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1 Introduction

One of David Schmeidler’s many important contributions in his distinguished

career was the introduction of the nucleolus, one of the central single-valued

solution concepts in cooperative game theory. This paper is an updated

survey on the nucleolus and its two related supersolutions, i.e., the kernel and

the bargaining set. As a first approach to these concepts, we refer the reader

to the great survey by Maschler (1992); see also the relevant chapters in Peleg

and Sudholter (2003). Building on the notes of four lectures on the nucleolus

and the kernel delivered by one of the authors at the Hebrew University of

Jerusalem in 1999, we have updated Maschler’s survey by adding more recent

contributions to the literature. Following a similar structure, we have also

added a new section that covers the bargaining set.

The nucleolus has a number of desirable properties, including nonempti-

ness, uniqueness, core selection, and consistency. The first way to understand

it is based on an egalitarian principle among coalitions. However, by going

over the axioms that characterize it, what comes across as important is its

connection with coalitional stability, as formalized in the notion of the core.

Indeed, if one likes a single-valued version of core stability that always yields

a prediction, one should consider the nucleolus as a recommendation. The

kernel, which contains the nucleolus, is based on the idea of “bilateral equi-

librium” for every pair of players. And the bargaining set, which contains the

kernel, checks for the credibility of objections coming from coalitions. In this

paper, section 2 presents preliminaries, section 3 is devoted to the nucleolus,

section 4 to the kernel, and section 5 to the bargaining set.
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2 Preliminaries

We begin by defining a nontransferable utility (NTU) game in coalitional

form (N, V ), where N = {1, 2, . . . , n} is a finite set of players, and for every

S ⊆ N, S 6= ∅, V (S) ⊆ IR|S|, V (S) 6= ∅. In the sequel and abusing notation,

we shall identify the cardinality of a set with its lower case representation.

Thus, |S| = s.

Two subclasses of NTU games are:

1. Pure bargaining problems: The pair (U, d) is a pure bargaining problem,

where U = (V (N)) ⊆ IRn is the feasible utility set and d ∈ IRn is

the disagreement or threat point. Therefore, for all S 6= N , V (S) ⊆
Πi∈SV ({i}). That is, intermediate size coalitions are powerless.

2. Transferable utility (TU) games: For every S ⊆ N , there exists a real

number v(S) such that

V (S) = {x ∈ IRs :
∑
i∈S

xi ≤ v(S)}.

That is, there exists a numeraire good that allows transfers of utility

from player to player at a one-to-one rate. For this subclass of problems,

we shall use the following notational conventions.

1. Denote by 2N the set of all subsets of N and let v(S) : 2N 7→ IR.

Then, we speak of the pair (N, v) as the TU game.

2. Given a vector x ∈ IRn, we denote by x(S) =
∑

i∈S xi and by xS

the projection of x to the subspace corresponding to the players

in S.
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3. We shall denote by X(N, v) the efficient frontier of the game

(N, v), also referred to as its preimputations, i.e.,

X(N, v) = {x ∈ IRn : x(N) = v(N)}.

4. We shall denote by X0(N, v) the individually rational and efficient

payoff set in the game (N, v), also referred to as its imputations,

i.e.,

X0(N, v) = {x ∈ X(N, v) : xi ≥ v({i}) ∀i ∈ N}.

We make one last preliminary observation. What we will call nucleolus

and kernel here is what the literature has called prenucleolus and preker-

nel. These are the true solution concepts, which do not impose individual

rationality (as opposed to nucleolus and kernel properly speaking). In many

economic applications, the distinction is irrelevant, because the prenucleolus

and prekernel will turn out to be individually rational.

3 The Nucleolus

3.1 Definition and Properties

The nucleolus is a solution concept for the class of TU games (some gener-

alizations to the class of NTU games exist, but they are somewhat problem-

atic). It is an object that is hard to define and analyze, but with very nice

properties.

Consider x ∈ X(N, v). For each such x and for each S ∈ 2N\{N, ∅},
define the excess of coalition S at x as: eS(x) = x(S)− v(S). We shall take
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this number as an index of the “welfare” of coalition S at x. Define the vector

e(x) ∈ IR2N−2 as e(x) = (eS(x))S∈2N\{N,∅}. This is the vector of all excesses

of the different coalitions at x. Let the vector e∗(x) be a permutation of the

entries of e(x) arranged in increasing order.

We shall say that e(x) is leximin superior to e(y) [e(x) �lxm e(y)] if e∗(x) is

lexicographically superior to e∗(Y ), i.e., if there exists t′+1 ∈ {1, 2, . . . , 2n−2}
such that e∗t (x) = e∗t (y) for t = 1, 2, . . . , t′ and e∗t′+1(x) > e∗t′+1(y).

Definition (Schmeidler, 1969): The (pre)nucleolus of the game (N, v) is

nc(N, v) = {x ∈ X(N, v) : 6 ∃y ∈ X(N, v), e(y) �lxm e(x)}.

The nucleolus maximizes recursively the “welfare” of the worst treated

coalitions. One can understand it as an application of the Rawlsian social

welfare function to a society where each coalition’s welfare is evaluated inde-

pendently.

Example 3.1: Let N = {1, 2, 3} and consider the following TU game:

v(N) = 42, v({1, 2}) = 20, v({1, 3}) = 30, v({2, 3}) = 40, v({i}) =

0 ∀i ∈ N . Let us begin by considering the equal split vector x =

(14, 14, 14). Note that

e∗(x) = (−12,−2, 8, 14, 14, 14).

Here, the worst treated coalition is {2, 3}. If you were a planner concerned

with maximizing the “welfare” of the worst treated coalition, you would like

to transfer utility from player 1 to players 2 and 3. For example, consider

the vector y = (4, 24, 14), where 10 units have been transferred from player

1 to player 2. Note that

e∗(y) = (−12,−2, 4, 8, 14, 24).
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Thus, we have actually gone in the wrong direction (x is better than y for

this planner). However, from x, it seems to make more sense to transfer units

from 1 to 3. Consider the vector z = (4, 14, 24), whose associated

e∗(z) = (−2,−2,−2, 4, 14, 24).

It turns out that z = nc(N, v).

Next we show some properties of the nucleolus.

(1) Individual rationality: nc(N, v) ∈ X0(N, v) if the game (N, v) is su-

peradditive [i.e., for every S, T ⊆ N, S ∩ T = ∅, we have that

v(S ∪ T ) ≥ v(S) + v(T ).]

Proof of (1): Suppose not. Let x ∈ nc(N, v) and suppose there exists

j ∈ N such that xj < v({j}) [call i the player for whom the individual

excess is smallest: xi − v({i}) = minj∈N{xj − v({j})}].

First, if D1 is the collection of coalitions S whose excess is the smallest

at x, it must be the case that i ∈ S for every S ∈ D1. To see this,

suppose not: there exists S ∈ D1 and i /∈ S. Then,

x(S ∪ {i})− v(S ∪ {i}) ≤ xi + x(S)− v(S)− v({i}) < x(S)− v(S),

a contradiction. Thus, i ∈ S for every S ∈ D1.

Now consider the allocation y: yi = xi + ε, and for all j 6= i, yj =

xj − ε/(n− 1). It should be clear that for every S ∈ D1, eS(y) > eS(x).

Further, choosing ε > 0 arbitrarily small, we have that eS(y) < eT (y)

whenever S ∈ D1 and T /∈ D1. Thus, e(y) �lxm e(x), which is a

contradiction. Q.E.D.
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(2) Nonemptiness: nc(N, v) 6= ∅.

Proof of (2): (We present a proof assuming that (N, v) is superaddi-

tive. If not, one must show first that the nucleolus lives in a com-

pact set.) Consider the set X0(N, v) = Y0. Consider the problem

maxx∈Y0 minS{x(S)− v(S)}. Note that the function minS x(S)− v(S)

is continuous in x and that Y0 is compact. Since the function is con-

tinuous and Y0 is compact, the set of maximizers is non-empty and

compact. Denote this by Y1 ⊆ Y0.

Now write the problem maxx∈Y1 min
2
S x(S)− v(S), where we denote by

min2 the second worst treated coalitions. By the same arguments, the

new set of maximizers Y2 is non-empty and compact. Since we have a

finite number of coalitions, this process can be repeated only a finite

number of times. Then, by induction, nc(N, v) 6= ∅. Q.E.D.

(3) Uniqueness: nc(N, v) is a singleton.

Proof of (3): Suppose x and y ∈ nc(N, v), x 6= y. Then, e∗(x) = e∗(y).

Denote the list of proper coalitions by S1, S2, . . . , Sm, m = 2n − 2 as

arranged in e∗(x). Then, since x 6= y, there must exist k to be the first

in the order for which e∗k(x) 6= eSk(y). Further, it must be the case that

e∗k(x) < eSk(y). Also, for every l > k in the order, e∗l (x) ≥ e∗k(x) and

eSl(y) ≥ e∗k(x).

Then, consider the allocation z = (x + y)/2. Note that e∗h(z) = e∗h(x)

for h < k, e∗k(z) > e∗k(x) and e∗l (z) > e∗k(x). Thus, e(z) �lxm e(x),

which is a contradiction. Q.E.D.

(4) Core selection: Denoting the core by C(N, v), we have nc(N, v) ∈ C(N, v)
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whenever C(N, v) 6= ∅.

The proof is easy and left as an exercise.

(5) Consistency: Let x = nc(N, v) and define the Davis-Maschler reduced

game (S, vxS) for coalition S as follows: let vxS(S) = v(N)− x(N\S);
and for every T ⊂ S, T 6= ∅, vxS(T ) = maxQ⊆N\S{v(T ∪ Q) − x(Q)}.
Then, xS = nc(S, vxS) for every S ⊆ N . This is a property of internal

consistency of a solution. Remarkably, this exact property is shared

by other solution concepts (such as the core, and as we shall see, the

bargaining set and the kernel).1

(6) Covariance: Let (N, v) be a game, α ∈ IR+ and β ∈ IRn. Construct the

game (N,w), where for every S ⊆ N , w(S) = αv(S) + β(S). Then,

nc(N,w) = αnc(N, v)+β. That is, the nucleolus is invariant to positive

affine transformations that preserve the TU property of the game.

(7) Anonymity: Let π : N 7→ N be a bijection. Then, nc(π(N, v)) =

π(nc(N, v)). That is, players’ names do not matter.

Two interesting characterizations of the nucleolus have been found. One

is based on balanced collections of coalitions and the other on well-known

axioms.

A collection of coalitions M = {S1, . . . , Sk} is balanced if one can find

coefficients λ1, . . . , λk associated with each coalition, 0 ≤ λk′ ≤ 1 for 1 ≤
k′ ≤ k such that for all i ∈ N ,

∑
i∈Sk′∈M λk′ = 1.

1See Thomson (1990) and Driessen (1991) for surveys on this property.
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Fix a payoff vector x ∈ X(N, v). Let D1(x) be the collection of coalitions

with the smallest excess at x; let D2(x) be the collection of coalitions with

the second smallest excess at x, and so on.

Theorem (Kohlberg, 1971): Fix an arbitrary TU game (N, v). A payoff

vector x = nc(N, v) if and only if for all k ≥ 1, ∪kk′=1Dk′(x) are balanced

collections.

In particular, it follows from this theorem that, for every player,

D1(nc(N, v)) must contain at least one coalition that includes this player

and at least one coalition that excludes him.

The other major characterization is based on consistency:

Theorem (Sobolev, 1975): Consider the class of all TU games. There exists

a unique nonempty single-valued solution satisfying covariance, anonymity,

and consistency: it is nc(N, v).

It is interesting to compare the axioms used by Sobolev to those behind

other solutions. For example, the Shapley value satisfies all except consis-

tency (although if one replaces the Davis/Maschler reduced game with the

one introduced by Hart&Mas-Colell, the Shapley value is characterized with

the other four axioms). On the other hand, the core satisfies all but non-

emptiness and single-valuedness. In the class of games where the core is

nonempty (balanced games), the only difference between the core and the

nucleolus is whether one wants to insist on single-valuedness. (See Potters

(1991) for other related axiomatizations of the nucleolus.)
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3.2 Some Applications and Bargaining

There are by now numerous applications of the nucleolus to different prob-

lems. In most cases, its use has been motivated as an alternative to the Shap-

ley value, the other single-valued solution to TU Games. These applications

include cost allocation problems (as in the Birmingham airport runways, or

in different network problems) and surplus sharing problems, one of whose

particular cases is bankruptcy. In this subsection we shall concentrate on the

aplication of the nucleolus to bankruptcy problems.

The following example of bankruptcy is taken from the Talmud. Let E

be the estate to be divided, and d1, d2 and d3 the claims of three creditors

against the estate E.

[Enter Table 1 here]

For centuries, the underlying general principle behind these numbers was

unclear. Jewish scholars argued that when E = 100, the money was too little

to go around; in this case, they argued, every creditor is going to be paid

so little that it makes sense to have equal division. If E = 300, the estate

was exactly half of the sum of the claims. Thus, it makes sense to apply

the proportional solution and each creditor gets exactly half of her claim.

The disturbing fact was that the case E = 200 was attributed to an error in

transcription.

A separate problem, also found in the Talmud, is described as the “con-

tested garment” problem. Two men were arguing who owned a garment.

One of them said it was his; the other said that half was his. The Talmud

gives a clear solution to this problem: the part of the estate conceded by a

claimant is awarded to the other. The rest of the estate, which is contested
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by both, should be split in half. Formally, given a two-agent bankruptcy

problem (E, (d1, d2)), the CG rule is the following:

CG(E, (d1, d2)) =
 max{0, E − d2}+ E−max{0,E−d1}−max{0,E−d2}

2

max{0, E − d1}+ E−max{0,E−d1}−max{0,E−d2}
2


In the example in Table 1, this rule assigns the split (0.75, 0.25), which,

to make matters worse, is different from equal or proportional split. What

rule, therefore, did the Talmud have in mind to solve bankruptcy problems?

Suppose one is interested in introducing a consistency property in these

problems. After all, we understood how the writers of the Talmud wanted to

solve two-person problems (the contested garment CG rule), but we have no

clue for more than two creditors. The following seems a sensible formulation

of consistency:

Let (E, d) be an n-person bankruptcy problem, where 0 ≤ E ≤ d(N)

and di ≥ 0. A bankruptcy rule is a function f that assigns to each problem

(E, d) a split of the estate f(E, d), i.e.,
∑

i∈N fi(E, d) = E and for all i ∈ N ,

0 ≤ fi(E, d) ≤ di.

A bankruptcy rule f is CG-consistent whenever we have the following:

if f(E, d) = x is the n-creditor split, then for every pair i, j, we have that

(xi, xj) = CG(xi + xj , (di, dj)).

Define now a coalitional game associated with the bankruptcy problem:

(N, vE,d), where N is the set of creditors and for every S ⊆ N , vE,d(S) =

max{0, E − d(N\S)}.
Theorem (Aumann and Maschler, 1985): There exists a unique rule which

is CG-consistent. It is f(E, d) = nc(N, vE,d).

Proof: Step 1: We prove that, given a bankruptcy problem (E, d), there
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exists a unique CG-consistent rule. Suppose not: assume there exist two

splits x and y of the estate E that are CG-consistent. That is, for all i, j ∈ N ,

(xi, xj) = CG(xi + xj , (di, dj)) and (yi, yj) = CG(yi + yj, (di, dj)). Note that

the CG rule is monotonic, i.e., CG(E, (di, dj)) ≤ CG(E′, (di, dj)) whenever

E ≤ E′.

Because x 6= y and x(N) = y(N) = E, there exist i and j such that xi > yi

and xj < yj. Without loss of generality, suppose xi+xj ≥ yi+ yj. But then,

consistency and monotonicity of the CG rule imply that (xi, xj) ≥ (yi, yj), a

contradiction.

Step 2: For notational simplicity, denote the game (N, vE,d) by (N,w).

Let x = nc(N,w). By consistency of the nucleolus, we know that for all

two-player coalitions S = {i, j}, (xi, xj) = nc(S, wxS). By definition of the

nucleolus of this two-player game, we have

xi − wxS({i}) = xj − wxS({j}).

This can be expressed as:

xi = wxS({i}) + xi + xj − wxS({i})− wxS({j})
2

.

Therefore, we need to check only that

wxS({i}) = max{0, xi + xj − dj}.

To see this, note first that x ∈ C(N,w), which implies the core inequalities for
all one-person and (n− 1)-person coalitions, that for all k ∈ N , 0 ≤ xk ≤ dk.

By the definition of the Davis-Maschler reduced game, we have that

wxS({i}) = max
Q⊆N\S

w({i} ∪Q)− x(Q) = w({i} ∪Q∗)− x(Q∗).
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By the definition of the game (N, vE,d), we can write that the last expression

equals

max{0, E − dj − d(N\S\Q∗)} − x(Q∗) =

= max{−x(Q∗), xi + xj − dj + x(N\S\Q∗)− d(N\S\Q∗)}

Note that wxS({i}) ≥ 0 since creditor i always has the option of using

Q∗ = ∅. Therefore, the possible values of wxS({i}) are:

• When Q∗ = ∅,

wxS({i}) = max{0, xi + xj − dj + x(N\S)− d(N\S) ≥ 0.

• When ∅ ⊂ Q∗ ⊂ N\S,

wxS({i}) = max{−x(Q∗), xi+xj−dj+x(N\S\Q∗)−d(N\S\Q∗)} ≥ 0.

• When Q∗ = N\S,

wxS({i}) = max{−x(N\S), xi + xj − dj} ≥ 0.

Because 0 ≤ x ≤ d, it follows that, without loss of generality, we can

think that either Q∗ = ∅ or Q∗ = N\S. But then the result follows by

considering all possible cases for where the maximum takes place. Q.E.D.

It is also interesting to investigate what kind of noncooperative bargaining

procedures may lead to the nucleolus. Consider the following ones, defined

for the class of bankruptcy problems.

Let us start with bilateral bankruptcy problems (E, (di, dj)). Let player i

make a proposal x, 0 ≤ x ≤ d, xi + xj = E. If player j accepts, the proposal
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is implemented. If not, a fair coin is tossed. With probability 1/2, a player

will get his best possible outcome and with probability 1/2 his worst possible

outcome. That is, player i will get either min{E, di} or E−min{E, dj} with
equal probability.

Claim: This game’s unique subgame perfect equilibrium outcome is the CG

rule allocation.

Moving to n-player settings, consider now the game G1(E, d), in which

the CG rule is used to “settle” bilateral disputes. In the game G1(E, d), let

player 1 be one with the highest claim in the multilateral bankruptcy problem

(E, d). Player 1 makes a proposal x, 0 ≤ x ≤ d, x(N) = E. Following the

natural protocol, player i = 2, . . . , n must respond sequentially. If player 2

accepts, he receives x2 and leaves the game. If he rejects, he receives his share

z2 from the CG rule applied to the problem (x1+ x2, (d1, d2)) and leaves the

game. Let wi be player 1’s interim share right after he has dealt with player

i. Thus, w1 = x1 and w2 = w1 + x2 −max{x2, z2}.
In general, wi = wi−1 + xi −max{xi, zi}. If player i accepts, he receives

xi and leaves the game. If he rejects, he receives the share zi from CG(wi−1+

xi, (d1, di)) and leaves the game. Player 1 ends up with a share wn and the

game ends.

Theorem (Serrano, 1995): The unique subgame perfect equilibrium outcome

of the game G1(E, d) is nc(N, vE,d).

3.3 More Recent Literature

Maschler’s (1992) comprehensive survey allows us to focus on contributions

that have appeared thereafter. The nucleolus has generated a large literature,
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with more than 2000 citations since the publication of Schmeidler’s original

paper in 1969. We concentrate here on contributions around the following

topics:

(i) Computation and related results: First, we report on work that

uses the Kohlberg criterion (Kohlberg (1971)). Recall D1(x) is the collection

of coalitions with the smallest excess at x; D2(x) is the collection of coali-

tions with the second smallest excess at x, and so on. As is well known, the

Kohlberg criterion determines which imputation is the nucleolus of a game.

For that purpose, one should compute the families of coalitions of smallest

excess at x, second smallest, third smallest, etc. and also check the balanced-

ness of the successive unions of these sets of coalitions. Taking advantage of

the specific structure of some classes of games, the criterion has proven to be

a useful tool for simplifying the procedures to compute its nucleolus.

Convex games: Convex games were introduced in Shapley (1971). A

game (N, v) is convex if v(S)+ v(T ) ≤ v(S ∪ T )+ v(S ∩T ) for all S, T ⊂ N .

Convex games are balanced games. Many interesting economic situations can

be modeled as convex games, among them the bankruptcy games (Aumann

and Maschler (1985)) we already talked about.

Let (N, v) be a game and nc its nucleolus. Let D1(nc(N, v)) denote the

family of proper coalitions of N with minimal excess at nc(N, v).

Next, consider some specific collections of coalitions, referred to as parti-

tions and antipartitions. An antipartition A is a family of coalitions {N\S}
such that the family P of coalitions {S} is a partition of N . Both families

P and A are balanced collections of coalitions. In an antipartition, as a

balanced collection, all its coalitions receive the same weight. By using the
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definition of excess of a coalition, together with the property of efficiency, it

is not difficult to see that their excesses are the following:

If P is a partition,

e(P) =
∑

S∈P v(S)− v(N)

|P|
If A is an antipartition,

e(A) =
∑

S∈A v(S)− (|A| − 1)v(N)

|A| .

Observe that the computation of the excess of a partition or antipartition

depends only on the worth of its coalitions.

Arin and Iñarra (1998) shows that, for any convex game (N, v), the fam-

ily D1(nc(N, v)) contains either a partition or an antipartition of N . This

result, along with the facts that the nucleolus satisfies the D-M reduced game

property and that the reduced games of convex games are themselves convex,

allows to define a procedure that serves to compute the nucleolus for convex

games:

(i) Given a convex game (N, v), calculate the excesses of the partitions and

antipartitions, selecting the one with the highest excess.

(ii) Determine nc(S) = v(S)− e(S, nc) for all S of the selected family.

(iii) Define the reduced games for all S, |S| ≥ 2.

(iv) Repeat the procedure starting from (i) until a unique payoff for each

player in the game is obtained.

We illustrate the procedure with the following example:

Example 3.2: (A 5-person convex game) (Arin and Iñarra, 1996):
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• v(N) = v({1, 2, 3, 4, 5}) = 8,

• The worth of each 4-player coalition is 4:

v({1, 2, 3, 4}) = v({1, 2, 3, 5}) = v({1, 3, 4, 5}) =

= v({2, 3, 4, 5}) = v({1, 2, 4, 5}) = 4

• Out of the ten 3-player coalitions, v({1, 2, 3}) = 4 and

v({3, 4, 5}) = v({1, 2, 4}) = v({1, 4, 5}) = v({2, 4, 5}) = 1,

• Out of the ten 2-player coalitions, v({1, 2}) = v({4, 5}) = 1,

• and v(S) = 0 otherwise.

It can be verified that D1(nc) = 〈{1, 2, 3}, {4}, {5}〉, and that nc({1, 2, 3}) =
16
3
, nc(4) = 4

3
, nc(5) = 4

3
. The resulting D-M reduced game for the only

nonsingleton coalition T in the partition is vnc,T ({1, 2}) = vnc,T ({1, 3}) =
vnc,T ({2, 3}) = 4

3
, vnc,T (T ) = 16

3
, and vnc,T (S) = 0 otherwise. In this

reduced game, the application of step (i) yields the partition of all singletons.

Therefore, we end up with nc1 = nc2 = nc3 =
16
9
and nc4 = nc5 =

4
3
.

For large games, with a large number of partitions and antipartitions, the

procedure may be impractical. However, if the partitions and antipartitions

can be selected from a small family of relevant coalitions, the procedure

becomes more efficient. This is the case for the following two subclasses of

convex games:

Airport profit games: Littlechild and Thompson (1977) models the prob-

lem of cost allocation arising from the construction of a landing strip for the
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Birmingham airport as an airport game. In this game, agents are located

in the nodes of a line-graph and use the common facility, the landing strip,

starting from its first node until some other node is reached, so that only

coalitions of agents in consecutive nodes are considered. Littlechild (1974)

presents a simple algorithm for the computation of the nucleolus for this

class of games. However, in many situations, each agent’s benefit from using

a common facility should be taken into account. Then, given an ordering

of the agents in the nodes of a line-graph, the worth of a coalition is de-

fined as the maximum revenue minus cost attainable by the coalition, i.e.,

v(S) = max{b(R) − C(R) : R ⊆ S for each S ⊆ N}, where b(R) is the

total profit of the members of coalition R. The structure of this convex game

allows Bránzei et al. (2006) to present an algorithm based on the maximal

excesses of coalitions, considering a sequence of airport problems, starting

from the original one, where each problem is a “reduction” of the preceding

one.

Highway games: this is a class of convex games which arise from situations

where there is a resource that agents jointly use. Suppose that the resource

can be presented as an ordered set of several segments, where each segment

has a fixed cost and each agent requires the use of consecutive segments.

Think, for instance, on a highway in which any driver can enter at any point

of the segment and get out at any other point, as long as the segments are

consecutive. Kuipers et al. (2000) introduces that subclass of convex games

and presents a procedure to calculate the nucleolus based on Arin and Iñarra’s

(1998) procedure. Because of the structure of these games, it is possible to

discard some irrelevant partitions or antipartitions beforehand, speeding up
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the procedure.

Veto-rich games: A veto-rich game (N, v) with n as a veto player is a non-

negative game such that v(S) = 0 if n /∈ S. Only singletons and coalitions

that contain player n can be essential in this game. A veto-rich game has a

nonempty core if and only if v(S) ≤ v(N) for all S ⊆ N . Many economic

situations can be modelled as veto games. Examples include information

market games with one possessor of information and many demanders (see

Muto et al. (1989)) and production economies with only one landowner and

landless peasants (see Shapley and Shubik (1967)). Arin and Feltkam (1997)

exploits the special properties of veto-rich games in which only singletons and

coalitions that contain the veto player are essential to compute the nucleo-

lus.2 For these games, the D1(nc) contains a partition in which one coalition

contains the veto player and the rest are singletons. The reduced game for

the unique coalition S, with |S| > 1, is itself a veto-rich game. Hence, a

procedure to calculate the nucleolus similar to the one presented in Arin and

Iñarra (1998), where only partitions are considered, can be applied.

Γ-Component Additive Games: In standard cooperative game theory,

it is assumed that any coalition of players may form. However, in many

situations where the number of players is large, communication is limited.

Then it seems reasonable to assume that only players who can communicate

with each other are able to cooperate. Myerson (1977) introduces graphs to

model communication channels between players. In these situations, players

are located in the nodes of a graph and the edges between nodes indicate

the communication between players. An example of these games are Γ-

2They prove the coincidence of the nucleolus and the kernel.
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component additive games introduced by Potters and Reijnierse (1995).3 In

these games, players are located in the nodes of a tree graph and the gains

from cooperation are derived from the existence of a path that links the

players in each set.

Let (N,A) be an undirected graph, where A is a set of edges joining each

pair of nodes i, j ∈ N , i.e., every aij ∈ A is said to join the nodes i and j. A

path between any two nodes is a sequence of edges belonging to A, joining

both nodes. A graph Γ = (N,A), is said to be connected if there exists a

path between every pair of nodes. An undirected graph is a tree if each pair

of nodes is connected by exactly one path.

Let A(S) = {aij ∈ A : i, j ∈ S}. A coalition S ⊂ N is connected if

the (sub)graph (S,A(S)) is a tree. Let C(N) be the set of all connected

coalitions. C ⊆ S is a component in S if and only if (C,A(C)) is a tree

and there does not exist a set C∗ such that C ⊂ C∗ ⊆ S and (C∗, A(C∗))

is a tree. The set of all components of S is called K(S). A Γ-component

additive game is a pair (N, v) such that v(S) =
∑

K∈K(S) v(K). Grafe et al.

(1995) presents a procedure where in each step only the excesses of partitions

are considered. By using the Kohlberg’ criterion, the paper shows that the

outcome of the procedure is the nucleolus.

A line of work distinct from the Kohlberg criterion is based on linear

programming. The nucleolus of any coalitional game can be computed by

successively solving a sequence of linear programs (see Maschler et al., 1979).

But if one considers a generic TU game, the first difficulty involves simply

3Potters and Reijnierse (1995) proves the coincidence between the kernel and the nu-

cleolus.
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listing the characteristic function. Clearly, this approach does not give us an

efficient algorithm to obtain the nucleolus. An efficient algorithm is now com-

monly understood as one that takes at most a time bounded by a polynomial

of the input size. The first polynomial-time algorithm for the nucleolus in a

special cost game on trees was derived by Megiddo (1978). In general, the

results on efficiently computing the nucleolus depend on the specific structure

of the games (see Faigle et al. 2001; Kuipers et al. 2000).

An important class to consider is that of assignment games. In a bilateral

assignment market, a product that comes in indivisible units is exchanged

for money, and each participant either supplies or demands exactly one unit.

The units need not be alike and the same unit may have different values for

different participants. Assuming that side payments are allowed, Shapley

and Shubik (1971) defines the assignment game as a cooperative model for

this bilateral market and proves the nonemptyness of its core. Llerena et

al. (2015) characterizes the nucleolus for assignment games, by means of

consistency with respect to Owen’s reduced game (a variant of DM’s) and

symmetry of maximum complaints of the two sides of the market (which

requires that, at each solution outcome, the most dissatisfied buyer has the

same complaint as the most dissatisfied seller). Solymosi and Raghavan

(1994) presents an algorithm that determines the nucleolus of an assignment

game.

Finally, we point out that, in contrast to the Shapley value, the nucleolus

of a TU game is only dependent on the worth of few coalitions. Most of

these worths can be decreased without changing the nucleolus. Therefore,

the computation of the nucleolus can be simplified, if we can say beforehand
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which coalitions are important and which ones are not. Reijnierse and Pot-

ters(1998) shows that there exists a collection of at most 2(n− 1) coalitions

that determines the nucleolus, but how to identify these coalitions is the

problem in general games. They show, though, how the computation of the

nucleolus of monotonic simple games can be successfully simplified.

(ii) Cost allocation problems: In a cost allocation problem, there is

a group of agents that is willing to implement a common project and to

allocate its cost among them. To describe a cost allocation problem we have

to indicate the set of agents involved and, for each possible group of agents,

the cost of the project. Notice that a cost allocation problem presented in

this way is the same as a TU game, although cost allocation problems deal

with costs instead of benefits and the interpretations of concepts and results

in both contexts are dual of one another. A cost game is a TU game, usually

denoted by (N, c), in which c(S) is the minimal costs the members of coalition

S have to incur when they cooperate, with c(∅) = 0.

Fiestras-Janeiro et al. (2012) provides a survey of applications dealing

with solutions to cost allocation problems arising in the real world. They

concentrate on contributions that they classify into three specific areas:

Transportation costs. Engevall et al. (1998, 2004) analyze a cost alloca-

tion problem that arises in the distribution planning at a gas and oil company

in Sweden. In that problem, the total distribution cost of a specific tour had

to be divided among the customers that were visited. They formulated the

problem as a travelling salesman game and as a vehicle-routing game. They

compared the current tariff applied by the company to other rules like the

nucleolus and the Shapley value using real data of the gas and oil com-
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pany. Another interesting application concerns the toll design for highways

in Spain, which can be found in Kuipers et al. (2000).

Natural and environmental problems: Lejano and Davos (1995) considers

a water reuse project in Southern California and compute the Shapley value

and the nucleolus, among other solutions. Okada and Mikami (1992) applies

cooperative game theory tools to allocate costs arising in collective problems

of pollution reduction.

Power industry problems. Tsukamoto and Iyoda (1996) analyzes the us-

age of cooperative games for fixed cost allocation to wheeling transactions

in a power system. They use the nucleolus for this purpose and compare it

with other allocating methods. Stamtsis and Erlich (2004) follows the same

line and analyzes the cost allocation problem for the fixed cost of a power

system through the core, the nucleolus, and the Shapley value. Bjorndal et

al. (2005) studies the problem of allocating the transmission-embedded cost

among the transactions. The paper proposes a new method for allocating

the embedded costs combining some conventional usage-based methods with

the ideas underlying the nucleolus.

(iii) The Shapley value and the nucleolus: The Shapley value and the

nucleolus are the most used single-valued cooperative solutions. One of the

main reasons for the attractiveness of the Shapley value lies in the fact that it

respects the principle of monotonicity, i.e. if a game (N,w) is obtained from

game (N, v) by increasing the worth of a single coalition S, then the members

of S receive a payoff in game (N,w) that is not smaller than in game (N, v).

Another important desideratum is that of coalitional stability, i.e., that the

solution be a member of the core when this is nonempty. However, in the
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class of balanced games, these two principles are not in general compatible.

Young (1985) proves that for |N | ≥ 5, no core allocation rule is coalitionally

monotonic. Hence, while the Shapley value does not respect core stability,

the nucleolus fails to satisfy coalitional monotonicity (Hokari (2000) shows

this even for the class of 4-player convex games).

The nucleolus is based on the notion of coalitional excesses. In contrast,

in the per-capita nucleolus (Grotte (1970)) the excesses are divided by the

cardinality of the coalition so that each member receives the same amount

of the surplus. The per-capita nucleolus is a single-valued solution that

satisfies monotonicity in the aggregate, but it does not satisfy coalitional

monotonicity. Arin and Katsev (2016a) introduces a solution called Surplus

Distributor nucleolus, SD-nucleolus, in which nonegalitarian divisions of the

excesses of the coalitions are considered, showing that in the classes of convex

and veto-rich games the SD-nucleolus is the only known core-solution concept

that satisfies coalitional monotonicity.

Another way to overcome the monotonicity/core stability incompatibility

is to study classes of games in which the nucleolus coincides with the Shapley

value. This is the case for the following classes of games: liability games,

clique games and appointment games. In liability games (Csóka and Herings

(2017)) a firm has liabilities to a group of creditors and an asset value to

distribute. The question is how to divide the asset among the creditors

and the firm. These liability problems induce a class of TU games, liability

games, which are superadditive and constant-sum. The paper analyzes the

(pre)nucleolus of these games. For the case of a solvent firm, the nucleolus

coincides with the Shapley value. In this case, the firm receives what remains
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after all creditors have been paid their liabilities in full. If the firm is insolvent

with only two positive liabilities, that coincidence also holds. In appointment

games, Chun et al. (2016) considers the following situation: suppose that

starting from home, a traveler makes a scheduled visit to a group of sponsors

and returns home. If a sponsor in the route cancels her appointment, the

traveler returns home and waits for the next appointment. These authors are

interested in finding a way of dividing the total traveling cost among sponsors

in the appointment problem by applying solutions developed in cooperative

game theory and show that the Shapley value and nucleolus (or prenucleolus)

coincide. Trudeau and Vidal-Puga (2017) introduce the clique games, a new

class of cooperative games described as follows: the set of agents is divided

into cliques that cover it. A coalition creates value when it contains many

agents belonging to the same clique, with the value increasing linearly with

the number of agents in the same clique. Agents may belong to more than

one clique, but the intersection of two cliques contains at most one agent.

Finally, if two agents are not in the same clique, there exists at most one

way to “connect” them through a chain of connected cliques. Again, there

is coincidence between the nucleolus and the Shapley value. The authors

provide several examples of clique games, chief among them, the minimum

cost spanning tree problems.

(iv) Sequential games that lead to the nucleolus: One way to justify a

solution to cooperative games is to provide a dynamic process that leads the

players to the proposed solution. Serrano (1993) offers a three-agent strategic

justification of the nucleolus for superadditive TU games and shows that it

is impossible to extend his result to more than three agents. The extension
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requires restricting attention to a subclass of games, such as bankruptcy

games and surplus-sharing problems, as done in Serrano (1995), which we

have already discussed.

Arin et al. (2009) model airport problems in which a group of agents

jointly use a public facility with different needs for it. If the facility can

satisfy the need of an agent, then it can also satisfy an agent with smaller

need at no extra cost. These authors introduce an n-stage sequential game

along the lines of the game in Dagan et al. (1997) and show that their

game strategically justifies the nucleolus for the cost-sharing problem. At

the beginning of their game, agent n announces a contributions vector z.

If z is unanimously accepted, then that is the outcome; otherwise, bilateral

negotiations take place. The other agents reply sequentially according to a

specified order. Acceptors contribute their components of z. Each rejector

j negotiates her contribution with agent n by invoking the standard rule to

solve the negotiation between herself and agent n. The authors show that

their game has a unique Nash equilibrium outcome, which is, moreover, the

nucleolus contributions vector.

Hu et al. (2012) considers a 3-stage sequential game in which the agent

with the largest need is the responder, and all the other agents are proposers.

These authors show that for each such problem, there is a unique subgame

perfect equilibrium outcome of that game and it coincides with the nucleolus.

For simple games, Montero (2006) proposes the nucleolus as a power in-

dex, showing that, unlike other power indices, it is self-confirming, i.e., it can

be obtained as an equilibrium of a noncooperative game in which the index

itself is used as the probability vector assigned to the players. Specifically,
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the non cooperative game is described as follows: At every round, nature

uses a probability distribution to select a player who proposes a coalition S

that includes her/him and a division of v(S). A player not in S remains a

singleton and receives zero. The rest of players in S accept or reject sequen-

tially the proposal. If all players in S accept, the game ends. If one or several

players reject, the game proceeds to the next period, in which nature selects

a new proposer, using the same probability distribution. There is a fixed

discount factor in each round, and if no proposal is ever accepted, all players

receive 0. The author proves that, if the initial probability distribution is the

nucleolus, then it coincides with the equilibrium expected payoffs.

(v) Other related works: We conclude by mentioning some works that

introduce new solution concepts inspired by the nucleolus. They either satisfy

some desirable properties that the nucleolus does not have, or adapt the

nucleolus to different contexts beyond games in characteristic function.

Sudhölter (1997) introduces the modiclus in an attempt to treat all

coalitions equally. In his work, the excesses of the coalitions that define

the nucleolus are replaced with the differences of excesses between pairs of

coalitions. The modiclus is obtained by lexicographically minimizing the

nonincreasingly-ordered vector of differences of excesses. The difference of

excesses between two coalitions S and T is regarded as their mutual envy,

and the modiclus attempts to minimize it. This solution shares common

properties with the nucleolus, but differs from it in that, for any TU game,

the modiclus may not select a core element, even if the core is nonempty.

We note, though, that it selects a core element in convex games. Ruiz et

al. (1996) proposes the least square nucleolus, based on the minimization
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of the variance of coalitional excesses. Jackson (2005) introduces a solution

analog to the nucleolus called the networkolus for network games. The net-

workolus allocates the worth generated among players, which depends not

only on their identities, but also on how they are connected to each other.

Alvarez-Mozos and Ehlers (2017) provide a natural extension of the nucleo-

lus to coalitional games with externalities. In these contexts, the excess of

an embedded coalition is measured as the difference between the worth of

the embedded coalition and what the coalition gets in the allocation. Then,

for each allocation, the excesses of all embedded coalitions are rearranged

in nonincreasing order, and the nucleolus is the set of allocations that lex-

icographically minimize the rearranged excesses of all embedded coalitions.

Finally, Klauke (2002) investigates extensions to NTU games.

4 The Kernel

4.1 Definition and properties

The kernel is a set-valued solution concept that has been criticized for being

based on interpersonal comparisons of utility. As we shall see, this criticism

is not entirely valid. Its mathematical properties are well-known for the

class of TU Games, but generalizations to the class of NTU games have been

proposed. We will focus on one of them below. We begin by presenting the

kernel of TU Games.

Let (N, v) be a TU game. For each pair of players k, l ∈ N , define the
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surplus of player k against l at the payoff vector x as follows:

skl(x) = max
k∈S,l/∈S

{v(S)− x(S)}.

If x determines the starting pay rate to players, this is the maximum utility

increase that player k can expect to get by departing from x without the

consent of player l.

Definition (Davis and Maschler, 1965): The (pre)kernel of the game (N, v)

is the set

K(N, v) = {x ∈ X(N, v) : skl(x) = slk(x) ∀k, l ∈ N}.

Thus, at a kernel payoff, all players are in a sort of “bilateral equilibrium”, in

the sense that the threats to each other are equalized. The definition seems

to involve interpersonal utility comparisons. We will revisit this issue soon,

though. First, we present some properties of the kernel.

(1) Individual rationality: If the game (N, v) is superadditive, K(N, v) ∈
X0(N, v).

Proof of (1): Let x ∈ K(N, v) and suppose that xi < v({i}). Recall

that the set D1(x) is the set of coalitions that, at x, receive the smallest

excess.

We begin by showing that i ∈ S if S ∈ D1(x). Consider first any

coalition T ⊂ N\{i}. Then, T /∈ D1(x) because:

eT (x) = x(T )− v(T ) > x(T ∪ {i})− v(T )− v({i}) ≥

≥ x(T ∪ {i})− v(T ∪ {i}) = eT∪{i}(x).
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(A weak form of superadditivity —0 monotonicity [i.e., v(T )+ v({i}) ≤
v(T ∪ {i}) when i /∈ T ]— was used in the last inequality). Moreover,

T = N\{i} /∈ D1(x) either, because:

eN\{i}(x) = x(N\{i})− v(N\{i}) >

> x(N)− v(N\{i})− v({i}) ≥ x(N)− v(N) = 0

whereas for example e{i}(x) < 0.

Therefore, if S ∈ D1(x), i ∈ S. Since N\{i} /∈ D1(x), there exists

j ∈ N such that there exists a coalition S ∈ D1(x) such that j /∈ S.

But then, sij(x) > sji(x), which is a contradiction. Q.E.D.

(2) Nonemptiness: For all TU games (N, v), K(N, v) 6= ∅.

Proof of (2): Several proofs are available. One uses that the relation

skl(x) > slk(x) is transitive and appeals to the KKM lemma. A second

proof shows that nc(N, v) ∈ K(N, v). (Recall the observation we made

after Kohlberg’s theorem).

(3) Core bisection: If x ∈ K(N, v) ∩ C(N, v), for any i, j ∈ N , i 6= j,

and fixing xN\{i,j}, the point (xi, xj) bisects the intersection of the core

and the transfer line between players i and j (the “bargaining range”

between players i and j). Thus, it would appear that the kernel does

not depend on interpersonal utility comparisons, at least those kernel

payoffs that are also in the core.

(4) Consistency. To see this, note that the maximization involved in the

definition of the surplus can be separated into two stages, one using
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players out of the reduced game and a second one, using players in the

reduced game.

(5) Converse consistency. Let x ∈ X(N, v). If for every two-player reduced

game (S, vxS) we have that x
S ∈ K(S, vxS), then x ∈ K(N, v).

(6) Covariance: Let (N, v) be a TU game, α > 0, and β ∈ IRN . Construct

the TU game (N,w), where w(S) = αv(S) + β(S) for every S ⊂ N .

If x ∈ K(N, v), then αx+ β ∈ K(N,w).

(7) Equal treatment: If x ∈ K(N, v), xi = xj whenever players i and j are

substitutes. This means that for every S ⊆ N\{i, j}, v(S ∪ {i}) =

v(S ∪ {j}).

Theorem (Peleg, 1986): Over the class of all TU games, there exists a

unique solution satisfying nonemptiness, efficiency, covariance, equal treat-

ment, consistency, and converse consistency. It is K(N, v).

4.2 Reinterpretation of the Kernel and an Extension

to NTU Games

Next, developing further the comments we made after the core bisection

property, we follow Serrano (1997) in reinterpreting the kernel in a way that

makes it independent of interpersonal utility comparisons. Recall the basic

equations of the kernel:

skl(x) = slk(x),

which can be rewritten as:

vx{kl}({k})− xk = vx{kl}({l})− xl,
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or:

xk =
1

2
vx{kl}({k}) + 1

2
[xk + xl − vx{kl}({l})].

That is, first reinterpret the two-player reduced game as a bargaining

problem between players k and l, where the “pie” to be divided is xk + xl

and where the threat point is (vx{kl}({k}), vx{kl}({l})). The kernel is then the
set of payoffs where every pair of players splits in half this pie (when modified

by the outside options embodied in the threat point). This is a generalization

of the insight of Maschler, Peleg, and Shapley (1979), in seeing the kernel

as payoffs where certain bilateral bargaining ranges are split in half. The

advantage is that this is a fact inherently linked to the definition of the

kernel, and quite independent of the core.

Let us see a couple of examples:

Example 4.1: Consider the TU game (N, v), where N = {1, 2, 3}, and
v({i}) = 0∀i ∈ N , v({1, 2}) = 4, v({1, 3}) = 3, v({2, 3}) = 2, v(N) = 6.

Then, K(N, v) = (3, 2, 1). Figure 1 represents the reduced problems faced

by the pairs of players (1, 2), (1, 3) and (2, 3). The payoff in the kernel splits

in half the “available surplus” to each pair determined by the threat point,

which is a function of the payoff awarded to the third player.

[Enter Figure 1 here]

Example 4.2: Consider again Example 3.1 in the nucleolus section: a 3-

player 0-normalized game where v({1, 2}) = 20, v({1, 3}) = 30, v({2, 3}) =
40, v(N) = 42. Again, the kernel is a singleton: K(N, v) = (4, 14, 24).

Figure 2 represents the three two-player reduced problems, where the threat

points now lie outside of the feasible set.

[Enter Figure 2 here]
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In fact, this reinterpretation of the kernel lends itself easily to a general-

ization to NTU games.

Consider the class of smooth NTU games, where the boundary of V (N)

admits a differentiable representation g(x) = 0. Denote by gi(x) the partial

derivative of g with respect to xi at the payoff vector x.

Let us introduce two more properties:

(8) Scale invariance: Consider an NTU game (N, V ), let α ∈ IRn
++ and

β ∈ IRn. Transform player i’s payoff function from xi into αixi + βi

and call the resulting NTU game (N,W ). A solution σ satisfies scale

invariance if σ(N,W ) = ασ(N, V ) + β.

(9) Local independence: Let (N, V ) and (N, V ′) be two games with all

other things equal except V (N) 6= V ′(N). Let x be efficient in both

games, i.e., g(x) = 0 and g′(x) = 0. Furthermore, let the gradient of

g(x) be parallel to the gradient of g′(x). A solution σ satisfies local

independence if, whenever x ∈ σ(N, v), x ∈ σ(N, V ′).

Theorem (Serrano and Shimomura, 1998):4 Over the class of smooth NTU

games, there exists a unique solution satisfying nonemptiness for two-player

games, efficiency, scale invariance, equal treatment in TU Games, local inde-

pendence, consistency, and converse consistency. It is the kernel:

K(N, v) = {x ∈ V (N) : g(x) = 0 and

∀k 6= l, gk(x)[Vx{kl}({k})− xk] = gl(x)[Vx{kl}({l})− xl]}
4Although Serrano and Shimomura (1998) use the term “Nash set,” we opt to use here

the term “kernel.”
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That is, at a payoff of the NTU kernel, the elasticity of the payoff dif-

ference relative to the threat point for each pair of players is 1. Defining

dxl/dxk = gk(·)/gl(·), we have:
dxl
dxk

(x)
xk − Vx{kl}
xl − Vx{kl}

= 1.

A graphic way to represent this is that the relevant bargaining range is

split in half. By the relevant range, we mean the segment of the tangent

plane truncated at the coordinates of the threat point. Figure 3, panel A

represents this when the threat point is in the feasible set, and figure 3, panel

B does when it is outside of it.

[Enter Figure 3 here]

Example 4.3: Consider the following two person nonconvex pure bargaining

problem. Suppose two bargainers are negotiating over how to split two dollars

and the consent of both is needed to split any pie. Suppose player i’s utility

function for i = 1, 2 is the following: u(xi) = xi if i’s share xi ≤ 1, while

u(xi) = 4xi − 3 otherwise.5 Then, K consists of three points for this case:

K(N, V ) = {(1, 1), (5/2, 5/8), (5/8, 5/2)}.

(See Figure 4). That is, three possible splits of the pie are prescribed: equal

division (the problem is symmetric) and two others where the risk-loving

agent receives 11/8, while the risk-neutral one gets 5/8.

[Enter Figure 4 here]

The NTU kernel coincides with the kernel for TU games, and with the

Nash solution when applied to convex pure bargaining problems. Clearly,

5The reader should disregard the kink in the utility function. A smooth version of this

example can easily be written.
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much more research is needed on this solution concept. Although existence

is a problem in the general class of NTU games, it will be interesting to

uncover restricted classes of games where the kernel is nonempty. Also,

it should be tested in applications as a natural generalization of the Nash

solution to contexts where convexity is not assumed and where coalitions

play a role. Finally, the equivalence question is not trivial (it is known that

the kernel is not contained in some versions of the bargaining set).

4.3 More Recent Literature

We organize this more recent literature around a number of topics:

(i) Pairwise “equilibrium”: Chang (1991) studies the bisection property

of the kernel in games with coalition structures. Although the kernel and

the prekernel coincide in the class of 0-monotonic games, the equivalence

breaks down if we relax this assumption mildly, as shown in Chang and

Hsiaq (1993). Kikuta (1997) shows that prekernel and kernel coincide for

the reasonable part of the game, and Chang and Lian (2002) provides other

sufficient conditions for this coincidence. Rochfort (1984) shows how to get to

the kernel with the related idea of symmetrical pairwise bargained equilibria

in assignment games, extended in Moldovanu (1990) to the NTU domain, and

in Tejada and Rafels (2010) for the case of multilateral bargaining, the latter

leading to a set different than the kernel. Chang and Hu (2017) provides

a related noncooperative interpretation of the kernel, much along the lines

of Serrano (1997), where pairs of players chosen at random bargain over

their bilateral surplus, with the Davis-Maschler reduced game offering outside

option payoffs. Orshan and Sudholter (2012) drop the symmetry requirement
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in the split of bilateral surpluses and consider asymmetric kernels. In a

related contribution, Arin and Katsev (2016b) define the surplus-distributor

kernel. Solymosi (2015) shows that, in permutation games, a subclass of

totally-balanced games, the prekernel is contained in the least core, again

reconciling the ideas of bilateral equilibrium and coalitional stability.

(ii) Other characterizations: Calvo and Gutierrez (1996) provides an al-

ternative characterization of the kernel on the basis of stability properties.

Hokari and Kubres (2003) characterize the aspirations kernel, when choosing

aspirations is part of the cooperative game. Khmelnitskaya and Sudholter

(2013) characterize the prekernel and prenucleolus of games with communi-

cation structures, and Katsev and Yanovskaya (2013) for games of restricted

cooperation. Kleppe et al. (2016) characterize the class of symmetrically-

weighted solutions, which contains the kernel.

(iii) Large games and other classes of TU games: Shapley (1992)

studies kernels of replicated TU games and economies, and finds nonconver-

gence to the set of competitive allocations. Einy, Monderer, and Moreno

(1998) considers the kernel, least core, and bargaining sets of large games

with a countable set of players, showing that the least core is a nonempty

subset of the space of all countably additive measures, that the intersection

of the prekernel and the least core is nonempty, and that the Aumann-Davis-

Maschler and the Mas-Colell bargaining sets contain the set of all countably

additive payoff measures in the prekernel.

Granot and Granot (1992) looks at kernels of network problems, trees,

and maximum flow graphs, as well as assignment games, and their connection

with the core and the nucleolus. Granot et al. (1996) studies tree games,
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shows that the kernel coincides with the nucleolus, and provides an algo-

rithm to compute it. Faigle et al. (1998) also provides an efficient algorithm

for computation, and Faigle et al. (2001) does so for the efficient computa-

tion of the intersection of kernel and least core. Meinhardt (2006) computes

the entire prekernel based on linear-programming methods; se also Meinhardt

(2007), with a computation based on the indirect-function method, and Mein-

hardt (2014) for a monograph outlining these and other results about the ker-

nel. Potters and Reijnierse (1995) extends the results of Maschler, Peleg, and

Shapley (1972) from convex games to Γ-component additive games (graph

restricted), and Getán-Oliván et al. (2015) to almost-convex games; Arin

and Katsev (2013) provides an alternative proof of the coincidence of kernel

and nucleolus of convex games. Kishimoto and Watanabe (2017) studies the

kernel of a patent licencing game and shows it to be a singleton, thereby

always offering a prediction on optimal licenses. For fuzzy TU games, Liu et

al. (2018) and Huang et al. (2019) study fuzzy kernels and their connections

with the fuzzy Aumann-Davis-Maschler bargaining set and fuzzy Mas-Colell

bargaining set, respectively.

(iv) NTU games: Billera and McLean (1994) suggest an alternative ex-

tension of the kernel to NTU games, based on convex analysis. One way

to overcome the difficulties of establishing nonemptiness of the NTU preker-

nel is to suggest the average prekernel, which consists of the set of efficient

payoffs where the average (over all other players) surplus of each player is

zero; interestingly, the average prekernel coincides with the prekernel in TU

games. The average prekernel was proposed in Orshan and Zarzuelo (2000),

albeit under the name of bilateral consistent prekernel. A nonemptiness
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result of the average prekernel for boundary-separating games is proved in

Orshan, Valenciano, and Zarzuelo (2003), and an axiomatization is proposed

in Serrano and Shimomura (2006).

5 The Bargaining Set

5.1 Definition and Properties

Consider the following question: Is it possible that all players cooperate in a

coalitional game where the core is empty? One answer to this question may

be in the affirmative. The reason is that we do not have to take into account

every single “improvement” of a coalition. Suppose that payoffs are given to

all individuals of a group. Even if a subgroup can make its members better

off by working together, the “improvement” they plan to carry out may be

disturbed by a counter offer from another subgroup.

Aumann and Maschler (1961,1964) and Davis and Maschler (1962,1963)

interpret a proposal of “improvement” not only as an elimination of dissat-

isfaction of a subcoalition for the grand coalition, but also as an “objection”

from a player to another player.6 They present the following concept of

“counterobjection.” 7

Now, suppose that payoff profile x is given to an n-player coalitional game

6We refer to the first formalization of these ideas as the Aumann-Davis-Maschler

(ADM) bargaining set.
7There are several verbal explanations found in their original papers and in Osborne

and Rubinstein (1994, P.282). There are subtle differences between them. They look

almost the same, but the differences become clearer in mathematical expressions, which

we will discuss later.
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(N, v). Suppose further that one of the players, i, is informing another player,

j, of the following: “I am forming coalition S that does not contain you; I

plan to produce a payoff profile y for S that gives me a greater payoff than

my payoff at x and makes the other members of S at least as happy as at

x.” The pair (S, y) is the description of an objection from player i to player

j given x. The formal definition is as follows:

Definition: Let (N, v) be a TU game, i, j ∈ N ,and x a payoff profile on N .

Then an ADM objection of i against j at x is a pair (S, y) of coalition S and

y ∈ X(S, v) such that i ∈ S, j /∈ S, yi > xi, and y−i ≥ xS−i.

In other words, the interpretation is that player i protests against player

j that “If I form coalition S without you and create payoff list y, then I can

improve myself without making the other members of S worse off than at the

status quo x.” Observe that the core of a TU game can be redefined as the

set of payoff profiles that do not cause any objection of any player against

any other player.

Notice that this type of improvement requires that the player making an

objection should be strictly better off without hurting any other member of

the same coalition. The statements “the player forming a coalition being

strictly better off without making any of the other members worse off ” and

“all members of a coalition being made strictly better off” are equivalent in a

TU game. However, they are different for more general cases such as an NTU

game. In addition, this definition makes the implications of Davis/Maschler

consistency clearer, which is to be discussed later.8

8In fact, there are quite a few papers in which an “objection of i against j at x” is
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Now suppose that player j can form coalition T excluding player i and

achieve a new payoff profile z which gives to each member of T a payoff at

least as high as at x and, to each member belonging to both S and T , a

payoff at least as high as at y. Aumann, Davis, and Maschler named such a

pair (T, z) a counterobjection from player j to objection (S, y) given payoff

profile x. The formal definition is:

Definition: Let (N, v) be a TU game, i, j ∈ N , x a payoff profile on N , and

(S, y) an objection of i against j at x. Then, an ADM counterobjection from

j to (S, y) at x is a pair (T, z) of coalition T and z ∈ X(T, v) such that i

/∈ T , j ∈ T , and (zS∩T , zT\S) ≥ (yS∩T , xT\S).

The interpretation is that player j , who had been objected to by player

i, can say: “If I form coalition T and produce payoffs z, then I can make

all the members of T who are also in S at least as happy as with y and the

other members of T at least as happy as with x.”

In a situation where such objections and counterobjections are proposed,

an objection is said to be “justified” if it has no counterobjection. We con-

sider the set of (pre)imputations with no “justified” objection, and call this

the ”Aumann-Davis-Maschler (pre)bargaining set”. The formal definition is

as follows:

Definition (Aumann and Maschler, 1964/Davis and Maschler, 1963/Au-

mann and Dreze, 1974): The ADM prebargaining set of the game (N, v) is

the set

IM1(N, v) = {x ∈ X(N, v) : For each ADM objection of

defined by strict improvement of all members of the coalition (i.e.,yk > xk for all k ∈ S).
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i ∈ N against j ∈ N at x, there is an ADM counterobjection}.

The ADM bargaining set of the game (N, v) is the set

IM
(i)
1 (N, v) = {x ∈ X0(N, v) : For each ADM objection of

i ∈ N against j ∈ N at x, there is an ADM counterobjection}

Both mappings IM1 and IM
(i)
1 are solutions on the class G of all TU games.

Aumann and Maschler (1961, 1964) define IM1 as one of several versions of the

bargaining set. Davis and Maschler (1962, 1963) propose IM
(i)
1 by imposing

individual rationality on IM1 (Davis and Maschler,1962, P. 4, footnote 2).

Aumann and Dreze (1974,P.227, footnote 8) say that the bargaining set they

investigate is IM
(i)
1 , but this claim is not correct because they do not impose

individual rationality. Properly speaking, the bargaining set they discuss is

IM1 defined above.

Example 5.1: Let N = {1, 2} and consider 2-person TU games. Define the

set of efficient payoff profiles with no excesses of the two players by

L({1, 2}, v) = {x ∈ X({1, 2}, v) : (x1, x2) ≤ (v({1}), v({2}))}

Then

IM1({1, 2}, v) = X0({1, 2}, v) ∪ L({1, 2}, v).

IM
(i)
1 ({1, 2}, v) = X0({1, 2}, v).

Remember the question about the possibility of cooperation when the

core is empty. The answer by Aumann, Davis, and Maschler is that, even if
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the payoff profile is not in the core, players actually never make an objection

against any other player as long as it is in the ADM bargaining set. That is,

each player is aware that, given that payoff profile, every single objection he

can make is to be stopped by a counterobjection.

A payoff profile of the ADM bargaining set is therefore considered stable.

Notice that a “justified” objection is a special case of an objection. Then,

there is no justified objection to a payoff profile if there is no objection.

Hence, a payoff profile of the core is contained in the ADM bargaining set.

Furthermore, the ADM bargaining set has been proved to be nonempty for

any TU game (Davis and Maschler (1962, 1963); Peleg (1963)). Therefore,

the ADM bargaining set expresses the possibilities of players’ cooperation

and payoff distribution, even for a TU game where the core is empty.

However, the ADM bargaining set may include a large number of —

sometimes undesirable— payoff profiles, so that selections therein can be of

interest. The kernel and the nucleolus are thus proposed as “refined” sub-

solutions of the ADM bargaining set, which satisfy the following inclusion

relations:

1. For every TU game, the kernel is included in the ADM bargaining set.

2. For every TU game, the nucleolus is contained in the kernel.

3. For every balanced TU game, the nucleolus is contained in the core,

which is itself contained in the ADM bargaining set.

The above results state the inclusions for the individually rational versions

of the solutions. More fundamental results are presented in the proposition

below:
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Proposition: For each TU game (N, v),

C(N, v) ⊂ IM1(N, v)

nc(N, v) ∈ K(N, v) ⊂ IM1(N, v)

For each balanced TU game (N, v),

nc(N, v) ∈ K(N, v) ∩ C(N, v) ⊂ IM1(N, v)

Thanks to these inclusion relations, it is straightforward that the exis-

tence and uniqueness of the nucleolus, proven by Schmeidler (1969), warrants

the nonemptiness of the kernel and the ADM bargaining set. Sobolev (1975)

proves the existence and uniqueness of the prenucleolus with help of the theo-

rem of Schmeidler (1969) (see Yanovskaya (2002)), so that the nonemptiness

of the prekernel and the ADM prebargaining set is guaranteed. Aumann

writes in his memoir of Maschler in Aumann et al. (2008, P.6) about the

ADM bargaining set, kernel, and nucleolus as follows:

That paper [Aumann and Maschler (1964)] has been cited

many hundreds of times; it became one of my–and no doubt

Mike’s–most popular works. Mike’s stubbornness really paid

off. Moreover, the paper led to a very large literature, it was

truly seminal. Later offshoots–one might say descendants–of

that original concept were the Maschler—Davis Bargaining setMi
1,

for which there is an existence theorem (with a beautiful, highly

nontrivial proof), and which is altogether more pleasant to work
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with, as well as the Kernel and Schmeidler’s Nucleolus; taken to-

gether, these concepts constitute one of the richest, and yes, most

elegant chapters of game theory, with a great many applications

yielding beautiful insights.

Next, we elaborate on some properties of the ADM prebargaining set.

(1) Kernel inclusion: For all TU games (N, v), K(N, v) ⊂ IM1(N, v).

Proof of (1): Let x ∈ K(N, v). Then, x ∈ X(N, v). Choose two

distinct players i, j ∈ N and suppose that there is an objection (S∗, y∗)

of i against j at x. Then, i ∈ S∗, j /∈ S∗, v(S∗) − x(S∗) > 0 and

max{v(S) − x(S)|i ∈ S, j /∈ S} = max{v(T ) − x(T )|j ∈ T, i /∈ T}.
Hence, there is a coalition T ∗ such that

j ∈ T ∗, j /∈ T ∗and v(S∗) − x(S∗) ≤ v(T ∗) − x(T ∗). If S∗ ∩ T ∗ 6=
∅, v(S∗) − x(S∗\T ∗) ≤ v(T ∗) − x(T ∗\S∗), so that there is an ADM

counterobjection (T ∗, z∗) such that z∗k = xk for each k ∈ T ∗\S∗ and

z∗l ≥ y∗l for each l ∈ S∗ ∩ T ∗. If S∗ ∩ T ∗ = ∅, 0 < v(T ∗) − x(T ∗), so

that there is an ADM counterobjection (T ∗, z∗) such that z∗l > xl for

each l ∈ T ∗. Thus, x ∈ IM1(N, v). Hence, K(N, v) ⊂ IM1(N, v).Q.E.D.

(2) Nonemptiness: For all TU games (N, v), IM1(N, v) 6= ∅.

Proofof (2): Recall nc(N, v) ∈ K(N, v). Since K(N, v) ⊂ IM1(N, v),

nc(N, v) ∈ IM1(N, v). Thus, IM1(N, v) 6= ∅.Q.E.D.

(3) Consistency: Let (N, v) be a TU game, and x ∈ IM1(N, v) . Then,

xB ∈ IM1(B, vxB) for each B ⊂ N with |B| ≥ 2.
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Proof of (3): The following proof is borrowed from Aumann and Dreze

(1974,Theorem 7). Let x ∈ IM1(N, v) and B ⊂ N with |B| ≥ 2. Define

the Davis/Maschler reduced game (B, vxB) . Since vxB(B) = v(N) −
x(N\B) and x ∈ IM1(N, v) ⊂ X(N, v), it follows that x(B) = vxB(B).

Let i, j ∈ B. Suppose that there is an objection (S, y) , S ⊂ B, of

i against j at xB in (B, vxB) . Then, y(S) = vxB(S), yi > xi, and

y−i ≥ xB−i. By the definition of vxB,there is Q ⊂ N\B such that

vxB(S) = v(S ∪ Q) − x(Q). Since i ∈ S and j /∈ S, i ∈ S ∪ Q and

j /∈ S ∪ Q. Hence, (S ∪ Q, (y, xQ)) is an objection of i against j at

x in (N, v). Since x ∈ IM1(N, v), there is an ADM counterobjection

(T ∪ R, z) with T ⊂ B and R ⊂ N\B from j to (S ∪ Q, (y, xQ)) at x

in (N, v) such that v(T ∪ R) = z(T ∪R) and

z = (zS∩T , zT\S , zQ∩R, zR\Q) ≥ (yS∩T , xT\S, xQ∩R, xR\Q)

Note that z can be chosen so that v(T ∪ R) = z(S ∩ T ) + z(T\S) +
x(Q ∩ R) + x(R\Q) and

z = (zS∩T , zT\S , xQ∩R, xR\Q), (zS∩T , zT\S) ≥ (yS∩T , xT\S)

Since x(Q ∩ R) + x(R\Q) = x(R), it follows that z(T ) = z(S ∩ T ) +

z(T\S) = v(T ∪R)−x(R). Consider the reduced game (B, vxB) again.

Since T ⊂ B and R ⊂ N\B,there exists R∗ ⊂ N\B such that

vxB(T ) = v(T ∪ R∗)− x(R∗) ≥ v(T ∪R)− x(R) = z(T )
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Hence, there exists z∗ ∈ X(T, vxB) such that z∗ ≥ zT = (zS∩T , zT\S) ≥
(yS∩T , xT\S). Thus, (T, z∗) is an ADM counterobjection from j to (S, y)

at xB in (B, vxB) , so that x ∈ IM1(B, vxB)

Since v(T ) = z(S ∩ T ) + z(Q ∩ T ) + z(T\(S ∪ Q) ≥ y(T ) + x(Q ∩
T ) + x(T\(S ∪ Q), we can choose counterobjection (T, z∗) from j to

(S ∪Q, (y, xQ)) at x in (N, v) such that

z∗S∩T ≥ yT and (z∗Q∩T , z∗T\(S∪Q)) = (xQ∩T , xT\(S∪Q))

We then have shown that (T ∩ B, z∗B) is an ADM counterobjection

from j to (S, y) at xB in (B, vxB) . Hence, x
B ∈ IM1(B, vxB).Q.E.D.

As a corollary to consistency, we have the following:

(3’) Bilateral consistency: Let (N, v) be a TU game, and x ∈ IM1(N, v) .

Then, xP ∈ IM1(P, vxP ) for each P ⊂ N with |P | = 2.

(4) Converse consistency: Let (N, v) be a TU game, and x ∈ X(N, v).

If xP ∈ IM1(P, vxP ) for every two-player reduced game (P, vxP ), then

x ∈ IM1(N, v).

Proof of (4): Let x ∈ X(N, v),and suppose that xP ∈ IM1(P, vxP ) for

every two-player reduced game (P, vxP ). In the game (N, v), choose

two distinct players i, j ∈ N . Let (S, y) be an objection of player i to

another player j at x. Then, there is Q ⊂ N\{i, j} such that v({i} ∪
Q)−x(Q) > xi. Notice that x

{i,j} ∈ IM1({i, j}, vx{i,j}). Hence, (xi, xj) ≥
(vx{i,j}({i}), vx{i,j}({j})) or (xi, xj) ≤ (vx{i,j}({i}), vx{i,j}({j})).
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By the definition of vx{i,j}, vx{i,j}({i}) ≥ v({i} ∪ Q) − x(Q). Then,

vx{i,j}({i}) > xi. Thus, xj ≤ vx{i,j}({j}).By the definition of vx{i,j},

there is R ⊂ N\{i, j} such that xj ≤ v({j} ∪ R) − x(R), i.e., xj +

x(R) ≤ v({j} ∪ R).Define zj = v({j} ∪ R) − x(R), then zj ≥ xj and

zj + x(R) = v({j} ∪ R). Notice that i /∈ {j} ∪ R and j ∈ {j} ∪ R.

Hence, ({j} ∪ R, (zj, x
Q)) is an ADM counterobjection from j to the

objection (S, y) at x. Thus, for each objection of i to j at x, there is a

counterobjection from j at x. Therefore, x ∈ IM1(N, v).Q.E.D.

(5) Covariance: Let (N, v) be a TU game, α > 0 and β ∈ IRN . Construct

the TU game (N,w), where w(S) = αv(S) + β(S) for every S ⊂ N .

If x ∈ IM1(N, v), then αx+ β ∈ IM1(N,w).

We next prove a result that, as far as we know, is new to the literature:

Theorem: Over the class of all TU games, there exists a unique solution

σ satisfying nonemptiness, (bilateral) consistency, converse consistency, and

the “both on the same boat” property, i.e., σ(P, v) = X0(P, v) ∪ L(P, v) for

each 2-person TU game (P, v). It is IM1.

Proof : The solution IM1 is a solution on G which satisfies nonemptiness,

bilateral consistency, converse consistency, and IM1(P, v) = X0(P, v)∪L(P, v)
for each 2-person TU game (P, v).

Suppose now that σ is a solution satisfying nonemptiness, consistency,

converse consistency, and σ(P, v) = X0(P, v) ∪ L(P, v) for each 2-person TU

game (P, v). Thus, for each 2-person TU game (P, v), σ(P, v) = IM1(P, v).

Let (N, v) be a TU game with |N | ≥ 3. We prove IM1(N, v) ⊂ σ(N, v).

Let x ∈ IM1(N, v). By the bilateral consistency of IM1, for each P ⊂ N
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with |P | = 2, xP ∈ IM1(P, vxP ) = X0(P, vxP ) ∪ L(P, vxP ) = σ(P, vxP ).By the

converse consistency of σ, x ∈ σ(N, v). Thus, IM1(N, v) ⊂ σ(N, v).

We next prove σ(N, v) ⊂ IM1(N, v). Let x ∈ σ(N, v). By the bilateral

consistency of σ,then for each P ⊂ N with |P | = 2, xP ∈ σ(P, vxP ) =

X0(P, vxP )∪L(P, vxP ) = IM1(P, vxP ).By the converse consistency of IM1, x ∈
IM1(N, v). Thus, σ(N, v) ⊂ IM1(N, v). Hence, for each TU game (N, v) with

|N | ≥ 3,σ(N, v) = IM1(N, v).

It therefore follows that σ = IM1 over G. Q.E.D.
The following is essentially the same as Theorem 5.14 in Peleg (1986):

Theorem (Peleg, 1986): Over the class of all TU games, there exists a unique

solution σ satisfying efficiency, (bilateral) consistency, converse consistency,

and individual rationality for two-player games. It is the core C.
Notice that we impose efficiency on solutions on G . Then, the re-

quirement of individual rationality for each 2-person TU game coincides

with the axiom Peleg (1986) calls “unanimity”. We refer to the condition

“σ(P, v) = X0(P, v) ∪ L(P, v) for each 2-person TU game (P, v)” as the both

on the same boat axiom, by which we mean “cooperation for better, for

worse, for richer, for poorer, in sickness and in health,” the promised vows

in marriage.

In addition, Aumann and Maschler (1985, P.210) defines the standard

solution of 2-person TU game ({1, 2}, v) by

σ({1, 2}, v)

= (v({1})+1

2
(v({1, 2}−v({1})−v({2})), v({2})+1

2
(v({1, 2}−v({1})−v({2})))

in order to show the bilateral consistency and converse consistency of the
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prekernel. Peleg (1986, Remark 4.4, Theorem 4.5) axiomatizes the prekernel

as the only solution satisfying consistency and converse consistency such that

the values of 2-person games coincide with those of the standard solution. We

can therefore regard the core, the ADM prebargaining set, and the prekernel,

respectively as “extensions” of the two-person rules of “unanimity,” “both

on the same boat,” and the standard solution, where the extension to multi-

person games satisfies consistency and converse consistency. On the other

hand, Peleg (1986, Remark 4.6) points out that the prenucleolus does not

satisfy converse consistency (recall that it satisfies consistency).

5.2 Modified Versions

We discuss next some problems with the ADM bargaining set, which remain

unsolved (They are pointed out by Zhou (1994, Section 3) ).

The first problem is as follows: Suppose that player i forms a coalition

to make an objection against another player j. Then, in order for player j

to counterobject to player i, is it effective even if player j forms a coalition

containing no members of the objecting coalition? In particular, according to

the definition, when two players can form disjoint coalitions, and can make

objections, none of them are justified. Then, the original recommendation

passes the definition of the ADM bargaining set.

In fact, Myerson (1991, P. 453) imposes the constraint “S∩T 6= ∅” on the
objecting coalition S and the counterobjecting coalition T in the definition of

the ADM bargaining set. However, it is assumed that “i ∈ S & j /∈ S” and

“j ∈ T & i /∈ T ,” so that “S ∩T 6= ∅” implies “S\T 6= ∅ & T\S 6= ∅.” Then,

the constraint Myerson imposes on the ADM bargaining set means “S∩T 6= ∅
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& S\T 6= ∅ & T\S 6= ∅,” which is called the proper intersection condition

and introduced by Zhou (1994) to define a new bargaining set. Zhou (1994,

Example 3.2) points out that the bargaining set in which this constraint is

imposed does not generally contain either the kernel or the nucleolus. As a

result, both the kernel and the nucleolus lose the role of refinements of the

bargaining set. We will discuss more details on this point later.

The second problem is: Why are objections and counterobjections defined

with different kinds of inequalities? We refer to improvements of members

from payoff profile x to payoff profile y in a coalition defined by y � x, y ≥ x,

and y ≥ x & y 6= x as strict improvement, weak improvement, and Pareto

improvement, respectively. Strict improvement implies Pareto improvement,

and Pareto improvement implies weak improvement. A weak improvement

that is not a Pareto improvement means y = x, namely the status quo. As

the improvement for objections is made weaker or that for counterobjections

is made stronger, the number of justified objections increases and the set of

payoff profiles with no justified objections becomes smaller.

Consider whether an objection can be countered using the status quo

as the counterobjection. Suppose that player i makes an objection against

player j at the status quo by forming coalition S and player j makes a

counterobjection by forming coalition T . According to the ADM definition,

it may be possible that player j disturbs player i’s plans to form coalition

S if player j gives at least one member of S the same level of payoff as

offerred by i. We however wonder whether player j can prevent player i from

forming an objecting coalition by giving himself and possibly some other

players exactly the same level of payoffs as at the status quo. Then, it seems
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that the validity or plausibility of the definition of counterobjections relying

on weak improvements depends on whether the counterobjecting coalition

includes a part of the objecting coalition.

The third problem is: Which unit proposes an objection and a counterob-

jection, a player or a coalition? To define the core, an objection is assumed

to be made from a coalition to the status quo. To define the ADM bargaining

set, as we have seen, an objection is made by a player against another player

given the status quo, and the counterobjecting coalition does not contain

the leader, who is the player making the objection. Hence, the justifications

of an objection depend on who is designated as the leader of the coalition,

even if the coalition and the proposed payoff profile of the objection is fixed.

Mas-Colell (1989) answers this problem by defining an objection “from a

coalition to the status quo,” a counterobjection “from another coalition to

the objection raised against the status quo,” and proposes a modification of

the ADM bargaining set as a result. The formal definitions are as follows:

Definition: Let (N, v) be a TU game, and x a payoff profile. Then a Pareto

objection to x is a pair (S, y) of coalition S and y ∈ X(S, v) such that y ≥
xS& y 6= xS.

It is interpreted that coalition S protests in public against their payoffs

xS that “If we, coalition S, produce payoff list y, then we can improve upon

some of the members of S without making the other members worse off than

at the status quo xS.” The core of a TU game can be redefined as “the set

of payoff profiles to which there is no Pareto objection.”

Definition: Let (N, v) be a TU game, x a payoff profile on N , and (S, y)

an objection to x. Then a Pareto counterobjection to (S, y) at x is a pair

50



(T, z) of coalition T and z ∈ X(T, v) such that (zS∩T , zT\S) ≥ (yS∩T , xT\S)

& (zS∩T , zT\S) 6= (yS∩T , xT\S).

The interpretation is that coalition T replies: “If we, coalition T , make

a list z of payoffs, then we can make all the members of T who are also in

S at least as happy as with y, the other members of T at least as happy as

with x,and at least one member strictly better off than at (yS∩T , xT\S).”

If we replace Pareto improvement in the definition of counterobjection by

weak improvement (as in the definition of ADM counterobjection), then we

can define another type of counterobjection.

Definition: Let (N, v) be a TU game, x a payoff profile on N , and (S, y) an

objection to x. Then a weak counterobjection to (S, y) at x is a pair (T, z)

of coalition T and z ∈ X(T, v) such that (zS∩T , zT\S) ≥ (yS∩T , xT\S).

We are ready to introduce the bargaining sets defined by the above types

of objections and counterobjections.

Definition (Mas-Colell, 1989; Vohra, 1991):

The weak Mas-Colell prebargaining set of the game (N, v) is the set

MB(N, v) = {x ∈ X(N, v) : For each Pareto objection tox,

there is a weak counterobjection at x}

The Mas-Colell prebargaining set of the game (N, v) is the set

MB(N, v) = {x ∈ X(N, v) : For each Pareto objection to x,

there is a Pareto counterobjection at x}

The Mas-Colell bargaining set of the game (N, v) is the set
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MB0(N, v) = {x ∈ X0(N, v) : For each Pareto objection to x,

there is a Pareto counterobjection at x}

The mappings MB, MB and MB0 are solutions on G. Mas-Colell’s

original (1989) is MB, for which individual rationality is not required. Mas-

Colell (1989, P.138) points out that, for all TU games, MB includes the

prekernel, which contains the prenucleolus, so that MB(N, v) is nonempty.

Vohra (1991) proposes MB0 by imposing individual rationality on MB, and

shows the nonemptiness of MB0 by proving that MB0 includes the kernel

for TU games satisfying zero-monotonicity (Vohra, 1991, Proposition 3.2).

Mas-Colell (1989, P.139) notes thatMB and the ADM prebargaining set IM1

are not comparable, but it is easily shown that IM1 is a subsolution of MB

for all TU games.

Proposition: For each TU game (N, v),

IM1(N, v) ⊂MB(N, v)

Proof: Let x ∈ IM1(N, v) . Then, x ∈ X(N, v). Let (S, y) be a Pareto

objection to x. Then, y ≥ xS and there is a player i ∈ S such that yi > xi.

Since S 6= N , there is a player j /∈ S. Then, (S, y) is an ADM objection of i

against j at x. Since x ∈ IM1(N, v), there exists an ADM counterobjection

(T, z) to (S, y) at x. Then, (zS∩T , zT\S) ≥ (yS∩T , xT\S). This means that

(T, z) is a weak counterobjection to (S, y) at x. Hence, x ∈ MB(N, v).

Q.E.D.
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We illustrate these bargaining sets of two-player games in the following

example:

Example 5.2: Let N = {1, 2} and consider 2-person TU games. Define the

set of efficient payoff profiles with negative excesses of the two players by

L({1, 2}, v) = {x ∈ X({1, 2}, v) : (x1, x2)� (v({1}), v({2}))}

Then

MB({1, 2}, v) = X0({1, 2}, v) ∪ L({1, 2}, v).

MB({1, 2}, v) = X0({1, 2}, v) ∪ L({1, 2}, v).

MB 0({1, 2}, v) = X0({1, 2}, v).

Notice that MB({1, 2}, v) and MB 0({1, 2}, v) are closed sets, and

MB({1, 2}, v) is not a closed set when v({1}) + v({2}) > v({1, 2}).

Zhou (1994) modifies the Mas-Colell Bargaining Set by imposing the

proper intersection condition on a counterobjection, using strict Pareto ob-

jections and weak counterobjections. This leads to the Zhou bargaining set

of the game (N, v), i.e., ZB(N, v). Note how all objections from individual

players are justified, so that individual rationality is automatically implied.

Zhou (1994, Theorem 2.5) proves nonemptiness of his bargaining set for gen-

eral games with coalition structures. As a corollary, the nonemptiness of ZB

follows from a weak form of superadditivity called grand coalition superad-

ditivity, which means that
∑

B∈P v(B) ≤ v(N) for every partition P of N .

The following inclusion relations are straightforward from the definitions:

C(N, v) ⊂ ZB(N, v) ⊂ MB(N, v) ⊂ MB(N, v).
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The counterobjections defined by weak improvements make Zhou’s bargain-

ing set nonempty for general games and the mapping ZB upper hemicontin-

uous in v given N .

Shimomura (1997) defines two modifications of the Zhou bargaining set.

In the first, counterobjections are defined by strict improvements, leading to

the strict Zhou bargaining set ZB∗.9 In the second, we say that coalition

T is dominant over S whenever any strict objection from S can be strictly

countered in the Zhou style by T . This leads to the steady bargaining set

SB(N, v), which is the set of x ∈ X(N, v) such that for each coalition S, there

is a coalition T that is dominant over S at x. Shimomura (1997, Theorem

2) proves nonemptiness of SB under grand coalition superadditivity. As a

corollary, nonemptiness of ZB∗ under grand coalition superadditivity follows.

The following inclusions hold:

C(N, v) ⊂ SB(N, v) ⊂ ZB∗(N, v) ⊂ ZB(N, v).

If a game satisfies balancedness, which implies grand coalition superadditiv-

ity, then the nonempty core, SB, ZB∗, and ZB all contain the nucleolus.

However, if a game satisfies grand coalition superadditivity but does not sat-

isfy balancedness, then ZB may not contain the nucleolus, and hence SB

may not contain the nucleolus either. Consider the following example:

Example 5.3: N = {1, 2, 3, 4, 5},v({i}) = 0 for every i ∈ N , v({1, 2}) =
v({3, 4}) = v({3, 5}) = v({4, 5}) = 2.1, v(N) = 5, and the other v(S) are gen-

9Shimomura (1997) modifies the Mas-Colell bargaining set and the Zhou bargaining

set by defining both objections and counterobjections with strict improvements. Izquierdo

and Rafels (2018) call them the Mas-Colell bargaining set á la Shimomura and the Zhou

bargaining set á la Shimomura, respectively.
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erated so that v is the minimal superadditive game compatible with the given

worths: The nucleolus, which is also the prenucleolus, is x∗ = (1, 1, 1, 1, 1).

Since v is the minimal superadditive game, we have v({1, i}) = v({2, i}) = 0,

v({1, i, j}) = v({2, i, j}) = 2.1 for each i, j ∈ {3, 4, 5} ,and v({1, 3, 4, 5}) =
v({2, 3, 4, 5}) = 2.1. Since v({1, 2}) − x∗({1, 2}) > 0, there is a strict ob-

jection from coalition {1, 2} to x∗. Suppose that coalition {1, 2} makes the
strict objection ({1, 2}, (1.05, 1.05)). Then, there is no coalition that can

make even a weak Zhou counterobjection at x∗. Thus, x∗ /∈ ZB(N, v).

It also follows x∗ /∈ SB(N, v).Note that x∗ is contained in the ADM bar-

gaining set of (N, v) but none of the players {3, 4, 5} can counterob-

ject the ADM objection ({1, 2}, (1.05, 1.05)) of player 1 at x∗ by form-

ing coalition T such that 1 /∈ T, 2 ∈ T,and {3, 4, 5} ∩ T 6= ∅. Finally,

K(N, v) = {x|x1 = x2 ∈ [37
40
, 21
20
], x3 = x4 = x5 ∈ [29

30
, 21
20
], x(N) = 5}, and x∗ ∈

K(N, v).
Thus, this example shows that the constraint imposed by Myerson (1991,

P. 453) results in that restricted version of the ADM bargaining set losing the

containment of both the nucleolus and the kernel. The example also shows

that neither ZB nor SB include the nucleolus in general. In this sense,

applying stricter standards to “reasonable” justified objections sometimes

conflicts with the egalitarian social welfare principle behind the nucleolus.

Hence, we may say that these two bargaining sets are not quite in the same

family as the ADM bargaining set and the Mas-Colell bargaining set.
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5.3 Further Topics

(i) Coincidence of bargaining sets with the core. It is well known

that, in two-person and three-person TU games, the ADM bargaining set

M(i)
1 and the core C coincide if the game is balanced. Solymosi (2002) proves

that, in four-person balanced games, M(i)
1 and the core also coincide. On

the other hand, Maschler (1976) presents an example of a five-person totally-

balanced game whose ADM bargaining set contains many points besides the

core. Izquierdo and Rafels (2012b) proves that, in any TU game (N, v), there

exists the number k∗(v) such that the ADM bargaining set coincides with the

core if the worth v(N) of the grand coalition is greater than or equal to k∗(v),

and establishes the formula to compute the number k∗(v). In addition, the

paper shows by way of example that the existence of such a critical number is

not shared by other variants, such as the Mas-Colell prebargaining set MB,

the Mas-Colell bargaining set MB0, and the Mas-Colell bargaining set (à la

Shimomura) MB∗ (for the definition of MB∗, see footnote 9).

For the class of convex games, Maschler et al. (1972) establishes that C =

M(i)
1 , and Dutta et al. (1989) proves that C = MB0. One can show that

the Mas-Colell bargaining set MB0 is included in the Mas-Colell bargaining

set (à la Shimomura) MB∗, so that then, C ⊂ MB0 ⊂ MB∗. Izquierdo

and Rafels (2012a) proves that C = MB∗ for all convex games, which is a

stronger result than Dutta et al.’s. Recall that C ⊂ SB ⊂ ZB∗ ⊂ MB∗.

Then, the coincidence result of Izquierdo and Rafels (2012a) implies that

all these inclusions are actually equalities on the class of convex games, i.e.,

C = SB = ZB∗ =MB0 = MB∗.

Conversely, Izquierdo and Rafels also characterize the domain of convex
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games by the coincidence with the core. Namely, the class of convex games is

the only class of zero-monotonic games on which the Mas-Colell bargaining

set (à la Shimomura) MB∗ coincides with the core C (Izquierdo and Rafels

(2012a)), and the only class of zero-monotonic and grand coalition superad-

ditive games on which the steady bargaining set SB coincides with the core

C (Izquierdo and Rafels (2018)) . Since SB is the minimal supersolution of

the core among the bargaining sets we have investigated, the small difference

between C and SB makes their characterization theorem remarkably striking.

(ii) The consistent bargaining set. One may wonder what happens

if “counterobjections to counterobjections” are taken into account, further

counterobjections to such counterobjections, and so on and so forth. Dutta

et al.(1989) proposes such a modification and, accordingly, defines a variant

of the Mas-Colell prebargaining set named the consistent bargaining set, for

which the following facts can be noted: (i) it is a supersolution of the core and

a subsolution of the Mas-Colell prebargaining set; (ii) it coincides with the

Mas-Colell prebargaining set for all three-person superadditive TU games;

(iii) as shown by example, there is a four-person superadditive TU game

where the consistent bargaining set is empty; (iv) there are TU games where

it violates individual rationality (suggesting that, perhaps, it should be called

the consistent prebargaining set); (v) it does not generally satisfy consistency

with respect to the DM reduced game; and (vi) it is not known whether it

contains the nucleolus or whether it has a nonempty intersection with the

kernel when the core is empty, and its inclusion relations with other versions

of the bargaining set, such as Zhou’s or Shimomura’s, are also unknown.

(iii) Equivalence and convergence in economic environments. Shap-
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ley and Shubik (1984) shows that the ADM bargaining set is approximately

Walrasian in replica sequences of exchange economies with smooth quasi-

linear preferences. Anderson (1998) extends the Shapley-Shubik result to

nonreplica sequences of exchange economies with smooth preferences, which

need not be quasilinear. On the other hand, Shapley (1992) constructs a

replica sequence of economies with Leontief preferences and finds an element

of the kernel that does not converge to the set of Walrasian allocations. The

kernel is contained in the ADM bargaining set, which is in turn contained in

the Mas-Colell bargaining set. Hence, this example is also a nonconvergence

example for these two bargaining sets.

Mas-Colell (1989) considers an exchange economy with a continuum of

consumers, and proves that his prebargaining set coincides with the set of

Walrasian allocations. His result is stronger than Aumann’s (1964) core

equivalence theorem in continuum environments.

Although Mas-Colell defines his prebargaining set of coalitional games

by Pareto objections and Pareto counterobjections, he formulates his pre-

bargaining set of exchange economies by Pareto objections and strict coun-

terobjections. Anderson, Trockel, and Zhou (1997) investigates whether the

Mas-Colell bargaining set and the Zhou bargaining set, which are defined by

Pareto objections and counterobjections, of replicated exchange economies

converge to the set of Walrasian allocations. Anderson et al. (1997) con-

structs an example in which neither the Mas-Colell bargaining set nor the

Zhou bargaining set converge to the set of Walrasian allocations (For more

details about the difference between Mas-Colell(1989) and Anderson et al.

(1997) , see Hara (2005, P.548-549)).
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(iv) NTU games. We say that an NTU game is “nonleveled” if the feasible

payoff set for every coalition is strongly comprehensive. Vohra (1991) is the

first work to find a class of nonleveled NTU games for which the Mas-Colell

bargaining set is nonempty, and names them “weakly balanced games.” He

also defines the subclass of “weakly TU balanced games”Ṡhimomura (1995)

presents a sufficient condition on nonleveled NTU games to obtain the non-

emptiness of the strict Zhou bargaining set with coalition structures, and calls

it the “noncrossing condition.” Chang and Chen (2006) defines “subbalanced

games” and proves, through “weak balancedness” and “subbalancedness,”

the nonemptiness of the Mas-Colell bargaining set for nonleveled weakly TU

games, and that of the Zhou bargaining set for nonleveled weakly TU games

satisfying grand coalition superadditivity. Furthermore, Peleg and Sudholter

(2005) presents an example of a nonleveled superadditive NTU game for

which the Mas-Colell bargaining set is empty. In addition, Holzman (2001)

investigates inclusion relations between the ADM and the Mas-Colell bar-

gaining sets, proving that the former is included in the latter for each non-

leveled superadditive NTU game, also showing by way of example that the

ADM bargaining set may not be included even in the closure of the Mas-

Colell bargaining set if the game does not satisfy nonleveledness.

(v) Bargaining and bargaining sets. It is not trivial to propose nonco-

operative bargaining foundations of the bargaining set. The reason is that

the outcomes prescribed by an objection and a counterobjection may not be

simultaneously feasible, which must be a minimal requirement of any imple-

menting mechanism. After showing that implementation in Nash equilibrium

is impossible, Serrano and Vohra (2002a) proposes a multi-stage game that
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implements the ADM bargaining set of exchange economies in subgame per-

fect equilibrium. In their game, after a proposal is made, depending on the

identity of the rejector, if any, a different outcome is specified. Also, after a

proposal is put on the table and all the responders agree, the proposer has

one extra chance to either ratify the proposal or reject it. While the first

feature is key to solving the feasibility difficulty outlined above, the second

feature takes care of the related problem of inappropriate proposals or re-

sponses (“inappropriate” when judged by the logic of the bargaining set). A

modification of the procedure, found in Serrano and Vohra (2002b), imple-

ments the Mas-Colell bargaining set. Einy and Wettstein (1999) proposes

a different game, but where violations of feasibility take place, and Pérez-

Castrillo and Wettstein (2000) solves the feasibility issue by adding extra

players.
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Shapley, L. S. (1971), “Cores of Convex Games,” Int. J. game theory 1,

11-26.

Shapley, L. S. (1992), “Kernels of Replicated Market Games,” in Economic

Theory and International Trade, pp. 279-292, Springer, Berlin.

Shapley, L. S. and M. Shubik (1967), “Ownership and the Production Func-

tion,” Quart. J. Econ. 81, 88-111.

Shapley, L. S. and M. Shubik (1971), “The Assignment Game I: The Core,”

Int. J. Game Theory 1, 111-130.

Shapley, L. S. and M. Shubik (1984), “Convergence of the Bargaining Set

for Differentiable Market Games,”Appendix B. In M. Shubik, A Game

Theoretic Approach to Political Economy, volume II of Game Theory

in the Social Sciences, M.I.T. Press, Cambridge, MA, 683-692.

Shimomura, K.-I.(1995),“The Bargaining Set and Coalition Formation,”

Working Paper 95-11, Department of Economics, Brown University.

Shimomura, K.-I. (1997), “Quasi-Cores in Bargaining Sets,” Int. J. Game

Theory 26, 283—302.

Shimomura, K.-I. (2015), “Classical Cooperative Solutions and Coalitional

Games,” (in Japanese), in The Microeconomics of Organisations and

Institutions, K. Hori, T. Kunimoto and N. Watanabe (eds.), Kyoto

University Press, Kyoto, 175-209.

72



Sobolev, A. I. (1975), “The Characterization of Optimality Principles in

Cooperative Games by Functional Equations,” (in Russian), in N. N.

Vorby’ef (Ed.), Mathematical Methods in the Social Sciences 6, Acad-

emy of Sciences of the Lithuanian SSR, Vilnius, 94-151.

Solymosi, T. (2002), “The Bargaining Set of Four-Person Balanced Games,”

Int. J. Game Theory 31, 1-11.

Solymosi, T. (2015), “The Kernel Is in the Least Core for Permutation

Games,” Central Europ. J. Oper. Res. 23, 795-809.

Solymosi, T. and T. E. S. Raghavan (1994), “An Algorithm for Finding the

Nucleolus of Assignment Games,” Int. J. Game Theory 23, 119-143.

Stamtsis, G. C. and I. Erlich (2004), “Use of Cooperative Game Theory

in Power System Fixed-Cost Allocation,” IEE Proc, Gener. Transm.

Distrib. 151, 401-406.

Sudhölter, P. (1997), “The Modified Nucleolus: Properties and Axiomati-

zations,” Int. J. Game Theory 26, 147-182.

Tejada, O. and C. Rafels (2010), “Symmetrically Multilateral-Bargained

Allocations in Multi-Sided Assignment Markets,” Int. J. Game Theory

39, 249-258.

Thomson, W. (1990), “The Consistency Principle,” in Game Theory and

Applications, pp. 187-215, Academic Press, San Diego, CA.

Trudeau, C. and J. Vidal-Puga (2017), “Clique Games: A Family of Games

73



with Coincidence between the Nucleolus and the Shapley Value,” Work-

ing paper No. 1705, University of Vigo.

Tsukamoto, Y. and I. Iyoda (1996), “Allocation of Fixed Transmission Cost

to Wheeling Transactions by Cooperative Game Theory,” IEEE Trans-

actions on Power Systems 11, 620-629.

Vohra, R. (1991), “An Existence Theorem for a Bargaining Set,” J. Math.

Econ. 20, 19-31.

Yanovskaya E. (2002), “A Family of the Least Power Values for Coopera-

tive TU Games,” In: Tangian A.S., Gruber J. (eds) Constructing and

Applying Objective Functions. Lecture Notes in Economics and Math-

ematical Systems, vol 510. Springer, Berlin, 473-494.

Young, H. P. (1985), “Monotonic Solutions of Cooperative Games,” Int. J.

Game Theory 14, 65-72.

Zhou, L. (1994), “A New Bargaining Set of an n-Person Game and Endoge-

nous Coalition Formation,” Games Econ. Behav. 6, 512-526.

74


