random values of the dependent and independent variables. Then, they compute a regression 

coefficient, i1̂β , representing one estimated elasticity, iη̂ . This process of generating dependent 

and independent variable data and then running the associated regression to calculate i1̂β  is 

repeated either 100, 400, or 1000 times to represent one MRA sample. m=400 is approximately 

the average meta-analysis sample size seen in economics (Ioannidis et al., 2017). Approximately, 

one-third of the elasticity meta-analyses have sample sizes either less than 100 or greater than 

1,000, so we also use m = {100 & 1,000} to reflect a realistic range of meta-analysis sample 

sizes. Differences among MRA sample sizes have no practical effect on bias (see the below 

tables), but they do affect power, MSE, and type I errors.    

To produce each of these 100, 400, or 1000 estimated elasticities, a random vector 

representing individual values of the dependent variable, Yj, is first generated by: 

 
(6)  Yj = 100 + β1 X1j +β2 X2j + uj           
           
uj ~ N(0, 302), β1 = {0, 0.15, 0.30}, β2 = 0.5, and the number of observations available to the ith 

econometric study, ni, is {40, 60, 100, 120, 150, 200, 300, 400, 450, 500}. The target elasticity is 

β1, and its estimate is j1̂β . X1 may be thought to represent a variable such as the log of income 

and is generated from a mixture of uniform distributions. Econometric theory and past 

simulations show that the type of distribution used to generate the independent variable, X1, is 

immaterial. However, to mirror the distribution of SEs found in these 35 reference meta-

analyses, we need to vary both the variance of X1 and ni together from one primary study to the 

                                                 
7 The great majority of these 35 meta-analyses concern price, wage, or income demand elasticities.  
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next in an orchestrated way.8 If the vector X1 is set equal to 100 + Ai ∙U(0, 1)∙U(0.5, 1.5) and ni = 

{40, 60, 100, 120, 150, 200, 300, 400, 450, 500} with Ai proportional to ni, then the distribution 

of the SEs of j1̂β  mirror those found among our 35 reference meta-analyses.   

 X2 is generated in a manner that makes it correlated with X1. X2 is set equal to 0.5X1 plus a 

N(0, 102) vector of random disturbances. When a relevant variable, X2, is omitted from a 

regression but is correlated with the included independent variable, like X1, the estimated 

regression coefficient ( i1β̂ ) will be biased. Here, this omitted-variable bias is known to be 0.5β2.   

 As in past simulation studies (e.g., Stanley and Doucouliagos, 2017), we use random 

omitted-variable biases to generate random heterogeneity. In the meta-analysis literature, the 

most commonly used models are random-effects. They assume random, normal heterogeneity.  

That is: 

 
(7)  1̂β  ενβ ++= , 
             
where 1̂β  is a mx1 vector of estimates, ε  represents the random sampling errors, and ν  is the 

mx1 vector of random effects, assumed to be N(0, 2τ ) and independent of ε . β is the mean of the 

distribution of true effects, which are iνβ +  for i=1, 2, ... m. In applied econometrics, omitted-

variable biases are ubiquitous, and the combinations of potentially relevant variables that can 

cause omitted-variable biases of varying size often run into the millions and many more—recall 

Sala-i-Martin’s (1997) “I just ran two million regressions.” To capture the distribution of biases 

that is likely to be introduced from random combinations of omitted variables and the resulting 

random heterogeneity induced into j1̂β , our simulations generate 2β  in equation (2) as a random 

normal variable with a zero mean and standard deviations that vary systematically to reflect 

different levels of heterogeneity in different simulation experiments. We select the values of 2β ’s 

standard deviation to reproduce the typical levels of heterogeneity that are found in econometric 

research. In particular, when 2β ~ N(0, 0.32), τ = 0.15, and average I2 is approximately 94-95% 

                                                 
8 Otherwise, the computational burden would become unnecessarily excessive. If we did not vary the variance of the 
independent variable but only sample sizes, matrices as large as 106 by 106 would need be inverted approximately 
105 times for each of the many dozens of simulation experiments reported the tables below. In actual econometric 
applications, there is a great deal of variation among the distributions of the independent variables from one study to 
the next; thus, varying the variance of the independent variable along with sample size is more realistic. 
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(see Table 1). This makes the typical I2 across 10,000 simulation replications close to the median 

value observed among our 35 reference meta-analyses. However, we also observe considerable 

variation in I2 across our 35 reference meta-analyses; thus, we vary the standard deviation of 2β

to be {0.0375, 0.075, 0.15, 0.3, 0.6}, the largest of which causes I2 to be approximately 98% in 

these simulations. We do not make this standard deviation lower than 0.0375 (or τ less than 

0.01875), because we do not find smaller I2s among our 35 reference meta-analyses of elasticity, 

but I2s as high as 98% are observed. As both these current and past simulations show, the amount 

of heterogeneity is the most important driver of bias for a given incidence of selective reporting.   

Past simulation studies have allowed the incidence of selective reporting (or publication 

bias) to vary from 0 to 100% (Stanley, 2008; Stanley and Doucouliagos, 2014). To conserve 

space, we assume that the incidence of selective reporting is either 0 or 50%; 50% selection for 

statistical significance yields biases close to what is typically seen widely across the research 

record (Ioannidis et al., 2017). This level of selection causes the average reported effect to be 

approximately double its true mean value when the true effect is small (elasticity = 0.15) and 

there is also the typical level of heterogeneity (I2 ≈ 94%) —see Table 1.9 For the 50% of reported 

effects that are selectively reported, only statistically significant positive effects are retained by 

our simulations and included in the meta-analysis. If the first estimate is not statistically 

significant and positive, new data and random heterogeneity are generated, until a significantly 

positive effect occurs by chance. For the other, unselected half, the first random estimate is 

retained and used in the meta-analysis calculations regardless of whether it is positive or 

negative, statistically significant, or not.10  

 

 

 

                                                 
9 At the highest level of heterogeneity, τ = 0.3, 50% selective reporting and with the true mean elasticity = 0.15, the 
average reported elasticity is a little more than double this true mean elasticity. The average reported elasticity is a 
little less than double this true mean elasticity at the second highest level of heterogeneity, τ = 0.15. If the true mean 
elasticity is 0.125, these conditions cause the average reported elasticity to be almost exactly double. The point, 
here, is that our simulations encompass typical values seen among actual areas of economics research. It is unlikely 
that a higher incidence of selective reporting is typical in economics, because the average proportion of results that 
are statistically significant among Ioannidis et al.’s (2017) 159 meta-analysis is only 57.5%.    
10 Figure A1 in the online appendix plots the funnel graph of 100,000 simulated estimated elasticities and their 
estimated precisions (1/SE) that are randomly generated by this simulation design when the true mean elasticity, η = 
0, selection = 50%, and I2 ≈ 94%. 
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3.2  Results  

Table 1 reports the bias, MSE, type I error rate, and statistical power of alternative meta-analysis 

estimators from 10,000 replications where 50% were selected to be significantly positive. For 

convenient comparison, the bias of the average reported effect (Mean) and the level of excess 

random heterogeneity, as measured by I2, are also reported. Table A1 in the online appendix 

reports the same information as Table 1 but for the case where no result is selectively reported. 

Note that the top third of these tables force the mean of the true effect distribution to be zero; 

hence, if a meta-analysis estimate rejects the hypothesis of a zero effect, it represents a type I 

error (aka false positive). The bottom two-thirds force the mean of the true elasticity distribution 

to be either 0.15 or 0.30. Here, the proportion that reject the hypothesis of a zero effect now 

represents statistical power. To conserve space and yet to explore the effect of larger meta-

analyses, we report results for only the typical level of heterogeneity (I2 ≈ 94%) when there are 

m = 1,000 estimates in a meta-analysis.   

 

TABLE 1 ABOUT HERE 

 

 To establish a baseline, note that the average reported effect (Mean) can be greatly 

exaggerated (Table 1). For example, when there is the typical amount of heterogeneity (τ = 0.15 

and I2 ≈ 94%) but no overall effect, the average study reports an elasticity just over 0.18, and this 

bias is approximately the same size when averaged across all 5 levels of heterogeneity. As the 

true elasticity gets larger, this bias decreases (less extreme values of heterogeneity or sampling 

error are need to be selected to obtain statistical significance), but notable bias remains even 

when the true elasticity is 0.3. These biases are especially large at the highest levels of 

heterogeneity (I2 = 98%), more than doubling a small elasticity. All conventional meta-analysis 

and selective reporting accommodation methods reduce the bias of the average reported effect, 

but some do so more than others. Random effects (RE) reduce selective reporting bias by 39%; 

whereas, WLS, PET-PEESE, and WAAP reduce this bias by over 70%. Both PET-PEESE and 

WAAP have less than half the bias as does RE at the typical level of heterogeneity and across all 

conditions. See Figure 1. Nonetheless, all methods retain some bias when half the research 

record is selectively reported. The amount of bias is practically zero for WLS, PET-PEESE, and 

WAAP at lower levels of heterogeneity. Even at the typical high level of heterogeneity, WLS, 
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PET-PEESE and WAAP’s bias is practically negligible when the true elasticity is 0.3, while 

RE’s bias is more than four times larger. When there is no genuine true effect, both PET-PEESE 

and WAAP reduce bias to practical insignificance with the possible exception of the very highest 

level of heterogeneity.    

 

FIGURES 1 AND 2 ABOUT HERE 

 

 More problematic, these remaining biases produce unacceptable high rates of type I 

errors (false positives) for all meta-analysis methods. Even though PET and WAAP are 

predictably better than WLS and much better than RE, all meta-analysis methods have 

unacceptably high rates of type I errors when the mean of the true effects distribution is zero—

see Figure 2. The popular RE is the only meta-analysis method that is always wrong, when there 

is no genuine average effect. All three alternative estimators, WLS, WAAP, PET-PEESE, have 

better MSE efficiency than RE, consistently halving RE’s MSE (Table 1). The last column of 

Table 1, |WAAP-PP|, reflects how close WAAP and PET-PEESE mirror one another. Their 

typical difference is typically less than 0.01 and often much less, with two exceptions. In 

practice, these two estimators give virtually the same results (Ioannidis et al., 2017).   

When the selective reporting of results can be ruled out, our simulations confirm that RE 

is the preferred estimator because it is designed exactly for these cases of additive, random 

heterogeneity (see the appendix Table A1).  Unfortunately, being able to confidently rule out 

selective reporting is rare in practice, and all tests for selective reporting bias have low power 

(Egger et al., 1997; Stanley, 2008; Schneck, 2017).    

In these simulation experiments, the funnel-asymmetry test (FAT) detects a 50% 

incidence of selective reporting only 73% of the time, averaged across all of the experiment in 

the ‘FAT’ column, Table 1. When there is no mean effect but 50% are selected to be statistically 

significant, FAT detects asymmetry 82% of the time, compared to the 89% of significant FAT 

tests found among our 35 reference meta-analyses. Although FAT is the most powerful test for 

the detection of funnel asymmetry, selective reporting or publication bias (Schneck, 2017), it 

successfully identifies publication bias less than half the time when we need to know of its 
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existence the most; that is, at very high levels of heterogeneity (Table 1).11 Also, FAT can have 

somewhat inflated type I errors (see appendix Table A1). Thus, on balance, FAT is not 

sufficiently powerful or reliable for systematic reviewers to use as the basis about which meta-

analysis methods to employ or how to interpret their results, confidently.   

 

3.3 Discussion and Limitations 

The combination of research conditions that are prevalent in economics are likely to cause 

conventional meta-analysis to have notable biases and high rates of false positives.  All meta-

analysis methods fail to distinguish a genuine effect from the artefact of publication bias reliably 

under common conditions found in economics research. The rate of false positives revealed in 

our simulations is a serious problem that threatens the scientific credibility and practical utility of 

simple meta-analysis. Fortunately, as demonstrated below, most of PET’s type I error inflation 

disappears when systematic reviewers give full accommodation to either practical significance 

of the effect in question or employ meta-regression to explain the high heterogeneity. Before we 

discuss how the integrity of meta-analysis can be restored by employing these accommodations, 

it is important to understand why simple meta-analysis methods have such high rates of false 

positives.   

 High rates of false positives (type I error inflation) exist when there is a combination of 

substantial selective reporting for statistical significance, high heterogeneity, a wide distribution 

of SEs, and hundreds of reported estimates. With hundreds of estimates and widely distributed 

standard errors, meta-analysis methods that rely on precision weighting (PET, WAAP, WLS) are 

quite sensitive to any imbalance in selected, heterogeneity. When there is no average effect, high 

heterogeneity and half are reported only if they are significantly positive, the mass of the 

distribution will be substantially greater than zero even at the very highest precisions—see 

Figure A1 and its enlarged offset.  Figure A1 shows that the top of the funnel does not notably 

converge where there is large additive heterogeneity, remaining as wide as this constant 

heterogeneity (τ = 0.15) dictates. With zero mean and 50% selection, the mass of the highest 

precision estimates never converges to zero with higher precision (lower SE).  WLS, WAAP, 

and PET-PEESE succeed in reducing selective reporting bias by following where the most 
                                                 
11 When heterogeneity is proportional to sampling error, FAT is notably more powerful—see the appendix Table 
A2. The fact that FAT is statistical significant for 89% of our 35 reference meta-analyses is consistent the 
proportional heterogeneity that we see among these 35 reference meta-analyses.  
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precise estimates lead. Unfortunately, simple meta-analysis methods can do no better than to 

reflect the best, most precise research.      

Perhaps, heterogeneity is correlated with sampling error? Or, the incidence of selective 

reporting might depend on sample size or precision. That is, researchers who are careful enough 

to gather the largest samples and employ the most efficient econometric methods may be less 

inclined to select for statistical significance. These high quality-research characteristics alone 

may increase the probability of publication to a point where statistical significance becomes 

unnecessary. Also, highly precise studies will have little need to investigate the full array 

alternative methods and model specifications, because even minor model refinements or small 

unrecognized, random heterogeneity will be sufficient to produce statistically significant 

findings. Across thousands of areas of medical research, heterogeneity is correlated with SE and 

inversely with sample size (IntHout et al., 2015). We also find that the heterogeneity at the top of 

the funnel graphs is significantly smaller than the heterogeneity at the bottom in the majority of 

our 35 reference meta-analyses.  Thus, it is unlikely that conventional random-effects’ constant-

variance, additive heterogeneity model will be consistent with the economic research record.  

To investigate likely departures from the random-effects constant-variance, additive 

heterogeneity model, we conduct alternative simulation experiments where random 

heterogeneity is roughly proportional to the random sampling error variance while, at the same 

time, retaining approximately the same overall levels of observed heterogeneity as measure by I2 

– see appendix Table A2. Note how the funnel graph which assumes proportional heterogeneity 

is more consistent with what we see in elasticity research (see Figures A2 and A3 in the 

appendix). When heterogeneity is roughly proportional to SE, the simple mean and RE have 

even larger biases, but the biases of WLS, WAAP and PET-PEESE are much smaller and 

practically insignificant (Table A2). As a result of these small biases, the rates of false positives 

are correspondingly much lower for WLS, WAAP, and PET; however, their type I errors still 

remain unacceptably high at the highest levels of heterogeneity.   

In practice, there are several other mitigating considerations that economic meta-analysts 

routinely address. For example, the typical econometric study reports multiple estimates (10 

estimates per study, on average, in our 35 reference meta-analyses), and cluster-robust standard 

errors are often calculated to accommodate this potential within-study dependence 

(Doucouliagos and Stanley, 2009; Stanley and Doucouliagos, 2012; Stanley et al., 2013; de 
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Linde Leonard and Stanley, 2016). Cluster-robust standard errors are on average four times 

larger than conventional WLS standard errors; thus, employing cluster-robust SEs will likely 

reduce these rates of false positives further still. Secondly, the appropriate focus of meta-analysis 

is practical importance, as opposed to statistical significance (Doucouliagos and Stanley, 2009; 

Stanley and Doucouliagos, 2012; Stanley et al., 2013). Testing for practical significance notably 

reduces these rates of the false positives. Thirdly, multiple MRA is almost always used in 

economics to address systematic heterogeneity thereby reducing excess heterogeneity. Next, we 

explore the effects of these additional practical considerations. 

 

4  Testing for Practical Significance 

As the above simulation experiments reveal, there are several ways to reduce selective reporting 

bias, and the remaining bias is often small and of little practical consequence. So how do these 

limitations actually affect applications in economics? In a series of meta-analyses on the impact 

of raising the minimum wage on employment by four independent research teams, all agree that 

the effect, although sometimes statistically significant, is so small as to have little practical or 

economic consequence (Doucouliagos and Stanley, 2009; Wolfson and Belman, 2014; Chletsos 

and Giotis, 2015; Hafner et al., 2017). Consider Doucouliagos and Stanley’s (2009) meta-

analysis of 1,474 estimated employment effects from raising the US minimum wage. The central 

finding of this meta-analysis is that the magnitude of the employment effect is practically small 

and of little policy consequence regardless of whether it is statistically significant or not. Among 

these 1,474 US estimates, all simple meta-analysis estimates of overall effect are significantly 

negative, consistently reflecting an adverse employment effect: random-effects = -0.105 (with a 

95% margin of error of + 0.006), fixed effect = -0.037 (+ .0015), WLS= -0.037 (+.002), and 

WAAP = -0.013 (+.003). Note, however, that FE, WLS and WAAP are all quite small, 

economically insignificant, elasticities. For example, FE’s and WLS’s estimate implies that it 

would take a sizable raise in the US minimum wage (27%) to cause a 1% reduction in 

employment among teenagers.12 For WAAP, the US minimum wage would need to increase by 

77% for a 1% employment effect. The consistent finding across many methods and models is 

that the adverse employment effect is quite small, practically negligible, for moderate raises to 

                                                 
12 Generally, the effect of raising the minimum wage is isolated to teenagers. For adults 20+, the effect is 0.024 less 
adverse than for teenagers (Doucouliagos and Stanley, 2009). If there were no effect for adults and a 0.024 adverse 
effect for teenager, this would be sufficient to produce the size of effects seen by WAAP.    
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the US minimum wage (Doucouliagos and Stanley, 2009). Practical consequence, not statistical 

significance, is what matters for policy.   

 For several decades, McCloskey has emphasized the distinction between statistical 

significance and economic importance, or practical significance (McCloskey, 1985; 1995; Ziliak 

and McCloskey, 2004). Economic importance concerns the magnitude of an empirical effect, not 

merely its sign or statistical significance. For example, a price elasticity of -0.01 is unlikely to 

generate any noticeable effect upon sales (or employment) when price (or wage) changes are 

only a few percent or even a few dozens of percent, especially when viewed against the backdrop 

of a dynamic market economy. For economic policy, practical significance is clearly the relevant 

standard. Confusing statistical significance for practical significance is at the heart of much of 

the misuse and misunderstanding of p-values and conventional null hypothesis testing, generally 

(Wasserstein and Lazar, 2016).   

 Applied econometric research and meta-analyses should focus on practical significance 

rather than statistical significance, which is often naïvely conceived as p < 0.05. As shown in 

Table 2 and Figure 3, type I errors for PET and WAAP are greatly reduced when the null 

hypothesis is set at a 0.1 threshold for the practical significance of an elasticity, rather than the 

conventional level of zero.13 The simulation design generating the findings found in Table 2 is 

identical in every respect as those used to produce Table 1, except that the null hypothesis for the 

mean of the true effect distribution is set now at 0.10 rather than 0. That is, both power and type I 

error rates are calculated relative to 0.10. Results for bias, MSE, and I2 are not repeated in Table 

2, because they are the same as those displayed in Table 1. Table 2 differs in its format by 

displaying the results for no selective reporting on the left half and the findings for a 50% 

incidence of selective reporting on the right. A consideration of the practical effect, rather than 

statistically significance, makes the problem of type I error inflation largely disappear for WLS, 

PET and WAAP, except at the very highest levels of heterogeneity (I2≅98%) when half the 

research record has been selected to be statistically significant—see the last rows for m=100 and 

400. Of course, consideration of practical significance causes some loss of power. RE has higher 
                                                 
13 In practice, what is regarded as ‘practically significant’ will vary with the benefits and costs of both type I and 
type II errors, along with the economic consequences of ‘small’ effects. For example, income elasticities of 
aggregate savings smaller than 0.1 can have important policy implications. However, price elasticities of alcohol 
consumption less than 0.1 are likely to make the use of taxes to reduce alcohol abuse ineffective. A 0.1 elasticity 
will approximate a sensible threshold for practical significance in many, but not all, applications. Obviously, 
researchers need to decide what effect size might best be regarded as ‘practically significant’ based on their specific 
area of research.  
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power in detecting a practically significant effect, but it also has high type I error inflation at the 

typical level of heterogeneity (see Figure 1). 

TABLE 2 AND FIGURE 3 ABOUT HERE 

 However, practical significance is not the only practical issue to consider. As discussed 

above, we have reason to believe that an additive, ‘constant heterogeneity’ is not typical in 

economics research. When meta-analysts test for practical significance and heterogeneity is 

proportional to sampling errors, then false positives are no longer an issue for WLS, WAAP and 

PET—see appendix Table A3. Unfortunately, random-effects can still have unacceptable rates of 

false positives even when testing for practical significance. Similarly, if meta-analysts use 

cluster-robust standard errors when they test for practical significance (even with additive, 

constant-variance heterogeneity), PET has acceptable type I error rates—see appendix Table A3 

and Figure A4.14 Note further that WLS, WAAP and PET maintain high levels of power to 

detect even small elasticities for areas of research which have the typical number of estimates or 

more. With the exception of random effects, if systematic reviewers turn their attention, 

appropriately, to practical importance, the high rates of false positives largely disappear.  

 

5.  Multiple Meta-Regression Analysis 

Our multiple MRA simulation experiments begin with the exact framework and moment-

generating processes as before but adds two systematic sources of heterogeneity to it. In 

particular, equation (6) is expanded to: 

 
(8)  Yj = 100 + β1 X1j +β2 X2j +β3 X3j +β4 X4j + uj    

                
The generating distributions for X1j, X2j and uj are exactly as before (see section 3.1), and the new 

independent variables, X3 and X4, follow an analogous pattern. Similar to X2, X3 is set equal to X1 

plus a random N(0, 102) error, and X4 is set equal to X1 plus a different random N(0, 102) error. 

To generate systematic heterogeneity, X3 and X4 are sometimes omitted from the estimating 

regression by the primary research study. However, unlike X2, each study reports whether X3 and 

X4 are included in the estimating model, or not. When either X3 or X4 are omitted from the 

                                                 
14 See the appendix for further information on the design of these supplemental simulation experiments and their 

findings.   
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estimating equation, it will produce an omitted-variable bias of β3  or β4. The meta-analyst does 

not know the size of these biases (β3  and β4) nor the exact relationship among X1, X3 and X4. 

However, she codes whether or not X3 or X4 are omitted from the estimating equation for each 

reported elasticity and includes these dummy (0/1) variables, O3i or O4i, into a multiple meta-

regression along with SEi.   

 
(9)  iiiii OOSE εδδδδη ++++= 443310ˆ      i=1, 2, . . . , m       
             
where, again, iη̂ is the estimated effect (elasticity), SEi is its standard error, and 1/ 2

iSE  is the 

WLS weight.  The multiple MRA estimates of δ3  and δ4  ( 3̂δ  and 4̂δ ) from MRA (9) are 

estimates of these systematic omitted-variable biases, (β3  and β4), and 0̂δ is the estimate of the 

mean of the true effect distribution ‘corrected’ for these misspecification biases and selective 

reporting. 

 Omitted-variable biases are an omnipresent challenge to econometrics and observational 

studies in the social sciences, generally. In all of our simulation experiments, X2 is omitted from 

every estimating model to represent any unknown bias or heterogeneity. As before, the 

associated omitted-variable bias is forced to be random N(0, τ2). By design, these biases are 

unknowable and thus serve as random heterogeneity. In contrast, whether X3 and/or X4 is omitted 

is known, and their associated biases can be estimated and filtered from the research record using 

multiple MRA, equation (9). However, before MRA can be employed, the research record must 

contain a mix of estimates where X3 and X4 are and are not omitted from some estimating 

models. Otherwise, there would be no variation in O3i or O4i upon which to estimate the MRA. 

These simulations randomly omit these variables either 25% or 50% of the time.  

 In Table 3, we report a scenario (S1) where X3 and X4 are randomly omitted from 25% of 

the estimating models and β3  and β4 are set to {0.3, -0.3}, respectively, and a second scenario 

(S2) where X3 and X4 are omitted from 50% of the estimating models and β3  and β4 are set to 

{0.3, 0.15}. The first scenario is selected because it produces results consistent with what is 

found among our 35 reference meta-analyses. In S1, there is no overall average misspecification 

bias because the bias of omitting X3 is, on average, cancelled by the bias of omitting X4. 

However, due to slecti ve reporting, S1 causes WLS, WAAP and PET-PEESE to be 

approximately half the size as the average reported estimate, as is typical in economics 
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(Ioannidis et al., 2017). The second scenario was chosen because it induces less desirable results 

for all meta-analysis methods, including MRA model (9).15 S2 adds a substantial bias to all 

simple meta-analyses, because both β3  and β4 are positive and their biases are additive. As a 

result, S2 does not reproduce typical findings found among our 35 reference meta-analyses. 

Although S2 presents a challenge for MRA, it is far more problematic for simple meta-analysis 

methods that cannot estimate these omitted-variable biases.  

TABLE 3 ABOUT HERE 

 In the 50% selective reporting case, random samples of all of the required variables are 

generated along with random heterogeneity through a random value of β2, and a random 

omission of X4. X3 is not initially omitted and thereby contributes no positive bias to the 

estimation of the target elasticity for the first estimate of a research project. If this first random 

estimate is not significantly positive, then X3 is omitted and a regression is run on the same data 

and random heterogeneity but without X3. If this second (or first) estimate is statistically 

significant, then it is recorded as part of the research record and the process of selecting the next 

statistically significant result starts over. If neither of the first two attempts produce a 

significantly positive estimate, then random data, random heterogeneity and the random 

omission of X4 is freshly generated and this same process continues until a statistically 

significant estimate is produced. This process for the selection of a significantly positive estimate 

is undertaken for only 50% of the research record. For the other 50%, the first estimate generated 

from random data, random heterogeneity and the random omission of both X3 and X4 is included 

in the research record and the meta-analysis, regardless of its statistical significance.    

The selection process is designed to be complex in order to encompass what some 

researchers might do and to present MRA with a serious challenge to accommodate and identify 

complex types of selected, random, and systematic heterogeneity. That is, some researchers 

might employ model specification as a way to gain statistical significance in a preferred 

direction, while others might not engage in any selection whatsoever. Here, excess heterogeneity 

                                                 
15 We experimented with a few additional combinations of omitted-biases (β3  and β4) and frequencies of omissions. 
Scenario 2 is chosen to represent the more problematic of these combinations. The exact biases and properties of the 
multiple MRA depend on a complex interaction of conditions that include the level of random heterogeneity and the 
magnitude and incidence of omitted-variable biases. It is not feasible to report the full array of potential 
combinations; thus, we report two representative scenarios. If the incidence of omission is near 0 or 1, the MRA 
model will have little systematic information upon which to estimate these omitted-variable bias and its statistical 
properties will be worse than those reported in Table 3.   
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comes in three flavors: (i) purely random through β2 and the unknown omission of X2, (ii) 

systematic through the random, yet known, omission of X4, and (iii) systematic from the 

intentional and known omission of X3. The intentional omission of X3 makes the statistical 

properties of MRA model (9) worse (i.e., larger biases and type I errors) than if the omission of 

X3 were entirely random, yet known, like X4. This simulation design is made intentionally 

challenging for multiple meta-regression, forcing it to accommodate: random sampling error, 

selective reporting, high levels of random heterogeneity, selected systematic heterogeneity and 

random systematic heterogeneity.   

  Table 3 displays the results of 10,000 replications of these multiple meta-regression 

experiments in a format similar to Table 1. S1 denotes scenario 1 where β3  and β4 are set to {0.3, 

-0.3} and X3 and X4 are randomly omitted for 25% of the estimates.16 Note that 0̂δ  

underestimates the true mean effect by a practically small amount for low and moderate 

heterogeneity and overestimates it by a little at the highest level of random heterogeneity 

(τ =.30)—see S1 in the ‘Bias’ columns of Table 3. Also, this multiple MRA model adequately 

estimates the omitted-variable biases, known to be {0.30; -0.30}, for low levels of random 

heterogeneity but underestimates them at the highest levels of heterogeneity (see the columns 

labeled, “S1: OV3” and “S1: OV4”). Because the typical amount of noise exceeds the signal at 

the highest levels of random heterogeneity, systematic heterogeneity is obscured in these cases. 

MRA’s remaining bias at the highest level of heterogeneity is also seen in the inflated type I 

error (12.56%; 27.74%) (see S1 under the “Power/ Type I error” columns). Fortunately, when 

testing against practical significance (η = 0.10), there is no type I error inflation (see the last two 

columns, labeled “Practical Sig” in Table 3). Testing against practical significance incurs some 

cost when the mean of true effects is 0.15 and m=100. For S2, power is typically quite high, and 

type I error inflation also vanishes when tested against practical significance.  

Lastly, note how the multiple MRA reduces the levels of I2 by comparing the I2 reported 

in Table 1 to those in Table 3. This difference represents how much the observed relative 

heterogeneity is reduced by explaining the systematic heterogeneity through multiple MRA. For 

example, at the highest level of heterogeneity, I2 is reduced from over 98% to approximately 

90%, which means the heterogeneity variance decreases from 50 to 10—see H2 in Higgins and 
                                                 
16 X3 and X4 are randomly omitted for 25% of the estimates for those 50% that are not selectively reported. For the 
selected half, X3 is systematically omitted while X4 remains randomly omitted 25% of the time.  
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Thompson (2002).17 Or, consider the middle level of heterogeneity (τ  = 0.075). Here, I2 is 

reduced from over 86% to approximately 46%, which means H2 decreases from about 7 to less 

than 2.         

 Next, we turn to scenario 2, where β3  and β4 are set to {0.3, 0.15} and X3 and X4 are 

randomly omitted for 50% of the estimates. At the higher levels of random heterogeneity, the 

bias and type I error inflation are also higher for S2 than S1 (Table 3). Nonetheless, multiple 

MRA greatly reduces the biases of all simple meta-analysis methods in this second scenario 

because both omitted-variable biases are in a positive direction, amplifying one another rather 

than canceling out, on average. For example, at the highest level of random heterogeneity (τ  = 

0.30), random-effects weighted averages are biased by 0.330 and WLS by 0.325 while the 

multiple MRA reduces this bias to 0.095 (assuming that the average true effect is zero). At the 

middle level of random heterogeneity (τ  = 0.075), random effects’ bias is 0.327, WLS is biased 

by 0.317, and MRA’s bias is -0.002. For S2, the two highest levels of heterogeneity cause the 

MRA to have notable bias and type I error inflation, which is again fully accommodated when 

testing for practical, rather than statistical, significance—see the last column of Table 3. 

Although imperfect, multiple MRA successfully reduces much of the systematic and selected 

biases that are likely to be found in the economics research record.   

 

6.  Conclusion 

Economic research continues to grow and expand rapidly. Reliable summaries and assessments 

are needed to make sense of the large and conflicting research record found on nearly any topic. 

Conventional narrative reviews are neither reliable nor comprehensive (Stanley, 2001); enter 

meta-analysis. Applications of meta-analyses in economics are also rapidly growing, appearing 

in all of the leading journals. However, under normal circumstances, conventional meta-analysis 

weighted averages have notable biases and unacceptable rates of type I errors. Nonexistent 

phenomena and effects can be routinely interpreted as authentic by the statistical significance of 

conventional meta-analysis.18 Methods that accommodate selective reporting bias (WAAP and 

                                                 
17 Because random-effects MRA is known to be more biased under these circumstances (Stanley and Doucouliagos, 
2017), RE-MRA is not calculated in these simulations.  
18 Needless to say, conventional, narrative reviews of the evidence base are even more likely to result in false 
inferences. It is also important to remind the reader that the source of the problem is not with meta-analysis methods, 
themselves. Rather, the combination of ubiquitous misspecification biases, high heterogeneity and selective 
reporting in the research record often overwhelms its signal.    
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PET-PEESE) have been found to consistently reduce the rates of false positives when there is 

selective reporting, at little cost when there is no selective reporting (e.g. Stanley et al., 2017). 

However, under common conditions found in economics research, these methods will too often 

have unacceptable rates of type I errors. The biases and false positive rates of all simple meta-

analysis methods greatly worsen with high heterogeneity. Unfortunately, the typical levels of 

heterogeneity found among reported economic research findings are sufficient to make almost 

any simple meta-analysis summary problematic, if not interpreted with great care or tested 

against practical significance.   

 We take the issue of false positives seriously and, therefore, recommend that systematic 

reviews and meta-analyses test against practical significance. Doing so largely reduces PET’s 

type I error rate to acceptable levels for common research conditions in economics. Even at 

extreme levels of heterogeneity, the conventional practice of the meta-analysis of economics 

research is likely to accommodate these potential problems through calculating cluster-robust 

standard errors and/or conducting multiple meta-regression analysis. Using PET to test for 

practical significance of an overall effect needs to be combined with cluster-robust standard 

errors (or heterogeneity needs to be proportional to sampling errors) to lower false positive rates 

to acceptable levels. Typically, economics research studies report multiple estimates (10 per 

paper, on average, among our 35 reference meta-analyses), and it is now common practice in 

economics to accommodate this potential source of dependence by computing cluster-robust 

standard errors (Stanley and Doucouliagos, 2012).   

 As these simulations show, multiple meta-regression analysis often identifies and filters 

out multiple sources of misspecification and selection biases, especially when combined with 

testing for practical significance. Practical significance, rather than statistical significance, is the 

appropriate benchmark for the relevance of research findings. Mistaking statistical significance 

for practical significance is the source of much of the abuse of statistics across the disciplines, 

the overuse of p-values, and the resulting selective reporting biases so often found in the social 

science research record. To rely on the statistical significance of conventional meta-analysis 

methods (fixed and random effects) risks enshrining low-quality, often misleading, research as 

‘best evidence’.  

 These simulation experiments also reveal the long reach of the high levels of research 

heterogeneity typically seen in economics. When the vast majority of observed research variation 
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(typically 94%) is due to heterogeneity, no single overall summary will adequately represent 

what policy applications, future research, or interventions might find. When heterogeneity is 

high, reviewers need to forego reporting any overall summary of research findings or conduct 

multiple meta-regression. Conducting multiple meta-regression analysis using many moderator 

variables is the norm (Stanley et al., 2013). In economics, there are so many reported estimates 

and so much research variation from differences in: methods, models, regions, populations, 

institutions, and history that multiple MRA is nearly always viable and necessary. Multiple MRA 

that includes all sensible moderator variables can explain much of economics’ high 

heterogeneity, identify the larger biases, and thereby reflect what ‘best practice’ evidence implies 

about policy.   

 The purpose of this study is to investigate, evaluate and compare simple meta-analysis 

methods and their more sophisticated multiple meta-regression counterparts that summarize 

economics research and accommodate selective reporting biases under the typical conditions 

(Ioannidis et al., 2017). In the process, we identify serious limitations of conventional meta-

analysis methods and how these limitations can be addressed in practice.  

 How can economists best respond to these limitations? Be circumspect and modest about 

reporting any unconditional summary of a research area, emphasize the practical significance of 

meta-analysis, or employ multiple meta-regression analysis (MRA) to explain the large 

systematic heterogeneity that is often found among reported economics research findings. Best 

meta-analysis practice takes simple meta-analysis findings seriously only when they are 

corroborated by several robustness checks, including rigorous multiple MRA that accounts for 

potential selective reporting, heteroscedasticity, and within-study dependence (Andrews and 

Kasy, 2019; Gechert, 2015; Havranek, 2016; Doucouliagos and Stanley, 2009; Stanley and 

Doucouliagos, 2012; Stanley et al., 2013).19 Conventional narrative reviews or simple meta-

analyses should not be taken at face value without further robust corroboration.   

 

 

 
                                                 
19 Although these problems of high heterogeneity are quite common in economics research, we do not mean to 
imply that they will exist in all areas of economics. For example, experimental studies of behavioral and health 
economics are likely to have less heterogeneity across experiments. As our simulations clearly reveal, if 
heterogeneity is low (e.g., I2 < 50%), then WLS, WAAP and PET-PEESE will have little bias but may still have 
somewhat inflated Type I errors when there are hundreds of such experiments.  
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Table 1: Estimated elasticities: Bias, MSE, power and level of alternative meta-methods with 50% selective reporting 
Design Bias MSE Power/Type I Error Average 

η m I2  Mean RE WLS PET-
PEESE 

WAAP RE WLS PET-
PEESE 

WAAP RE WLS PET WAAP FAT |WAAP-
PP | 

0 100 .6753 .1602 .0587 .0266 .0076 .0207 .00347 .00073 .00018 .00048 1.0000 .9968 .1607 .6218 1.0000 .0145 
0 100 .7385 .1598 .0662 .0335 .0200 .0257 .00442 .00120 .00072 .00081 1.0000 .9858 .4795 .4990 .9995 .0103 
0 100 .8541 .1635 .0860 .0472 .0358 .0386 .00748 .00254 .00204 .00201 1.0000 .9510 .6276 .3980 .8977 .0094 
0 100 .9443 .1812 .1247 .0750 .0630 .0659 .01578 .00684 .00621 .00621 1.0000 .9011 .6794 .4140 .4958 .0096 
0 100 .9828 .2305 .1958 .1310 .1163 .1207 .03906 .02151 .02054 .02079 1.0000 .8743 .7021 .5847 .2413 .0101 
0 400 .6779 .1598 .0583 .0266 .0127 .0167 .00340 .00071 .00029 .00032 1.0000 1.0000 .4310 .7054 1.0000 .0091 
0 400 .7477 .1599 .0662 .0334 .0269 .0234 .00439 .00113 .00084 .00061 1.0000 1.0000 .8324 .7514 1.0000 .0067 
0 400 .8660 .1635 .0856 .0465 .0416 .0365 .00735 .00224 .00191 .00151 1.0000 1.0000 .9165 .7747 1.0000 .0063 
0 400 .9521 .1817 .1251 .0752 .0709 .0663 .01572 .00598 .00550 .00495 1.0000 1.0000 .9466 .8085 .9058 .0058 
0 400 .9856 .2303 .1963 .1308 .1265 .1237 .03872 .01822 .01745 .01691 1.0000 .9989 .9598 .8850 .4845 .0044 
0 1000 .9537 .1814 .1252 .0754 .0725 .0671 .01569 .00580 .00538 .00470 1.0000 1.0000 .9990 .9875 .9982 .0054 

Average type I error rate (size) and Power for FAT 1.0000 .9734 .7031 .6755 .8194  
.15 100 .4169 .0943 .0116 .0033 .0007 .0004 .00016 .00005 .00004 .00004 1.0000 1.0000 1.0000 1.0000 .9918 .0007 
.15 100 .6141 .0964 .0178 .0039 .0012 .0007 .00036 .00013 .00012 .00014 1.0000 1.0000 1.0000 1.0000 .9242 .0009 
.15 100 .8220 .1029 .0344 .0087 .0060 .0051 .00129 .00048 .00046 .00051 1.0000 1.0000 .9999 .9998 .7147 .0014 
.15 100 .9380 .1240 .0717 .0310 .0281 .0269 .00541 .00237 .00231 .00239 1.0000 1.0000 .9965 .9904 .4465 .0020 
.15 100 .9818 .1764 .1430 .0845 .0790 .0798 .02119 .01188 .01222 .01197 1.0000 .9944 .9507 .9432 .2499 .0034 
.15 400 .4294 .0946 .0114 .0033 .0007 .0004 .00014 .00002 .00001 .00001 1.0000 1.0000 1.0000 1.0000 1.0000 .0004 
.15 400 .6373 .0963 .0179 .0040 .0014 .0010 .00033 .00005 .00003 .00004 1.0000 1.0000 1.0000 1.0000 1.0000 .0006 
.15 400 .8420 .1032 .0349 .0090 .0063 .0057 .00124 .00019 .00015 .00015 1.0000 1.0000 1.0000 1.0000 .9881 .0008 
.15 400 .9470 .1242 .0724 .0314 .0287 .0282 .00531 .00133 .00119 .00120 1.0000 1.0000 1.0000 1.0000 .8053 .0008 
.15 400 .9846 .1761 .1435 .0848 .0822 .0822 .02079 .00838 .00801 .00806 1.0000 1.0000 .9997 .9997 .4530 .0008 
.15 1000 .9488 .1246 .0727 .0315 .0289 .0285 .00532 .00113 .00098 .00097 1.0000 1.0000 1.0000 1.0000 .9833 .0006 
0.30 100 .3160 .0636 .0034 .0011 -.0007 .0003 .00004 .00004 .00004 .00004 1.0000 1.0000 1.0000 1.0000 .7250 .0010 
0.30 100 .5734 .0640 .0059 .0012 -.0007 .0003 .00009 .00012 .00013 .00012 1.0000 1.0000 1.0000 1.0000 .5506 .0010 
0.30 100 .8245 .0674 .0132 .0014 -.0005 .0004 .00029 .00045 .00047 .00046 1.0000 1.0000 1.0000 1.0000 .3840 .0010 
0.30 100 .9433 .0823 .0375 .0088 .0066 .0075 .00170 .00168 .00173 .00172 1.0000 1.0000 1.0000 1.0000 .3026 .0010 
0.30 100 .9823 .1304 .0998 .0498 .0472 .0482 .01078 .00767 .00783 .00775 1.0000 .9999 .9967 .9985 .2228 .0015 
0.30 400 .3344 .0632 .0033 .0010 -.0008 .0002 .00002 .00001 .00001 .00001 1.0000 1.0000 1.0000 1.0000 .9950 .0010 
0.30 400 .6035 .0639 .0060 .0011 -.0007 .0003 .00005 .00003 .00003 .00003 1.0000 1.0000 1.0000 1.0000 .9449 .0009 
0.30 400 .8458 .0673 .0135 .0015 -.0004 .0006 .00021 .00012 .00012 .00012 1.0000 1.0000 1.0000 1.0000 .7288 .0010 
0.30 400 .9515 .0823 .0380 .0085 .0063 .0074 .00152 .00049 .00048 .00049 1.0000 1.0000 1.0000 1.0000 .5496 .0010 
0.30 400 .9848 .1295 .0994 .0485 .0462 .0475 .01009 .00364 .00348 .00357 1.0000 1.0000 1.0000 1.0000 .3754 .0012 
0.30 1000 .9529 .0821 .0378 .0079 .0057 .0068 .00146 .00022 .00020 .00021 1.0000 1.0000 1.0000 1.0000 .8336 .0011 

Average .7955 .1267 .0660 .0342 .0293 .0298 .00737 .00325 .00306 .00301 1.0000 .9997 .9974 .9969 .6895 .0035 
Notes:  η is the true mean elasticity, m is the number of estimates, I2 is the proportion of the observed variation among reported elasticities that cannot be explained by their reported standard errors, 
RE and, WLS denotes the random-effects and unrestricted weighted least squares meta-analysis averages, respectively, PET-PEESE is the meta-regression publication bias corrected estimate, WAAP 
is the weighted average of the adequately powered, PET is the precision-effect test,  FAT is the funnel-asymmetry test, |WAAP-PP | is the average absolute difference between WAAP and PET-
PEESE. 
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Table 2: Estimated elasticities: Power and level of alternative meta-methods against practical significance (0.10)  
Design No Selective Reporting 50% Selective Reporting 

η m RE WLS PET WAAP RE WLS PET WAAP 
0 100 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0 100 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0 100 0.0000 0.0000 0.0000 .0003 0.0000 0.0000 0.0000 0.0000 
0 100 0.0000 .0005 .0063 .0005 .2539 .0686 .0465 .0212 
0 100 0.0000 .0249 .0534 .0130 .9125 .4054 .2965 .2375 
0 400 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0 400 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0 400 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0 400 0.0000 0.0000 0.0000 0.0000 .8606 .0197 .0068 .0031 
0 400 0.0000 .0008 .0048 .0003 1.0000 .5515 .3297 .3009 
0 1000 0.0000 0.0000 0.0000 .0001 1.0000 .0009 0.0000 0.0000 

Average Type I error 0.0000 .0024 .0059 .0013 .3661 .0951 .0618 .0512 
.15 100 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 1.0000 
.15 100 1.0000 .9999 .9938 .9942 1.0000 1.0000 .9699 .9969 
.15 100 .9936 .9447 .8585 .8131 1.0000 .9854 .8239 .9005 
.15 100 .7855 .7025 .5996 .4944 1.0000 .9315 .7413 .7832 
.15 100 .3684 .4832 .4316 .3242 1.0000 .8884 .7252 .7615 
.15 400 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
.15 400 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
.15 400 1.0000 .9999 .9976 .9982 1.0000 1.0000 .9951 .9998 
.15 400 .9996 .9554 .8725 .8302 1.0000 .9998 .9753 .9959 
.15 400 .8682 .7076 .6017 .4926 1.0000 .9986 .9755 .9903 
.15 1000 1.0000 .9987 .9874 .9861 1.0000 1.0000 1.0000 1.0000 
0.30 100 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
0.30 100 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
0.30 100 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
0.30 100 1.0000 .9999 .9975 .9993 1.0000 1.0000 .9991 1.0000 
0.30 100 1.0000 .9613 .8831 .9039 1.0000 .9971 .9659 .9870 
0.30 400 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
0.30 400 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
0.30 400 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
0.30 400 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
0.30 400 1.0000 1.0000 .9987 .9998 1.0000 1.0000 1.0000 1.0000 
0.30 1000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Average Power .9552 .9433 .9192 .9016 1.0000 .9909 .9623 .9734 
Notes:  η is the true mean elasticity, m is the number of estimates, RE and, WLS denotes the random-effects and 
unrestricted weighted least squares meta-analysis averages, respectively, PET-PEESE is the meta-regression publication 
bias corrected estimate, WAAP is the weighted average of the adequately powered, PET is the precision-effect test. 
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Table 3: Multiple MRA: Bias, MSE, power and level with 50% selective reporting20  
Design I2 after MRA Bias MSE Power/   Type 

I Error 
Estimate of Omitted-Variable 

Bias 
FAT Power Practical Sig 

(0.1) 
η m τ S1  S2   S1 S2 S1 S2 S1 S2 S1: 

OV3 
S1: 

OV4 
S2: 

OV3 
S2: 

OV4 
S1 S2 S1 S2 

0 100 .01875 .1389 .1529 -.0635 -.0144 .00476 .00069 0.0000 .0040 .3215 -.2824 .2941 .1572 .9933 .7744 .0145 0.0000 
0 100 .0375 .2238 .3089 -.0615 -.0112 .00467 .00079 0.0000 .0103 .3216 -.2760 .2878 .1569 .9792 .6936 .0103 0.0000 
0 100 .075 .4381 .5864 -.0556 -.0026 .00457 .00132 .0007 .0365 .3181 -.2669 .2685 .1549 .9259 .6024 .0094 0.0000 
0 100 .15 .7068 .8209 -.0266 .0259 .00353 .00410 .0147 .1234 .2989 -.2687 .2197 .1427 .7361 .5204 .0096 .0024 
0 100 .30 .8852 .9329 .0428 .0953 .00829 .01838 .1256 .2647 .2425 -.2751 .1387 .1226 .4383 .4227 .0101 .0457 
0 400 .01875 .1458 .1637 -.0633 -.0138 .00417 .00030 0.0000 .0001 .3246 -.2721 .2947 .1580 1.0000 .9985 0.0000 0.0000 
0 400 .0375 .2535 .3488 -.0627 -.0108 .00415 .00028 0.0000 .0015 .3266 -.2628 .2887 .1576 1.0000 .9867 0.0000 0.0000 
0 400 .075 .4780 .6381 -.0550 -.0017 .00338 .00032 0.0000 .0273 .3219 -.2549 .2683 .1552 .9997 .9303 0.0000 0.0000 
0 400 .15 .7367 .8543 -.0258 .0265 .00139 .00152 .0048 .2012 .3039 -.2559 .2197 .1420 .9817 .8396 0.0000 0.0000 
0 400 .30 .8992 .9466 .0460 .0946 .00376 .01119 .2774 .5905 .2474 -.2609 .1391 .1224 .8267 .7004 .0006 .0273 

Average type I error rate (size) .0423 .1260  .0055 .0075 
.15 100 .01875 .1013 .1001 -.0276 -.0064 .00120 .00038 .9999 1.0000 .2837 -.2826 .2886 .1484 .8915 .5575 .1362 .6259 

.15 100 .0375 .1777 .2239 -.0273 -.0046 .00128 .00050 .9981 1.0000 .2803 -.2826 .2841 .1475 .8637 .5203 .1361 .5675 
.15 100 .075 .4025 .5238 -.0249 .0015 .00153 .00103 .9817 .9956 .2689 -.2789 .2686 .1451 .7944 .4547 .1395 .4631 
.15 100 .15 .6937 .8085 -.0123 .0183 .00237 .00343 .8773 .9053 .2390 -.2670 .2201 .1409 .6384 .3990 .1812 .3706 
.15 100 .30 .8797 .9347 .0312 .0733 .00680 .01459 .7411 .7435 .1761 -.2489 .1321 .1232 .4116 .3607 .2583 .3691 
.15 400 .01875 .0985 .1000 -.0268 -.0059 .00083 .00012 1.0000 1.0000 .2862 -.2782 .2907 .1505 1.0000 .9485 .5191 .9971 

.15 400 .0375 .2073 .2673 -.0263 -.0040 .00082 .00013 1.0000 1.0000 .2822 -.2787 .2860 .1497 .9990 .8806 .4748 .9922 
.15 400 .075 .4508 .5845 -.0239 .0016 .00082 .00025 1.0000 1.0000 .2714 -.2751 .2701 .1476 .9904 .7331 .4142 .9299 
.15 400 .15 .7267 .8467 -.0117 .0189 .00069 .00111 1.0000 1.0000 .2432 -.2578 .2208 .1426 .9338 .6274 .4315 .7778 
.15 400 .30 .8928 .9498 .0316 .0725 .00248 .00750 .9978 .9969 .1801 -.2399 .1324 .1243 .8038 .5510 .6397 .7859 

.30 100 .01875 .0811 .0851 -.0286 -.0115 .00127 .00050 1.0000 1.0000 .2899 -.2861 .2987 .1504 .7192 .3958 1.0000 1.0000 
.30 100 .0375 .1522 .2056 -.0278 -.0106 .00130 .00060 1.0000 1.0000 .2859 -.2843 .2977 .1504 .6851 .3605 1.0000 1.0000 
.30 100 .075 .3804 .5008 -.0265 -.0077 .00157 .00101 1.0000 1.0000 .2687 -.2787 .2916 .1488 .6239 .3047 1.0000 1.0000 

.30 100 .15 .6894 .8032 -.0196 .0059 .00242 .00308 1.0000 .9999 .2175 -.2623 .2571 .1448 .5262 .2554 .9863 .9771 
.30 100 .30 .8789 .9382 .0120 .0481 .00579 .01223 .9897 .9567 .1335 -.2349 .1567 .1273 .3854 .2716 .8649 .8054 

.30 400 .01875 .0718 .0840 -.0264 -.0109 .00081 .00021 1.0000 1.0000 .2923 -.2823 .3002 .1517 .9950 .8284 1.0000 1.0000 
.30 400 .0375 .1737 .2422 -.0261 -.0101 .00082 .00022 1.0000 1.0000 .2884 -.2807 .2993 .1517 .9829 .7226 1.0000 1.0000 
.30 400 .075 .4266 .5573 -.0247 -.0070 .00085 .00029 1.0000 1.0000 .2715 -.2760 .2940 .1508 .9392 .5096 1.0000 1.0000 

.30 400 .15 .7240 .8405 -.0186 .0062 .00090 .00081 1.0000 1.0000 .2186 -.2600 .2593 .1471 .8722 .3765 1.0000 1.0000 
.30 400 .30 .8939 .9521 .0119 .0472 .00175 .00468 1.0000 1.0000 .1372 -.2296 .1563 .1287 .7501 .4162 1.0000 .9988 

Average .4552 .5274 .0323 .0223 .00182 .00263 .9793 .9799 .2647 -.2680 .2475 .1447 .8229 .5981 .6591 .8330 

                                                 
20 Notes:  η is the true mean true, m is the number of estimates, I2 is the proportion of the observed variation among reported elasticities that cannot be explained by the MRAS1 is the scenario 
where X3i and X4i are randomly omitted from 25% of the estimating models, and the omitted-variable biases are set to {0.3, -0.3; respectively}. S2 is the scenario where X3i and X4i 
are randomly omitted from 50% of the estimating models, and the omitted-variable biases are set to {0.3, .15; respectively}. 
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Figure 1: Biases for alternative methods when η=0, m=400, 

and 50% selective reporting 
 
 
 
 

 
Figure 2: Type I error rates for alternative methods when 

η=0, m=400, and 50% selective reporting 
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Figure 3: Type I error rates when testing for practical significance (0.10), 
η=0, m=400 and 50% selective reporting  

  

0

.2

.4

.6

.8

1

Ty
pe

 I 
Er

ro
r R

at
e

0 .05 .1 .15 .2 .25 .3 .35
Heterogeneity

WAAP
PET-PEESE
WLS
RE



37 
 

Appendix 
List of 35 reference meta-analyses 

(* denotes source reporting more than one meta-analysis) 
 

Akgunduz, Y.E. and Plantenga, J. (2011). ‘Child care prices and female labour force 
participation: a meta-analysis’, Tjalling C. Koopmans Research Institute, Discussion Paper 
Series 11-08. 

Babecky, J., Ramos, R. and Sanromá, E. (2008). ‘Meta-analysis on microeconomic wage 
flexibility (Wage Curve)’, Sozialer Fortschritt, vol. 57(10), pp. 273-79. 

Belman, D. and Wolfson, P.J. (2014). What does the minimum wage do? Kalamazoo, MI: W.E. 
Upjohn Institute for Employment Research.  

Bom, P.R.D. and Ligthart, J.E. (2014). ‘What have we learned from three decades of research on 
the productivity of public capital?’, Journal of Economic Surveys, vol. 28(5), pp. 889–916. 

Castellacci, F. and Lie, C.M. (2015). ‘Do the effects of R&D tax credits vary across industries? a 
meta-regression analysis’, Research Policy, vol. 44(4), pp. 819-32. 

Chetty, R., Guren, A., Manoli, D.S. and Weber, A. (2011). Does indivisible labor explain the 
difference between micro and macro elasticities? A meta-analysis of extensive margin 
elasticities. NBER Working Paper No. 16729.  

Chletsos, M. and Giotis, G.P. (2015). The employment effect of minimum wage using 77 
international studies since 1992: a meta-analysis, MPRA Paper 61321, University Library of 
Munich, Germany.  

Cirera, X., Willenbockel, D. and Lakshman, R. (2011). What is the evidence of the impact of 
tariff reductions on employment and fiscal revenue in developing countries? A systematic 
review. Technical report. London: EPPI-Centre, Social Science Research Unit, Institute of 
Education, University of London. 

Clar, M., Dreger, C. and Ramos, R. (2007). ‘Wage flexibility and labour market institutions: A 
meta-analysis’, Kyklos, vol. 60(2), pp. 145–63. 

Dalhuisen, J.M., Florax, R.J.G.M., de Groot, H.L.F. and Nijkamp, P. (2003). ‘Price and income 
elasticities of residential water demand: a meta-analysis’, Land Economics, vol. 79(2), pp. 
292–308. 

Doucouliagos, C.(H.) and Stanley, T.D. (2009). ‘Publication selection bias in minimum wage 
research? a meta regression analysis’, British Journal of Industrial Relations, vol. 47(2), 
pp.406–28. 

Doucouliagos, C.(H.), Stanley, T.D. and Viscusi, W.K. (2014). ‘Publication selection and the 
income elasticity of the value of a statistical life’, Journal of Health Economics, vol. 
33(January), pp. 67–75.  

Escobar, M.A.C., Veerman, J.L., Tollman, S.M., Bertram, M.Y. and Hofman, K.J. (2013). 
‘Evidence that a tax on sugar sweetened beverages reduces the obesity rate: a meta-analysis’, 
BMC Public Health, vol. 13, pp. 1072. 

Feld, L.P., Heckemeyer, J.H. and Overesch, M. (2013). ‘Capital structure choice and company 
taxation: a meta-study’, Journal of Banking and Finance, vol. 37(8), pp. 2850–66. 

Gallet, C.A. and Doucouliagos, C.(H.) (2014). ‘The income elasticity of air travel: a meta-
analysis’, Annals of Tourism Research, vol. 49(November), pp. 141–55. 
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Green, R., Cornelsen, L., Dangour, A.D., Turner, R., Shankar, B., Mazzocchi, M. and Smith, 
R.D. (2013). ‘The effect of rising food prices on food consumption: systematic review with 
meta-regression’, British Medical Journal, 346: f3703. 

Havránek, T. (2015). ‘Measuring intertemporal substitution: the importance of method choices 
and selective reporting’, Journal of the European Economic Association, vol. 13(6), pp. 
1180-204. 

Havranek, T., Irsova, Z. and Janda, K. (2012). ‘Demand for gasoline is more price-inelastic than 
commonly thought’, Energy Economics, vol. 34(1), pp. 201–7. 

Havranek, T. and Kokes, O. (2015). ‘Income elasticity of gasoline demand: a meta-analysis’, 
Energy Economics, vol. 47(January), pp. 77–88. 

Klomp, J. and de Haan, J. (2010). ‘Inflation and central bank independence: a meta-regression 
analysis’, Journal of Economic Surveys, vol. 24(4), pp. 593-621. 

Koetse, M.J., de Groot, H.L.F. and Florax, R.J.G.M. (2008). ‘Capital-energy substitution and 
shifts in factor demand: a meta-analysis’, Energy Economics, vol. 30(5), pp. 2236-51. 

Krassoi-Peach, E. and Stanley, T.D. (2009). ‘Efficiency wages, productivity and simultaneity: A 
meta-regression analysis’, Journal of Labor Research, vol. 30(3), pp. 262–68. 

Lichter, A., Peichl, A. and Siegloch, S. (2015). ‘The own-wage elasticity of labor demand: A 
meta-regression analysis’, European Economic Review, vol. 80, pp. 94–119. 21. 

*Longhi, S., Nijkamp, P. and Poot, J. (2010). ‘Joint impacts of immigration on wages and 
employment: review and meta-analysis’, Journal of Geographical Systems, vol. 12(4), pp. 
355-87. 28.  

Nelson, J.P. (2006). ‘Cigarette advertising regulation: a meta-analysis’, International Review of 
Law and Economics, vol. 26(2), pp. 195-226. 

Nelson, J.P. (2011). ‘Alcohol marketing, adolescent drinking and publication bias in longitudinal 
studies: a critical survey using meta-analysis’, Journal of Economic Surveys, vol. 25(2), pp. 
191–232. 30.  

Nelson, J.P. (2014). ‘Estimating the price elasticity of beer: meta-analysis of data with 
heterogeneity, dependence, and publication bias’, Journal of Health Economics, vol. 33, pp. 
180-7. 

Nijkamp, P. and Poot, J. (2005). ‘The last word on the wage curve’, Journal of Economic 
Surveys, vol. 19(3), pp. 421–50. 42.  

Santeramo, F.G. and Shabnam, N. (2015). ‘The income-elasticity of calories, macro- and micro-
nutrients: what is the literature telling us?’, Food Research International, 76(4), pp. 932-7. 

*Stanley, T.D. and Doucouliagos, C(H.). (2012). Meta-Regression Analysis in Economics and 
Business, Oxford: Routledge. 

Ugur, M., Solomon, E., Guidi, F. and Trushin, E. (2014). ‘R&D and productivity in OECD firms 
and industries: a hierarchical meta-regression analysis’, Evaluation of Research and 
Development (R&D) Expenditures, Firm Survival, Firm Growth and Employment: UK 
Evidence in the OECD Context. Reference no ES/K004824/1. 
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Figure A1. Funnel Graph of Simulated Elasticities and their Precisions 
(𝜂𝜂 = 0, 50% Publication Selection, I2=94%, 100,000 replications) 
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Table A1: Simulated elasticities: Bias, MSE, power and level of alternative meta-methods when there is no selective reporting 
Design Bias MSE Power/Type I Error Average 

η m I2  Mean RE WLS PET-
PEESE 

WAAP RE WLS PET-
PEESE 

WAAP RE WLS PET WAAP FAT |WAAP-
PP | 

0 100 .2420 -.0002 -.0001 -.0001 -.0005 -.0001 .00003 .00004 .00006 .00004 .0349 .1210 .1264 .1209 .0654 .0021 
0 100 .5448 .0001 .0000 .0000 -.0010 .0001 .00005 .00012 .00017 .00016 .0293 .1984 .2047 .1880 .0817 .0029 
0 100 .8211 -.0002 .0002 .0001 -.0020 .0001 .00012 .00046 .00066 .00089 .0313 .2414 .2497 .1439 .0969 .0066 
0 100 .9469 .0001 .0000 .0002 -.0039 .0002 .00035 .00173 .00245 .00312 .0328 .2529 .2598 .0515 .0954 .0124 
0 100 .9851 -.0001 -.0002 -.0003 -.0082 -.0007 .00110 .00635 .00904 .00909 .0369 .2490 .2531 .0838 .0986 .0189 
0 400 .2640 -.0001 .0000 .0000 -.0002 .0000 .00001 .00001 .00001 .00001 .0267 .1206 .1309 .1206 .0598 .0010 
0 400 .5799 .0000 .0000 .0000 -.0005 .0000 .00001 .00003 .00004 .00003 .0255 .1955 .2033 .1955 .0774 .0013 
0 400 .8437 -.0001 .0000 .0000 -.0010 .0000 .00003 .00011 .00016 .00018 .0264 .2324 .2415 .2195 .0825 .0027 
0 400 .9546 .0001 .0001 .0000 -.0021 -.0001 .00009 .00044 .00062 .00112 .0308 .2440 .2495 .1326 .0925 .0086 
0 400 .9873 .0002 .0003 .0001 -.0038 .0000 .00028 .00159 .00225 .00354 .0322 .2439 .2488 .0428 .0851 .0160 
0 1000 .9561 .0000 .0001 .0000 -.0013 .0000 .00003 .00017 .00025 .00042 .0268 .2422 .2489 .2108 .0881 .0046 

Average type I error rate (size)  .0303 .2128 .2197 .1373 .0839  
.15 100 .2414 .0000 .0001 .0001 .0001 .0000 .00003 .00004 .00004 .00004 1.0000 1.0000 1.0000 1.0000 .0617 .0007 
.15 100 .5452 .0000 .0000 .0001 .0001 .0000 .00005 .00012 .00013 .00014 1.0000 1.0000 1.0000 1.0000 .0785 .0008 
.15 100 .8218 -.0001 -.0001 -.0001 -.0001 -.0006 .00012 .00046 .00048 .00055 1.0000 1.0000 1.0000 .9996 .0967 .0014 
.15 100 .9466 .0001 .0002 .0001 -.0006 -.0022 .00035 .00173 .00197 .00220 1.0000 .9974 .9791 .9160 .1007 .0030 
.15 100 .9851 .0002 .0005 .0004 -.0070 -.0054 .00108 .00647 .00882 .00838 .9943 .8788 .7694 .6426 .0970 .0075 
.15 400 .2642 .0000 .0000 .0000 .0000 .0000 .00001 .00001 .00001 .00001 1.0000 1.0000 1.0000 1.0000 .0615 .0003 
.15 400 .5798 -.0001 .0001 .0000 .0000 .0000 .00001 .00003 .00003 .00003 1.0000 1.0000 1.0000 1.0000 .0727 .0004 
.15 400 .8437 .0000 .0001 .0000 .0000 -.0001 .00003 .00011 .00012 .00013 1.0000 1.0000 1.0000 1.0000 .0843 .0006 
.15 400 .9546 .0001 .0001 .0001 .0001 -.0003 .00009 .00044 .00046 .00052 1.0000 1.0000 1.0000 .9998 .0900 .0012 
.15 400 .9874 .0002 .0002 .0000 -.0005 -.0020 .00028 .00158 .00176 .00199 1.0000 .9980 .9858 .9346 .0853 .0028 
.15 1000 .9561 .0001 .0001 .0000 .0000 -.0001 .00003 .00017 .00018 .00020 1.0000 1.0000 1.0000 1.0000 .0866 .0007 
.30 100 .2414 -.0001 .0000 .0000 .0000 .0000 .00003 .00004 .00004 .00004 1.0000 1.0000 1.0000 1.0000 .0641 .0003 
.30 100 .5451 .0001 -.0001 -.0001 -.0001 -.0001 .00005 .00012 .00013 .00012 1.0000 1.0000 1.0000 1.0000 .0842 .0004 
.30 100 .8213 .0002 .0003 .0000 .0000 -.0001 .00013 .00046 .00048 .00047 1.0000 1.0000 1.0000 1.0000 .0990 .0004 
.30 100 .9468 .0000 .0001 .0004 .0005 .0002 .00034 .00175 .00183 .00181 1.0000 1.0000 1.0000 1.0000 .0993 .0006 
.30 100 .9852 -.0003 -.0003 -.0005 -.0015 -.0019 .00111 .00632 .00710 .00685 1.0000 .9991 .9830 .9793 .0977 .0020 
.30 400 .2640 -.0001 .0000 .0000 .0000 .0000 .00001 .00001 .00001 .00001 1.0000 1.0000 1.0000 1.0000 .0617 .0002 
.30 400 .5798 -.0001 .0000 .0000 .0000 .0000 .00001 .00003 .00003 .00003 1.0000 1.0000 1.0000 1.0000 .0741 .0002 
.30 400 .8438 .0000 .0001 .0000 .0000 .0000 .00003 .00011 .00012 .00012 1.0000 1.0000 1.0000 1.0000 .0844 .0002 
.30 400 .9545 .0000 .0001 .0001 .0001 .0000 .00009 .00043 .00045 .00045 1.0000 1.0000 1.0000 1.0000 .0904 .0003 
.30 400 .9874 .0002 .0003 .0000 .0000 -.0002 .00027 .00158 .00165 .00164 1.0000 1.0000 1.0000 1.0000 .0882 .0005 
.30 1000 .9561 .0001 .0002 .0001 .0001 .0000 .00003 .00017 .00018 .00018 1.0000 1.0000 1.0000 1.0000 .0888 .0002 

Average .7387 .0000 .0001 .0000 -.0010 -.0004 .00019 .00101 .00126 .00135 .9997 .9942 .9872 .9760 .0840 .0031 
Notes:  η is the true mean elasticity, m is the number of estimates, I2 is the proportion of the observed variation among reported elasticities that cannot be explained by their reported standard errors, RE 
and WLS denote the random-effects and unrestricted weighted least squares meta-analysis averages, respectively, PET-PEESE is the meta-regression publication bias corrected estimate, WAAP is the 
weighted average of the adequately powered, PET is the precision-effect test,  FAT is the funnel-asymmetry test, |WAAP-PP | is the average absolute difference between WAAP and PET-PEESE. 
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ADDITIONAL SIMULATIONS 

 

1. Proportional heterogeneity 
 
In our core simulation experiments, random normal omitted-variable biases are added to the 
process of estimating each elasticity. Thus, the heterogeneity variance will be the same for very 
precisely estimated elasticities (those at the top of the funnel graph) as those with much larger 
standard errors (those at the bottom of the funnel graph); see Figure A1 above. However, actual 
meta-analyses in economics typically exhibit lower heterogeneity at the top of the funnel graph 
(where SEs are smaller) than at the bottom. Publication success might be higher for those studies 
that use the largest datasets and those that employ methods known to be more efficient, both of 
which produce smaller SEs. Studies that produce demonstrably ‘better’ estimates would have 
less need to report statistically significant results.  Even if these larger, more efficient, studies 
selectively report, their authors would require less extreme misspecifications or methods 
manipulations to produce statistical significance. Thus, the vigor of specification searches and 
thereby the degree of heterogeneity is likely to be directly related to an estimate’s SE. A 
selection process that is directly related to SE would also produce heterogeneity roughly 
proportional to SE.  We find such differential heterogeneity in the 35 reference meta-analyses 
used to calibrate our core simulation design. Heterogeneity is likely to be approximately 
proportional to SE in many and perhaps most economic research areas. Figure A2 that graphs 
1,000 randomly generated estimates when we assume that heterogeneity, τ, is approximately 
proportional to SE. Compare Figure A2 to Figure A3 that graphs 1,474 estimates of the 
employment effect from raising the US minimum wage to vs. Figure A1 where estimates are 
randomly generated assuming that heterogeneity is additive. 

These simulations are identical to those summarized in Table 1 in the text except that the 
standard deviation of heterogeneity is made to be roughly proportional to SE. Table A2 reports 
these new ‘proportional heterogeneity’ simulations for m=400.  We do not display the findings 
for other meta-analysis sample sizes to conserve space and because the reported false positives 
rates are higher for m=400. Biases are notably smaller for WAAP and PET-PEESE and PET (see 
Table A2 and Figure A4). PET has greatly reduced Type I errors (see Table A2 and Figure A5), 
and its power to detect genuine effects even when they are small (η =.15) is much higher. In 
general, the properties of PET-PEESE are greatly improved if heterogeneity is approximately 
proportional to reported sampling errors, because SE is directly correlated with both random 
sampling errors and heterogeneity, both of which produce larger biases. Nonetheless, PET’s rates 
of false positives remain unacceptably high for high levels of heterogeneity. Below we show 
when heterogeneity is proportional and meta-analysts test for practical significance (H0: 
η =0.10), PET’s type I errors are acceptably low (see Table A3). 

 
2. Cluster-robust standard errors 
The last variation to our core simulation design concerns the use of cluster-robust standard 
errors.    Economic meta-analysis often calculates cluster-robust SEs because studies routinely 
report multiple estimates, as well as using unbalanced panel models. To simulate the effect that 
the use cluster-robust SEs might have on the false positive rates of WLS and PET, we calculated 
the ratio of cluster-robust SEs to WLS SEs observed in our 35 reference meta-analysis for which 
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we had data to identify their cluster structures.  Next, we modified our core simulations (recall 
Table 1) to randomly sample from the distribution of ratios of cluster-robust SEs to WLS SEs 
that we observed among actual elasticity meta-analyses.  We did not attempt to embed varying 
cluster structures in our data generating processes, because the SEs that they produce will depend 
on the average number of estimates per cluster, the correlations within a cluster, and the 
distribution of each of these across studies within an area of research.  Our current research base 
is not sufficient rich to identify the complex and nuanced cluster structure that is representative 
of economics research.  Instead, we simulate the observed effects that these complexities have on 
calculated cluster-robust standard errors. We do not adjust RE’s or WAAP’s SEs for clustering.  
Cluster-robust standard errors are rarely used by random effects estimates, and there are so few 
adequately-power estimates in an area of economic research that the cluster structure is quite 
likely to breakdown (Ioannidis et al., 2017). 
Table A3 reports the simulation results from combinations of proportional heterogeneity with 
practical significance testing and cluster-robust SEs with practical significance testing.  We do 
not display the findings from using cluster-robust SEs alone because they are similar to what we 
find for proportional heterogeneity alone (recall Table A.2). Cluster-robust SEs do reduce the 
rates of false positives for WLS and PET, but, as with proportional heterogeneity, type I error 
rates remain unacceptable high for high heterogeneity.  When combined with testing for practical 
significance testing (H0: η=0.10), using cluster-robust SEs reduces type I errors to their nominal 
level (0.05) or below for PET, while WLS’s rates of false positives also quite low except for the 
highest level of heterogeneity (See Table A6).  Because MAER-Net reporting guidelines require 
the use of either cluster-robust SEs or MRA panel models (Stanley et al., 2013), we suspect that 
PET and probably WLS have acceptable statistical properties for most economic applications if 
they test for practical, rather than statistical, significance 
  



43 
 

Figure A2: Funnel plot of 1,000 simulated elasticities (proportional 
heterogeneity) 
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Figure A3. Funnel Plot of US Minimum Wage Employment Elasticities (m=1,474) 

 
Source: Doucouliagos and Stanley (2009), reproduced in the  Economic Report of the President, 
2013, p.121
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Table A2: Bias, MSE, power and level of alternative meta-methods with 50% selective reporting and proportional heterogeneity 

 
Notes:  η is the true elasticity, m is the number of estimates, I2 is the proportion of the observed variation among reported elasticities that cannot be explained by their reported standard errors, 
RE and WLS denote the random-effects and unrestricted weighted least squares meta-analysis averages, respectively, PET-PEESE is the meta-regression publication bias corrected estimate, 
WAAP is the weighted average of the adequately powered, PET is the precision-effect test, FAT is the funnel-asymmetry test, |WAAP-PP | is the average absolute difference between WAAP 
and PET-PEESE. 

Design Bias MSE Power/Type I Error Average 
η m I2  Mean RE WLS PET-

PEESE 
WAAP RE WLS PET-

PEESE 
WAAP RE WLS PET WAAP FAT |WAAP-

PP | 
0 400 .6758 .1562 .0586 .0239 .0009 .0131 .00344 .00057 .00001 .00021 1.0000 1.0000 .0048 .7417 1.0000 .0010 
0 400 .7388 .1625 .0665 .0262 .0028 .0136 .00444 .00069 .00003 .00021 1.0000 1.0000 .0370 .7958 1.0000 .0013 
0 400 .8461 .1997 .0905 .0322 .0060 .0173 .00822 .00104 .00012 .00032 1.0000 1.0000 .0931 .8866 1.0000 .0027 
0 400 .9328 .2885 .1440 .0449 .0137 .0248 .02086 .00204 .00049 .00067 1.0000 1.0000 .1925 .8978 1.0000 .0085 
0 400 .9744 .4723 .2487 .0699 .0360 .0420 .06235 .00500 .00241 .00194 1.0000 1.0000 .3830 .8832 1.0000 .0157 

Average type I error rate (size) and Power for FAT 1.0000 1.0000 .1421 .8410 1.0000  
.15 400 .3938 .0972 .0116 .0036 .0010 .0005 .00014 .00002 0.00000 0.00000 1.0000 1.0000 1.0000 1.0000 1.0000 .0003 
.15 400 .5722 .1099 .0193 .0046 .0018 .0010 .00038 .00003 .00001 .00001 1.0000 1.0000 1.0000 1.0000 1.0000 .0004 
.15 400 .7895 .1487 .0422 .0079 .0046 .0029 .00182 .00007 .00003 .00002 1.0000 1.0000 1.0000 1.0000 1.0000 .0006 
.15 400 .9218 .2372 .0958 .0150 .0116 .0079 .00930 .00027 .00018 .00011 1.0000 1.0000 1.0000 1.0000 1.0000 .0012 
.15 400 .9727 .4203 .2011 .0320 .0294 .0224 .04092 .00118 .00102 .00069 1.0000 1.0000 1.0000 1.0000 1.0000 .0028 
0.3 400 .2788 .0671 .0034 .0012 -.0007 .0003 .00002 0.00000 0.00000 0.00000 1.0000 1.0000 1.0000 1.0000 1.0000 .0002 
0.3 400 .5099 .0787 .0069 .0016 -.0005 .0005 .00006 .00001 .00001 .00001 1.0000 1.0000 1.0000 1.0000 .9999 .0002 
0.3 400 .7713 .1137 .0203 .0030 .0004 .0016 .00045 .00002 .00001 .00002 1.0000 1.0000 1.0000 1.0000 1.0000 .0002 
0.3 400 .9168 .1967 .0627 .0077 .0048 .0056 .00407 .00011 .00007 .00008 1.0000 1.0000 1.0000 1.0000 .9999 .0003 
0.3 400 .9717 .3762 .1628 .0196 .0171 .0162 .02699 .00056 .00047 .00044 1.0000 1.0000 1.0000 1.0000 1.0000 .0005 
Average .7511 .2083 .0823 .0196 .0086 .0113 .01223 .00077 .00032 .00031 1.0000 1.0000 1.0000 1.0000 1.0000 .0064 
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Figure A4: Biases (proportional heterogeneity, η=0, and  m=400) 
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Figure A5: Type I error rates (proportional heterogeneity, η=0, and  m=400) 
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Figure A6: Type I error rates when testing for practical significance (0.1) 

 (with cluster-robust standard errors, η=0, and  m=400) 
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Table A3: Power and level to detect practical significance (0.10) and with: 
Design Proportional Heterogeneity Cluster-Robust SEs 

η m RE WLS PET WAAP WLS PET 
0 400 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0 400 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0 400 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0 400 .9978 0.0000 0.0000 0.0000 .0004 0.0000 
0 400 1.0000 0.0000 0.0000 0.0000 .1180 .0538 

Average Type I error .3996 0.0000 0.0000 0.0000 .0237 .0108 
.15 400 1.0000 1.0000 1.0000 1.0000 1.0000 .9324 
.15 400 1.0000 1.0000 1.0000 1.0000 .9934 .8393 
.15 400 1.0000 1.0000 1.0000 1.0000 .8970 .6509 
.15 400 1.0000 1.0000 .9897 1.0000 .8043 .5548 
.15 400 1.0000 1.0000 .7537 .9996 .7354 .5327 
0.3 400 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
0.3 400 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
0.3 400 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
0.3 400 1.0000 1.0000 1.0000 1.0000 1.0000 .9886 
0.3 400 1.0000 1.0000 1.0000 1.0000 .9711 .8715 

Average Power 1.0000 1.0000 .9743 1.0000 .9401 .8370 
Notes:  η is the true mean elasticity, m is the number of estimates, RE, WLS denotes the random-effects and 
unrestricted weighted least squares meta-analysis averages, respectively, PET-PEESE is the meta-regression 
publication bias corrected estimate, WAAP is the weighted average of the adequately powered, PET is the 
precision-effect test. 

 

 

 

  



 

Table A4: Multiple MRA: Bias, MSE, power and level with no selective reporting 
Design I2 after 

MRA 
Bias MSE Power/   

Type I Error 
Estimate of Omitted-Variable 

Bias 
FAT Power 

η m τ S1  S2   S1 S2 S1 S2 S1 S2 S1: 
OV3 

S1: 
OV4 

S2: 
OV3 

S2: 
OV4 

S1 S2 

0 100 .01875 .0786 .1109 -.0004 .0001 .00053 .00044 .0264 .0292 .3001 -.2997 .2998 .1500 .0549 .0655 
0 100 .0375 .1549 .2764 -.0002 .0002 .00061 .00059 .0268 .0339 .3000 -.3000 .2998 .1503 .0529 .0709 
0 100 .075 .3999 .5870 .0004 .0002 .00099 .00122 .0380 .0464 .2998 -.2999 .3002 .1499 .0574 .0905 
0 100 .15 .7202 .8445 .0004 -.0013 .00246 .00369 .0469 .0532 .3001 -.2997 .3008 .1512 .0553 .1100 
0 100 .30 .9055 .9529 -.0001 -.0008 .00750 .01220 .0490 .0501 .3004 -.3011 .2991 .1519 .0591 .1090 
0 400 .01875 .0676 .1170 .0001 -.0001 .00013 .00010 .0293 .0272 .3001 -.3000 .3001 .1501 .0583 .0549 
0 400 .0375 .1769 .3203 -.0003 -.0001 .00016 .00015 .0274 .0319 .3001 -.2998 .3001 .1501 .0676 .0739 
0 400 .075 .4453 .6435 -.0002 .0003 .00026 .00029 .0370 .0377 .3002 -.2995 .3000 .1502 .0905 .0976 
0 400 .15 .7537 .8743 -.0001 -.0001 .00066 .00091 .0438 .0423 .2994 -.3000 .3001 .1504 .1106 .1132 
0 400 .30 .9191 .9631 -.0010 -.0001 .00206 .00307 .0443 .0389 .2991 -.2992 .3002 .1506 .1206 .1118 

Average type I error rate (size) .0369 .0391  
.15 100 .01875 .0800 .1135 .0001 -.0001 .00053 .00044 1.0000 1.0000 .3002 -.3002 .3000 .1499 .0551 .0574 
.15 100 .0375 .1556 .2752 .0000 .0000 .00063 .00059 1.0000 .9999 .2996 -.2998 .3000 .1498 .0558 .0745 
.15 100 .075 .4009 .5877 .0004 .0005 .00101 .00119 .9984 .9902 .3001 -.2998 .3001 .1497 .0566 .0933 
.15 100 .15 .7204 .8457 .0001 -.0009 .00246 .00357 .9013 .7735 .2998 -.3002 .3004 .1487 .0563 .1128 
.15 100 .30 .9053 .9531 .0015 .0016 .00739 .01242 .5279 .3865 .3010 -.3003 .3004 .1527 .0525 .1093 
.15 400 .01875 .0672 .1173 -.0002 .0002 .00013 .00010 1.0000 1.0000 .3001 -.2997 .2999 .1501 .0594 .0541 
.15 400 .0375 .1775 .3215 -.0003 .0000 .00016 .00014 1.0000 1.0000 .2999 -.2997 .3000 .1501 .0671 .0754 
.15 400 .075 .4446 .6445 -.0003 -.0002 .00026 .00031 1.0000 1.0000 .2997 -.2997 .3002 .1503 .0889 .1034 
.15 400 .15 .7543 .8748 -.0005 .0003 .00066 .00090 1.0000 .9993 .3000 -.2992 .3002 .1507 .1103 .1067 
.15 400 .30 .9190 .9629 -.0002 .0003 .00201 .00301 .9402 .8111 .3003 -.2993 .3000 .1508 .1195 .1131 
.30 100 .01875 .0792 .1117 .0000 -.0002 .00053 .00043 1.0000 1.0000 .2996 -.3001 .2999 .1500 .0515 .0616 
.30 100 .0375 .1572 .2747 .0002 .0002 .00064 .00059 1.0000 1.0000 .3001 -.2998 .2999 .1503 .0527 .0698 
.30 100 .075 .4000 .5888 -.0004 -.0004 .00098 .00119 1.0000 1.0000 .3000 -.2995 .3001 .1495 .0574 .0990 
.30 100 .15 .7206 .8448 .0010 -.0004 .00246 .00365 1.0000 .9968 .2998 -.2996 .3003 .1506 .0599 .1090 
.30 100 .30 .9058 .9529 -.0017 -.0003 .00744 .01230 .9507 .8244 .2995 -.2990 .3006 .1497 .0585 .1126 
.30 400 .01875 .0681 .1172 -.0002 .0000 .00013 .00011 1.0000 1.0000 .2998 -.2998 .3000 .1501 .0585 .0589 
.30 400 .0375 .1769 .3225 -.0004 -.0001 .00016 .00014 1.0000 1.0000 .2999 -.2996 .3001 .1501 .0672 .0750 
.30 400 .075 .4451 .6436 -.0003 .0003 .00026 .00029 1.0000 1.0000 .3002 -.2995 .3000 .1502 .0916 .0976 
.30 400 .15 .7540 .8744 -.0002 -.0001 .00065 .00090 1.0000 1.0000 .2994 -.2998 .3002 .1504 .1108 .1126 
.30 400 .30 .9190 .9631 -.0007 -.0002 .00206 .00308 1.0000 .9997 .2991 -.2993 .3002 .1508 .1198 .1123 

Average .4625 .5695 -.0001 .0000 .00153 .00227 .9659 .9391 .2999 -.2997 .3001 .1502 .0725 .0904 
Notes:  η is the true mean true, m is the number of estimates, I2 is the proportion of the observed variation among reported elasticities that cannot be explained by the 
MRAS1 is the scenario where X3i and X4i are randomly omitted from 25% of the estimating models, and the omitted-variable biases are set to {0.3, -0.3; respectively}. 
S2 is the scenario where X3i and X4i are randomly omitted from 50% of the estimating models, and the omitted-variable biases are set to {0.3, .15; respectively}. 
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