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Abstract

We show that the Value Function Iteration (VFI) algorithm has difficulties approxi-
mating models with jump discontinuities in policy functions. We find that VFI fails
to accurately identify both the location and size of jump discontinuities while the
Endogenous Grid Method (EGM) and the Finite Element Method (FEM) are much
better at approximating this class of models. We further show that combining value
function iteration with a local interpolation step (VFI-INT) is sufficient to obtain accu-
rate approximations. Differences between policy functions generated by VFI and these
alternative methods are economically significant. We highlight that these differences
across methods cannot be identified using Euler equation errors as these are not a
sufficient measure of accuracy for models with jump discontinuities in policy functions.
As a result, speed comparisons across methods that rely on Euler equation errors as
a measure for accuracy can be misleading. The combination of computational speed,
relatively easy implementation and adaptability make VFI-INT especially suitable for
approximating models with jump discontinuities in policy functions.
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1 Introduction

We examine differences in the answers produced by global approximation methods for

solving dynamic economies where agents face non-concave problems (i.e. non-convex choice

sets). Non-concave problems can result from the inclusion of fixed adjustment costs that

are empirically relevant in many circumstances.1 In such problems, agents make discrete

decisions by comparing the option values associated with different adjustments. Fixed ad-

justment costs generate kink(s) in the value function at the intersection of these option values

and imply jump discontinuities in the policy function. While differences across approxima-

tion methods have been extensively studied for dynamic economies where policy functions

are continuous (e.g. McGrattan (1996), Santos (2000), Aruoba et al. (2006), Santos and

Peralta-Alva (2012)), the literature provides little guidance about the adequacy and accu-

racy of computational methods when policy functions exhibit jump discontinuities. The goal

of this paper is to fill this gap.

We document that the exact intersection of the option values — and thereby the location

of a jump discontinuity in the policy function — is difficult to determine using discretized

Value Function Iteration (VFI). The use of a finite grid on state and control variables limits

VFI to approximating the option values as step functions. This results in multiple inter-

sections of these values and leads to an imprecise determination of the jump discontinuity.

Sufficient mitigation of this problem requires very fine grids that are infeasible in many

applications due to the curse of dimensionality.

To our knowledge the problem VFI exhibits for models with jump-discontinuities has

1The relevance of fixed adjustment cost is highlighted for example in studies of investment (e.g. Caballero
et al. (1995), Doms and Dunne (1998), Power (1998), Cooper et al. (1999), Nilsen and Schiantarelli (2003)
and Cooper and Haltiwanger (2006), Whited (2006), Bayer (2006), Khan and Thomas (2008), Bloom (2009),
Wang and Wen (2012)), consumer-durables choice (e.g. Jose Luengo-Prado (2006), Bajari et al. (2013)),
portfolio choice models with transaction costs and asset prices (e.g. Vayanos (1998)), costly technology
adoption (e.g. Khan and Ravikumar (2002)) and optimal dynamic capital structure choice (e.g. Hennessy
and Whited (2005)).
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not been documented in the literature. We explore its implications and show that a Finite

Element Method (FEM) and an adaptation of the Endogenous Grid Method (EGM) can

overcome this problem.2 This is essentially because both methods approximate the option

values over the entire state space using piece-wise linear functions — effectively approximat-

ing these values using an infinite set of points — leading to a single intersection of option

values and therefore a unique determination of the jump discontinuity in the policy func-

tion. We also show that extending VFI to allow the option values to be approximated locally

around each grid point using piece-wise linear functions (VFI-INT) is sufficient to obtain a

unique intersection and precise solutions.

We illustrate differences across methods for non-concave problems using a partial equi-

librium model of a plant where investment is subject to both variable and fixed capital

adjustment costs. This model is well established in the literature and is based on Cooper

and Haltiwanger (2006). Their paper provides widely used parameter estimates and statis-

tics on the importance of capital adjustment costs and relies on VFI as an approximation

method. In this model, in the presence of fixed costs the plant determines its investment

strategy each period by comparing the option value of remaining inactive (not investing)

with the option value of becoming active (investing). The optimal investment strategy fol-

lows an (S, s) adjustment process whereby the plant does not make any investment until

capital depreciates below a threshold level at which point the plant makes a substantial in-

vestment to re-build its capital stock (investment spike). The threshold is determined by the

intersection of the plant’s option values. To correctly capture the dynamics of investment it

is crucial to determine this threshold accurately. We show that EGM, FEM and VFI-INT

yield a unique threshold, while in contrast, even for fine grids VFI yields multiple thresholds

located across a wide range of capital values.

2Given that we consider non-concave problems, we focus on piece-wise linear approximations and do not
implement methods that involve higher order polynomial approximations.
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We also highlight that relying on the use of Euler equation errors alone is insufficient to

assess the accuracy of approximation for models with jump discontinuities in policy functions.

We show that standard measures in the literature such as average or maximum Euler equation

errors fail to indicate how well the threshold is approximated. To assess how well the

four different methods approximate the threshold and the size of the jump discontinuity

we conduct a simulation exercise and focus on two key statistics: the size of investment

spikes and firm’s average capital stock. These are very sensitive to the location and size

of the discontinuity and are also frequently reported as key statistics in models with (S, s)

behavior.3

We find that VFI generates statistics that are noticeably different from the “true” in-

vestment spike size and average capital stock.4 This is in stark contrast to the performance

of EGM, FEM and VFI-INT which deliver statistics very close to the true ones. Crucially,

the differences between these methods and VFI are economically significant. For example

the maximum percentage deviations across shocks are much higher using VFI: for a partic-

ular comparable grid, VFI implies that a firm’s investment spike size (mean capital stock)

deviates up to 16% (8%) from the true size. In contrast VFI-INT only implies a maximum

deviation of 4% (2%).

The limited informativeness of Euler equation errors in determining the accuracy of solu-

tions for models with jump discontinuities in policy functions, implies that the conventional

speed comparisons across methods – that use Euler equation errors to benchmark accuracy

– can be misleading. We provide a first indication on the relative speed of VFI, FEM, EGM

and VFI-INT for models with jump discontinuities in policy functions without relying on

Euler equation errors alone. We compare speed by benchmarking accuracy based on the

3Statistics resulting from simulations have been used in the literature as an alternative to Euler equation
errors to assess accuracy of approximations across methods, see for example Heer and Maußner (2008).

4We define the ”true” statistics as the mean of those generated by EGM and FEM for very fine grids
(defined in detail in Section 5) as the model does not have an analytical solution.
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statistics introduced above. Surprisingly, we find – in contrast to the literature benchmark-

ing on Euler equation errors – VFI is much slower than FEM. For the other methods, FEM

is the slowest method followed by VFI-INT while EGM is the fastest.

However, EGM is also by far the most complex method to implement as it requires a num-

ber of adaptations to be applicable to our model. The original EGM algorithm introduced

by Carroll (2006) is limited to smooth models with at most one control and one endoge-

nous state variable. The literature has proposed numerous extensions to accommodate more

complex models as the applicability of EGM is context dependent. A number of extensions

have been developed recently to allow EGM to be applied to more complex models.5 The

implementation of EGM for non-smooth and non-concave problems such as ours adds a sig-

nificant layer of complexity. Fella (2014) shows how to extend EGM to such settings using

a consumption model that involves fixed adjustment costs for durable goods. We adapt the

algorithm to our model of a plant with fixed capital adjustment costs. This problem involves

an endogenous continuous choice variable that is subject to fixed adjustment costs, unlike

Fella (2014), where this choice is discrete.

FEM and VFI-INT are of similar implementation complexity and are far less complex to

implement for non-concave problems than EGM.6 Both are general purpose methods that

require only minimal changes to handle more complex models. However, a key drawback

of FEM is that it is far more expensive in terms of computation time than VFI-INT. The

combination of computational speed and easy implementation and adaptation make VFI-

INT ideal for approximating models with jump discontinuities in the policy functions.

5These extensions often combine EGM with VFI. Barillas and Fernandez-Villaverde (2007) show how
to introduce additional control variables; Hintermaier and Koeniger (2010) demonstrate how to introduce
additional endogenous state variables in a durable goods model and Ludwig and Schön (2013) show how to
accommodate additional endogenous state variables in a human capital model.

6Our FEM code approximates the value function using piece-wise linear functions with weights updated
via iteration on the Bellman operator rather than minimization of the Galerkin residual as in McGrattan
(1996) and Aruoba et al. (2006). The latter approach has been shown to work well for smooth problems while
for our context with jump discontinuities in the policy function we find that this approach is problematic as
results are highly dependent on the algorithm’s start values.
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The rest of the paper is organized as follows. The next section presents the model we use

to illustrate our results. We then provide descriptions of the methods we use to solve the

model. Section 4 discusses the model parameterization. Section 5 analyses the differences

in the solutions across methods. The final section concludes.

2 The Model

We consider a general class of models where in every period the agent makes both a

continuous and discrete choice (c′, d′) based on the state (c, d) consisting of previous period’s

choices. The set of possible states is denoted by Ω. The agent’s choice set is constrained as

follows:

(c, c′, d, d′) ∈ Γ,

where Γ is R4
+.7 Importantly, this specification of the constraints includes the case where c

or d are subject to non-convex adjustment costs. The agent solves the following dynamic

programming problem:

V (c, d, A) = sup
(c′,d′)∈Γ(c,·;d,·;A)

u(c, c′; d, d′;A) + β
∑
A′∈A

π(A′|A)V (c′, d′, A′)

where A is the set of all possible shock realizations A ∈ A, π is the corresponding transition

matrix, the domain of V is Ω×A, the per-period utility function of the agent is u, and the

discount-factor is β. We assume that u(·, c′; d, d′;A) and u(c, ; d, d′;A) are differentiable on

int(Γ(·, c′; d, d′;A)) and int(Γ(c, ·; d, d′;A)), respectively. Importantly, the value function V is

non-concave in the presence of non-convex adjustment costs to c or d. As a result, the agent

compares the option values associated with choices of c′ and d′. A kink in the value function

arises at the point of indifference between these options and implies a jump discontinuity in

7We define particular subsets of Γ as follows: Γ(c, ·; d, ·) = {(c′, d′) : (c, c′, d, d′) ∈ Γ}, Γ(c, ·; d, d′) = {c′ :
(c, c′, d, d′) ∈ Γ}, Γ(·, c′; d, d′) = {c : (c, c′, d, d′) ∈ Γ}.
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the policy functions (see e.g. Clausen and Strub (2012)).

The general framework described above nests a number of important models with jump

discontinuities used in the literature. This includes models with costly technology adoption

(e.g. Khan and Ravikumar (2002)), durable consumption goods (e.g. Bajari et al. (2013))

and firm-level investment (e.g. Cooper and Haltiwanger (2006), Wang and Wen (2012)). We

illustrate the applicability of different approximation methods using a model that captures

key elements of models in the firm-investment literature. Specifically, we employ a partial

equilibrium model of a plant in which capital adjustment is subject to both fixed and variable

adjustment costs. It is based on a specification in Cooper and Haltiwanger (2006) which we

describe in detail below.8

The plant produces output Yt via the production function

Yt = AtK
α
t , 0 < α < 1, (1)

where Kt denotes capital and productivity At evolves according to the AR(1) process

logAt+1 = ρ logAt + εt, 0 < ρ < 1, (2)

where εt ∼ N(0, σε). The plant’s capital stock evolves according to the law of motion

Kt+1 = (1− δ)Kt + It, 0 < δ < 1, (3)

where It is investment. When the plant chooses to invest, it has to pay a price pI per

8The only differences in our setup, which we applied for ease of exposition, is a simplified shock structure
and irreversibility of investment.
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investment good as well as adjustment costs C(Kt, It). These are given by

C(Kt, It) =
γ

2

( It
Kt

)2

Kt + FKt, γ ≥ 0, F ≥ 0.

where the first term denotes convex variable investment adjustment costs and the latter

term the non-convex fixed costs. These are proportional to the capital stock to eliminate

any size effects. Further, investment is completely irreversible as we assume for simplicity

that capital cannot be resold on a secondary market. Formally, we impose It ≥ 0 ∀ t.

Note that the model includes the standard Q-theory model of investment, in which the

value function is proportional to the stock of capital, as a special case.9 The plant’s prob-

lem consists of choosing a sequence of investments {It}∞t=0 to maximize discounted life-time

profits:

V (K,A) = max
{It≥0}∞t=0

E0

∞∑
t=0

βt

[
AKα

t − pIIt − FI(It>0)Kt −
γKt

2

(
It
Kt

)2
]

(4)

subject to equations (1) and (2) and the constraint It ≥ 0, given an initial level of capital,

K0, and productivity, A0. I(It>0) is an indicator function that equals 1 if investment is

positive and zero otherwise. The constraint It ≥ 0 may bind in equilibrium when capital is

too costly relative to the increase in future profits from additional plant capacity.

Dropping time indices, we can write the problem recursively as:

V (K,A) = max{V a(K,A), V i(K,A)}, (5)

where V i(K,A) and V a(K,A) are the values to the plant to exercising its option to either

remain inactive (i.e. not invest) or active (invest). We can characterize the value of the

9This is the case in our setup if the profits are proportional to the capital stock which is guaranteed if
the plant’s profit function is homogeneous of degree one (α = 1) and the adjustment cost function is convex
(F = 0).
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option to invest as follows:

V a(K,A) = max
I>0

[
AKα − pII − FK −

γK

2

(
I

K

)2

+ βEA′|AV (K(1− δ) + I, A′)

]
, (6)

where K ′ > K(1− δ). Similarly, we can characterize the value of the option to not invest as

V i(K,A) = AKα + βEA′|AV (K(1− δ), A′), (7)

where K ′ = K(1− δ) because I = 0. In each period, the plant computes the value of these

two options and chooses its investment strategy accordingly.

In the presence of fixed costs (F > 0), it is optimal for the plant to follow an (S, s)

adjustment strategy for investment. In other words, investment will be zero for all periods

in which the capital stock exceeds a threshold level K̂(A). When capital has depreciated

below the threshold level the plant will make a substantial investment (i.e. undergo an

investment spike) to build capital up again. Hence, there is a jump discontinuity in the

policy function for investment at the threshold K̂(A).

The intuition behind the plant’s choice is the following: for capital stock levels below

K̂(A) the value of investing will be higher than the value of not investing: V a(K,A) >

V i(K,A). That is, the benefit from having a larger capital stock in the future exceeds the

costs of investing today. For capital stocks above K̂(A) the opposite is true: the benefit from

having an even larger capital stock tomorrow diminishes (due to decreasing returns to scale

in production) and is smaller than the costs of investment. In this case V a(K,A) < V i(K,A)

and the plant will not invest.

The convexity of the adjustment costs in investment and the monotonicity of the value

function V (K,A) in capital entail that V i(K,A) and V a(K,A) cross exactly at one point

for a given productivity, namely at K̂(A).10 This implies that the value function V (K,A)

10Monotonicity of the value function in capital follows from the monotonicity of the Bellman operator.
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exhibits a kink at K̂(A) and is globally non-concave which is illustrated in Figure 1. As

there is no closed form solution for the value function, we need to approximate the solution

numerically.

Capital

Va
lu

es

Vi

Va

Threshold value of K Capital

Va
lu

es

Vi

Va

Threshold value of K

V = max{Vi, Va}

Figure 1: The left diagram shows the option values of active (V a, dotted line) and inactive
(V i, solid line) investment for a given level of productivity. The right diagram shows the
value function for the plant’s problem (V , in red) that results from choosing the maximum
value of the options V a and V i for each level of capital.

3 Solution Methods

We solve the model using four methods and provide brief descriptions of these in this

section. Additional implementation details are provided in the Online Appendix. For all

solution methods we approximate the AR(1) process for productivity using a discrete Markov

chain as in Rouwenhorst (1995).
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3.1 Value Function Iteration

The Bellman operator in our case is:

TV (K,A) = max

{
AKα + βEA′|AV (A′, (1− δ)K),

max
K′≥(1−δ)K

AKα − pI − FK − γK

2

(
I

K

)2

+ βEA′|AV (K ′, A′)

}
, (8)

and the laws of motion for capital and productivity are:

K ′ = (1− δ)K + I

logA′ = ρ logA+ ε.

To solve the Bellman operator, we define an equally spaced grid on capitalGK ≡ [K1, . . . , Kn],

and use Rouwenhorst (1995) to discretize the stochastic process for productivity A, GA ≡

[A1, . . . , Am]. We iterate until convergence on the Bellman operator (8) to obtain an approx-

imation of the value function over the specified grid.

This method requires the explicit computation of V i(K,A) and V a(K,A) at each grid

point (root-finding step). Finally, the value function is then updated for every combination

of the grid points in GK and GA according to

V (K,A) = max{V i(K,A), V a(K,A)}.

When finer grids are considered, memory and computational time increase exponentially due

to the need to repeatedly apply the max operator above and the use of large matrices to

store the active and inactive values.
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3.2 Value Function Iteration with Local Interpolation

We modify the root-finding step in VFI as follows. For every grid point (Ki, Aj), let

(K∗i−1, Aj), and (K∗i+1, Aj) be the grid points adjacent to (resp. to the left and right of) the

optimal choice of K ′ found by VFI for a given productivity Aj.
11 To increase the accuracy of

the approximation, we generate new capital grid points on the intervals [(K∗i−1, Aj), (K
∗
i , Aj)],

and [(K∗i , Aj), (K
∗
i+1, Aj)] via linear interpolation. We compute the option values (V i

INT and

V a
INT ) at these additional grid points for K ′, and again update the value function according to

V (Ki, Aj) = max{V i
INT , V

a
INT} and update the policy function as the corresponding optimal

value of K ′. Then, we continue with the VFI algorithm and iterate on the Bellman operator

(8) till convergence.

3.3 Finite Element Method

The main idea behind FEM is to approximate a function of interest using a number of

much simpler basis functions. Each of these basis functions are typically non-zero only on a

small part of the state space, or equivalently on a small number of elements. This sparsity

allows a large number of elements to be handled and the algorithm is well suited for parallel

computing.

Our FEM algorithm approximates the value function using a piece-wise linear approxima-

tion. We partition the state space into rectangles of the form [Ki, Ki+1]×[Aj, Aj+1]. We then

approximate the value function over the state space using a piece-wise linear function over

the grid points of the partition. Given an initial guess for the value function V 0(K,A) at each

grid point in the state space, we approximate the value function as V̂ (K,A) =
∑

ij V̂ij(K,A)

11Where we denote Ki (Aj) as the ith (jth) grid point for capital (the shock).
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where

V̂ij(K,A) =


V 0
ij(K,A) +

V 0
i+1j−V 0

ij

Ki+1−Ki
(K −Ki) if K ∈ [Ki, Ki+1]

0 otherwise

(9)

so that we effectively use a piece-wise linear approximation for each value of productivity.

We then apply the Bellman operator (8) using V̂ (K ′, A′) as our guess for tomorrow’s value

function and update our initial guess V 0(K,A) on the grid points. Finally, we iterate to

convergence on V̂ (K,A).

The key difference between FEM and VFI is that with FEM tomorrow’s value function

can be evaluated at any point in the state space. Crucially, this implies that the opti-

mal choice of tomorrow’s capital is not restricted to be on the exogenous grid [K1, . . . Kn].

Therefore, the optimization step in the Bellman operator can be carried out using a standard

constrained optimization routine that enforces the irreversible investment constraint I ≥ 0.

Hence, FEM permits an additional degree of freedom above VFI but it comes at a cost as we

are forced to employ the computational expensive constrained optimization routine repeat-

edly. Note that the policy function generated by this procedure is also a piece-wise linear

function akin to (9). Our algorithm for FEM is no more difficult to implement than VFI

given that we do not rely on Galerkin weighting and use standard methods for implementing

root-finding such as Golden Section Search.12

3.4 Endogenous Grid Method

EGM as introduced by Carroll (2006) suggests assigning an exogenous grid over the

control variable K ′ rather than the state variable K. Then, using the following first-order

condition allows us to determine an endogenous grid over K, given the exogenous grid K ′

12For our case of jump discontinuities in the policy function we find that Galerkin weighting is not suitable
as it leads to results that are highly dependent on start values for the algorithm.
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and the derivative of the value function with respect to K ′, VK′(K ′, A′),13

pI + γ
K ′ − (1− δ)K

K
= βEA′|AVK′(K ′, A′). (10)

Interpolating the solution on the endogenous grid, to evaluate it on the exogenous grid, we

can obtain a set of optimal control and state pairs that can then be used to approximate the

value function.

Crucially, this procedure requires a unique solution to the first-order condition (10) for

every K ′ when solving for the endogenous grid over K. As shown in Figure 1, for our class of

models fixed costs introduce kink(s) in the value function resulting in jump discontinuities

in the (otherwise smooth and decreasing) slope of the value function, VK′(K ′, A′). As a

result, the first-order condition (10) does not imply a unique endogenous grid over K.14

Therefore, EGM as introduced by Carroll (2006) is not directly applicable. Instead, we

employ a modification of EGM proposed by Fella (2014) and implement the following steps

for our case with fixed capital adjustment costs:

1. We begin by assigning an (exogenous) grid on K ′ and an initial guess for VK′(K ′, A′).

2. We generate an endogenous grid for K using the first-order condition (10).15

3. We then split our endogenous state space into two regions: one where the value function

is concave (VK′(K ′, A′) is smooth) and another where the value function is not concave

(VK′(K ′, A′) exhibits jump discontinuities).

(a) We apply Carroll (2006)’s algorithm in the concave region.

(b) We apply VFI in the non-concave region to identify and retain only global optima.

13The derivation of the first-order condition is shown in the Appendix.
14Clausen and Strub (2012) show that at the optimum the first-order condition holds and the envelope

condition is valid.
15Note that this implies that the endogenous grid changes in every iteration.
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4. We then proceed to interpolate over the endogenous state space and construct optimal

(K,K ′) pairs in both the active and inactive cases.

5. We use these pairs to construct an approximation of the values to being active and

inactive and thereby the overall value function.

6. We use the slope of this value function to construct the endogenous grid as in step 2.

Steps 2-5 are repeated until the value function is deemed to have converged.

The computationally most demanding task of this algorithm is the interpolation step

which is far less expensive than the maximization/optimization steps in VFI or FEM. Note

however that the applicability of EGM is context dependent, for example it cannot necessarily

accommodate additional variables. The reason is that EGM’s applicability rests on finding a

unique solution to the first-order condition(s) for the endogenous grids. This limits EGM to

models with only one continuous choice variable. The literature shows how to accommodate

additional variables for specific classes of models by often combining EGM with VFI steps

(see for example Barillas and Fernandez-Villaverde (2007), Hintermaier and Koeniger (2010),

Fella (2014), and Ludwig and Schön (2013)). In comparison to smooth and convex problems,

implementation complexity increases even more for models with jump discontinuities in the

policy function due to the need to identify and handle the non-concave region of the value

function (Step 3) separately.

4 Parameterization

Our choice of the model parameters is based on estimates by Cooper and Haltiwanger

(2006). Using annual plant level data of the Longitudinal Research Database, they estimate

the above model with convex and non-convex capital adjustment costs and find that a
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combination of these fits the data well.16 Importantly, they find evidence for substantial fixed

adjustment costs of roughly 4% of the average plant-level capital stock. We approximate the

stochastic process for productivity by a ten-state Markov chain using the method proposed

by Rouwenhorst (1995) and calibrate the Markov chain to match the standard deviation

σε = 0.03 and persistence, ρ = 0.885. All estimates of Cooper and Haltiwanger (2006), that

we use to calibrate the model, are summarized in Table 1.

We approximate the value function for all solution methods over the same state space for

capital.17 As a baseline scenario we use 700 (VFI), 97 (EGM), 95 (FEM), and 385 (VFI-INT)

capital grid points, which is representative for many practical applications. For VFI-INT

we use 35 interpolation points on each side of the optimal grid point identified by the value

function iteration algorithm. This capital grid choice for the baseline scenario generates

comparable average log-absolute Euler equation errors across methods (see Table 2).18 As

conventional in studies which consider the performance of different approximation methods

we use an equally spaced grid for capital.

Table 1: Model Parameters (based on Cooper and Haltiwanger (2006))

β 0.95 discount factor
δ 0.069 capital depreciation rate
pI 1 price to buy capital
α 0.592 returns of capital
ρ 0.885 persistence of plant specific shock
σε 0.03 standard deviation of plant specific shock
γ 0.049 convex adjustment costs
F 0.039 fixed adjustment costs

16For the sake of simplicity of exposition we do not include the possibility of selling capital considered by
Cooper and Haltiwanger (2006). Selling plant’s capital stock at a price smaller than pI would introduce an
additional kink in the value function. The solution methods can be adjusted to accommodate the additional
choice, but as our findings can be generalized to these additional kinks we assume irreversibility of capital
for ease of exposition.

17The state space is chosen so that capital does not hit any boundaries during our simulations. Convergence
is evaluated by considering the largest absolute distance between corresponding points of the value function
of two consecutive iterations. If this absolute distance falls below 10−4 the algorithm is deemed to have
converged.

18As the Euler equation is a necessary but not a sufficient condition in our setup, Euler equation error
statistics are calculated for policy functions across all shocks solely in the area of the state space in which
all approximation methods imply positive investment.
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5 Results

This section first documents two specific issues when approximating models with jump

discontinuities: (i) VFI fails to accurately approximate such models and (ii) Euler equation

errors are not a suitable measure for algorithm accuracy. Then we show in Section 5.2 via a

simulation exercise that the inaccuracies resulting from (i) are economically significant. This

exercise also shows that VFI-INT, EGM and FEM can address the shortcomings of VFI. In

light of (ii), we provide in Section 5.3 a comparison of methods with respect to speed and

implementation complexity.

5.1 Specific Problems in Models with Jump Discontinuities

Problems with VFI. As noted in Section 2, theory predicts that the policy function

exhibits a jump discontinuity at the threshold separating the active (positive investment)

and inactive (no investment) regions.19 Figure 2 shows the policy functions for tomorrow’s

capital generated by VFI, VFI-INT, EGM and FEM for the baseline scenario. This figure

highlights that VFI-INT, EGM and FEM all produce similar policy functions. However,

these differ substantially from the one produced by VFI in two important aspects. First,

VFI does not uniquely determine the threshold separating the active and inactive regions.

Moreover, VFI does not approximate the shape of the active region accurately.

To more clearly see the problems that arise in the determination of the threshold with

VFI, we show in the bottom panel of Figure 3 the values to the plant of being active and

inactive for increasingly finer capital grids. The intersection of these values determines the

capital threshold below which the plant is active and above which the plant is inactive. While

19Theory also predicts additional jump discontinuities in the policy function in the active region due to
the interaction between fixed and convex variable adjustment costs (see e.g. Clausen and Strub (2012)).
The variable costs penalize the plant for making large adjustments while fixed costs penalize the plant for
making small and frequent investments. The result is that the active region of the policy function consists
of concave parts that are separated by jump discontinuities.
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theory predicts a single intersection of these functions, VFI generates multiple intersections

as a result of approximating these values using step functions. The reason for these steps

is that only a finite set of points can be used to approximate the values of being active and

inactive because VFI limits the choices for both the values of the endogenous state and the

control variable to a fixed grid.20 VFI’s inaccurate determination of the threshold can also

be seen in the corresponding policy functions for tomorrow’s capital which are shown in the

top panel of Figure 3. From there it is evident that even a very fine grid using 3000 points

does not deliver a unique intersection of the option values.

In addition to this illustration, we provide a more comprehensive overview about the

inaccurate determination of the threshold: we consider the percentage difference between

the value for today’s capital implied by the grid point min(V i > V a) and today’s capital

implied by the grid point max(V i < V a). Table 2 (column 7) shows that for the VFI

baseline scenario (grid scenario 6) the mean across all shocks of this measure is 8.56, i.e. the

capital stock to the right of the last intersection of the option values V i and V a is 8.56%

higher than the capital stock to the left of the first intersection of the option values. This

is equivalent to an average of 17.3 capital grid points across all shocks (column 9). The

standard deviation across shocks of the percentage difference between the two capital stocks

is 5.58%. This indicates that even using 700 capital grid points (baseline scenario) the

threshold is determined very imprecisely across all shocks. While the percentage difference

decreases with finer grids, even for grids as fine as 1900 points (grid scenario 10) the imprecise

determination of the threshold is still apparent as the mean capital stock to the right of the

last intersection of the option values is 3.20% higher than the capital stock to the left of

the first intersection, with a standard deviation across shocks of 1.42%. Essentially, when

20Such approximations are particularly prone to error when the slope of the underlying function is steep.
In our problem, the slope of the value to being inactive is much larger than the slope of the value to being
active. Hence, as shown in Figure 3, the approximation of the value of being inactive is much worse than
the approximation of the value of being active.
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Figure 2: Policy Function for capital implied by different approximation methods. The base-
line grid generates comparable average log-absolute Euler equation errors across methods.
Subplots are shown for shock value 7. The blue dashed line in each subplot indicates the no
investment decision (1 − δ)K. For better visibility we do not show part of the state space
to the right of the threshold where the policy function is equal to the no-investment line.
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using VFI to approximate models with jump discontinuities in the policy function, extremely

fine grids are required to determine the threshold relatively precisely. Such fine grids are

typically infeasible in most applications due to the curse of dimensionality.21
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Figure 3: Approximation using Value Function Iteration. Top panel: Policy functions for
capital for different grid sizes for a particular productivity level. Bottom panel: Option
values to the plant of being active (red dashed) and inactive (blue solid) for different capital
grids (zoomed in to show multiple intersections). Subplots are shown for shock 7.

Table 2 reports the same statistics also for VFI-INT, FEM and EGM. The grid scenarios

1-12 in this table are comparable across methods in terms of average log-absolute Euler equa-

tion errors. For the baseline scenario, VFI approximates the threshold with an imprecision

that is up to 10 times larger than for other methods – 8.56% versus 0.85% (VFI-INT), 3.48%

(FEM), 3.45% (EGM). The three alternative methods deliver – in line with the predictions

by theory – a single intersection of V i and V a (the mean number of grid points across shocks

is exactly unity). These methods are therefore much more suitable than VFI for approxi-

21For similar reasons, VFI is also unable to correctly approximate the jump discontinuities and concave
parts of the policy function in the active region. However, while the threshold is crucial for the dynamics of
the model, the poor approximation of the active region is only of larger importance when the persistence of
the technology shock is low.
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mating models with jump discontinuities in policy functions. The percentage differences in

capital stocks reflect here only the distance between two adjacent grid points to the left and

right of the threshold. The relatively large numbers for coarse grids highlight that in order

to approximate the location of the jump discontinuity precisely, these three methods require

finer grids relatively to grids that are sufficient to approximate smooth and concave models

(i.e. convex choice sets).

Limited Informativeness of Euler Equation Errors. It is striking from Table 2 that

for comparable average Euler equation errors, VFI and the other three methods deliver very

different policy functions in terms of (at least) the determination of the threshold. Euler

equation errors are often employed as a measure of accuracy and for comparisons across

methods. However, it has so far been overlooked in the literature that the information about

the accuracy of approximation provided by average and maximum Euler equation errors

for problems with jump discontinuities in the policy functions is limited. This becomes

evident when considering the recursive problem outlined in Section 2: Euler equation errors

measure only how well the active region is approximated, i.e. the accuracy of the decision in

equation (6), using information about the slope of the value function.22 So they do provide an

indication about the accuracy of approximation of the policy function in the active region.

However, Euler equation errors fail to measure the accuracy of the binary decision to be

active or inactive shown in equation (5), determining the location of the threshold requires

information about the slope and the level of the value function. As a result, Euler equation

errors alone are not a sufficient measure of accuracy when policy functions exhibit jump

discontinuities.

We also compute Euler equation errors near the threshold. These are generated by

22Clausen and Strub (2012) show that an Euler equation holds in the active region for our class of models.
They do not hold in the inactive region.
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simulating the model’s (S, s) behavior for each shock value individually and calculating the

mean of absolute log-Euler equation errors across all shocks for observations with positive

investment.23 These are reported in Table 2 (column 6) and it is evident that – as one would

expect from the discussion above – also the Euler equation errors at the threshold provide

limited guidance on accuracy as they are very similar across grid scenarios.

5.2 Economic Significance

We explore the economic relevance of the differences across methods documented above

through a simulation exercise that focuses on two key statistics of the model: the size of

investment spikes and the mean of capital. These two statistics are often used to calibrate

models with (S, s) adjustment of capital to the data. Moreover, the mean of capital is a pop-

ular measure for firm size. These two statistics crucially depend on a precise determination

of the location and size of the jump discontinuity.

The following simulation exercise focuses on the effects near the threshold as this is most

important for model dynamics. We evaluate the distance between the two key statistics

implied by the different approximation methods and the “true” statistics. As the model

does not have an analytical solution, we solve it using FEM and EGM — the two methods

that allow by construction for the highest accuracy of threshold determination — for a

large number of grid points and label the average statistics produced by the resulting policy

functions to be the “true” statistics.24 We solve the model with the four approximation

methods at the grid scenarios shown in Table 2. For each method and grid scenario, we

23To clearly identify the effects of imprecise threshold determination we determine in this (and the fol-
lowing) simulation exercises the model’s (S, s) adjustment behavior implied by a particular shock value at
a time and report the mean of these exercises across shock values. We simulate the model for each shock
value for 1050 periods and discard the first 50 periods to remove any impact of start values.

24In particular we use 4000 capital grid points for FEM, and 2500 for EGM. These deliver a unique
intersection of V i and V a. The average absolute percentage deviation between the two sets of statistics
across all shocks is 0.5% for the average capital stock and 0.6% for the average investment spike size. These
differences are also consistent with results we obtain using alternative grids (2400 for FEM and 1500 for
EGM). Our results also continue to hold using these alternative grids.
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Table 2: Statistics across different approximation methods

grid capital Euler equation errors Inaccuracy in capital threshold determination
scenario grid points average maximum threshold difference in % (across shocks) mean number

capital mean capital stdev. of grid points

VFI 1 200 -1.40 -0.94 -1.09 28.22 12.90 14.90
2 300 -1.53 -0.96 -1.11 21.04 8.96 17.40
3 350 -1.58 -0.95 -1.11 17.64 6.75 18.20
4 600 -1.71 -0.95 -1.12 11.78 4.17 20.40

baseline 5 700 -1.76 -0.95 -1.11 8.56 5.58 17.30
6 850 -1.78 -0.96 -1.15 7.73 3.17 19.30
7 950 -1.80 -0.97 -1.11 6.87 2.00 20.10
8 1050 -1.83 -0.97 -1.15 5.69 2.19 17.90
9 1400 -1.88 -0.97 -1.11 4.04 2.00 16.80

10 1900 -1.93 -0.98 -1.15 3.20 1.42 18.10
11 2300 -1.96 -0.98 -1.11 2.43 1.30 16.20
12 3000 -1.99 -0.98 -1.13 1.82 0.79 16.70

VFI int 35 1 35 -1.43 -0.99 -1.16 10.07 3.14 1
2 80 -1.55 -1.00 -1.15 4.20 1.26 1
3 115 -1.59 -0.99 -1.13 2.89 0.86 1
4 276 -1.72 -1.00 -1.13 1.18 0.34 1

baseline 5 385 -1.76 -1.00 -1.12 0.85 0.25 1
6 400 -1.78 -1.00 -1.12 0.81 0.24 1
7 500 -1.80 -1.00 -1.12 0.65 0.19 1
8 750 -1.84 -1.00 -1.13 0.43 0.13 1
9 1000 -1.88 -1.00 -1.13 0.32 0.09 1

10 1700 -1.93 -1.00 -1.13 0.19 0.06 1
11 2300 -1.96 -1.00 -1.12 0.14 0.04 1
12 2500 -1.97 -1.00 -1.13 0.13 0.04 1

FEM 1 18 -1.41 -1.02 -1.11 21.16 6.32 1
2 25 -1.53 -1.01 -1.13 14.45 4.74 1
3 27 -1.57 -1.01 -1.12 13.35 4.46 1
4 83 -1.72 -1.00 -1.11 4.07 1.23 1

baseline 5 95 -1.74 -1.01 -1.13 3.48 1.01 1
6 150 -1.78 -1.00 -1.13 2.19 0.64 1
7 175 -1.80 -1.01 -1.12 1.88 0.55 1
8 250 -1.84 -1.00 -1.13 1.31 0.38 1
9 330 -1.89 -1.00 -1.13 0.99 0.29 1

10 550 -1.93 -1.00 -1.12 0.59 0.17 1
11 800 -1.96 -1.00 -1.12 0.41 0.12 1
12 1000 -1.98 -1.00 -1.12 0.32 0.09 1

EGM 1 19 -1.42 -1.02 -1.12 19.54 6.01 1
2 29 -1.55 -1.02 -1.12 12.33 3.48 1
3 34 -1.57 -1.01 -1.13 10.24 2.99 1
4 70 -1.72 -1.01 -1.12 4.86 1.45 1

baseline 5 97 -1.76 -1.01 -1.12 3.45 1.00 1
6 120 -1.79 -1.01 -1.11 2.77 0.81 1
7 128 -1.80 -1.01 -1.12 2.60 0.75 1
8 180 -1.84 -1.01 -1.12 1.83 0.53 1
9 210 -1.88 -1.01 -1.11 1.57 0.46 1

10 400 -1.93 -1.01 -1.12 0.82 0.24 1
11 500 -1.96 -1.01 -1.12 0.65 0.19 1
12 650 -1.99 -1.01 -1.11 0.50 0.14 1

VFI: Value Function Iteration, VFI-INT: VFI with local interpolation, EGM: Endogenous Grid Method, FEM: Finite
Element Method. Average and maximum Euler equation errors are calculated across policy functions for all shocks in the
area of the state space in which the Euler equation holds. We calculate the threshold Euler equation error as follows. For
each shock value we simulate time series of 1050 periods of which the first 50 periods are discarded. For every observation we
calculate the Euler equation error if it is valid. The statistics reported is the mean Euler equation error across all shocks and
all simulated periods. The last three columns show statistics about the percentage difference between the value for today’s
capital implied by the grid point min(V i > V a) and today’s capital implied by the grid point max(V i < V a): column 7
shows the mean percentage difference across all shocks and column 8 reports the standard deviation. Colunmn 9 shows the
corresponding average number of grid points across shocks.
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simulate the (S, s) behavior of the model for a particular shock value and calculate the

absolute percentage deviation of the size of investment spikes and capital mean from the

corresponding true solution.25 The average deviations of these statistics across all shock

values as well as the maximum deviations are displayed in Figure 4.
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Figure 4: We simulate the (S, s) behavior of the model for each productivity shock value.
We then average the absolute % difference for each shock from the true statistics across sim-
ulations. Panel 1(a) shows these differences for the average investment spike size. Panel 2(a)
shows the corresponding differences for the average capital stock. To capture the variation
across shocks, Panel 1(b) shows the maximum deviations of the investment spike size along
with the mean deviations. Fig 2(b) shows the corresponding maximum and mean differences
for the capital stock.

For each grid scenario 1-12, Figure 4 shows in panel (1a) the average (across all shocks)

absolute percentage deviation of investment spike sizes implied by the four approximation

methods from the true solution. This figure shows that the spike size deviation of FEM (red

25We simulate the model for each shock value for 1050 periods and discard the first 50 periods to remove
any impact of start values.
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∗), EGM (green ◦) and VFI-INT (black ×) from the true solution is for most grid scenarios

very similar across these methods. For scenarios with a relatively coarse grid, investment

spike sizes are noticeably different from the true solution. The relatively large distance be-

tween grid points prevents a precise determination of the threshold which is also reflected in

the inaccuracy statistics around the threshold reported in Table 2 (columns 7 and 8). How-

ever, for somewhat finer grids (scenarios 6-12) the mean absolute deviation from the true

solution is rather small, between 0.31% and 2.07% indicating a very precise approximation of

the size of the jump discontinuity. This is very much in contrast to comparable statistics for

VFI (solid blue). The average absolute investment spike size deviation from the true solution

using VFI is even for grid scenarios 6-12 rather large – between 2.30%-9.63%. Also the de-

viation in comparison to the three other approximation methods is economically significant,

e.g. for scenario 7, VFI implies an average absolute investment spike size deviation that is

approximately 8 percentage points above the ones implied by VFI-INT, FEM and EGM.

Overall, this figure clearly shows that VFI produces, even for very fine grids, substantial and

economically significant deviations from the true solution and the other methods.

Panel (2a) shows comparable statistics for the average absolute deviation of the mean

of capital from the true solution. This statistic gives an indication about the precision of

the approximated location and size of the jump discontinuity.26 The results are qualitatively

very similar to the case considering investment spike size: FEM, EGM and VFI-INT de-

liver very similar capital means that are relatively close to the true solution. In contrast,

average absolute capital mean deviations generated using VFI are rather far away from the

true solution and are economically rather different to the ones delivered by the other three

approximation methods. Grid scenario 4 for example implies an average absolute deviation

from the capital stock that is more than 3 percentage points higher than for the other three

26Given the (S, s) behavior of capital, the mean of capital provides information on both the size of invest-
ment spikes and the size of the capital stock when investment is undertaken.
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methods. We see it as a success of VFI-INT that the percentage deviations implied by this

method are in the range of the ones implied by FEM and EGM, despite the use of a finite

number of interpolation points. This finding is especially useful when taking into account

implementation and computation time of the methods, which will be discussed below.27

Importantly, there are considerable differences in the deviations across shocks that are

not evident from the means reported in panels (1a) and (2a). To highlight these differences,

we plot in panels (1b) and (2b) the absolute average deviation for both statistics of VFI

(solid blue) and VFI-INT (black ×) and the corresponding maximum deviations across all

shocks (dashed lines). For most grid scenarios with finer grids, even the maximum deviation

of VFI-INT is below the average deviation of VFI. Considering the maximum deviation

across shocks further highlights the economic significance between methods. For example,

VFI implies for grid scenario 8 that a firm’s investment spike size deviates up to 16.07%

from the true size. In contrast VFI-INT only implies a maximum deviation of 3.67%. VFI

implies for the same scenario for a firm’s mean capital stock a deviation up to 7.81% from

the true statistics, while this value for VFI-INT is only 1.64%.

While we use a specific model to exemplify the problems of VFI to accurately identify a

jump discontinuity in policy functions, note from the exposition above that these problems

will be present in any application in which the location of discontinuities are determined by

the intersection of option values. The economic significance of the differences between VFI

and the other three methods clearly depends on specific the model and the parameterization.

Note that our parameterization is relatively conservative. Differences between VFI and the

other two methods would be even more pronounced for other, widely used, parameter values

in the literature. For example, our value for the parameter determining the returns of capital,

α = 0.592, is at the upper bound of used values. Lower values for α emphasize the problems

27The interpolation in VFI-INT can be vectorized which implies that additional interpolation points come
at very low additional costs in terms of computation time. Results with different numbers of interpolation
points are available upon request.
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of VFI to identify the threshold as it leads to flatter option values V i and V a.28 Appendix A.6

shows that the results described above are robust for various alternative parameterizations.

We have shown that the reliance on VFI to approximate the well-known and widely

used model of Cooper and Haltiwanger (2006) can be problematic. However, our results

apply more broadly as many other models with jump discontinuities in policy functions are

approximated using VFI in the literature (e.g. Adda and Cooper (2000)). Our analysis

shows that approximations based on VFI can be highly inaccurate unless extremely fine

capital grids are used.

5.3 Method Comparison

The discussion above shows that VFI-INT, EGM and FEM can all address the problems

encountered by VFI in approximating policy functions with jump discontinuities. However,

there are pros and cons between these methods in terms of speed and implementation com-

plexity. Traditionally, speed across methods is compared for a given level of accuracy as

measured by average log absolute Euler equation errors. This type of comparison is pro-

vided in Table 2 where, consistent with the literature, EGM is by far the fastest method.

FEM is by far the slowest as the root-finding problem is very time consuming whereas VFI

and VFI-INT are of roughly comparable speed for most grid scenarios and much faster than

FEM.29

It is important to note however that this type of benchmarking can be misleading for

models with jump discontinuities in policy functions because, as shown above, Euler equation

errors are not a sufficient measure to determine the accuracy of numerical approximations

for such models. From Figure 4 one can see that FEM, EGM and VFI-INT for correspond-

28Commonly used values are between 0.30 and 0.42, see for example Gomes (2001), Görtz and Tsoukalas
(2013) and King et al. (1988).

29We ran all programs on an Intel i7-3770 (3.4 GHz) Processor with 4 active cores and 16 GB of memory
running Windows 7. As we implemented all methods using Matlab, we can directly compare running time
and implementation complexity.
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Table 3: Computing Time Across Methods (in seconds).

grid VFI VFI-INT FEM EGM
scenario grid points CPU(s) grid points CPU(s) grid points CPU(s) grid points CPU(s)

1 200 15.45 35 12.66 18 55.93 19 1.98
2 300 26.28 80 18.37 25 73.42 29 2.11
3 350 31.97 115 22.77 27 81.34 34 2.26
4 600 67.12 276 44.71 83 228.56 70 3.72
5 700 81.46 385 66.46 95 250.70 97 5.49
6 850 107.83 400 68.68 150 407.53 120 7.48
7 950 125.88 500 90.76 175 471.26 128 7.77
8 1050 147.91 750 157.41 250 682.25 180 13.82
9 1400 262.07 1000 236.27 330 852.61 210 20.63

10 1900 416.55 1700 570.21 550 1424.64 400 82.81
11 2300 591.61 2300 1035.58 800 2158.81 500 146.83
12 3000 1126.59 2500 1179.59 1000 2645.43 650 200.16

VFI: Value Function Iteration, VFI-INT: VFI with 35 interpolation points on each side of a capital grid point, EGM:
Endogenous Grid Method, FEM: Finite Element Method. For each grid scenario methods are comparable in terms of
average Euler equation errors. CPU time for FEM and VFI interpolated is reported utilising four processing units.
Parallelization did not improve the performance of VFI and EGM.

ing grid scenarios provide a comparable level of precision in terms of considered statistics.

This implies that the corresponding grid scenarios, and therefore also the computation times

shown in Table 3, are roughly comparable. However, one can also see that much higher grid

scenarios are needed for VFI to produce a similar level of precision in Figure 4. For example,

VFI scenario 12 produces a precision comparable to scenario 5 for the other methods, imply-

ing that VFI (1126.59 seconds) takes about four times as long as FEM (250.70 seconds). So

for our model with jump discontinuities in the policy function, VFI is actually much slower

than FEM when benchmarking accuracy in terms of deviations from true statistics.

In general the applicability of EGM is problem dependent and for this reason EGM is by

far the most complex algorithm to implement.30 One important limitation of EGM is that it

is limited to one continuous choice variable unless it is combined with additional VFI steps.

Additional control or state variables require a number of intricate extensions that are often

problem specific and may necessitate the use of higher dimensional interpolation (see for

30Conventionally reported measures of complexity such as code length imply EGM (300 lines of code) is
much more intricate to implement than the other methods (120 lines of code).
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example Barillas and Fernandez-Villaverde (2007), Hintermaier and Koeniger (2010), Fella

(2014) and Ludwig and Schön (2013)). For models with jump discontinuities, demarcat-

ing the non-concave region adds substantial programming complexity, and using VFI-INT

rather than VFI in extension to EGM is then more appropriate in light of our findings. VFI,

VFI-INT and FEM are far simpler to implement and easily extend to additional state and

control variables. The combination of computational speed and relatively easy implementa-

tion and adaptation make VFI-INT especially suitable for approximating models with jump

discontinuities in the policy functions.

6 Conclusion

Differences across approximation methods have been extensively studied for dynamic

economies where policy functions are continuous. However, the literature provides little

guidance about the adequacy and accuracy of computational methods for dynamic economies

where agents face non-concave problems. This paper is a first attempt to fill this gap. We

highlight that for models with jump discontinuities in policy functions (i) using Value Func-

tion Iteration (VFI) is problematic as it fails to accurately identify both the location and

size of jump discontinuities; and (ii) Euler equation errors are not a sufficient measure for

accuracy as they do not provide indications about how well the location of the discontinu-

ity is approximated. We show that much more accurate approximations for this class of

models are delivered by the Endogenous Grid Method (EGM), the Finite Element Method

(FEM) and value function iteration when extended with a local interpolation step (VFI-

INT). We employ a well established model of a plant where investment is subject to fixed

adjustment costs to compare key statistics from simulations across methods. We show that

differences between policy functions generated by VFI and the three alternative methods

are economically significant. As these differences across methods cannot be identified using
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Euler equation errors, also the conventional speed comparisons which rely on these as a

measure for benchmarking accuracy can be misleading.
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A Online Appendix

In this Appendix we provide additional information to the results shown in the paper
”Solving Models with Jump Discontinuities in Policy Functions”. Appendix A.1 shows the
derivation of the model’s Euler equation. Appendices A.2 - A.5 provide details on the imple-
mentation of the four approximation methods. Appendix A.6 provides results for alternative
parameterizations.

A.1 Euler equation when plant is active

When the plant is active (I > 0), the optimal investment strategy can be characterized
by an Euler equation. Using equations (3) and (6) the plant’s problem in this case can be
formulated as

V (K,A) = max
K′

AKα−pI(K ′−(1−δ)K)−FK− γ
2
K

(
K ′ − (1− δ)K

K

)2

+βEA′|AV (K ′, A′).

Following Proposition 1 of Clausen and Strub (2012), at the optimal choice of capital to-
morrow the following first-order condition holds:

pI + γ
K ′ − (1− δ)K

K
= βEA′|AVK′(K ′, A′)

where VK′(·) denotes the function’s derivative with respect to K ′. Then, the following Euler
equation characterizes investment dynamics for an active plant

pI + γ
I

K
= βEA′|A

(
αA′(K ′)α−1 + pI(1− δ)− F +

γ

2

( I ′
K ′

)2

+ γ(1− δ) I
′

K ′

)
, (A.1)

where I ′ = K ′′ − (1− δ)K ′. Given that the plant in not active for all possible values of the
state variables, the above equation holds only when investment is strictly positive.

A.2 Value Function Iteration

We implement discrete value function iteration (VFI) as follows:

1. Fix the upper and lower bound for capital at [Kmin, Kmax].

2. Generate an equally spaced capital grid of n points GK = {Ki}ni=1 on [Kmin, Kmax].

3. Approximate the AR(1) process for the log of productivity using an m-state Markov
chain. Denote the set of states by A. Productivity is drawn from the set GA ≡ eA.

4. Guess an initial value function V 0(Ki, Aj) = AjK
α
i and policy function K ′0(Ki, Aj) = 0

at each point [Ki, Aj] on the grid where Ki ∈ [Kmin, Kmax] and Aj ∈ GA.
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5. Set the tolerance parameter tol = 10−4. This parameter is used to determine if the
value function has converged.

6. For each level of capital Ki ∈ [Kmin, Kmax] and productivity Aj in GA:

(a) compute the value of being inactive:

V ina(Ki, Aj) ≡ AjK
α
i + βEA′|Aj

V 0(Ki(1− d), A′)

(b) compute the value of being active:

i. for each possible K ′ ≥ (1− d)Ki ∈ [Kmin, Kmax] compute

Ṽ (K ′) ≡AjKα
i − p(K ′ −Ki(1− δ))− FKi −

γKi

2

(
K ′ −Ki(1− δ)

Ki

)2

+ βEA′|Aj
V 0(K ′, A′)

ii. the value of being active is V act(Ki, Aj) ≡ maxK′ Ṽ

(c) update the value and policy functions

i. if V ina(Ki, Aj) ≥ V act(Ki, Aj) then V 1(Ki, Aj) = V ina(Ki, Aj), K
′1(Ki, Aj) =

(1− d)Ki

ii. if V ina(Ki, Aj) < V act(Ki, Aj) then V 1(Ki, Aj) = V act(Ki, Aj), K
′1(Ki, Aj) =

arg max Ṽ

7. Check if ‖V 0 − V 1‖∞ < tol. If not set V 0 = V 1, K ′0 = K ′1 and repeat Step 5.

8. Verify that Kmin < K ′(Kmin, Aj) < K ′(Kmax, Aj) < Kmax for all j. If not, enlarge grid
and repeat Steps 1-6.

A.3 Value Function Iteration with Local Interpolation

We implement local interpolation within VFI as follows:

1. First follow Steps 1-6b) for VFI above.

2. Then, let (K∗i−1, Aj), and (K∗i+1, Aj) be the grid points adjacent (resp. to the left and
right) to the optimal value of K ′(Ki, Aj), denoted (K∗i , Aj) found by VFI.

3. Generate 35 new capital grid points on the intervals [(K∗i−1, Aj), (K
∗
i , Aj)], and [(K∗i+1, Aj), (K

∗
i , Aj)].

4. Compute the new values based on interpolation of being active, V a
INT , and inactive,

V i
INT , using these new points as additional possible values for tomorrow’s capital.

5. Update the optimal value at Ki, Aj again as follows: V (Ki, Aj) = max{V a
INT , V

i
INT}.
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6. Update the policy function with the optimal capital value corresponding to the maxi-
mum found in the previous step.

7. Proceed with step 7 of the VFI algorithm.

A.4 Finite Element Method

We implement a Finite Element Method approximation to the value function via the
following algorithm:

1. Fix the upper and lower bound for capital at [Kmin, Kmax].

2. Generate an equally spaced capital grid of n points GK = {Ki}ni=1 on [Kmin, Kmax].

3. Approximate the AR(1) process for the log of productivity using an m-state Markov
chain. Denote the set of states by A. Productivity is drawn from the set GA ≡ eA.

4. Guess an initial value function {{V 0
ij}ni=1}10

j=1 at each point [Ki, Aj] of the state space.
We set V 0

ij = AjK
α for all i, j.

5. Set the tolerance parameter tol = 10−4.

6. We approximate the value function V (K,A) as V̂ (K,A), a piece-wise linear interpola-
tion through the points {{V 0

ij}ni=1}10
j=1 where

V̂ 0
ij(K,A) =

{
V 0(Ki, Aj) +

V 0
i+1−V 0

i

Ki+1−Ki
(K −Ki) if K ∈ [Ki, Ki+1]

0 otherwise

7. For each point in the capital grid find the value of being inactive V ina(K,A) where

V ina(K,A) = AKα + βEA′|AV̂
0(K(1− d), A′)

8. Find the value of being active, V act(Ki, Aj):

• first find K ′(Ki, Aj) = arg maxK′≥Ki(1−d) Ṽ (K,A) ≡ AKα
i − p(K ′ −Ki(1− δ))−

FKi − γKi

2

(
K′−Ki(1−δ)

Ki

)2

+ βEA′|AV̂
0(K ′, A′)

• the value of being active is then V act(Ki, Aj) = Ṽ (K ′(Ki, Aj)).

9. Update the value and policy functions

(a) if V inv(Ki, Aj) ≥ V act(Ki, Aj) then V1(Ki, Aj) = V inv(Ki, Aj), K
′(Ki, Aj) = (1−

d)Ki

(b) if V inv(Ki, Aj) < V act(Ki, Aj) then V1(Ki, Aj) = V act(Ki, Aj), K
′(Ki, Aj) =

arg max Ṽ
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10. Check if ‖V 0 − V 1‖∞ < tol. If not set V 0 = V 1 and repeat the steps above.

11. Verify that Kmin < K ′(Kmin, Aj) < K ′(Kmax, Aj) < Kmax for all j. If not, enlarge grid
and repeat Steps 1-12.

A.5 Endogenous Grid Method

We implement the Endogenous Grid Method as follows:

1. Fix the upper and lower bound for capital at [Kmin, Kmax].

2. Generate an n-point equally spaced grid GK′ = {K ′i}ni=1 for tomorrow’s capital over
[Kmin, Kmax].

3. Approximate the AR(1) process for the log of productivity using an m-state Markov
chain. Denote the set of states by A. Productivity is drawn from the set GA ≡ eA.

4. Guess an initial value for EV (K ′, A′) at each point [Ki, Aj] of the state space and
construct a corresponding guess for EVK′(K ′, A′).

5. Set the tolerance parameter tol = 10−4.

6. Construct an endogenous grid of capital points {Kend
i }ni=1 using the Euler equation

Kend
i =

γIi

βEA′|A

(
αA′(K ′i)

α−1 + p(1− δ)− F + γ
2

(
I′i
K′

i

)2

+ γ(1− δ) I
′
i

K′
i

)
− p

to obtain n matching pairs {Kend
i , K ′i}ni=1.

7. Ensure capital is not reversible: if K ′/Kend
i < (1− δ) then set Kend

i = K ′i/(1− δ).

8. Identify the non-concave region

(a) identify the set of jumps in EVK′(K ′, A′) by noting that around these jump points
there are sharp changes in the slope of EVK′(K ′, A′).

(b) find the minimum and maximum of values of EVK′(K ′, A′) at these jumps, and
denote these by V , V .

(c) the non-concave region for tomorrow’s productivityA′j consists of all pairs {Kend
i , K ′i}

where EVK′(K ′i, A
′
j) ∈ [V , V ].

9. For each pair {Kend
i , K ′i} inside the non-concave region

(a) compute the value to being active for every K ′j 6= K ′i

(b) if the maximum does not occur at K ′i then discard the pair {Kend
i , K ′i}
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(c) if the maximum does occur at K ′i then retain the pair {Kend
i , K ′i}

10. Interpolate to recover new endogenous capital values for discarded values of K ′.

11. Compute values to being active and inactive at each grid point and construct the new
value function.

12. Update EV (K ′, A′) using the new value function and the transition matrix.

13. Check if value function has converged to within tol. If not repeat steps 7-13.

A.6 Results for alternative Parameterizations

Figures 5, 6 and 7 show absolute percentage deviations of the mean of capital and in-
vestment spike size from the true statistics generated by VFI, VFI-INT, EGM and FEM
for alternative parameterizations.31 Table 4 summarises the corresponding capital grids and
Euler equation errors. For each of these alternatives we deviate from the parameterization
shown in Table 1 by alternating one parameter at a time. We evaluate commonly used
values in the literature: a lower value of capital in the production, α = 0.4, a higher capital
depreciation rate, δ = 0.1, and a higher parameter for the convex capital adjustment costs,
γ = 0.1. Figures 5 - 7 show that the results discussed in the main body in the paper are
robust for these alternative calibrations.

31For all alternative parameterizations we use 4000 capital grid points for FEM and 2500 for EGM to
calculate the true statistics.
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Figure 5: Alternative calibration using α = 0.4. We simulate the (S, s) behavior of the model
for each productivity shock value. We then average the absolute % difference for each shock
from the true statistics across simulations. Panel 1(a) shows these differences for the average
investment spike size. Panel 2(a) shows the corresponding differences for the average capital
stock. Panel 1(b) shows the maximum deviations of the investment spike size along with the
mean deviations. Fig 2(b) shows the corresponding maximum and mean differences for the
capital stock.
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Figure 6: Alternative calibration using δ = 0.1. We simulate the (S, s) behavior of the model
for each productivity shock value. We then average the absolute % difference for each shock
from the true statistics across simulations. Panel 1(a) shows these differences for the average
investment spike size. Panel 2(a) shows the corresponding differences for the average capital
stock. Panel 1(b) shows the maximum deviations of the investment spike size along with the
mean deviations. Fig 2(b) shows the corresponding maximum and mean differences for the
capital stock.
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Figure 7: Alternative calibration using γ = 0.1. We simulate the (S, s) behavior of the model
for each productivity shock value. We then average the absolute % difference for each shock
from the true statistics across simulations. Panel 1(a) shows these differences for the average
investment spike size. Panel 2(a) shows the corresponding differences for the average capital
stock. Panel 1(b) shows the maximum deviations of the investment spike size along with the
mean deviations. Fig 2(b) shows the corresponding maximum and mean differences for the
capital stock.
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Table 4: Statistics across approximation methods for alternative calibrations.

scenario Calibration with α = 0.4 Calibration with δ = 0.1 Calibration with γ = 0.1
grid Euler equation errors grid Euler equation errors grid Euler equation errors

points avg. max. thresh. points avg. max. thresh. points avg. max. thresh.

VFI 1 200 -1.35 -0.92 -1.12 400 -1.57 -0.95 -1.10 200 -1.44 -0.85 -1.02
2 400 -1.58 -0.93 -1.10 510 -1.63 -0.96 -1.09 400 -1.68 -0.88 -1.02
3 500 -1.66 -0.94 -1.10 600 -1.67 -0.96 -1.10 500 -1.74 -0.89 -1.02
4 600 -1.69 -0.92 -1.11 700 -1.70 -0.96 -1.10 600 -1.79 -0.89 -1.02
5 700 -1.74 -0.93 -1.12 800 -1.73 -0.97 -1.09 700 -1.83 -0.90 -1.03
6 800 -1.75 -0.94 -1.09 900 -1.75 -0.97 -1.10 800 -1.86 -0.89 -1.01
7 900 -1.78 -0.95 -1.10 1200 -1.79 -0.97 -1.09 1900 -2.06 -0.91 -1.01
8 1000 -1.81 -0.94 -1.09 1600 -1.85 -0.98 -1.09 2400 -2.09 -0.91 -1.00
9 1600 -1.91 -0.95 -1.09 2300 -1.90 -0.98 -1.09 2700 -2.11 -0.92 -1.01

10 2000 -1.94 -0.95 -1.09 2700 -1.93 -0.98 -1.09 3000 -2.14 -0.92 -1.01

VFI-INT 1 30 -1.35 -0.99 -1.11 115 -1.57 -1.00 -1.10 50 -1.45 -0.93 -1.02
2 150 -1.57 -0.98 -1.09 210 -1.63 -1.01 -1.09 157 -1.69 -0.94 -1.00
3 275 -1.67 -0.98 -1.10 320 -1.67 -1.00 -1.09 250 -1.74 -0.94 -1.00
4 375 -1.70 -0.97 -1.09 385 -1.70 -1.00 -1.09 350 -1.80 -0.93 -1.00
5 450 -1.74 -0.97 -1.09 500 -1.73 -1.00 -1.09 462 -1.84 -0.94 -1.00
6 520 -1.77 -0.97 -1.09 520 -1.74 -1.00 -1.09 540 -1.86 -0.94 -1.00
7 650 -1.78 -0.97 -1.09 850 -1.79 -1.00 -1.09 1800 -2.05 -0.94 -1.00
8 900 -1.81 -0.97 -1.09 1400 -1.84 -1.00 -1.09 2400 -2.09 -0.94 -1.00
9 1800 -1.92 -0.97 -1.09 2500 -1.91 -1.00 -1.09 2700 -2.12 -0.94 -1.00

10 2500 -1.96 -0.97 -1.09 3000 -1.93 -1.00 -1.09 3000 -2.13 -0.94 -1.00

FEM 1 15 -1.35 -1.01 -1.09 45 -1.56 -1.03 -1.07 15 -1.44 -0.95 -0.99
2 57 -1.59 -0.99 -1.08 70 -1.63 -1.02 -1.08 35 -1.68 -0.94 -0.99
3 75 -1.66 -0.98 -1.09 85 -1.67 -1.01 -1.08 60 -1.71 -0.95 -0.99
4 100 -1.68 -0.98 -1.08 100 -1.69 -1.01 -1.08 100 -1.81 -0.94 -1.00
5 160 -1.73 -0.98 -1.09 130 -1.73 -1.01 -1.08 140 -1.85 -0.94 -1.00
6 175 -1.76 -0.98 -1.09 150 -1.75 -1.01 -1.08 160 -1.87 -0.94 -1.00
7 200 -1.77 -0.98 -1.09 300 -1.79 -1.00 -1.08 600 -2.06 -0.94 -1.00
8 250 -1.80 -0.97 -1.09 600 -1.84 -1.00 -1.09 700 -2.09 -0.94 -1.00
9 700 -1.90 -0.97 -1.09 900 -1.89 -1.00 -1.08 1000 -2.11 -0.94 -1.00

10 1000 -1.95 -0.97 -1.09 1000 -1.92 -1.00 -1.09 1100 -2.12 -0.94 -1.00

EGM 1 17 -1.36 -1.01 -1.08 40 -1.56 -1.02 -1.08 22 -1.43 -0.95 -0.99
2 40 -1.61 -1.00 -1.08 50 -1.63 -1.02 -1.08 48 -1.67 -0.94 -0.99
3 60 -1.68 -1.00 -1.09 70 -1.66 -1.02 -1.08 71 -1.70 -0.94 -0.99
4 70 -1.70 -0.99 -1.09 80 -1.70 -1.02 -1.08 112 -1.81 -0.94 -1.00
5 95 -1.75 -0.99 -1.09 95 -1.74 -1.02 -1.08 150 -1.84 -0.94 -1.00
6 105 -1.77 -0.99 -1.09 130 -1.75 -1.02 -1.08 190 -1.87 -0.94 -1.00
7 110 -1.76 -0.99 -1.09 170 -1.79 -1.02 -1.08 500 -2.04 -0.94 -1.00
8 130 -1.80 -0.99 -1.09 300 -1.86 -1.02 -1.08 650 -2.08 -0.94 -1.00
9 225 -1.90 -0.99 -1.09 450 -1.91 -1.02 -1.08 800 -2.12 -0.94 -1.00

10 350 -1.97 -0.99 -1.09 650 -1.94 -1.017 -1.08 900 -2.13 -0.94 -1.00

VFI: Value Function Iteration, VFI-INT: VFI with local interpolation, EGM: Endogenous Grid Method, FEM: Finite Element
Method. Average (avg.) and maximum (max.) Euler equation errors are calculated across policy functions for all shocks in the
area of the state space in which the Euler equation holds. We calculate the threshold Euler equation error (thresh.) as follows.
For each shock value we simulate time series of 1050 periods of which the first 50 periods are discarded. For every observation we
calculate the Euler equation error if it is valid. The statistics reported is the mean Euler equation error across all shocks and all
simulated periods.
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