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Abstract

The paper presents a model of housing and credit cycles featuring distorted beliefs
and comovement and mutual reinforcement between house price expectations and price
developments via credit expansion/contraction. Positive (negative) development in
house prices fuels optimism (pessimism) and credit expansion (contraction), which in
turn boost (dampen) housing demand and house prices and reinforce agents’optimism
(pessimism). Bayesian learning about house prices can endogenously generate self-
reinforcing booms and busts in house prices and significantly strengthen the role of
collateral constraints in aggregate fluctuations. The model can quantitatively account
for the 2001—2008 U.S. boom-bust cycle in house prices and associated household debt
and consumption dynamics. It also demonstrates that allowing for imperfect knowledge
of agents, a higher leveraged economy is more prone to self-reinforcing fluctuations.
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“At some point, both lenders and borrowers became convinced that house prices would
only go up. Borrowers chose, and were extended, mortgages that they could not be expected
to service in the longer term. They were provided these loans on the expectation that
accumulating home equity would soon allow refinancing into more sustainable mortgages.
For a time, rising house prices became a self-fulfilling prophecy, but ultimately, further
appreciation could not be sustained and house prices collapsed.” (Bernanke (2010))

1 Introduction

The recent decade has witnessed a massive run-up and subsequent collapse of house prices,
as well as the remarkable role of the interaction of housing markets and credit markets in
aggregate fluctuations in the U.S. economy. Real house prices increased considerably in
the decade before the recent financial crisis, as seen in the upper panel of figure 1.1 They
displayed relatively smaller variability before the year 2000 and increased by 35.9% from
2001 to 2006 in which house prices peaked. Associated with the price boom was a sharp
increase in the household credit market debt/GDP ratio2 and a consumption boom. As
can be seen from the lower panel of figure 1, the household credit market debt/GDP ratio
changed moderately before the year 2000 but increased from 45% in 2001 to 70% in 2006.
Aggregate consumption3 grew at about 3% per annum between 2001 and 2006, while its
growth dropped sharply after house prices started to revert, as shown in figure 2.
A number of recent research document over-optimistic expectations about the future path

of house prices and the comovement between the expectations and house price developments
during the housing boom preceded the financial crisis. Cheng, Raina and Xiong (2014)
study personal home transaction data of the mid-level Wall Street managers in securitized
finance both on the buy and sell side, which is supposed to reveal their beliefs about the
path of house prices. They document that the securitization agents held over-optimistic
beliefs about future house prices and call for serious considerations of the role of beliefs
in the financial crisis and the macroeconomic implications of their belief dynamics. Case,
Shiller and Thompson (2012) document over-optimistic expectations of home buyers using
the Case-Shiller home buyer survey implemented at four metropolitan areas of the U.S..
Based on the data from Michigan Survey of Consumers, Piazzesi and Schneider (2009) find
that the “optimism” in the housing markets, i.e., the share of agents believing prices to
increase further, co-moved positively with the house price level and peaked exactly when
house prices reached its peak.
Deriving house price forecasts from the future markets for the Case-Shiller house price

index (where only the data from 2006 onwards are available), Gelain, Lansing, and Mendicino
(2013) find the comovement and mutual reinforcement between agents’ pessimistic price

1The data is taken from the OECD. Its definition is the “national wide single family house price index”.
The real house price index is the nominal house price index deflated by CPI price index. It is normalized to
a value of 100 in 2000. The price-to-rent ratio and price-to-income ratio display a similar pattern.

2The household credit market debt/GDP ratio is measured by the absolute value of the ratio of net credit
market assets of US household and non-profit organizations to GDP. The data is from the Flow of Funds
Accounts of the U.S. provided by the Board of Governors of the Federal Reserve System.

3The data is from Federal Reserve System. It is the Real Personal Consumption Expenditures (series ID:
PCECC96).
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Figure 1: US Real House Prices and Household Credit Market Debt/GDP

beliefs and price realizations during the house price reversal, in particular, “the future market
tends to overpredict future house prices when prices are falling” and persistent one-sided
forecast errors.
The paper develops a model of housing and credit cycles with a housing collateral con-

straint à la Kiyotaki and Moore (1997, henceforth KM) but incorporating an explicit role
for subjective beliefs consistent with the evidence in the work mentioned earlier. The model
can quantitatively account for the 2001—2008 U.S. boom-bust cycle in house prices and as-
sociated debt and consumption dynamics following the strong fall in real interest rates after
the year 2000.
In the model agents know their own objective, constraints and beliefs but have imper-

fect knowledge about the macroeconomy, such as other agents’preferences and prices beliefs
unlike in the standard Rational Expectations (RE) modeling. Relaxing such informational
assumption leads to agents’uncertainty about the equilibrium mapping between fundamen-
tals (e.g. preference shocks, house holdings) of the economy and house prices, which is
similar to that economists appear to be uncertain about the right model governing house
prices. Following Adam and Marcet (2011), agents are assumed to be “Internally Rational,”
i.e., making optimal decisions under a completely specified and dynamically consistent sub-
jective belief system about all payoff-relevant variables, including house prices. Internally
rational agents do not understand how market prices are formed, so their subjective price
beliefs need not be exactly the same as the objective price density as under RE. Yet their
subjective beliefs are near-rational or close to the RE equilibrium beliefs. Optimal decisions
imply that agents apply Bayes’law to equilibrium outcomes.
The Bernanke quotation before the Introduction can be viewed as a rough statement of

the mechanism of the model and more details are as follows. The trigger of the price boom
in the model is the persistently low interest rates after the year 2000. Responses of prices
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and quantities in the model are drastically amplified due to the comovement and mutual
reinforcement between agents’expectations and house price developments via credit expan-
sion/contraction. Positive development or surprise in house prices brings about agents’belief
revision and optimistic expectations. Optimism about future house prices induces credit ex-
pansion, which in turn boosts housing demand and house prices. The realized house prices
partially validate the optimism, which leads to further optimism and persistent increases
in house prices. Associated with the price boom is a widening household credit market
debt/GDP ratio due to rising collateral values. Production and consumption amplification
arise from shifts of collateral to more productive borrowers.
At some point, house prices will fall short of agents’expectations due to the combina-

tion of rising interest rates and endogenous dynamics, i.e., the dominance of the negative
effect of excessive debt repayments. 4This sets a self-reinforcing decline in motion. Agents
revise their belief downward and become pessimistic about future house prices and collateral
values, which contracts lending, housing demand and house prices. The realized prices rein-
force agents’pessimism and leads to further pessimism, inducing periods of persistent and
downward adjustments of beliefs and actual prices.
Consistent with Adam, Marcet and Nicolini (2011),5 the paper emphasizes the role of

the persistently low interest rates in the house price boom. Another policy implication of
the paper is that a higher leveraged economy is more prone to self-reinforcing fluctuations
allowing for imperfect knowledge about asset prices. Increasingly optimistic price beliefs
endogenously enhance borrowing capacity, so that the drag of debt repayments based on
less optimistic past beliefs on house prices becomes relatively smaller. The positive effect of
the relative reduction of the debt burden on house prices will be suffi ciently large when the
leverage ratio is suffi ciently large, so that realized house prices will be suffi ciently large and
can reinforce agents’optimism. Similarly for increasingly pessimistic beliefs. Simulations

4More generally than this particular episode, house price reversal in the learning model can be due to
policy changes, or exogenous changes in fundamentals, or endogenous dynamics, or a mix of them.

5Section 4.4.1 provides a detailed discussion of the relation of the paper to Adam, Kuang and Marcet
(2011).
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show that the amplification of house prices and quantities responding to the interest rates
changes in the learning model relative to RE is non-linear and increasing in the leverage
ratio of the economy.
The rest of the paper is structured as follows. Section 1.1 reviews related literature.

Section 2 presents the model and agents’ optimality conditions. Section 3 discusses the
equilibrium with imperfect knowledge, belief specification and optimal learning behavior of
agents. The mechanism of the learning model is inspected in section 4. Quantitative results
and further intuition of the learning model are presented in section 5. Section 6 concludes.

1.1 Related Literature

A strand of literature has studied the role of collateral constraints as an amplification mech-
anism transforming relative small shocks to the economy into large output fluctuations, such
as KM, Kocherlakota (2000), Cordoba and Ripoll (2004), Iacoviello (2005) among others.
More recently, a number of papers along this line attempt to understand the recent house
price dynamics and its macroeconomic implications, such as Ferrero (2011), Justiniano, Prim-
iceri, and Tambalotti (2014), and Hoffmann, Krause and Laubach (2012). The model can
generate additional non-fundamental price fluctuations and strengthen the role of collateral
constraints by allowing for agents’uncertainty about the equilibrium mapping.
Liu, Wang, and Zha (2013) find housing demand shocks in their model with land collateral

constraints as the major driving force of land price fluctuations. Learning may be viewed as a
structural interpretation of such shocks. Boz and Mendoza (2013) study the role of learning
about the riskiness of a new financial environment. Burnside, Eichenbaum and Rebelo (2011)
present a model in which a temporary house price boom emerges from infectious optimism
that eventually dissipates once investors become increasingly certain about fundamentals.
Iacoviello and Neri (2010) estimate a DSGEmodel with a housing collateral constraint via

Bayesian methods using data from 1965 to 2006. They find an important role of monetary
factors in housing cycles over the whole sample and an increasing role during the recent
housing cycle. In addition, they find a nonnegligible spillover effect from housing markets
to consumption over the whole sample and increasing importance of the effect in the recent
housing cycle. The transmission mechanism of the model is consistent with their findings.
The paper relates to the literature which explores the role of self-referential learning in

business cycle fluctuations but differs by incorporating a specific form of financial frictions.
For example, Eusepi and Preston (2011) present a business cycle model with learning which
improves the internal propagation of business cycle shocks and is consistent with many fea-
tures of observed survey expectations data. Huang, Liu and Zha (2009) study implications
of adaptive expectations in a standard growth model and find them promising in gener-
ating plausible labor market dynamics. Milani (2011) estimates a New Keynesian Model
with adaptive learning incorporating survey data on expectations and finds a crucial role of
expectational shocks as a major driving force of the U.S. business cycle.
The paper is also related to papers which study the role of self-referential learning in asset

pricing or asset price booms and busts. For example, Timmermann (1996) and Carceles-
Poveda and Giannitsarou (2008) study asset pricing with learning in an endowment economy
and a production economy, respectively. While they find a limited role of adaptive learning
in asset pricing, section 4.4.2 discusses why the role of learning is strengthened in a credit-
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constrained economy. Adam, Marcet, and Nicolini (2012) and Adam, Beutel, and Marcet
(2014) develop learning models which can quantitatively replicate several major stock pricing
facts, stock markets booms and busts and survey return expectations in the U.S.. Lansing
(2010) examines a near-rational solution to Lucas-type asset pricing models and learning
to generate intermittent stock bubbles and to match many quantitative features observed
in the long-run U.S. stock market data. Branch and Evans (2011) examine stock market
booms and crashes in an asset pricing model with learning about the conditional variance
of a stock’s return. Gelain, Lansing and Mendicino (2013) study a DSGE model with a
housing collateral constraint and a subset of agents using moving-average rules to forecast
future house prices. They find that this “significantly amplifies the volatility and persistence
of house prices and household debt” and examines various policy options to dampen the
excess volatilities.

2 The Model

The model builds on the basic version of the KM model with the major difference of expec-
tation formation.

2.1 The Model Setup

There are two types of goods in the economy, durable assets, i.e., houses, and nondurable
consumption goods, which are produced using houses but cannot be stored. Following KM
and Iacoviello (2005), houses play a dual role: they are not only factors of production but
also serve as collateral for getting loans. Houses are modeled as a producing factor because
production activities usually need space. There are two types of infinitely lived risk-neutral
agents, households and financial intermediaries, each of which has unit mass. Both produce
and consume the nondurable goods. At each date t, there are two markets. One is a
competitive spot market in which houses are exchanged for consumption at a price of qt,
while the other is a one-period credit market in which one unit of consumption at date t is
exchanged for a claim to Rt units of consumption at date t+ 1.
The expected utility of a household i is

EP
i

0

∞∑
t=0

(βB(i))tcBt (i) (1)

where βB(i) is his subjective discount factor and cBt (i) his consumption in period t. The
operator EP

i

0 denotes household i′s expectation in some probability space (Ω,S,P i), where Ω
is the space of payoff relevant outcomes that the household takes as given in his optimization
problem. The probability measure P i assigns probabilities to all Borel subsets S of Ω. It
may or may not coincide with objective probabilities emerged in the equilibrium. Further
details about Ω and P i will be provided in the next section.
The household i produces with a constant return to scale technology. His production

function is
yBt+1(i) = (a+ e)HB

t (i) (2)
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where HB
t (i) is the amount of used houses. Only the aHB

t (i) component of the output is
tradable in the market, while eHB

t (i) is perishable and non-tradable. The introduction of
non-tradable output is to avoid continual postponement of consumption by households.
The household’s production technology is assumed to be idiosyncratic in the sense that

it requires his specific labor input. He always has the freedom to withdraw his labor, or in
the language of Hart and Moore (1994), the household’s human capital is inalienable. The
households are potentially credit-constrained. The financial intermediaries protect them-
selves against risks of default by collateralizing the households’houses. The household i can
at most pledge collateral (1− τ)EP

j

t qt+1H
B
t (i).6 Thus his borrowing constraint is

bBt (i) ≤ (1− τ)
EP

j

t qt+1
Rt

HB
t (i) (3)

where bBt (i) is the amount of loans, EP
j

t qt+1 the financial intermediary j’s expectation about
the collateral price in period t + 1, and Rt gross interest rate between t and t + 1. The
borrowing constraint says that a household can get a maximum loan which is equal to a
fraction of the discounted and expected liquidation value of his house holdings at t+ 1.
The household faces a flow-of-fund constraint

qt(H
B
t (i)−HB

t−1(i)) +Rt−1b
B
t−1(i) + cBt (i) ≤ yBt (i) + bBt (i) (4)

He produces consumption goods using houses and borrows from the credit market. He spends
on consuming, repaying the debt, and investing in houses.
A financial intermediary j’s preferences are specified by a linear utility function. She

maximizes the following expected utility

EP
j

0

∞∑
t=0

(βL(j))tAtc
L
t (j) (5)

where Pj is her subjective probability measure and βL(j) is her subjective discount factor.
At is an i.i.d innovation to the financial intermediary’s patience factor following a truncated
normal distribution with a bounded support [A,A] and E[At] = 1. She faces the following
budget constraint:

qt(H
L
t (j)−HL

t−1(j)) + bLt (j) + cLt (j) ≤ yLt (j) +Rt−1b
L
t−1(j) (6)

where HL
t (j)−HL

t−1(j) is her investment in collateral holdings. She uses a decreasing return
to scale technology to produce, i.e., yLt+1(j) = Gj(HL

t (j)), where Gj′ > 0, Gj′′ < 0.
The aggregate supply of the collateral is assumed to be fixed atH. Later I will assume that

all households (financial intermediaries) have the same subjective discount factor βB = βB(i)
for ∀i (βL = βL(j) for ∀j) and households are less patient than financial intermediaries, i.e.,
βB < βL

A
.

6If borrowers repudiate their debt obligations, lenders can repossess borrowers’ collateral by paying a
transaction cost proportional to the expected liquidation value of the collateral τEP

j

t qt+1H
B
t (i). One expla-

nation is that debt enforcement procedures in real world are significantly ineffi cient and some value is lost
during such procedures, as documented by Djankov, Hart, Mcliesh and Shleifer (2008).
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2.2 Optimality and Market Clearing Conditions

Individual household i′s optimal decisions with respect to consumption, borrowing and col-
lateral demand are similar to those in the original KM paper. Since the return to investment
in collateral holding is suffi ciently high,7 he prefers to borrow up to the maximum, con-
sume only the non-tradable part of his output and invest the rest in collateral holdings. His
optimal consumption is

cBt (i) = eHB
t−1(i) (7)

and optimal borrowing

bBt (i) = (1− τ)
EP

j

t qt+1
Rt

HB
t (i) (8)

The household uses both his own resources and external borrowing to finance collat-
eral holdings. Given that the household consumes only the non-tradable output, his net
worth at the beginning of date t contains the value of his tradable output aHB

t−1(i), and
the current market value of the collateral held from the previous period qtHB

t−1(i), net of
the debt payment, Rt−1b

B
t−1(i). The household i’s demand on collateral can be derived from

(2), (4), (7),and (8)

HB
t (i) =

1

qt − 1
Rt

(1− τ)EP
j

t qt+1
[(a+ qt)H

B
t−1(i)−Rt−1b

B
t−1(i)] (9)

where qt − 1
Rt
EP

j

t qt+1 is the down-payment required to buy a unit of house.
Lagging equation (8) for one period yields the debt repayment at period t, Rt−1b

B
t−1(i) =

(1− τ)EP
j

t−1qtH
B
t−1(i), which is influenced by the price expectation formed at period t−1, i.e.,

EP
j

t−1qt.
8 After plugging the debt repayment into (9), the collateral demand of the household

i is derived as follows

HB
t (i) =

1

qt − 1
Rt

(1− τ)EP
j

t qt+1
(a+ qt − (1− τ)EP

j

t−1qt)H
B
t−1(i) (10)

Note borrowers’collateral demand depends on expectations at two successive periods, EP
j

t−1qt
and EP

j

t qt+1 : the inherited debt repayment and the downpayment. The dependence gives
rise to interesting dynamics under learning, as analyzed later.

7Consider a marginal unit of tradable consumption at date t. The borrower could consume it and get
utility 1. Alternatively he could invest it in collateral holding and produce consumption goods. In the next
period, he will consume the nontradable part of production and invest further the tradable part, and so forth.
Similar to KM, an assumption, i.e., e

1− 1
R (1−τ)

(R−1)(1−τ)
aR > 1

βB
−1, is made to ensure that the discounted sum

of utility of investing it at date t will exceed the utility of immediately consuming it (see Online Appendix

G), which is 1. Assumption βB < βL

A
ensures that the return to investment will also be larger than the

alternative choice, saving it for one period and then investing. Hence the collateral constraint will always be
binding.
The above argument is valid when the economy is in a neighborhood of the steady state under RE. Online

Appendix G shows that the collateral constraint is binding in the quantitative analysis of the learning model
when agents’expectations are formed based on subjective beliefs.

8For the initial period R0bB0 (i) = (1− τ)EP
j

0 q1H
B
0 (i) is assumed to hold.
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A financial intermediary j is not credit constrained and her demand for collateral is
determined by the following optimality condition

1

Rt

Gj′
(
HL
t (j)

)
= qt −

1

Rt

EP
j

t qt+1 (11)

For a marginal unit of collateral, the financial intermediary could get 1
Rt
Gj′
(
HL
t (j)

)
by

producing by herself. Alternatively, she can sell it, lend the proceeds to a household at
rate Rt, and buy it back in period t + 1 at the expected price EP

j

t qt+1, which gives her
qt − 1

Rt
EP

j

t qt+1. At the optimum, the two strategies give identical payoff at period t.

Note households are less patient than financial intermediaries because βB < βL

A
. In

equilibrium the former will borrow from the latter and the interest rate will always be equal
to the financial intermediaries’rate of time preference; that is

Rt =
At

βL
(12)

Assuming homogeneity among all borrowers and all lenders, symmetric equilibrium re-
quires HB

t = HB
t (i), HL

t = HL
t (j), bBt = bBt (i), and bLt = bLt (j). Aggregation yields

HB
t =

∫ 1
0
HB
t (i), HL

t =
∫ 1
0
HL
t (j), bBt =

∫ 1
0
bBt (i), and bLt =

∫ 1
0
bLt (j). Denote by yt the

aggregate output in period t, which is the sum of the production by borrowers and lenders

yt =

∫ 1

0

yBt (i) +

∫ 1

0

yLt (j) (13)

= (a+ e)HB
t−1 +G(HL

t−1) (14)

Market clearing impliesHB
t +HL

t = H and bBt = bLt . In equilibrium, user cost of collateral,
i.e., the opportunity cost of holding collateral for one more period, is

uet = qt −
1

Rt

EP
j

t qt+1

and equals to the present value of the marginal product of collateral.
Due to zero net supply of loans and collateral assets, aggregate consumption ct will equal

to aggregate output yt. Since aggregate investment is automatically zero in the model, I
introduce a fixed, exogenous amount of autonomous investment following Boz and Mendoza
(2013). This captures the investment and government absorption in the data. So the GDP
in the model is the sum of aggregate consumption and investment

GDPt = ct + I (15)

Denote (Debt/GDP )t the household credit market debt/GDP ratio, which is calculated by

(Debt/GDP )t = bBt /GDPt (16)

Online Appendix A provides details on the steady state and the log-linearization of the
model.
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3 Equilibrium with Imperfect Knowledge

In the rational expectations equilibrium, agents are endowed with knowledge about the
equilibrium mapping from the history of collateral holdings and lenders’preference shocks
to collateral prices. Below I assume homogeneous expectations among all agents but relax the
assumption that the homogeneity of agents is common knowledge, in particular, agents do not
know other agents’discount factors and beliefs about future collateral prices. Relaxation
of the informational assumption leads to agents in the model being uncertain about the
equilibrium mapping between collateral prices and fundamentals.

3.1 The Underlying Probability Space and the Internally Rational
Expectation Equilibrium

I now describe the probability space (Ω,S,P). Following Adam and Marcet (2011), I extend
the state space of outcomes to contain not only the sequence of fundamentals, i.e., borrowers’
collateral holdings and the shock to lenders’patience factor, but also other pay-off relevant
variables: house prices. Both borrowers and lenders view the process for qt, At and HB

t

as external to their decision problem and the probability space over which they condition
their choices is given by Ω = Ωq × ΩA × ΩHB where ΩX = Π∞t=0R+ and X ∈ {q, A,HB}.
The probability space contains all possible sequences of prices, lenders’preference shocks
and borrowers’collateral holdings. Denote the set of all possible histories up to period t by
Ωt = Ωt

q×Ωt
A×Ωt

HB and its typical element by ωt ∈ Ωt. The RE belief is nested as a special
case in which the probability measure P features a singularity in the joint density of prices
and fundamentals. Since equilibrium pricing functions are assumed to be known to agents
under RE, conditioning their choices on the collateral price process is redundant.
The agents are assumed to be “Internally Rational”9 as defined below, i.e., maximizing

their expected utility under uncertainty, taking into account their constraints, and condition-
ing their choice variables over the history of all external variables. Their expectations about
future external variables are evaluated based on their consistent set of subjective beliefs
specified in the subsequent subsection, which is endowed to them at the outset.

Definition 1 Internal Rationality

a) A household i is “Internally Rational”if he chooses (bBt (i), HB
t (i), cBt (i)) : Ωt → R3 to

maximize the expected utility (1) subject to the flow-of-fund constraint (4), the collateral
constraint (3) and his production function, taking as given the probability measure P i.
b) A financial intermediary j is “Internally Rational”if she chooses (bLt (j), HL

t (j), cLt (j)) :
Ωt → R3 to maximize the expected utility (5) subject to the flow-of-fund constraint (6) and
her production function, taking as given the probability measure Pj.
Note the internal rationality of agents is tied neither to any specific belief system nor to

the learning behavior of agents. However, the belief system is usually specified with some
near-rationality concept and it is natural to introduce learning behavior of agents.
Below I specify the equilibrium of the economy. Let (ΩA,PA) be a probability space over

the space of histories of preference shocks ΩA. Denote PA the ‘objective’probability measure

9This follows Adam and Marcet (2011).
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for lenders’preference shocks. Let ωA ∈ ΩA denote a typical infinite history of lenders’
preference shocks.

Definition 2 Internally Rational Expectations Equilibrium

The Internally Rational Expectation Equilibrium (IREE) consists of a sequence of equilib-
rium price functions {qt}∞t=0 where qt : Ωt

A → R+ for each t, contingent choices (cBt (i), cLt (j), bBt (i),
bLt (j), HB

t (i), HL
t (j)) : Ωt → R6 and probability beliefs P i for each household i and Pj for

each financial intermediary j, such that
(1) all agents are internally rational, and
(2) when agents evaluate (cBt (i), cLt (j), bBt (i), bLt (j), HB

t (i), HL
t (j)) at equilibrium prices, mar-

kets clear for all t and all ωA ∈ ΩA almost surely in PA.
In the IREE, expectations about collateral prices are formed based on agents’subjective

belief system, which are not necessarily equal to the ‘objective’density. Collateral prices and
borrowers’collateral holdings are determined by equations (10), (11) and market clearing
conditions after agents’probability measures P are specified.

3.2 Agents’Belief System and Optimal Learning Behavior

This section describes agents’ probability measure P and derives their optimal learning
algorithm. Agents’belief system is assumed to have the same functional form as the RE
solution. They believe collateral prices and borrowers’collateral holdings depend on past
aggregate borrowers’collateral holdings.10 It can be represented as following:11

q̂t = ζm + ζpĤB
t−1 + εt (17)

ĤB
t = κm + κpĤB

t−1 + %t (18)

given ĤB
0 , where (

εt
%t

)
∼ iiN

((
0
0

)
,

(
σ2ε 0
0 σ2%

))
(19)

Unlike under rational expectations, they are assumed to be uncertain about the para-
meters and the shock precisions (ζm, ζp, 1

σ2ε
,κm,κp, 1

σ2%
), which is a natural assumption given

that internally rational agents cannot derive the equilibrium distribution of collateral prices.
Note agents’beliefs about (κm,κp, 1

σ2%
) do not matter for equilibrium outcomes because only

one-step ahead expectations about collateral prices enter the equilibrium under internal ra-
tionality in the model. So I omit belief updating equations for (κm,κp, 1

σ2%
) for the rest of

the paper.

10The shock to lenders’preferences is observable but not included in agents’regression. Including it will
generate a singularity in the regression if initial beliefs coincide with the rational expectations equilibrium
given it is the only shock in the model.
11This is analogous to learning the parameter linking prices and dividend in stock pricing models. Note the

dividend here is the marginal product of lenders and a function of borrowers’collateral holding. After log-
linearization, the (percentage deviation of) dividend is just a constant multiple of the (percentage deviation
of) the borrowers’collateral holding.
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Denote K the precision of the innovation εt, i.e., K ≡ 1
σ2ε
. Agents’uncertainty at time

zero is summarized by a distribution

(ζm, ζp, K) ∼ f

The prior distribution of unknown parameters is assumed to be a Normal-Gamma distribu-
tion as follows

K ∼ G(γ0, d
−2
0 ) (20)

(ζm, ζp)′ | K = k ∼ N((θm0 , θ
p
0)
′, (ν0k)−1) (21)

The residual precision K is distributed as a Gamma distribution, and conditional on the
residual precision K unknown parameters (ζm, ζp) are jointly normally distributed. The
deviation of this prior from the REE prior will vanish assuming agents’initial beliefs are at
the RE value θ = θ̄ = (θ̄

m
, θ̄
p
)′, and they have infinite confidence in their beliefs about the

parameters, i.e., γ0 →∞, and ν0 →∞.
For the sake of notational compactness, I denote yt and xt the collateral price q̂t and

(1, ĤB
t−1) in the rest of this section, respectively. θt ≡ (θmt , θ

p
t ) stands for the posterior mean

of (ζm, ζp).
Given agents’prior beliefs (20) and (21), optimal behavior implies that agents’beliefs

are updated by applying Bayes’law to market outcomes. Online Appendix B shows that
the posterior distribution of unknown parameters is given by

K|ωt ∼ G(γt, d
−2
t ) (22)

(ζm, ζp)′|K = k, ωt ∼ N((θmt , θ
p
t )
′, (νtk)−1) (23)

where the parameters (θmt , θ
p
t , νt, γt, d

−2
t ) evolve recursively as following

θt = θt−1 + (xtx
′
t + νt−1)

−1xt(yt − x′tθt−1) (24)

νt = νt−1 + xtx
′
t (25)

γt = γt−1 +
1

2
(26)

d−2t = d−2t−1 +
1

2
(yt − x′tθt−1)′(xtx′t + νt−1)

−1νt−1(yt − x′tθt−1) (27)

To avoid simultaneity between agents’beliefs and actual outcomes, I assume information
on the data, i.e., prices and collateral holdings, is introduced with a delay in θt.12 The
following learning rule using lagged data is used13

θt = θt−1 + (xt−1x
′
t−1 + νt−1)

−1xt−1(yt−1 − x′t−1θt−1) (28)

νt = νt−1 + xt−1x
′
t−1 (29)

12Using current instead of lagged data in belief updating may give rise to multiple equilibria, i.e., high (low)
price realizations associated with optimistic (pessimistic) beliefs. This is a potentially interesting avenue to
explore asset prices boom and bust but is not pursued in the paper.
13A micro-founded belief system justifying the delay of information on the data can be provided following

Adam, Beutel and Marcet (2014).
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This timing convention is standard in the adaptive learning literature. Note while the fore-
cast functions are predetermined, because beliefs are updated using lagged data, agents’
expectations are not predetermined as they depend on period t information.
Equations (28) and (29) are equivalent to the following Recursive Least Square (RLS)

learning algorithm

θt = θt−1 + gtS
−1
t xt−1(yt−1 − x′t−1θt−1) (30)

St = St−1 + gt(xt−1x
′
t−1 − St−1) (31)

when the initial parameter is set to ν0 = NS0 and where gt = 1
t+N

. Then it can be shown
that for subsequent periods we have νt = (t + N)St, for ∀t ≥ 1. Therefore, N in the above
equations measures the precision of initial beliefs.
The term yt−1 − x′t−1θt−1 in equation (30) is agents’ price forecast error at period t.

According to (30) and (31), a surprise in agents’price expectation will induce a revision of
their beliefs or the parameters linking prices and fundamentals.
As standard in the literature, the learning rule with a small and constant gain sequence

gt = g > 0 is used in the quantitative exercise in section 5

θt = θt−1 + gS−1t xt−1(yt−1 − x′t−1θt−1) (32)

St = St−1 + g(xt−1x
′
t−1 − St−1) (33)

A Bayesian micro-foundation for this learning algorithm is provided in Online Appendix C.
The learning rule (32)-(33) implies that agents discount past observations and give relatively
more weight to new data when they are alert to possible structural changes in the economy.
I firstly studies the condition under which the learning process under the decreasing

gain learning algorithm (30)-(31) converges towards the RE equilibrium or equivalently the
Expectational Stability (E-stability) condition. This is a precursor of meaningful dynamics
under the constant gain learning rule because the learning process under the constant gain
learning rule will converge in distribution to the REE if the E-stability condition is satisfied
and the gain parameter is suffi ciently small. Note beliefs under the constant gain learning rule
will not converge pointwise to the RE belief because asymptotically agents will discount past
data and still revise their beliefs responding to forecast errors caused by random innovations.

4 Understanding the Learning Model

This section firstly provides intuitions on the role of subjective beliefs in determining house
prices in the model. It then examines the condition governing the convergence of the learn-
ing process and shows that a higher leveraged economy is more prone to self-reinforcing
fluctuations. It closes with informal discussions of related papers.
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4.1 Dependence of House Prices on Subjective Beliefs

Log-linearizing borrowers’collateral demand (10) under symmetric equilibrium yields14

ĤB
t =

(
q̂t − (1− τ)EPt−1q̂t

)
−
(
q̂t − 1−τ

R
EPt q̂t+1

)
1− 1−τ

R

+ ĤB
t−1 −

1−τ
R
Ât(

1− 1−τ
R

) (34)

ĤB
t depends on expectations of two successive periods: E

P
t−1q̂t and E

P
t q̂t+1. The former arises

from debt repayments and the latter from down-payment.
Recall agents perceive prices to evolve according to (17), while their beliefs are updated

following (30) and (31). The state variables of the learning algorithm are xt = (1 ĤB
t−1)

′.
Agents’conditional expectations are EPt−1q̂t = ζ ′t−1xt−1 and E

P
t q̂t+1 = ζ ′txt where ζt ≡ (ζmt

ζpt )
′. Substituting the conditional expectations into the log-linearized version of equation

(11) and (34) under the symmetric equilibrium, I get the actual law of motion (ALM) for
collateral prices under learning

q̂t = T1(ζ
m
t−1, ζ

m
t , ζ

p
t ) + T2(ζ

p
t−1, ζ

p
t )Ĥ

B
t−1 + T3(ζ

p
t )Ât (35)

where T2(ζ
p
t−1, ζ

p
t ) =

( 1
R
ζpt+

1
η
R−1
R )

(
1− 1−τ

1− 1−τ
R

ζpt−1

)
1−

1−τ
R

1− 1−τ
R

ζpt

and 1
η
is the steady state elasticity of user cost

of collateral with respect to borrowers’collateral holdings.15 The analytical expression for
T1(ζ

m
t−1, ζ

m
t , ζ

p
t ) and T3(ζ

p
t ) is presented in Online Appendix A.

The T-map maps agents’ subjective beliefs to the parameters in the ALM for house
prices under learning. The Minimum State Variables RE belief is the fixed point of the
T-map satisfying T1(ζ

m
, ζ

p
) = ζ

m
= 0 and T2(ζ

m
, ζ

p
) = ζ

p
.16

Subjective beliefs ζp at period t − 1 and t appear three times in the T2−map and their
effects on house prices under learning are presented below. Online Appendix A.1 keeps track
of the three belief terms in deriving the T2−map.
First, the T2−map depends negatively on past beliefs ζpt−1 via debt repayment (see equa-

tion (34)). An increase in ζpt−1 raises borrowers’debt repayment (given borrowers’collateral
holdings ĤB

t−1) which in turn reduces their collateral demand and hence impacts negatively
on house prices. Second, ζpt associated with

1
R
in the T2−map comes from the expected

housing re-sale price in equation (11). A higher ζpt impacts positively on house prices be-

cause agents have more optimistic forecast functions. Third, ζpt associated with
1−τ
R

1− 1−τ
R

in the

T2−map comes from the down-payment in the borrowers’housing demand equation (34).

14This equation is useful for understanding the impulse response functions and discussed further in section
5.1.
15The elasticity is defined as

1

η
≡ d log ue(HB

t )

d logHB
t

|HB
t =H

B = −d logG′(HL
t )

d logHL
t

|HL
t =H

L ×
HB

H −HB

It is the product of the financial intermediaries’marginal product of collateral and the ratio of the households’
collateral holdings to the financial intermediaries’at the steady state.
16The MSV RE solution for borrowers’collateral holdings and collateral prices are an AR(1) process and

ARMA(1,1) process, respectively and suppressed here.

14



A higher ζpt or more optimistic belief relaxes the credit limit and hence raises borrowers’
housing demand/holding. Increased borrowers’demand influences house prices positively in
two ways. On one hand, recall agents use borrowers’house holding to forecast future house
prices, the rising borrowers’house holding boosts house price forecasts and prices. On the
other hand, the increased borrowers’house holding raises the lenders’marginal productivity,
user cost of collateral and house prices.

4.2 Expectational Stability of the REE

As the RE belief is the fixed point of the T-map, so it is the rest point of the learning process.
This section examines the Expectational-Stability condition for the REE, which also governs
the convergence of the learning process towards the REE. This can be analyzed by applying
standard techniques elaborated in Evans and Honkapohja (2001). Denote Θ as the set of
admissible parameters in the RE and the learning model.

Definition 3

The admissible parameter space Θ ≡ {(η,R, τ)|η > 0, R > 1, 0 ≤ τ < 1}.
This implies that the steady state leverage ratio or loan-to-value ratio is in the interval

(0, 1
R

], the elasticity 1
η
is positive, and the (net) interest rate is positive.

Local stability of the Minimum State Variable REE is determined by the stability of the
following associated ordinary differential equations

dζm

dτ
= T1(ζ

m, ζp)− ζm

dζp

dτ
= T2(ζ

p, ζp)− ζp

The following condition establishes a suffi cient condition for the E-stability of the Mini-
mum State Variable RE equilibrium.

Proposition 4

The MSV RE equilibrium for the economy is Expectationally-stable (E-stable) for all
admissible parameters in Θ.
Proof. see Online Appendix D.
The following illustration may help to understand the E-stability condition. Fixing

agents’beliefs about ζm at the RE value 0 and the price elasticity ζp above the RE value ζ
p
,

so agents have an excessively optimistic forecast function. Recall the three effects discussed
in section 4.1. On one hand, a high ζp influences negatively on house prices because agents
hold excessive debt repayment. On the other hand, a high ζp impacts positively on house
prices via two ways: excessively optimistic forecast function for housing re-sale price and
excessively optimistic expectations about collateral values and credit limits relative to RE.
The E-stability result says exactly that the negative effect of the excessive debt repayment

will dominate for all admissible parameterizations. This in turn leads to a low realization of
the price elasticity which pushes agents’belief downward. Therefore, the asymptotic local
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stability of the REE is achieved. Roughly speaking, given that the E-stability condition is
satisfied and the parameter estimates are around the neighborhood of the RE value, we have
βt → β̄ and νt →∞ almost surely.17

The above proposition also implies that parameter estimates coming from a constant
gain learning algorithm (32)-(33) will converge in distribution to the REE as long as the
gain parameter is suffi ciently small.18

4.3 Dependence of Belief Dynamics on Loan-to-Value Ratio

House price changes display strong positive serial correlation at short time horizon, such
as one year, as shown by Case and Shiller (1989), and Glaeser and Gyourko (2006). How-
ever, standard full-information RE models, e.g., Liu, Wang, Zha (2013), typically can not
generate the degree of persistence of house price changes as in the data without relying on
very persistent exogenous shocks. This section shows that the learning model can inter-
nally display strong persistence in belief and price changes if the Loan-to-Value ratio of the
economy is suffi ciently large. Put differently, a higher leveraged economy is more prone to
self-reinforcing fluctuations.
Following Adam, Marcet and Nicolini (2012), one way to capture the strong persistence

in the change of agents’beliefs is by momentum defined below. Momentum in belief adjust-
ments is the key property for their asset pricing model replicating a number of equity pricing
facts in the U.S. data, such as the return volatility, the persistence and volatility of price
dividend ratio, etc.
Recall ζpt is agents’belief about the price collateral holdings elasticity at period t, and ζ

p

the corresponding value at the RE level.

Definition 5 Momentum

Momentum is defined as:
(1) if ζpt > ζpt−1 and ζ

p
t ≤ ζ

p
, then ζpt+1 > ζpt .

(2) if ζpt < ζpt−1 and ζ
p
t ≥ ζ

p
, then ζpt+1 < ζpt .

The definition says following. Suppose agents’belief or parameter estimate is adjusted
upward (downward), i.e., ζpt−1 < ζpt (ζ

p
t−1 > ζpt ), but still not exceed (not below) the RE level,

i.e., ζpt ≤ ζ
p
(ζpt ≥ ζ

p
), this will be followed by further upward (downward) belief adjustment,

i.e., ζpt+1 > ζpt (ζ
p
t+1 < ζpt ). Roughly speaking, agents’optimism (pessimism) is followed by

further optimism (pessimism).
To study the internal dynamics of the learning model, a deterministic model is examined

by assuming Ât = 0 for all t. I further consider a simplified perceived law of motion without
learning about ζ

m
or the steady state, that is, q̂t = ζpt−1Ĥ

B
t−1+ωt. Recall the T-map mapping

from the subjective belief to the parameter in the actual law of motion is T2(ζ
p
t−1, ζ

p
t ) =

17Once the convergence of agents’estimates in the collateral price process is achieved, agents’belief about
the parameter estimates in the borrowers’collateral holding equation will also converge to the RE value.
18The convergence properties of learning models under the constant-gain learning algorithm are discussed

in details in Evans and Honkapohja (2001).
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( 1
R
ζpt+

1
η
R−1
R )

(
1− 1−τ

1− 1−τ
R

ζpt−1

)
1−

1−τ
R

1− 1−τ
R

ζpt

, which also determines critically the dynamics of the model with

learning about ζ
m
. Below I characterize a suffi cient condition for the learning model to

display momentum in belief adjustments.
Substituting the actual law of motion for house prices, i.e., qt = T2(ζ

p
t−1, ζ

p
t )Ĥ

B
t , into

agents’belief updating equations (30)-(31) or (32)-(33) yields

ζpt+1 = ζpt + gtS
−1
t+1Ĥ

B
t (q̂t − ĤB

t ζ
p
t )

= ζpt + gtS
−1
t+1

(
ĤB
t

)2
(T2(ζ

p
t−1, ζ

p
t )− ζpt ) (36)

where gt can be the decreasing gain sequence or constant gain and is positive. Assuming
ĤB
t 6= 0 below. Equation (36) says that agents will revise their belief about the price

elasticity upward (downward) if the realized price elasticity is higher (lower) than their
subjective estimate.
Performing the first-order Taylor approximation of the T2−map around the REE belief

yields

T2(ζ
p
t−1, ζ

p
t ) ' ζ

p
+

(
− ∂T2
∂ζpt−1

|ζp
)(

ζ
p − ζpt−1

)
−
(
∂T2
∂ζpt
|ζp
)(

ζ
p − ζpt

)
(37)

As explained in section 4.1, we know ∂T2
∂ζpt−1
|ζp < 0 and ∂T2

∂ζpt
|ζp > 0 . A past belief ζpt−1

which is lower than the RE value implies a lower debt repayment (given collateral holdings)
relative to that under RE and contributes positively to the realized price elasticity. A current
belief ζpt which is lower than the RE value contributes negatively to the price elasticity.
To illustrate, consider a scenario in which agents’belief arrives at the RE value from

below, i.e., ζpt−1 < ζpt = ζ
p
. According to (37), the realized price elasticity will be larger than

the RE value, i.e., T2(ζ
p
t−1, ζ

p
t ) > ζ

p
. The past belief lower than RE value implies a lower

debt repayment and helps to generate a high price elasticity. Furthermore, belief updating
rule (36) implies agents will revise their belief further upward, i.e., ζpt+1 > ζpt . So there is a
tendency that agents’belief will overshoot the RE value when arriving at the RE value. 19

This is true for any admissible parameterization of the model.
However, a stronger condition is needed for the learning model to display momentum in

belief adjustments when agents’belief is updated upward but still below the RE value, that
is, ζpt−1 < ζpt < ζ

p
. A suffi cient condition20 to ensure momentum is

− ∂T2
∂ζpt−1

|ζp ≥
∂T2
∂ζpt
|ζp (38)

The reason is as follows. Consider agents’ belief is updated upward but still below the
RE value, that is, ζpt−1 < ζpt < ζ

p
. If the above condition holds, (37) implies that the price

19The magnitude of this further upward belief adjustment will depend on the size of the gain parameter.
Also note the property that agents’beliefs hover around the RE value during the learning transition does
not conflict with the convergence of agents’belief under the RLS learning to the RE value.
20Note the set of parameters satisfying the momentum condition ∂T2

∂ζpt−1
|ζp + ∂T2

∂ζpt
|ζp ≤ 0 is a subset of the

set of parameters satisfying the E-stability condition ∂T2
∂ζpt−1

|ζp + ∂T2
∂ζpt
|ζp < 1.
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Figure 3: Threshold function 1−τ
R

( 1
η
) and parameter combinations generating momentum

collateral holdings elasticity in the ALM will be higher than the RE value, i.e., T2(ζ
p
t−1, ζ

p
t ) >

ζ
p
. Using the realized price elasticity, agents will update their belief further upward according

to (36).
Note if τ were 1 or equivalently the leverage ratio were zero, momentum would not arise

in the learning model. This is because past beliefs would not appear in the T2−map. (38)
would not be met because its left hand side would be zero and its right hand side positive.
There would not be an overshoot of agents’belief because without a shock it would stay at
the RE value when arriving there. As we increase the leverage ratio above some threshold,
(38) will be met so that the positive effect of a lower past belief or debt repayment will
dominate and the realized price elasticity will be suffi ciently high and reinforce the initial
optimism.
The intuitions are summarized as follows. Increasingly optimistic price beliefs endoge-

nously enhance borrowing capacity, so that the drag of debt repayments based on less op-
timistic past beliefs on house prices becomes relatively smaller. The positive effect of the
relative reduction of the debt burden on house prices will be suffi ciently large when the
leverage ratio is suffi ciently large, so that realized house prices will be suffi ciently large and
can reinforce agents’optimism. Similarly for increasingly pessimistic beliefs. This is shown
by the following proposition which provides an explicit characterization of the momentum
condition (38).

Proposition 6

A suffi cient condition guaranteeing momentum in beliefs (around the neighborhood of
the REE belief) in the learning model is that parameter combinations of (η,R, τ) satisfy
1−τ
R
≥ 1

g(R) 1
η
+1
where g(R) = R(

√
(R− 1) + (R−1)2

4
+ R−1

2
).

Proof. see Online Appendix E.
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As an example, I set the gross quarterly interest rateR to 1.0088, which is the steady state
value of the interest rate I choose in the quantitative exercise later. The threshold steady
state loan-to-value ratio as a function of 1

η
, i.e, 1−τ

R
= 1

g(R) 1
η
+1
, is plotted, which is decreasing

in the elasticity 1
η
. The shaded area of figure 3, which is the area above the threshold function,

summarizes the parameter combinations (1−τ
R
, 1
η
) under which there is momentum in beliefs

in the learning model.21 As can be seen from this figure, momentum22 will arise in the
learning model when the elasticity of the user cost with respect to borrowers’ collateral
holdings is relatively large or the steady state leverage ratio is relatively large. Given the
elasticity 1

η
, the leveraged economy with a suffi ciently high steady state leverage ratio can

display momentum in belief and price changes.
Online Appendix F provides a discussion of the robustness of the qualitative learning

dynamics with respect to an alternative specification of the collateral constraint that the
maximum loan borrowers can get is a fraction of the current instead of expected collateral
values.

4.4 Discussions

4.4.1 Relation to Adam, Kuang, and Marcet (2011, henceforth AKM)

AKM develop an open economy asset pricing model with a housing collateral constraint and
learning which quantitatively accounts for the heterogeneous G7 house prices and current
account dynamics over 2001-2008. In the AKM model, the price boom-bust is the conse-
quence of the dynamic interaction of only house prices and price beliefs. Feedback from
credit expansion/contraction to house prices, which is believed to have played a critical role
during the recent U.S. housing cycle, has been shut down in the AKM analysis.23 For ex-
ample, studying detailed zip code level data, Mian and Sufi (2009) suggest that “there may
be a feedback mechanism between credit growth and house price growth”and “the evidence
cautions against treating house prices movements in the last decade as independent from
the expansion and collapse of subprime mortgage securitization.”The current model fea-
tures dynamic interaction of house prices, price beliefs and credit limits and can capture this
important feedback.
Both AKM and the current model generate quantitatively significant differences from the

RE version of the models. For both models, the critical property is the dependence of house
prices on belief changes and hence the possibility of endogenously persistent belief and price

21The parameter combinations generating momentum in beliefs are not sensitive to a wide range of the
steady state value of the interest rate R chosen here.
22The parameterizations in the quantitative exercise later do not fall in the shaded area but very close to

the border of the threshold function. The persistence in agents’beliefs and in collateral price changes can
still arise when the learning friction interacts with interest rate reductions.
23In AKM, price fluctuations affect the collateral values of domestic households, borrowing, and current

account dynamics. Relaxation and tightening of credit limits have an effect on the borrowers’ housing
demand but no impact on the house price dynamics in the approximate solution. The latter is because the
marginal product of houses (ξtG

′(Ht)) is kept constant in the quantitative analysis and hence the collateral
demand function is horizontal. No feedback from credit limits to house prices is evident by inspecting the
key equations of the learning model in AKM, i.e., the belief updating equation (33) and the actual law of
motion for house prices (35).
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changes. The improvement in the fit of the model here arises from the intrinsic property of
a collateral-constrained economy that prices are directly influenced by past beliefs via debt
repayment, contrast to from learning about the permanent component of house price growth
in AKM.
Different from AKM, the paper also analyzes the role of leverage ratio, convergence of the

learning process, and studies the dynamics of household debt and aggregate consumption
quantitatively.

4.4.2 Relation to some asset pricing models with adaptive learning

Timmermann (1996) and Carceles-Poveda and Giannitsarou (2008, henceforth CG) study
asset pricing with adaptive learning in an endowment economy and a production economy
without collateral constraints, respectively. They find a limited role of adaptive learning in
asset pricing when agents learn about the parameters linking asset prices to fundamentals or
dividends. As analyzed in section 4.3, the asset pricing equation in a collateral-constrained
economy differs critically from those in the two papers. Asset prices in the model are directly
influenced by past beliefs and hence by the change of agents’price beliefs. This opens the
possibility for the learning model to display strong persistence in belief changes and larger
fluctuations of prices and quantities even if a similar belief specification as them is considered,
i.e., agents learn about the parameters linking house prices and fundamentals or dividends.
In contrast, in Timmermann (1996) and CG, when agents’beliefs arrive at the RE beliefs,
they will stay there without further realizations of shocks.
CG follow the Euler-equation (EE) learning approach, replacing expectation terms in

agents’first-order conditions by those formed by adaptive learning. Preston (2005) shows
that the decision rule under EE learning approach leads to suboptimal decisions in a New
Keynesian model. In standard real business cycle models, Eusepi and Preston (2011) suggest
that such learning approach is unlikely to be helpful in explaining quantitative features of
macroeconomic dynamics. The suboptimality is generally true in many standard models but
disappears in some specific settings, for example, if agents’preferences are risk-neutral as in
the current model or in the model of Adam and Marcet (2011). Agents’optimal decisions
are fully characterized by Euler equations, which is the same as under the EE learning. The
more significant role of learning in asset pricing in the current model relative to Timmermann
(1996) and CG arises not from the internal rationality approach but from leveraging and
borrowing constraints particularly in a relatively high leveraging regime.24

24The optimal decisions under internal rationality will be different from decisions by agents under the
EE learning if the risk-neutrality assumption is replaced by risk-aversion. The former requires that agents
forecast house prices up to the indefinite future. Risk-aversion is quantitatively less important relative to
learning as asset prices are mainly driven by expectations, as can be seen the stock pricing in model of Adam,
Marcet, and Nicolini (2012). Solving a model with internal rationality and risk-averse agents requires more
sophisticated numerical methods as agents make their forecasts based on the subjective density instead of
the point subjective belief and up to infinite horizon. The Adam, Beutel and Marcet (2014) model of stock
market booms and busts is such an example.
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5 Quantitative Results and Further Mechanism

The learning model is estimated to the U.S. economy showing that the learning model
can quantitatively account for the recent house prices boom and bust and the associated
household debt and aggregate consumption dynamics. Around the year 2001, the U.S. real
interest rate dropped considerably and stayed low for an extended period of time, before
rising again around the year 2006. The average of 1-year ahead ex-ante real mortgage
interest rates25 from 1997Q1 to 2000Q4 was 3.51%, while the average of real interest rates
between 2001Q1-2005Q4 was 2.28%.
The following experiment is conducted. Initially the economy is assumed to be at the

steady state and agents’beliefs at 2000Q4 are set to the RE value.26 The low real interest
rates after 2000Q4 and the subsequent increase are captured in the following stylized way.
The annualized real interest rate at the steady state is set to 3.51%. I let the interest rate fall
from 2001Q1, stay unchanged at 2.28% until 2005Q4, and then go back to the steady state.
The model is used to generate real house prices, consumption and debt/GDP ratio during
2001Q1-2008Q4. Following Campbell (1994), I set the steady state consumption-GDP ratio
to 0.745.
Denote by ck the product of the productivity gap (a+e)−G′

(a+e)
and borrowers’production

share (a+e)HB

Y
in aggregate output. The gain parameter g, the elasticity 1

η
, the parameter

τ , and the parameter ck, are chosen to minimize the absolute distance between the learning
model generated and actual house prices, consumption and debt/GDP ratio as follows

2008Q4∑
t=2001Q1

(
|q̂t − q̂t|
std(q̂t)

+
|ĉt − ĉt|
std(ĉt)

+
| ̂Debt/GDP t − ̂Debt/GDPt|

std( ̂Debt/GDPt)

)
where boldface letters denote actual data and std stands for standard deviation.
The minimization yields that g = 0.065, 1

η
= 2.46, τ = 0.45, and ck = 0.43. This choice of

τ implies that the steady state loan-to-value ratio is 0.54.27 The value of ck implies roughly,
say both the productivity gap and borrowers’production share are 2

3
.28The choice of the

parameters yields impulse response functions of the learning model broadly consistent with
other studies.29 The parameterization of the RE models is the same as the estimated learning
model.
25The mortgage rate used is the “one-year adjustable rate mortgage average in the United States” from

Freddie Mac (seriesID: MORTGAGE1US). The ex-ante real interest rate is calculated as the mortgage rate
minus the median expected 1 year ahead CPI inflation rate from the survey of professional forecasters.
26An analogy can be made between the perceived law of motion used by the agents in the model and

learning house price-to-rent ratio because the regressor ĤB
t is a constant multiple of the (log-linearized)

dividend of houses. The assumption of RE belief as the initial belief is based on the observation that the
house price-to-rent ratio is relatively stable say from 1980s to 2000. So agents are assumed to have learned
to form RE.
27This is consistent with the estimate of the household loan-to-value ratio by Iacoviello (2005) with mean

0.55 and standard deviation 0.09.
28The productivity gap of 23 is also considered by Cordoba and Ripoll (2004).
29Iacoviello and Neri (2010) find that 1% positive i.i.d. monetary policy shock leads to a decrease of house

prices by about 0.65% and hump-shaped response of consumption with the trough 0.5% below the steady
state.
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Recall the interest rate at period t in my model is Rt = At
βL
. To get low interest rates

during 2001-2005, I assume lenders’discount factors βL shift upward exogenously during
2001-2005 and back to their old value during 2006-2008.30

Under RE, two alternatives are considered: the interest rate movement is either unantici-
pated or anticipated. Model predictions for the two alternatives are provided below. “RE-I”
model refers to the RE model with unexpected interest rate reductions, while “RE-II”model
stands for the RE model with anticipated interest rates movement. Note the performance of
the learning model will be the same under either of the two assumptions because expecta-
tions about future interest rates do not enter the system of equations governing the model
economy.

5.1 Response to 1% unexpected interest rate reduction

RE dynamics.– Figure 4 depicts the responses to an unexpected interest rate reduction. In
the impact period, real house price under RE rises by about 1.2%, while consumption and
debt/GDP ratio rise by about 0.6% and 2%,31 respectively. However, they do not rise further
after the interest rate reduction disappears. Consumption decays exponentially, while the
house price drops substantially due to the disappearance of the interest rate reduction and
then converges persistently to the steady state.
Under rational expectations, borrowers’collateral demand increases following an unex-

pected interest rate reduction. In the impact period, collateral is transferred from lenders to
borrowers. Due to the fixed supply of collateral and the concave technology of lenders, user
cost of collateral rises above its steady state value. Since borrowers’current investment in
collateral holding raises their ability to borrow in the next period, there will be persistence
in their collateral holdings. The user cost of collateral stays above the steady state for many
periods. Under RE, house prices are the discounted sum of current and future user cost.
The persistence in user cost reinforces the effect on house prices and collateral values, which
leads to a larger effect on collateral transfers and aggregate activities.
After the disappearance of the interest rate reduction, the user cost rises above the

steady state, which chokes off further rises in borrowers’housing demand. House prices and
borrowers’collateral holdings will revert immediately towards the steady state. Prices and
quantities converge persistently and monotonically to the steady state.
Learning dynamics.– The response of the learning model is simulated by setting the

initial belief to the RE value. Learning generates additional propagation of the interest rate
reduction due to belief revisions and the dynamic interaction between price beliefs, credit
limit and price realizations. The peak responses of house prices, consumption and debt/GDP
ratio are 1.2%, 0.73%, and 2.3%, respectively. The learning model also generates positive
persistence in forecast errors,32 as can be seen from the lower right panel.
Under learning, the impact responses are the same as those under RE because agents have

correct forecast functions initially. After the disappearance of the interest rate reduction, a
positive surprise in house prices induces an upward belief revision. Agents partially interpret

30Admittedly, this is a short-cut, but necessary way, to model the interest rate reduction in my context.
31Note the debt/GDP ratio here is percentage changes from the steady state value.
32The forecast error is defined as q̂t − Et−1q̂t.
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the surprise in house price forecasts as a permanent change in the parameters governing
the house price process. They become more optimistic about future house prices due to
both more optimistic beliefs and rising amounts of collateral holdings by borrowers. Credit
limit is relaxed based on the optimism. As can be seen from equation (34), borrowers’
collateral holdings can rise if 1−τ

R
EPt q̂t+1 > (1− τ)EPt−1q̂t.With a larger borrowing capacity,

borrowers can repay the debt and increase investment in collateral holdings. Since aggregate
consumption is a constant fraction of borrowers’ collateral holdings, consumption follows
closely borrowers’collateral holdings.33 The debt/GDP ratio rises due to rising collateral
values.
In the period 2, house prices under learning are much higher relative to RE mainly due

to more optimistic expectation about future prices. The temporary decline in house prices
is due to the return of the interest rate to the steady state. Nevertheless, the realized price
is still higher than agents’price forecast. So the realized price reinforces agents’optimism,
which leads to further optimism when the price realization is used for belief updating. The
positive effects of more optimistic beliefs and expectations can temporarily dominate the
negative effect of debt repayment and lead to a rise in house prices. The dynamic feedback
between agents’beliefs and actual prices through the relaxation of credit limits generates
prolonged periods of expansion of prices and quantities.
The reversal of prices and quantities relates to the convergence of the learning process in

section 4.2. At some point, the debt repayment becomes excessive such that its negative effect
dominates and the realized house prices fall short of expectations. This sets a self-reinforcing
decline in motion. According to (32) and (33), agents’beliefs are revised downward and
they become pessimistic. Credit limits are tightened based on the pessimism. Borrowers’
housing demand falls, so does the realization of house prices. The realized house prices
reinforce agents’initial pessimism, which generates further declines in prices and quantities.
Eventually prices and quantities converge to the steady state.

5.2 Boom and bust in house prices, debt and aggregate consump-
tion dynamics

Figure 5 contrasts predictions of the learning model and of the “RE-I model”with actual
data. Under RE, prices and quantities increase above their steady state values following
the real interest rate reduction. House prices continue to increase due to the persistence in
the user cost and the persistently low interest rates. They peak at about 14.4% above the
steady state. After the disappearance of the interest rate reduction, house price starts to
revert to their steady state. The RE model under-predicts considerably the levels of prices
and quantities.34

33See Online Appendix A for the analytical expressions for log-linearized consumption and debt/GDP
ratio.
34Given the pattern of the interest rates I consider, the response of house prices in the “RE-I”model will

be larger if the elasticity 1
η is larger. The improvement of the performance of the RE model with a larger

1
η or a larger leverage ratio is limited when the leverage is not very large or close to 1 and the response of
consumption or the collateral holding transfer is not counterfactually large. Regardless of the value of these
two parameters, the REE house prices will revert when the interest rate starts to revert. So the RE model
cannot match the turning point of house prices.
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Figure 4: Response to 1% unexpected negative shock to interest rates
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Figure 5: Model Predictions of the RE-I Model, Learning Model and Actual Data
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The learning model predicts house prices, debt/GDP ratio and consumption rather well,
in particular during the price boom years. Following the real interest rate reduction, real
house prices under learning increase at a faster pace than under RE. The learning model
generates large additional amplification of prices and quantities relative to the RE version of
the model. The peak of the predicted house prices under learning is about 35.9% at 2006Q4,
which is about 2.5 times the peak response of under RE. The house price boom arises mainly
from more optimistic expectation about future prices due to both more optimistic beliefs
and the rising amount of collateral held by households. The rising household credit market
debt/GDP ratio is due to both the house price boom and the rising amount of collateral
held by households. The learning model also generates a consumption boom due to shifts of
collateral to more productive households. The peak response of consumption in the learning
model is 18.8%, which is twice as large as that in the RE model.
House prices in the “RE-I model”start to revert once the interest rate rises, while the

learning model matches rather well the turning point of house prices in the data. House
prices in the learning model rise further for a few quarters as in the data even after the rise
of the interest rates. This is due to belief revisions and the interaction of beliefs and price
realizations.
The forecast errors of the REmodel are constant during 2001Q1-2005Q4 and then become

zero afterwards. They are completely driven by and correspond to the pattern of exogenous
shifts in interest rates. In contrast, the learning model generates internal and positive persis-
tence in forecast errors. Gelain, Lansing, and Mendicino (2013) derived house price forecasts
from the future markets for the Case-Shiller house price index (where only the data from
2006 onwards are available) and showed that “the future market tends to overpredict future
house prices when prices are falling.”The learning model generates exactly this pattern of
forecast errors as one can see from the lower right panel of figure 5 that the real house price
forecast error becomes negative from 2006 onwards.
The model overpredicts the bust of house prices and the decline in the debt/GDP ratio

and consumption. Various policies responding to the financial crisis and the Great Recession
since the year 2007, such as liquidity provision to the private sector, may have contributed
to the discrepancy between model predicted and actual prices. Associated with the price
bust was slow changing debt/GDP ratio in the data. One reason for the gap between model
predicted and actual debt/GDP ratio may be that borrowers cannot be forced to repay the
mortgages. Adding such asymmetric feature of the mortgage contracts as in Justiniano,
Primiceri and Tambalotti (2014) may help to explain the debt/GDP ratio during the price
reversal. Incorporating these factors is beyond the scope of the present paper and left for
future research.
In the learning model, agents evaluate the payoffs of different strategies using the subjec-

tive probability measure. Online Appendix G shows that the collateral constraint is indeed
binding during the housing cycle over the year 2001-2008 in the learning model.
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Figure 6: Predictions of the RE-II Model with Anticipated Interest Rate Movement

5.3 RE price dynamics with anticipated interest rate movement

Figure 6 displays the “RE-II”model dynamics,35 i.e., when the low interest rates during
2001Q1-2005Q4 are anticipated by the agents. Except for the initial period, agents under-
stand the effects of such structural change and could perfectly foresee the entire path of
prices and quantities given that there is no remaining uncertainty after the initial real rate
reduction. The real house prices jump immediately upward and then converge to the steady
state. This is inconsistent with the pattern of prices and quantities observed in the data. In
particular, the model does not generate persistent increases in house prices.

5.4 Dependence of the effect of interest rates changes on loan-to-
Value (LTV) ratio

The section performs counterfactual analysis by reducing the LTV ratio and keeping other
parameters unchanged. Figure 7 displays the counterfactual simulation result under RE and
Learning model with LTV ratio of 40% (indicated by the line with diamonds and with cross,
respectively) together with the data (the line with ‘+’) and the result under the benchmark
RE and Learning model with LTV ratio 54% as in figure 5 (the line with ‘o’and the dashed
line, respectively).
The effect of interest rates changes depends sensitively on the LTV ratio and the learning

model with this lower LTV ratio generates counterfactually much lower rise in house prices,
consumption and debt/GDP ratio. This suggests that if the LTV ratio were lower, much of
the house price boom could have been avoided.

35For simulating the model in such senario, I firstly solve the law of motion for prices and quantities during
2006Q1-2008Q4. Then with them I recursively solve backward the policy function until 2001Q1.
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Figure 7: Data and Results under Benchmark RE, Learning and Counterfactual

I use the standardized difference between the peak response in the learning model and
that under RE as a crude measure of the degree of amplification.36 Table 1 reports the
amplification of house prices, debt/GDP ratio and consumption in the learning model relative
to the RE version of the model when the LTV ratio is varied in the interval [40%, 54%].
Interestingly, the amplification of the learning model is non-linear and increasing in the LTV
ratio. For example, the learning model generates 150%, 125%, and 100% larger peak response
of house prices, debt/GDP ratio, and consumption relative the RE model respectively when
the LTV ratio is 54%, while the counterpart is 41%, 33%, and 22% when the LTV ratio is
40%.

Table 1:Dependence of Amplification on LTV Ratio

Loan-to-Value Ratio
40% 43% 46% 49% 52% 54%

House prices 41% 45% 51% 61% 80% 150%
Debt/GDP ratio 33% 37% 42% 50% 67% 125%
Consumption 22% 25% 30% 38% 52% 100%

The result is in line with Proposition 6 which shows that a higher leveraged regime is
more prone to self-reinforcing fluctuations. The weaker relationship between real interest
rates and house prices under a lower LTV ratio regime may be a reason why changes of
interest rates or monetary policy has a more muted effect on house prices in some earlier
historical episodes featuring more stringent financing constraints than today.37 It is poten-

36More precisely, amplification is calculated by the peak response under learning minus the peak response
under RE and then divided by the latter.
37For example, in the published discussion of Adam, Kuang, and Marcet (2011), Robert Gordon questioned

the mechanism of the AKM model based on the observation of a weaker relationship between interest rate
changes and house prices in those earlier episodes.
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tially interesting to explore this non-linear dependence on the leverage ratio to understand
economic volatilities of aggregate variables across regimes with different leverage ratios or in
cross-country comparisons.

6 Conclusion

The paper presents a model of housing and credit cycles which is consistent with the evidence
on economic agents’expectations and can quantitatively account for the 2001-2008 U.S. boom
and bust in house prices and associated household debt and aggregate consumption dynamics.
The trigger of the price boom is the persistent fall in real interest rates after the year 2000.
The response of house prices and quantities are drastically amplified due to the comovement
and mutual reinforcement between agents’price beliefs and house price realizations via credit
expansion/contraction. Positive (negative) development or surprise in house prices fuels
optimism (pessimism) and credit expansion (contraction), which in turn boost (dampen)
housing demand and house prices and reinforce agents’optimism (pessimism).
The model also uncovers an important dependence of the fluctuations of house prices and

quantities on the leverage ratio in a collateral-constrained economy, which is missing in the
RE analysis. It suggests that allowing for imperfect knowledge of agents, a higher leveraged
economy is more prone to self-reinforcing fluctuations. In particular, the amplification of the
response of house prices and quantities to the interest rates changes in the learning model
relative to RE is non-linear and increasing in the leverage ratio of the economy. This gives
an additional rationale for reasonable capital requirement regulation to avoid an extremely
high leverage ratio regime which is prone to self-reinforcing fluctuations and associated with
high economic volatilities.

Acknowledgements

An earlier version of the paper was titled “Imperfect Knowledge about Asset Prices and
Credit Cycles”. The paper is based on Chapter 2 of my PhD dissertation. I am indebted
to my supervisors Thomas Laubach and Klaus Adam for invaluable advice and numer-
ous discussions. I am grateful to the Editor (Eric Leeper), an anonymous Associate Ed-
itor and a referee for helpful suggestions and comments. Thanks to Tobias Adrian, Roel
Beetsma, Gianni De Fraja, George Evans, John Fender, Cars Hommes, Alex Ilek, Leo Kaas,
Kevin Lansing, Kaushik Mitra, Kalin Nikolov, Bruce Preston, Olaf Posch, Ansgar Rannen-
berg, Sigrid Roehrs, Christian Schlag, Ctirad Slavik, Sergey Slobodyan, Jan Tuinstra, Raf
Wouters and participants at 2013 San Francisco Fed Conference “Expectations in Dynamic
Macro Models”, 2013 Workshop “Macroeconomic Policy and Expectations”(St Andrews),
3rd Bundesbank-CFS-ECB workshop on Macro and Finance (Frankfurt), 2010 conference
“Expectation, Asset Bubbles, and Financial Crisis”(Rotterdam), SNDE 2011 (Washington
DC), SMYE 2011 (Groningen), EEA 2011 (Oslo), University of Frankfurt, Mannheim, St.
Andrews, Konstanz, City U Hong Kong, and SHUFE for helpful discussions and comments.
Thanks to Emine Boz and Enrique Mendoza for providing part of the data. The financial
support from the German Research Foundation (DFG) is gratefully acknowledged.

28



References

Adam K., Beutel, J., Marcet, A., 2014. Stock price booms and expected capital gains.
Mannheim University Mimeo.
Adam, K., Kuang, P., Marcet A., 2012. House price booms and the current account.

NBER Macroeconomics Annual 26, 77-122.
Adam, K., Marcet, A., 2011. Internal rationality, imperfect market knowledge and asset

prices. Journal of Economic Theory 146, 1224-1252.
Adam, K., Marcet, A., Nicolini, J.P., 2012. Stock market volatility and learning. Uni-

versity of Mannheim mimeo.
Benanke, B., 2010. Monetary policy and the housing bubble. Speech at the Annual

Meeting of the American Economic Association, Atlanta, Georgia.
Boz E., Mendoza, E., 2013. Financial Innovation, the discovery of risk, and the U.S.

credit crisis. Journal of Monetary Economics, forthcoming.
Branch, W., Evans G., 2011. Learning about risk and return: a simple model of bubbles

and crashes. American Economic Journal: Macroeconomics 3(3): 159-91.
Burnside, C., Eichenbaum, M., and Rebelo, S., (2011). Understanding booms and busts

in housing markets. Northwestern University Mimeo.
Campbell, J., 1994. Inspecting the mechanism: an analytical approach to the stochastic

growth model. Journal of Monetary Economics 33, 463-506.
Carcelles-Poveda, E., Giannitsarou, C., 2008. Asset pricing with adaptive learning. Re-

view of Economic Dynamics 11, 629-651.
Case, K., Shiller, R., 1989. The effi ciency of the market for single-family homes. Ameri-

can Economic Review 79, 125-137.
Case, K., Shiller, R., Thompson A., 2012. What have they been thinking? Home buyer

behavior in hot and cold markets. NBER working paper no. 18400.
Cheng, I., Raina, S., Xiong, W., 2014. Wall Street and the housing bubble. American

Economic Review, forthcoming.
Cordoba, J., Ripoll, M., 2004. Credit cycles redux. International Economic Review 45,

1011-1046.
Djankov, S., Hart, O., Mcliesh, Shleifer A., 2008. Debt enforcement around the world.

Journal of Political Economy 116, 1105-1149.
Eusepi, S., Preston, B., 2011. Expectation, learning and business cycle fluctuations.

American Economic Review 101, 2844-72.
Evans, G., Honkapohja S., 2001. Learning and Expectation in Macroeconomics. Prince-

ton University Press, Princeton.
Ferrero, A., 2012. House prices booms and current account deficits. Federal Reserve

Bank of New York mimeo.
Glaeser, E., Gyourko, J., 2006. Housing dynamics. NBER Working Paper Series.
Gelain, P., Lansing, K., Mendicino C., 2013. House prices, credit growth, and excess

volatility: implications for monetary and macroprudential policy. International Journal of
Central Banking, 9(2), 219-276.
Hart, O., Moore, J., 1994. A theory of debt based on the inalienability of human capital.

Quartely Journal of Economics 109, 841-879.

29



Hoffmann, M., Krause M., Laubach T., 2012. Trend growth expectations and borrowing
constraints: understanding U.S. house prices before and after the crisis. Journal of Economic
Behavior and Organization 83, 394-409.
Huang, K., Liu Z., Zha, T., 2009. Learning, adaptive expectations, and technology shock.

Economic Journal 119, 377-405.
Iacoviello, M., 2005. House prices, borrowing constraints, and monetary policy in the

business cycle. American Economic Review 95, 739-764.
Iacoviello, M., Neri S., 2010. Housing market spillovers: evidence from an estimated

DSGE model. American Economic Journal: Macroeconomics 2, 125-64.
Justiniano, A., Primiceri, G., Tambalotti, A., 2014. Household Leveraging and Delever-

aging. NBER Working Paper No. 18941.
Kiyotaki, N., Moore, J., 1997. Credit cycles. Journal of Political Economy 105, 211-248.
Kocherlakota, N., 2000. Creating business cycles through credit constraints. FRB of

Minnesota Quarterly Review 24, 2-10.
Lansing, K., 2010. Rational and near-rational bubbles without drift. Economic Journal

120, 1149-1174.
Liu, Z., Wang P., Zha, T., 2013. Land price dynamics and macroeconomic fluctuations.

Econometrica 81(3), 1147-1184.
Milani, F., 2011. Expectational shocks and learning as drivers of the business cycle.

Economic Journal 121, 379-401.
Mian, A., SufiA., 2009. The consequences of mortgage credit expansion: evidence from

the U.S. mortgage default crisis. Quarterly Journal of Economics 124 (4), 1449-1496.
Piazzesi, M., Schneider M., 2009. Momentum traders in the housing market: survey

evidence and a search model. American Economic Review, Papers and Proceedings 99,
406-411.
Preston, B., 2005. Learning about monetary policy rules when long-horizon expectations

matter. International Journal of Central Banking, 1(2), 81-126.
Sargent, T., 1999. The Conquest of American Inflation. Princeton University Press,

Princeton.
Timmermann, A., 1996. Excess volatility and predictability of stock prices in autoregres-

sive dividend models with learning. Review of Economic Studies 63, 523-557.

30



Online Appendix for “A Model of Housing and Credit Cycles with Imperfect
Market Knowledge”(Pei Kuang)

A Steady State, Log-linearization and the Actual Law
of Motion under Learning

The steady state of the interest rate, user cost of collateral, collateral prices, lenders’col-
lateral holdings, borrowers’collateral holdings, borrowing, and borrowers’consumption are
R = 1

βL
, u = a

(1−τ) , q = aR
(R−1)(1−τ) , H

L = G′−1( aR
1−τ ), HB = H−HL, bB = (1− τ)qHB/R and

cB = eHB. Recall the model equations

HB
t =

a+ qt − (1− τ)EPt−1qt

qt − 1
Rt

(1− τ)EPt qt+1
HB
t−1 (39)

qt −
1

Rt

EPt qt+1 =
G
′
(HL

t )

Rt

(40)

Equation (39) implies

[
qt −

1

Rt

(1− τ)EPt qt+1

]
HB
t =

[
a+ qt − (1− τ)EPt−1qt

]
HB
t−1[

qtRt − (1− τ)EPt qt+1
]
HB
t =

[
a+ qt − (1− τ)EPt−1qt

]
HB
t−1Rt

Note a+τq
q

= 1− 1−τ
R
. Log-linearizing this equation yields

q [R− (1− τ)]HBĤB
t +HB

[
Rq
(
q̂t + R̂t

)
− (1− τ)qEPt q̂t+1

]
= (a+ τq)RHB

(
R̂t + ĤB

t−1

)
+RHB

(
qq̂t − (1− τ)qEPt−1q̂t

)
Further simplification yields

(
1− 1− τ

R

)
ĤB
t +

[(
q̂t + R̂t

)
− 1− τ

R
EPt q̂t+1

]
=

(
1− 1− τ

R

)(
R̂t + ĤB

t−1

)
+
(
q̂t − (1− τ)EPt−1q̂t

)
Recall Rt = At

βL
, so R̂t = Ât. This implies further

ĤB
t =

1(
1− 1−τ

R

) [(q̂t − (1− τ)EPt−1q̂t
)
−
(
q̂t −

1− τ
R

EPt q̂t+1

)]
+ĤB

t−1−
1−τ
R(

1− 1−τ
R

)Ât (41)
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Now start with equation (40)

qt −
1

Rt

EPt qt+1 =
G
′
(HL

t )

Rt

⇐⇒ Rtqt − EPt qt+1 = G
′
(HL

t ) (42)

Recall the definition of 1
η

= −G
′′
(HL)HL

G′ (HL)
HB

HL . Note log-linearizing HB
t + HL

t = H implies

ĤL
t = −HB

HL Ĥ
B
t .

Log-linearization of equation (42) leads to

Rq
(
q̂t + R̂t

)
− qEPt q̂t+1 = G

′′
(HL)HLĤL

t

= −G
′′
(HL)HL

G′(HL)

HB

HL
G
′
(HL)ĤB

t

=
1

η
G
′
(HL)ĤB

t

=
1

η
q (R− 1) ĤB

t

In the last equation, the steady state relationship, G
′ (
HL
)

= q(R−1), is used. Simplification
further yields

1

η
ĤB
t =

R

R− 1

(
q̂t −

1

R
EPt q̂t+1 + R̂t

)
Given that R̂t = Ât, the above equation leads to

1

η
ĤB
t =

R

R− 1

(
q̂t −

1

R
EPt q̂t+1 + Ât

)
(43)

Below the actual law of motion (ALM) for collateral prices is derived. Suppose the perceived
law of motion for collateral prices is q̂t = ζmt + ζpt Ĥ

B
t−1 + ζst Ât. Conditional expectations at

period t and t−1 for collateral prices are EPt q̂t+1 = ζmt +ζpt Ĥ
B
t and E

P
t−1q̂t = ζmt−1+ζpt−1Ĥ

B
t−1.

Equation (41) can be simplified to

ĤB
t =

1(
1− 1−τ

R

) [1− τ
R

EPt q̂t+1 − (1− τ)EPt−1q̂t

]
+ ĤB

t−1 −
1−τ
R(

1− 1−τ
R

)Ât (44)

Combining (43) and (44) by eliminating ĤB
t , I get

q̂t = ξ1E
P
t q̂t+1 − ξ2EPt−1q̂t + ξ3Ĥ

B
t−1 + ξ4Ât

where ξ1 = 1
R

+ 1
η
R−1
R

1
1− 1

R
(1−τ)

1−τ
R
, ξ2 = (1 − τ) 1

η
R−1
R

1
1− 1

R
(1−τ) , ξ3 = 1

η
R−1
R
and ξ4 = −(1 +

1−τ
R

1− 1
R
(1−τ)

1
η
R−1
R

).

Substituting conditional expectations into the last equation, I get
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q̂t = ξ1

(
ζmt + ζpt Ĥ

B
t

)
− ξ2

(
ζmt−1 + ζpt−1Ĥ

B
t−1

)
+ ξ3Ĥ

B
t−1 + ξ4Ât (45)

Substituting expectations into (43), I get

1

η
ĤB
t =

R

R− 1

(
q̂t −

1

R

(
ζmt + ζpt Ĥ

B
t

)
+ Ât

)
or alternatively

ĤB
t =

q̂t + Ât − 1
R
ζmt

1
η
R−1
R

+ 1
R
ζpt

(46)

Combining (46) and (45) by eliminating ĤB
t , I get the ALM for collateral prices under

learning

q̂t = T1(ζ
m
t−1, ζ

m
t , ζ

p
t ) + T2(ζ

p
t−1, ζ

p
t )Ĥ

B
t−1 + T3(ζ

p
t )Ât

where T1(ζ
m
t−1, ζ

m
t , ζ

p
t ) =

(ξ1ζ
m
t −ξ2ζmt−1)(1+

ζ
p
t

ξ3R
)− ξ1

ξ3

ζmt ζ
p
t

R

1+
ζ
p
t

ξ3R
−ξ1ζ

p
t
1
ξ3

, T2(ζ
p
t−1, ζ

p
t ) =

ξ3−ξ2ζ
p
t−1

1− ξ1ζ
p
t

ξ3+ζ
p
t
1
R

and T3(ζ
p
t ) =

(ξ4+
ξ1ζ

p
t

ξ3+
1
R
ζ
p
t

)

1− ξ1ζ
p
t

ξ3+
1
R
ζ
p
t

. Those expressions are used for proving the propositions and computations.

A.1 An alternative expression of the T2−map

In the paper, an alternative expression of the T2-map, i.e., T2(ζ
p
t−1, ζ

p
t ) =

( 1
R
ζpt+

1
η
R−1
R )

(
1− 1−τ

1− 1−τ
R

ζpt−1

)
1−

1−τ
R

1− 1−τ
R

ζpt

,

is presented and used to illustrate some intuitions. Its derivation is provided here. I am only
interested in deriving the T2-map and keeping track of agents’beliefs, so I consider a simpler
case without learning about ζ

m
and without shock Ât for the simplicity of expositions. The

T2-map in the full model with learning about the steady state and with stochastic innovations
will be the same as that in the simpler case.
Recall our model equations are (43) and (44) which contain three expectation terms.

Substituting conditional expectations into equation (44), we get

ĤB
t =

1(
1− 1−τ

R

) [1− τ
R

EPt q̂t+1 − (1− τ)EPt−1q̂t

]
+ ĤB

t−1

=
1(

1− 1−τ
R

) [1− τ
R

ζpt Ĥ
B
t − (1− τ)ζpt−1Ĥ

B
t−1

]
+ ĤB

t−1

Note in the above equation ζpt comes from the down-payment and ζpt−1 debt repayment. So

ĤB
t =

1− (1−τ)
1− 1−τ

R

ζpt−1

1−
1−τ
R

1− 1−τ
R

ζpt

ĤB
t−1 (47)
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Substituting conditional expectations into equation (43)

q̂t =
1

R
EPt q̂t+1 +

1

η

R− 1

R
ĤB
t

=
1

R
ζpt Ĥ

B
t +

1

η

R− 1

R
ĤB
t

=

(
1

R
ζpt +

1

η

R− 1

R

)
ĤB
t (48)

Note ζpt in the above equation arise from the housing re-sale price/value. Combining equation
(47) and (48) yields the T2-map used in the paper

q̂t =

(
1

R
ζpt +

1

η

R− 1

R

) 1− (1−τ)
1− 1−τ

R

ζpt−1

1−
1−τ
R

1− 1−τ
R

ζpt

ĤB
t−1

From this equation, the three belief terms can be easily tracked. It can be shown that it is
identical to the T2-map derived earlier, i.e., T2(ζ

p
t−1, ζ

p
t ) =

ξ3−ξ2ζ
p
t−1

1− ξ1ζ
p
t

ξ3+ζ
p
t
1
R

.

A.2 Consumption and Debt/GDP ratio

Denote by Y the steady state value of aggregate output. Log-linearizing aggregate production
yields

ŷt =
(a+ e)−G′

(a+ e)

(a+ e)HB

Y
ĤB
t−1

It equals to the product of the productivity gap (a+e)−G′

(a+e)
between borrowers and lenders,

the production share of borrowers (a+e)HB

Y
and the redistribution of collateral. Aggregate

consumption ĉt will be the same as aggregate output because of zero net investment in
housing.
Denote by C andGDP aggregate consumption and GDP at the steady state, respectively.

The log-linearized GDP is

ĜDP t =
C

GDP
ĉt (49)

and the debt/GDP ratio is

( ̂Debt/GDP )t = b̂Bt − ĜDP t (50)

= EPt q̂t+1 +HB
t − R̂t −

C

GDP
ŷt (51)

where b̂Bt can be calculated by the collateral constraint.

34



B Derivation of the Bayesian Posterior Mean38

I assume the prior distribution of unknown parameters, i.e., the parameters linking prices and
fundamentals (ζm, ζp) and the residual precision K ≡ 1

σ2ε
, is a Normal-Gamma distribution

as following

K ∼ G(γ0, d
−2
0 )

(ζm, ζp)′ | K = k ∼ N((θm0 , θ
p
0)
′, (ν0k)−1)

The prior distribution of K is a gamma distribution and the conditional prior of ζ ≡ (ζm, ζp)
given K is a multivariate normal distribution.
I drop the terms which do not involve (θ, k) by using the proportionality symbol. The

conditional probability of the collateral price is a normal distribution with following condi-
tional probability density function

p(yt|θ, k) ∝ k
1
2 exp{−k

2
(yt − x′tθ)′(yt − x′tθ)}

The prior density of the parameters is following

p(θ, h) ∝ kγt−1−1exp{−d−2t−1k}k
1
2 exp{−k

2
(θ − θt−1)′νt−1(θ − θt−1)}

I proceed to show that the posterior distribution of the parameters is as follows

θ|K = k ∼ N(θt, (νtk)−1)

K ∼ G(γt, d
−2
t )

with probability density function

p(θ, k|yt) ∝ kγt−1exp{−d−2t k}k 1
2 exp{−k

2
(θ − θt)′νt(θ − θt)}

where

θt = θt−1 + (xtx
′
t + νt−1)

−1xt(yt − x′tθt−1)
νt = νt−1 + xtx

′
t

γt = γt−1 +
1

2

d−2t = d−2t−1 +
1

2
(yt − x′tθt−1)′(xtx′t + νt−1)

−1νt−1(yt − x′tθt−1)

The above equations can be derived using Bayes’law. The derivations are standard so
only some critical intermediate steps are presented here. The posterior density

p(θ, k|yt) ∝ p(yt|θ, k)p(θ, k)

38The derivation follows DeGroot (1974).
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It can be derived from the right hand side that the posterior mean of the parameters is

θt

= (xtx
′
t + νt−1)

−1(νt−1θt−1 + xtyt)

= (xtx
′
t + νt−1)

−1νt−1θt−1 + (xtx
′
t + νt−1)

−1xtyt

= θt−1 − (xtx
′
t + νt−1)

−1xtx
′
tθt−1 + (xtx

′
t + νt−1)

−1xtyt

= θt−1 + (xtx
′
t + νt−1)

−1xt(yt − x′tθt−1)

Note

(yt − x′tθ)′(yt − x′tθ) + (θ − θt−1)′νt−1(θ − θt−1)
= y′tyt − 2θ′xtyt + θ′xtx

′
tθ + θ′νt−1θ − 2θ′νt−1θt−1 + θ′t−1νtθt−1

= θ′(xtx
′
t + νt−1)θ − 2θ′(xtyt + νt−1θt−1) + y′tyt + θ′t−1νt−1θt−1

=
(
θ − (xtx

′
t + νt−1)

−1(νt−1θt−1 + xtyt)
)′

(xtx
′
t + νt−1)

(
θ − (xtx

′
t + νt−1)

−1(νt−1θt−1 + xtyt)
)[

y′tyt + θ′t−1νt−1θt−1 − (νt−1θt−1 + xtyt)
′(xtx

′
t + νt−1)

−1(νt−1θt−1 + xtyt)
]

C Deriving the Constant-Gain Learning Algorithm from
Bayesian Updating39

Agents perceive the following random walk model of coeffi cient variation

φt = φt−1 + ιt Eιtι
′
t = R1t (52)

yt = θ̄
′
t−1xt + ς t Eς tς

′
t = R2t (53)

Define Pt−1 = E[(φt−1 − θt−1)(φt−1 − θt−1)]. The prior belief about θ̄0 are N(θ0, P0|0). The
posterior of θt can be represented by the basic Kalman filter, which takes the form of following
recursions40

θt = θt−1 + Lt[yt − x′tθt−1] (54)

Lt =
Pt|t−1xt

R2t + x′tPt|t−1xt
(55)

Pt+1|t = Pt|t−1 −
Pt|t−1xtx

′
tPt|t−1

R2t + x′tPt|t−1xt
+R1t+1 (56)

Furthermore, agents are assumed to perceive R1t = g
1−gPt−1|t−1 and R2t = 1

g
. Note

Pt|t−1 = Pt−1|t−1 +R1t = 1
1−gPt−1|t−1. Equations (55)− (56) become

θt = θt−1 + Lt[yt − x′tθ̂t−1] (57)

Lt =
Pt−1|t−1xt

1−g
g

+ x′tPt−1|t−1xt
(58)

39The derivations follow Ljung (1991) and Sargent (1999) except that both of them use inconsistent
notations.
40Note for the model considered here I have θt|t−1 = θt−1|t−1, so I suppress the conditioned information

set and use θt for both.
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And equation (54) becomes

Pt+1|t −R1t+1 = Pt|t−1 −
Pt|t−1xtx

′
tPt|t−1

R2t + x′tPt|t−1xt
(59)

Pt|t =
1

1− g

[
Pt−1|t−1 −

Pt−1|t−1xtx
′
tPt−1|t−1

x′tPt−1|t−1xt + 1−g
g

]
(60)

The constant gain learning algorithm is following41

θt = θt−1 + gR−1t xt(yt − θ
′

t−1xt) (61)

Rt = Rt−1 + g (xtx
′
t −Rt−1) (62)

Below I show the above two formulations are equivalent. Use R−1t ≡ Pt|t, equation (62)
yields

R−1t =
(
(1− g)Rt−1 + gxtx

′−1
t

)
(63)

=
1

1− gR
−1
t−1 −

1

1− gR
−1
t−1xt

[
x′t

1

1− gR
−1
t−1xt +

1

g

]−1
x′t

1

1− gR
−1
t−1 (64)

=
1

1− g

[
Pt−1|t−1 −

Pt−1|t−1xtx
′
tPt−1|t−1

x′tPt−1|t−1xt + 1−g
g

]
(65)

From equation (63) to equation (64), the matrix inversion formula is used and stated in
lemma 1 below. Specifically, it is applied with A = (1− g)Rt−1, B = xt, C = g, D = x′t.
Now I proceed to show the equivalence between equation (57) and (61). It suffi ces to

show that gR−1t xt = Lt.

gR−1t xt = gPt|txt (66)

=
g

1− g

[
Pt−1|t−1 −

Pt−1|t−1xtx
′
tPt−1|t−1

1−g
g

+ x′tPt−1|t−1xt

]
xt (67)

=
Pt−1|t−1xt

1−g
g

+ x′tPt−1|t−1xt
(68)

= Lt (69)

From equation (66) to (67), equation (60) is used.
Lemma 1. Let A, B, C and D be matrices of compatible dimensions, so that the product

BCD and the sum A+BCD exist. Then

[A+BCD]−1 = A−1 − A−1B[DA−1B + C−1]−1DA−1 (70)

Proof: see Ljung and Soederstroem (1983) pp. 19. (Sketch: show the RHS of (70) multiplied
by A+BCD from the right is equal to identity matrix.)

41The learning rule using lagged data can be derived similarly as in Adam, Beutel and Marcet (2014).

37



D Proof of Proposition 4

Local stability of the Minimum State Variable (MSV) RE solution is determined by the
stability of the following associated ordinary differential equations (ODEs)

dζm

dτ
= T1(ζ

m, ζp)− ζm

dζp

dτ
= T2(ζ

p, ζp)− ζp

where T1(ζ
m, ζp) =

(ξ1ζ
m−ξ2ζm)(1+

ζp

ξ3R
)− ξ1

ξ3

ζmζp

R

1+ ζp

ξ3R
−ξ1ζp 1

ξ3

, T2(ζ
p, ζp) = ξ3−ξ2ζp

1− ξ1ζ
p

ξ3+ζ
p 1
R

, ξ1 = 1
R

+ 1
η
R−1
R

1
1− 1

R
(1−τ)

1−τ
R
,

ξ2 = (1− τ) 1
η
R−1
R

1
1− 1

R
(1−τ) , ξ3 = 1

η
R−1
R
.

Solving the fixed point of the T-map, I get ζ̄m = 0, and ζ̄p =
(1− 1

R
(1−τ)) 1

η

1+(1−τ)( 1
η
− 1
R
)
.

The E-stability condition requires that the eigenvalues of the Jacobian of the right hand
side of the above ODEs are negative. Since ζm does not show up in the ODE for ζp, the
eigenvalues will be on the diagonal of the Jacobian matrix and only two partial derivatives,
i.e., ∂T1(ζ

m,ζp)
∂ζm

|ζm=ζm,ζp=ζp and
∂T2(ζ

p,ζp)
∂ζp

|ζp=ζp , matter for the E-stability.
Fixing the arguments of the T2-map at ζ

p yields

T2(ζ
p, ζp) =

ξ3 − ξ2ζp

1− ξ1ζ
p

ξ3+ζ
p 1
R

=
(ξ3 + ζp

R
)(ξ3 − ξ2ζp)

ξ3 + ( 1
R
− ξ1)ζp

=
ξ23 + ( 1

R
− ξ2)ζpξ3 −

ξ2
R

(ζp)2

ξ3 + ( 1
R
− ξ1)ζp

The derivative of T2 with respect to ζ
p evaluated at the RE value is

∂T2(ζ
p, ζp)

∂ζp
|ζp=ζp =

( 1
R
− ξ2)ξ3 − ζ

p 2
R
ξ2

ξ3 + ( 1
R
− ξ1)ζ

p

−(
1

R
− ξ1)

(ξ23 + ( 1
R
− ξ2)ζpξ3 −

ξ2
R

(ζp)2)(
ξ3 + ( 1

R
− ξ1)ζ

p
)2

=
( 1
R
− ξ2)ξ3 − ζ

p 2
R
ξ2

ξ3 + ( 1
R
− ξ1)ζ

p − (
1

R
− ξ1)

ζ
p

ξ3 + ( 1
R
− ξ1)ζ

p

=
( 1
R
− ξ2)ξ3 − ζ

p
( 2
R
ξ2 + 1

R
− ξ1)

ξ3 + ( 1
R
− ξ1)ζ

p (71)

Note ζ
p
is the fixed point of the T2-map, i.e., ζ

p
=

ξ23+(
1
R
−ξ2)ζ

p
ξ3−

ξ2
R
(ζ
p
)2

ξ3+(
1
R
−ξ1)ζ

p , is used when deriving

the second equality above. Substituting for ξ1, ξ3, and ζ
p
, I show that the denominator of

the above derivative is positive.
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ξ3 + ζ
p
(

1

R
− ξ1)

=
1

η

R− 1

R
+
ζ
p

R

(
1−R

(
1

R
+

1

η

R− 1

R

1

1− 1
R

(1− τ)

1− τ
R

))
=

1

η

R− 1

R
−

(1− 1
R

(1− τ)) 1
η

1 + (1− τ)( 1
η
− 1

R
)

1

R

(
1

η

R− 1

R

1

1− 1
R

(1− τ)
(1− τ)

)

=
1

η

R− 1

R

1

R

(
R−

1
η

(1− τ)

1 + (1− τ)( 1
η
− 1

R
)

)

=
1

η

R− 1

R

1

R

(
R−

1
η

(1− τ)

1− 1−τ
R

+ 1−τ
η

)
> 0 (72)

I proceed to show that the derivative (71) is smaller than 1. Given (72), note

∂T2(ζ
p, ζp)

∂ζp
|ζp=ζp < 1

is equivalent to

(
1

R
− ξ2)ξ3 − ζ

p
(

2

R
ξ2 +

1

R
− ξ1) < ξ3 + (

1

R
− ξ1)ζ

p

Rearranging the above inequality yields

(
1

R
− ξ2 − 1)ξ3 < 2ζ

p
(
ξ2
R

+
1

R
− ξ1)

Plugging ξ′s, it can be shown that the left hand side of the above inequality is negative
because ξ2 > 0, 1

R
− 1 < 0, and ξ3 > 0. It can be shown that the right hand side is exactly

zero because ξ1 = 1
R

+ ξ2
R
.

Now I turn to the first derivative. Recall T1(ζ
m, ζp) =

ξ1ζ
m−ξ2ζm(1+

ζp

ξ3R
)

1+ ζp

ξ3R
−ξ1ζp 1

ξ3

. Taking the

derivative of T1 with respect to ζ
m and evaluate it at the RE belief yields

∂T1(ζ
m, ζp)

∂ζm
|ζm=ζm,ζp=ζp =

ξ1 − ξ2(1 + ζ
p

ξ3R
)

1 + ζ
p

ξ3R
− ξ1ζ

p 1
ξ3

=
(ξ1 − ξ2)ξ3R− ξ2ζ

p

ξ3R + ζ
p
(1− ξ1R)

I then show the above derivative is smaller than 1. Given (72), it is equivalent to show

(ξ1 − ξ2)ξ3R− ξ2ζ
p
< ξ3R + ζ

p
(1− ξ1R)
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Rearranging the above inequality yields

(ξ1 − ξ2 − 1)ξ3R < (ξ2 + 1− ξ1R)ζ
p

(73)

Plugging in the parameters, it can be shown firstly the left hand side of the above inequality
is negative because

ξ1 − ξ2 − 1 =
1

R
+
ξ2
R
− ξ2 − 1

=

(
1

R
− 1

)
(1 + ξ2)

< 0

ξ3 > 0, and R > 0. It can also be shown that the right hand side of (73) is zero because
ξ1R = 1 + ξ2.

E Proof of Proposition 6

Define s(ζpt ) =
ξ1ζ

p
t

ξ3+ζ
p
t
1
R

. Recall the T2-map is

T2(ζ
p
t−1, ζ

p
t ) =

ξ3 − ξ2ζ
p
t−1

1− ξ1ζ
p
t

ξ3+ζ
p
t
1
R

=
ξ3 − ξ2ζ

p
t−1

1− s(ζpt )

' ζ
p

+

(
− ∂T2
∂ζpt−1

|ζpt−1=ζp,ζpt=ζp
)(

ζ
p − ζpt−1

)
−
(
∂T2
∂ζpt
|ζpt−1=ζp,ζpt=ζp

)(
ζ
p − ζpt

)
where − ∂T2

∂ζpt−1
|ζp and ∂T2

∂ζpt
|ζp stand for − ∂T2

∂ζpt−1
|ζpt−1=ζp,ζpt=ζp and

∂T2
∂ζpt
|ζpt−1=ζp,ζpt=ζp , respectively.

A suffi cient condition to guarantee momentum in belief is

− ∂T2
∂ζpt−1

|ζp ≥
∂T2
∂ζpt
|ζp (74)

Suppose ζpt−1 < ζpt ≤ ζ
p
, then ζ

p − ζpt−1 > ζ
p − ζpt ≥ 0. Given that the momentum

condition (74) holds, we have
(
− ∂T2
∂ζpt−1
|ζpt−1=ζp

)(
ζpt−1 − ζ

p
)
>
(
∂T2
∂ζpt
|ζpt=ζp

)(
ζ
p − ζpt

)
and

hence T2(ζ
p
t−1, ζ

p
t ) > ζ

p
. Using the belief updating rule, agents will update their belief upward,

i.e., ζpt+1 > ζpt . Similarly, if ζ
p
t−1 > ζpt ≥ ζ

p
, we have T2(ζ

p
t−1, ζ

p
t ) < ζ

p
and ζpt+1 < ζpt .

I proceed to calculate the two derivatives. We have

− ∂T2
∂ζpt−1

|ζp =
ξ2

1− s(ζp)

and
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∂T2
∂ζpt
|ζp =

ξ3 − ξ2ζ
p

1− s(ζp)
s′(ζ

p
)

1− s(ζp)

= ζ
p s′(ζ

p
)

1− s(ζp)

ζ
p
is the fixed point of the T2−map, i.e., ξ3−ξ2ζ

p

1−s(ζp) = ζ
p
, is used in the last equality. So the

condition (74) is equivalent to −ξ2
1−s(ζp) ≥ ζ

p s′(ζ
p
)

1−s(ζp) or

ξ2 ≥ ζ
p
s′(ζ

p
) (75)

Calculating the derivative s′(ζ
p
) as follows

s′(ζ
p
) =

ξ1
ξ3 + ζ

p 1
R

− ξ1ζ
p

ξ3 + ζ
p 1
R

1
R

ξ3 + ζ
p 1
R

=
s(ζ

p
)

ζ
p −

s(ζ
p
) 1
R

ξ3 + ζ
p 1
R

So

ζ
p
s′(ζ

p
) = s(ζ

p
)−

ζ
p
s(ζ

p
) 1
R

ξ3 + ζ
p 1
R

=
s(ζ

p
)ξ3

ξ3 + ζ
p 1
R

=
s(ζ

p
)(R− 1)

(R− 1) + ηζ
p (76)

The last equality comes from plugging in the expression for ξ3. Below we use again that ζ
p

is the fixed point of the T2−map, i.e., ξ3−ξ2ζ
p

1−s(ζp) = ζ
p
, which implies that

s(ζ
p
) = ξ2 + 1− ξ3

ζ
p (77)

The inequality (75)
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ξ2 ≥ ζ
p
s′(ζ

p
)

⇐⇒ ξ2 ≥
s(ζ

p
)(R− 1)

(R− 1) + ηζ
p (using (76) )

⇐⇒ ξ2 ≥
(
ξ2 + 1− ξ3

ζ
p

)
(R− 1)

(R− 1) + ηζ
p (using (77))

⇐⇒ ξ2 ≥ ξ2
(R− 1)

(R− 1) + ηζ
p +

(
1− ξ3

ζ
p

)
(R− 1)

(R− 1) + ηζ
p

⇐⇒ ξ2
ηζ

p

(R− 1) + ηζ
p ≥

(
1− ξ3

ζ
p

)
(R− 1)

(R− 1) + ηζ
p

⇐⇒ ξ2ηζ
p ≥

(
1− ξ3

ζ
p

)
(R− 1)

⇐⇒ (1− τ)
1

η

R− 1

R

1

1− 1
R

(1− τ)
η

(1− 1
R

(1− τ)) 1
η

1 + (1− τ)( 1
η
− 1

R
)

≥

1−
1
η
R−1
R

(1− 1
R
(1−τ)) 1

η

1+(1−τ)( 1
η
− 1
R
)

 (R− 1) (using expressions for ξ2, ζ
p
and ξ3)

⇐⇒
(1− τ) 1

η
R−1
R

1 + (1− τ)( 1
η
− 1

R
)
≥

1−
R−1
R

(
1 + (1− τ)( 1

η
− 1

R
)
)

(1− 1
R

(1− τ))

 (R− 1)

⇐⇒ (1− τ)

Rη + (1− τ)(R− η)
≥

(1− 1
R

(1− τ))− R−1
R

(
1 + (1− τ)( 1

η
− 1

R
)
)

(1− 1
R

(1− τ))
(78)

The right hand side of the above inequality is

RHS =
(1− 1

R
(1− τ))− R−1

R

(
1 + (1− τ)( 1

η
− 1

R
)
)

(1− 1
R

(1− τ))

=
1− 1

R
+ 1

R
τ − 1 + 1

R
− R−1

R
(1− τ)( 1

η
− 1

R
)

1
R

(R− (1− τ))

=
1− 1

R
+ 1

R
τ − 1 + 1

R
− R−1

R
(1− τ)( 1

η
− 1

R
)

1
R

(R− (1− τ))

=
ηRτ − (R− 1) (1− τ)(R− η)

ηR(R− (1− τ))
(79)

So with equation (79) the inequality (78) becomes
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(1− τ)

Rη + (1− τ)(R− η)
≥ ηRτ − (R− 1) (1− τ)(R− η)

ηR(R− (1− τ))

⇐⇒ (1− τ)ηR2 − ηR(1− τ)2

Rη + (1− τ)(R− η)
≥ ηRτ − (R− 1) (1− τ)(R− η)

⇐⇒ (1− τ)ηR2 − ηR(1− τ)2 ≥ R2η2τ + ηRτ(1− τ)(R− η)

−Rη (R− 1) (1− τ)(R− η)− (R− 1) (1− τ)2(R− η)2

⇐⇒ (1− τ)ηR2 − ηR(1− τ)2 ≥ R2η2 −R2η2(1− τ)

+ηR(1− τ)(R− η)− ηR(1− τ)2(R− η)

−Rη (R− 1) (1− τ)(R− η)− (R− 1) (1− τ)2(R− η)2

⇐⇒ (
(R− η)2(R− 1)− ηR + ηR(R− η

)
)(1− τ)2

+
(
ηR2 +R2η2 − ηR2 + η2R + (R− 1) (R− η)ηR

)
(1− τ)

−R2η2

≥ 0 (80)

I proceed to simplify the inequality (80). Note the coeffi cient on (1 − τ)2 in inequality
(80) is

(R− η)2(R− 1)− ηR + ηR(R− η) =
(
R2 − 2ηR + η2

)
R−

(
R2 − 2ηR + η2

)
− ηR + ηR2 − η2R

= R3 − ηR2 + ηR−R2 − η2

= R2(R− 1)− ηR(R− 1)− η2

The coeffi cient on (1− τ) in inequality (80) is

ηR2 +R2η2 − ηR2 + η2R + (R− 1) (R− η)ηR = R2η(R− 1)− η2R (R− 1) +R2η2 + η2R

= Rη(R(R− 1) + 2η)

So the inequality (80) is equivalent to

0 ≤ (R2(R− 1)− ηR(R− 1)− η2)(1− τ)2 +Rη(R(R− 1) + 2η)(1− τ)−R2η2

⇐⇒ 0 ≤ −η2
(
(1− τ)2 − 2R(1− τ) +R2

)
+
(
R2(R− 1)(1− τ

)
−R(R− 1)(1− τ)2)η +R2(R− 1)(1− τ)2

⇐⇒ 0 ≤ −η2 (R− (1− τ))2 +R(R− 1)(1− τ)(R− (1− τ))η +R2(R− 1)(1− τ)2

⇐⇒ (η(R− (1− τ))− R(R− 1)(1− τ)

2
)2 ≤ R2(1− τ)2

(
(R− 1) +

(R− 1)2

4

)
(81)
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Case 1: assuming η(R− (1− τ)) > R(R−1)(1−τ)
2

or equivalently

2(R− (1− τ))

R(R− 1)(1− τ)
>

1

η
(82)

(81) implies

η(R− (1− τ))− R(R− 1)(1− τ)

2
≤ R(1− τ)

√
(R− 1) +

(R− 1)2

4

⇐⇒ 1

η
≥ R− (1− τ)

R(R−1)(1−τ)
2

+R(1− τ)
√

(R− 1) + (R−1)2
4

⇐⇒ 1

η
≥

R
1−τ − 1

g(R)
(83)

where g(R) = R

√
(R− 1) +

(R− 1)2

4
+
R(R− 1)

2

Combining (82) and (83), I get

2(R− (1− τ))

R(R− 1)(1− τ)
>

1

η
≥

R
1−τ − 1

g(R)
(84)

It can be shown that

2(R− (1− τ))

R(R− 1)(1− τ)
>

R
1−τ − 1

R
√

(R− 1) + (R−1)2
4

+ R(R−1)
2

⇐⇒
R

(1−τ) − 1

R(R−1)
2

>
R
1−τ − 1

R
√

(R− 1) + (R−1)2
4

+ R(R−1)
2

because the second inequality is true.
Case 2: assuming η(R−(1−τ)) ≤ R(R−1)(1−τ)

2
or equivalently 1

η
≥ (R−(1−τ))

R(R−1)(1−τ)
2

,(81) implies

R(R− 1)(1− τ)

2
− η(R− (1− τ)) ≤ R(1− τ)

√
(R− 1) +

(R− 1)2

4

Note R(R−1)(1−τ)
2

< R(1− τ)
√

(R− 1) + (R−1)2
4

, so the above inequality holds. I get

1

η
≥ (R− (1− τ))

R(R−1)(1−τ)
2

(85)

Combining (84) and (85), I get the momentum condition 1−τ
R
≥ 1

g(R) 1
η
+1
where g(R) =

R(
√

(R− 1) + (R−1)2
4

+ R−1
2

).
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F Robustness of the Qualitative Model Dynamics to
an Alternative Specification of the Collateral Con-
straint

Some papers, say Boz and Mendoza (2013) use an alternative specification of collateral con-
straints that household borrowing is limited by a fraction of current collateral values rather
than the expected liquidation value of collateral. This section shows that the qualitative
dynamics, belief changes have a critical effect on collateral prices and the possibility of mo-
mentum dynamics, continues to hold in the model with this alternative specification of the
collateral constraint.
Consider the following collateral constraint

bBt ≤ (1− τ)
qt
R
HB
t

The debt repayment is now (1 − τ)qt−1H
B
t−1 and still depends directly on agents’ price

elasticity belief at t− 1,i.e., ζpt−1. Borrowers’collateral demand becomes

HB
t =

a+ qt − (1− τ)qt−1
qt − 1

R
(1− τ)qt

HB
t−1

Consider the deterministic case and without learning about the steady state. The collat-
eral demand equation is

HB
t =

a+ qt − (1− τ)qt−1

qt − (1−τ)
R

qt
HB
t−1

The model equations with the alternative specification of the collateral constraint contain

ĤB
t =

1(
1− 1−τ

R

) [1− τ
R

q̂t − (1− τ)q̂t−1

]
+ ĤB

t−1 (86)

q̂t =
1

R
EPt q̂t+1 +

1

η

R− 1

R
ĤB
t (87)

Agents’conditional expectations are EPt q̂t+1 = ζpt Ĥ
B
t . Substituting the conditional expecta-

tions into the model equations, we get

q̂t =
1

R
EPt q̂t+1 +

1

η

R− 1

R
ĤB
t

=
1

R
ζpt Ĥ

B
t +

1

η

R− 1

R
ĤB
t

=

(
1

R
ζpt +

1

η

R− 1

R

)
ĤB
t (88)

So we have

q̂t−1 =

(
1

R
ζpt−1 +

1

η

R− 1

R

)
ĤB
t−1 (89)
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Combining equations (86), and (89), we get

ĤB
t =

1(
1− 1−τ

R

) [1− τ
R

q̂t − (1− τ)q̂t−1

]
+ ĤB

t−1

=
1−τ
R

1− 1−τ
R

(
1

R
ζpt +

1

η

R− 1

R

)
ĤB
t −

1− τ(
1− 1−τ

R

) ( 1

R
ζpt−1 +

1

η

R− 1

R

)
ĤB
t−1 + ĤB

t−1

So

ĤB
t =

1− 1−τ
(1− 1−τ

R )

(
1
R
ζpt−1 + 1

η
R−1
R

)
1−

1−τ
R

1− 1−τ
R

(
1
R
ζpt + 1

η
R−1
R

) ĤB
t−1 (90)

Equations (88) and (90) yield the ALM for collateral prices under learning

q̂t =

(
1

R
ζpt +

1

η

R− 1

R

)
ĤB
t

= T2
(
ζpt−1, ζ

p
t

)
ĤB
t−1

where

T2
(
ζpt−1, ζ

p
t

)
=

(
1

R
ζpt +

1

η

R− 1

R

) 1− 1−τ
(1− 1−τ

R )

(
1
R
ζpt−1 + 1

η
R−1
R

)
1−

1−τ
R

1− 1−τ
R

(
1
R
ζpt + 1

η
R−1
R

)
The actual price elasticity under learning, i.e., the T2−map, depends positively on cur-

rent beliefs and negatively on past beliefs. So the qualitative learning dynamics under this
alternative collateral constraint is similar to the one analyzed in the text.

G Check if the Collateral Constraint is Binding

Similar to the Kiyotaki andMoore (1997) paper, two assumptions: (1) βB < βL

A
(2) e

1− 1
R
(1−τ)

(R−1)(1−τ)
aR

>
1
βB
− 1, have been made to ensure that the return to investment is higher than that to con-

sumption and saving in a neighborhood of the steady state, so that the collateral constraint
is always binding under RE. In the learning model agents evaluate the payoffs of different
strategies using the subjective probability measure and there may be substantial deviations
of beliefs and expectations. It is unclear that if the collateral constraint remains binding
in this case without a formal check. This section confirms that the collateral constraint is
indeed binding during the housing cycle over the year 2001-2008 in the learning model.
Consider a marginal unit of tradable consumption at date t where t runs from 2001Q1

to 2008Q4. The borrower could consume it and get utility 1. Alternatively he could invest
it in collateral holding or save it and then invest. The payoff sequences for period t, t+ 1, t+
2, t+ 3, ... would be as follows.
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invest 0,
e

dt
,
a+ qt+1 − (1− τ)EPt qt+1

dt

e

dt+1
,

a+ qt+1 − (1− τ)EPt qt+1
dt

a+ qt+2 − (1− τ)EPt+1qt+2
dt+1

e

dt+2
, ... (91)

save 0, 0, Rt
e

dt+1
,

Rt

a+ qt+2 − (1− τ)EPt+1qt+2
dt+1

e

dt+2
, .... (92)

consume 1, 0, 0, 0,... (93)

In period t, the borrower invests 1 unit and can get 1
dt
unit of collateral with borrowing. In

period t+1, he gets the production a+e
dt
. The non-tradable part e

dt
will be consumed and the

tradable part a
dt
will be re-invested. There will be capital gain

(
qt+1 − (1− τ)EPt qt+1

)
1
dt
. In

period t+1, the sum of the tradable part and the capital gain, i.e., a+qt+1−(1−τ)EPt qt+1
dt

, will

be reinvested, so a+qt+1−(1−τ)EPt qt+1
dt

1
dt+1

will be acquired in period t + 1. In period t + 2,
a+qt+1−(1−τ)EPt qt+1

dt
e

dt+1
will be consumed; and so on.

In period t, if the borrower saves the 1 unit, then he will get Rt in period t + 1. He
can acquire Rt

dt+1
at the same period. In period t + 2, he consumes Rt

e
dt+1

and invests

Rt
a+qt+2−(1−τ)EPt+1qt+2

dt+1
; and so on.

Denote P I
t , P

S
t the payoff of the investment and saving strategy at period t, respectively.

Invt and Savt stand for the discounted sum of period payoffs for the investment and saving
strategy, respectively. So

Invt =
∞∑
i=t

(
βB
)i
P I
t (94)

Savt =
∞∑
i=t

(
βB
)i
P S
t (95)

The steady state value of Invt is

Inv = 0 + βB
e

d
+
(
βB
)2 a+ τq

d

e

d
+
(
βB
)3(a+ τq

d

)2
e

d
+ ...

= βB
e

d

(
1 + βB +

(
βB
)2

+ ...
)

= βB
e

d

1

1− βB

and the steady state value of Savt is

Sav =
(
βB
)2
R
e

d
+
(
βB
)3
R
e

d
+
(
βB
)4
R
e

d
+ ...

=
(
βB
)2
R
e

d

1

1− βB

47



To ensure a higher payoff for the investment strategy than that for saving at the steady
state, i.e., Inv > Sav, we need 1 > βBR or βL > βB. And

βB
e

d

1

1− βB
> 1 (96)

is suffi cient to ensure that the payoff for investment is higher than that for consuming it
immediately. Substituting the steady state values, I get the inequality (96) is equivalent to

e

1− 1
R

(1− τ)

(R− 1) (1− τ)

aR
>

1

βB
− 1

Note Invt and Savt depend on the realization of future variables such as future prices.
We are going to compare the conditional expectation of the payoffs of the three strategies
at period t, EPt Invt and E

P
t Savt. After log-linearization, E

P
t Învt and E

P
t Ŝavt are identical

to the log-linearization version of the discounted sum of the following payoff sequences42,
respectively

invest 0,
e

dt
,
a+ τEPt qt+1

dt

e

EPt dt+1
,
a+ τEPt qt+1

dt
, ... (97)

save 0, 0, Rt
e

EPt dt+1
, Rt

a+ τEPt qt+2
EPt dt+1

e

EPt dt+2
, .... (98)

where I replaced qt+1−(1−τ)EPt qt+1, qt+2−(1−τ)EPt+1qt+2... in (91) and (92) by τE
P
t qt+1, τE

P
t qt+2...

in (97) and (98). I also replaced future down-payments dt+1, dt+2, ... by EPt dt+1, E
P
t dt+2, ....

Note at the steady state q
d

= 1
1− 1−τ

R

. Log-linearizing the discounted sum of the payoff

sequences (97) and (98) yields

Inv ∗ EPt Învt = βB
e

d

(
−d̂t

)
+
(
βB
)2 e
d

(
−d̂t +

τ

1− 1−τ
R

EPt q̂t+1 − EPt d̂t+1
)

+
(
βB
)3 e
d

(
−d̂t +

τ

1− 1−τ
R

(
EPt q̂t+1 + EPt q̂t+2

)
− EPt d̂t+1 − EPt d̂t+2

)
+
(
βB
)4 e
d

[−d̂t − EPt d̂t+1 − EPt d̂t+2 − EPt d̂t+3

+
τ

1− 1−τ
R

(
EPt q̂t+1 + EPt q̂t+2 + EPt q̂t+3

)
]

+...

= −βB e
d

1

1− βB
[d̂t − βB

τ

1− 1−τ
R

EPt q̂t+1 +
∞∑
i=1

(
βB
)i
EPt d̂t+i

−βB τ

1− 1−τ
R

∞∑
i=1

(
βB
)i
EPt q̂t+i+1] (99)

42Note this does not mean that the conditional expectation of the payoff sequence (91) and (92) are (97)
and (98), respectively.
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and

Sav ∗ EPt Ŝavt =
(
βB
)2
R
e

d

(
R̂t − EPt d̂t+1

)
+
(
βB
)3
R
e

d

(
R̂t − EPt d̂t+1 − EPt d̂t+2 +

τq

d
EPt q̂t+2

)
+
(
βB
)4
R
e

d
[R̂t − EPt d̂t+1 − EPt d̂t+2 − EPt d̂t+3

+
τq

d
EPt q̂t+2 +

τq

d
EPt q̂t+3] + ...

=
(
βB
)2
R
e

d

1

1− βB
∗(

R̂t −
∞∑
i=1

(
βB
)i−1

EPt d̂t+i +
τq

d

∞∑
i=1

(
βB
)i
EPt q̂t+i+1

)
(100)

Log-linearizing the down-payment yields

d̂t =
1

1− 1−τ
R

(
q̂t −

1− τ
R

(
EPt q̂t+1 − R̂t

))
and for i ≥ 1

EPt d̂t+i =
1

1− 1−τ
R

(
EPt q̂t+i −

1− τ
R

(
EPt q̂t+i+1 − EPt R̂t+i

))
Define κt ≡ (κmt ,κ

p
t )
′ where κmt and κ

p
t are parameter estimates in the collateral holding

equation. βrt stands for agents’belief for interest rates at period t and is assumed to be
updated via steady state learning for simplicity. κt and βrt are updated recursively as follows

κt = κt−1 + γ
(
SHt
)−1( 1

ĤB
t−2

)(
ĤB
t−1 −

(
1 ĤB

t−2

)
κt−1

)
SHt = SHt−1 + γ

((
1

ĤB
t−2

)(
1 ĤB

t−2

)
− SHt−1

)
βrt = βrt−1 + γ

(
R̂t−1 − βrt−1

)
where γ is the gain parameter.
We derive the collateral price forecast when i ≥ 1

EPt q̂t+i = φmt + φptE
P
t Ĥ

B
t+i

= φmt + φpt

(
κmt

1− (κpt )
i

1− κpt
+ (κpt )

i−1 ĤB
t

)

Substituting the conditional expectations and the down-payments into (99) and (100),
we get
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Inv ∗ EPt Învt = −βB e
d

1

1− βB
[d̂t − βB

τ

1− 1−τ
R

EPt q̂t+1 +
∞∑
i=1

(
βB
)i
EPt d̂t+i

−βB τ

1− 1−τ
R

∞∑
i=1

(
βB
)i
EPt q̂t+i+1]

= −βB e
d

1

1− βB
[d̂t − βB

τ

1− 1−τ
R

EPt q̂t+1

+
∞∑
i=1

(
βB
)i( 1

1− 1−τ
R

(
EPt q̂t+i −

1− τ
R

(
EPt q̂t+i+1 − EPt R̂t+i

)))
−βB τ

1− 1−τ
R

∞∑
i=1

(
βB
)i
EPt q̂t+i+1]

= −βB e
d

1

1− βB
[d̂t +

βB (1− τ)

1− 1−τ
R

EPt q̂t+1

+

(
βB − 1

R

)
(1− τ)

1− 1−τ
R

∞∑
i=1

(
βB
)i
EPt q̂t+i+1

+
1−τ
R

1− 1−τ
R

∞∑
i=1

(
βB
)i
EPt R̂t+i] (101)

where the sum
∑∞

i=1

(
βB
)i
EPt q̂t+i+1 can be calculated as follows

∞∑
i=1

(
βB
)i
EPt q̂t+i+1 =

∞∑
i=1

(
βB
)i(

φmt + φpt

(
κmt

1− (κpt )
i

1− κpt
+ (κpt )

i ĤB
t

))

=
∞∑
i=1

(
βB
)i(

φmt +
φptκmt
1− κpt

)
+
∞∑
i=1

(
βBκpt

)i(
ĤB
t −

κmt κ
p
t φ

p
t

1− κpt

)
and the interest rate forecast

EPt R̂t+i = βrt

Comparing (99) with (100), we get

Sav ∗ EPt Ŝavt =
(
βB
)2
R
e

d

1

1− βB

(
R̂t −

∞∑
i=1

(
βB
)i−1

EPt d̂t+i +
τq

d

∞∑
i=1

(
βB
)i
EPt q̂t+i+1

)
=

(
βB
)2
R
e

d

1

1− βB
R̂t

+R

(
Inv ∗ EPt Învt + βB

e

d

1

1− βB
d̂t −

(
βB
)2 e
d

1

1− βB
EPt q̂t+1

)
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Denote ∆1
t and ∆2

t the difference of the payoff between the investment strategy and the
saving and the consumption strategy, respectively, so

∆1
t = EPt Învt + log (Inv)−

(
EPt Ŝavt + log(Sav)

)
and

∆2
t = EPt Învt + log (Inv)− 1

The parameterization in the quantitative section is used. In addition, we need to set a few
more parameters. A different and smaller gain parameter γ = 0.03 is considered for updating
κt and βrt rather than 0.065 used in updating parameters in the collateral price equation.
This is because γ =0.065 will lead to κpt larger than 1, which we want to avoid. The discount
factor βB is set to 0.97. Numerical calculation shows that ∆1

t and ∆2
t are positive over the

housing cycle in the learning model over the year 2001-2008. 43
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43For some alternative parameterizations, ∆1
t and/or ∆2

t can be negative for some periods. However, both
∆1
t and ∆2

t are positive for all t and for a large set of plausible and alternative parameterization, such as
different gain parameter and/or different borrowers’discount factor.
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