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CONSUMER THEORY WITH MISPERCEIVED TASTES

Geoffroy de Clippel∗ and Kareen Rozen†

July 2018

Abstract

Incorporating bounded rationality into the classic consumer theory setting, we study

the testable implications of a consumer who may have trouble consistently assessing

her subjective tastes. Our model of ε-Rationalizability, which bounds the consumer’s

misperception of her marginal rates of substitution, may arise from various choice

heuristics. It also offers a natural, preference-based measure of departure from ratio-

nality that is more demanding than Afriat’s measure.
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1. Introduction

Recent years have seen a surge of interest in understanding bounded rationality,

with much of this work concentrating on discrete choice domains. In this paper, we

extend the classic consumer theory setting (Afriat, 1967; Varian, 1982; Chiappori

and Rochet, 1987; Matzkin and Richter, 1991) to accommodate bounded rationality.

Specifically, we study a consumer who may misperceive her utility tradeoffs.

A building block of our approach is that the consumer equates her perceived

marginal rates of substitution with opportunity costs. Otherwise, as classic consumer

theory tells us for the case of accurate perceptions, the consumer would wish to adjust

her bundle in some direction. Given a utility function u, a consumer’s marginal rate

of substitution, MRSu``′(x), captures the local utility tradeoffs she faces between two

goods ` and `′ as she shifts away from a bundle x. Our consumer may misperceive

her true marginal rates of substitution to a limited extent, and thus deviate from

rationality. As formalized in Section 2, we say that demand data is ε-rationalizable

if there exists a utility function u, satisfying some regularity properties,1 such that

whenever we observe the bundle x being chosen at a price vector p, we have

1− ε ≤ MRSu``′(x)

p`/p`′
≤ 1

1− ε
, for all ` 6= `′.

Marginal rates of substitution (MRS) and opportunity costs must match when ε =

0, as must occur under rational choice. The larger ε is, the more permissive ε-

Rationality becomes. Importantly, the theory is invariant to the units in which goods

are measured and priced, as it quantifies the departure between MRS and opportunity

costs in percentage terms. Moreover, it treats overestimation and underestimation of

MRS in a symmetric fashion.

One can think of various heuristics leading to ε-rationalizable demand data. In-

stead of testing a tentative choice against all affordable alternatives, a consumer may

perform only local comparisons. Such limited attention2 is rational when preferences

are convex, and even more sensible than considering distant alternatives when con-

1Specifically, we will require strict monotonicity, strict quasi-concavity and differentiability.
2Models of limited attention have been studied recently; see, among other works, attention grab-

bing in Eliaz and Spiegler (2011); shortlisting in Manzini and Mariotti (2007); categorization in
Manzini and Mariotti (2012); forms of unawareness in Masatlioglu, Nakajima and Ozbay (2012);
rationalization in Cherepanov, Feddersen and Sandroni (2013); optimally sparse attention in Gabaix
(2014); and choice overload in Lleras, Masatlioglu and Nakajima (2017).
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templation is costly. At the same time, it is plausible that the consumer’s perception3

of tradeoffs at the margin is imperfect, resulting in ε-rationalizable choices. Many

factors, some unobservable to the data analyst, could potentially impact the con-

sumer’s perception of her tradeoffs. The consumer may observe another customers’

choices; notice unsatisfactory expiration dates; interact with a persuasive salesper-

son; or be swayed by visuals, such as store displays and packaging. Furthermore, the

initial bundle she contemplates may affect the resting point of dynamics in which she

compares prices with perceived utility tradeoffs. As a result, the consumer might be

observed demanding different bundles on different occasions of facing the same price

vector. Our framework accommodates the possibility of such data.

The notion of ε-Rationalizability also relates to another strand of the bounded

rationality literature. Kalai, Rubinstein and Spiegler (2002) suggest that the decision

maker does maximize a preference, but that it may vary with the choice problem she

faces. One can also think of more general forms of context-dependence, where a de-

cision maker maximizes different preferences when facing the same problem multiple

times. While such theories lack empirical content in general, nontrivial testable im-

plications may arise if one restricts the set of acceptable preferences to ‘distortions’ of

an underlying welfare preference, as suggested by Rubinstein and Salant (2012). As

we later formalize, ε-Rationalizability is behaviorally equivalent to a theory in which

the DM uses only preferences sufficiently close to her true utility function u, where

distance is measured using percentage change in MRS. This has an especially intu-

itive interpretation in the additively-separable case (studied in Section 4.3), where

we show that the nearby utility functions differ only in the weights of the component

utilities being added. For instance, this means that when choosing a consumption

stream, any misperception in MRS can be attributed to misperception of discounting

functions by a scaling factor, in the spirit of quasi-hyperbolic discounting.

We analyze the testable implications of ε-Rationalizability in Section 3, studying

under what conditions there exists a regular utility function such that each datapoint

corresponds to at most an ε-misperception of marginal rates of substitution. If the

data is ε-rationalizable, then each demanded bundle x can be associated to some vec-

tor v in a cone Cε(x) representing possible misperceived rates of substitution around

3The topic of perception has garnered recent interest in the economic literature; see, among other
works, Woodford (2012) and Steiner and Stewart (2016) on perceiving risky prospects, and Esponda
(2016) on an equilibrium framework for agents who misperceive their environment.
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x. While the modeler cannot conclude that a chosen bundle x is revealed preferred

to all other feasible ones, she can use quasi-concavity to conclude that x is revealed

preferred to all the bundles from which it is separated by some vector v ∈ Cε(x). The

difficulty is that the modeler does not know which v ∈ Cε(x) is the true gradient of

u at x, and thus which v restricts the lower-contour set of x under the consumer’s

true preference. This can be addressed by the techniques of de Clippel and Rozen

(2018), who generalize the approach for testing SARP (the Strong Axiom of Revealed

Preference) to bounded rationality models. While the consumer’s utility function is

defined over the entire domain of bundles RL
+, we show that testing ε-Rationalizability

is equivalent to checking whether there exists an acyclic preference relation satisfy-

ing these restrictions over the finite subset of demanded bundles; and that testing is

tractable using de Clippel and Rozen (2018)’s enumeration procedure. Indeed, when

the test succeeds, then we can use the misperceived gradients it constructs to make

an auxiliary rational dataset. Classic results (Chiappori and Rochet, 1987; Matzkin

and Richter, 1991) then apply to generate a utility function for the consumer.

We further develop the testable implications in Section 4, where we study per-

haps the three most classic restrictions on consumer utility functions: quasi-linearity,

homotheticity, and additively separability. Classic testing results for rationalizability

under each of these assumptions look for the existence of a solution to a system of

inequalities. This section shows how these results generalize to ε-Rationalizability,

providing graphical intuition in the quasi-linear and homothetic cases, and shedding

light on sources of misperception of MRS in the additively-separable case.

Our model naturally lends itself as a measure of choice inconsistency. In Sec-

tion 5, we define the Tradeoff-Misperception Index of demand data as the minimal

ε that makes it ε-rationalizable. Thus, the Tradeoff-Misperception Index measures

the extent of local errors in assessing marginal rates of substitution. By contrast,

the classic Critical Cost Inefficiency Index of Afriat (1973) considers global monetary

effects, measuring the percentage of income lost due to irrationality. Despite these

differences, there is a surprising relationship between the two measures. It turns out

that our measure is more demanding, as a small local error in perception implies

only small budgetary adjustments are needed to eliminate revealed preference cy-

cles. Formally, we show that whenever the Tradeoff-Misperception Index is smaller

than ε, then so is Afriat’s index, but not vice-versa. We also show that there exist

datasets where the two indices coincide. Nonetheless, there are some benefits and
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drawbacks to each index. Our measure requires a stronger notion of preference reg-

ularity than Afriat’s; but as we discuss later, our measure is also more robust to

non-linear budgets and other choice domains, as it involves no adjustments to con-

straint sets. Finally, following the approach of Halevy, Persitz and Zrill (2018), we

observe that the Tradeoff-Misperception Index can be used to study goodness-of-fit

of parametric classes of utility functions.

There are other possible interpretations and applications of our model. When

equating marginal rates of substitution and opportunity costs, one might imagine

that misperception applies to prices instead of tastes. We conclude the paper by

considering this interpretation in Section 6, and discuss connections to Gabaix (2014).

2. Consumer Data and ε-Rationalizability

We observe a consumer selecting a consumption bundle at various price vectors.

The demand data D comprises a finite collection of pairs (p, x), where p ∈ RL
++ is a

price vector and x ∈ RL
++ is the consumption bundle demanded at p. Note that a

price vector, or a demanded bundle, may potentially appear in D multiple times.4

The rational benchmark posits that the consumer selects bundles through utility

maximization over the budget set, whereby opportunity costs and marginal rates

of substitution are equalized. Doing this correctly requires the consumer to have

an accurate understanding of both prices and her utility function. We primarily5

consider settings where consumers do assess prices accurately, but may find it difficult

to consistently assess their subjective tastes.

Say that a utility function is regular if it is differentiable, strictly monotone and

strictly quasi-concave. In that case, the marginal rates of substitution (MRS) associ-

ated to any two goods is strictly positive and well defined by:

MRSu``′(x) =
∂u(x)/∂x`
∂u(x)/∂x`′

,

for all ` 6= `′, at the bundle x. By contrast, the opportunity cost between goods `

and `′ is given by the price ratio p`/p`′ .

4As observed in Chiappori and Rochet (1987), consistency with rationality using a differentiable
utility function would rule out the same bundle to be chosen at multiple price vectors. With
misperception, however, this may occur.

5In Section 6, we explore misperceived prices and draw connections with our main results.
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Definition 1 (ε-Rationalizability) The demand data D is ε-rationalizable if there

exists a regular utility function u such that

1− ε ≤ MRSu``′(x)

p`/p`′
≤ 1

1− ε
,

for each ` 6= `′ and each (p, x) ∈ D. Then u is said to ε-rationalize the demand data.

One way to think of an ε-rationalizable consumer is to imagine her performing

only local comparisons: would small shifts away from the bundle in question improve

utility? This is the calculation performed in classic consumer theory when equating

opportunity costs and marginal rates of substitution, and results in a globally optimal

choice when preferences are convex (as assumed here). The critical difference is that

our consumer may have trouble consistently assessing her utility tradeoffs at the

margin, leading to choices inconsistent with rationality. Among other causes, such

misperception could be due to the mere subjectivity of utility (thus leading to some

natural fluctuations of assessments), or unobservable factors affecting the appeal of

products at the time of purchase.

The notion of ε-Rationalizability also has an interesting connection with Rubin-

stein and Salant (2012), who suggest that welfare analysis may be performed using

irrational data if we can find a true preference relation such that each of the DM’s

choices can be explain by maximizing some preference that is not too far from the

true one in some sense (e.g., flipping at most a couple of comparisons). In our setting,

we can use ε-Rationalizability to define a notion of distance. Say that two regular

utility functions u and u′ are within distance ε if MRSû``′/MRSu``′ ∈ [1−ε, 1
1−ε ] for all

x ∈ RL
+ and all ` 6= `′ ∈ {1, . . . , L}. Then, D is ε-rationalizable if and only if there is

a regular utility function u such that for all (p, x) ∈ D, x is û-maximal among bundles

costing at most p · x, for some regular utility function û within ε distance of u.6

3. Testable Implications

The seminal work of Afriat (1967) shows how the generalized axiom of revealed

preference (GARP) captures the empirical content of rational choice. Formally, de-

mand data is consistent with the maximization of some strongly monotone, continuous

6Sufficiency is trivial. For necessity, take any (p, x) ∈ D and define û(x′1, . . . , x
′
L) :=

u(δ1x
′
1, . . . , δLx

′
L) ∀x′ ∈ RL

+, where δ` := p`

∂u(x)/∂x`
. Clearly, û inherits strict monotonicity and

differentiability from u, and û must be within ε distance of u. It is not difficult to show that û also
inherits strict quasi-concavity. Then x must also be û-optimal, as it satisfies the FOC.
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utility function if and only it satisfies GARP. Given the widespread use of regularity,

subsequent work by Chiappori and Rochet (1987) and Matzkin and Richter (1991)

extended Afriat’s work in that direction. They show that only a slightly stronger

requirement than GARP arises.7

We now show how to build on these results to capture the empirical content of

ε-Rationalizability. To do this, we apply the methodology of de Clippel and Rozen

(2018). The first step is to assume the consumer follows the theory, and identify

necessary restrictions that the demand data reveals about her preference. While

the consumer’s preference is defined over the entire space of goods RL
+, it turns out

that the only relevant restrictions apply to her preferences over the subset of bundles

X = {x ∈ RL
+ | (p, x) ∈ D for some p ∈ RL

++} that have been observed chosen.

Suppose the DM’s preference over bundles is represented by the regular utility

function u. For any observation (p, x) ∈ D, ε-Rationalizability requires:

(1)
p`
p`′

(1− ε) ≤MRSu``′(x) ≤ p`
p`′

(
1

1− ε

)
, ∀ ` 6= `′.

The linear inequalities in (1) define a cone Cε(p, x) ⊆ RL
++ to which the gradient of u

at x must belong. We must keep in mind, however, that the bundle x is potentially

demanded under multiple price vectors. Let P (x) = {p′ ∈ RL
++ | (p′, x) ∈ D} be the

set of price vectors at which x is demanded. To capture the bounds imposed jointly

by the data on the gradient of the utility function at x, we must define the cone:

(2) Cε(x) =
⋂

p′∈P (x)

Cε(p
′, x).

Suppose we conjecture that the gradient of u at x is given by the vector v ∈ Cε(x). As

u is strictly quasi-concave, u(x) > u(x′) for any bundle x′ 6= x such that v · x′ ≤ v · x.

In particular, this implies x is strictly preferred to the subset of such x′ that were

also observed chosen, namely, to bundles in the set:

(3) Γ(x, v) = {x′ ∈ X | x′ 6= x, v · x′ ≤ v · x}.
7Strict quasi-concavity implies the demand function is single-valued. In particular, a chosen

bundle is revealed strictly preferred to all other affordable alternatives, so the data satisfies SARP,
not just GARP. Requiring differentiability adds an ‘invertibility’ requirement that the consumer
cannot pick the same bundle from two different budget sets.
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The difficulty, of course, is that we are unsure which v ∈ Cε(x) is the true gradient

of u at x. We only know that there exists v ∈ Cε(x) such that x is strictly preferred

to all the elements in Γ(x, v). In the language of de Clippel and Rozen (2018), this

corresponds to a lower-contour set restriction on the consumer’s preference � over

the set X of demanded bundles, since some element of {Γ(x, v) | v ∈ Cε(x)} must

be contained in the �-lower contour set of x. There is one such lower-contour set

restriction for each x ∈ X, generating a collection of lower-contour set restrictions

Rε(D) over the consumer’s possible preference over demanded bundles. Thus, we

have shown that ε-Rationalizability of the demand data D requires the collection

of restrictions Rε(D) to be acyclically satisfiable: there must exist a (strict) acyclic

relation on X that simultaneously satisfies them. For instance, the consumer’s true

utility function u : RL
+ → R, restricted to X, defines such an acyclic relation.

We have not yet shown, however, that acyclic satisfiability of Rε(D) implies the

existence of a regular utility function u : RL
+ → R that ε-rationalizes the data. Our

first main result confirms this.

Theorem 1 Acyclic satisfiability of Rε(D) is necessary and sufficient for the de-

mand data D to be ε-rationalizable.

Proof. It remains to prove sufficiency. By acyclic satisfiability, there is a strict order-

ing� overX with the feature that for all x ∈ X, there is v(x) ∈ Cε(x) such that x � x′

for all x′ ∈ Γ(x, v). We now construct an auxiliary demand data D′ = (v(x), x)x∈X

where the vector v(x), which is strictly positive, is taken to be the price vector when

x is chosen. This data satisfies SARP, since any cycle in the revealed preferences

from D′ would imply a cycle in �, a contradiction. Moreover, all the bundles x ∈ X
are unique by construction. Thus the auxiliary data D′ satisfies Matzkin and Richter

(1991)’s Theorem 2∞(a), and there exists a regular (in fact even infinitely differ-

entiable and strictly concave) utility function u : RL
+ → R that rationalizes D′ in

the classic sense. In particular, for any x ∈ X, optimality of the demands requires

MRSu`,`′(x) = v`(x)/v`′(x). Finally, since v(x) ∈ Cε(x), we know by construction that

for every p ∈ P (x),

p`
p`′

(1− ε) ≤MRSu`,`′(x) =
v`(x)

v`′(x)
≤ p`
p`′

(
1

1− ε

)
.

Hence the original demand data D is ε-rationalizable. Q.E.D.
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Theorem 1 shows that testing whether demand data D is ε-rationalizable amounts

to checking whether the collection of restrictions Rε(D) is acyclically satisfiable. But

how does one check the latter condition? We now explain how to do this with de

Clippel and Rozen (2018)’s procedure for lower-contour set restrictions.

Consider the following procedure, which (if successful) constructs, from the bot-

tom up, the consumer’s preference over the set X of demanded bundles. The first

step is to check whether there exists a bundle in X, denoted x1, such that Γ(x1, v) = ∅
for some v ∈ Cε(x

1). If so, then there is a candidate for worst element in X, and

the procedure continues; but if not, then acyclic satisfiability fails. Next, one checks

whether there exists a bundle in X \{x1}, denoted x2, for which Γ(x2, v)\{x1} = ∅ for

some v ∈ Cε(x2). If so, then there is a candidate for the second-worst element in X,

and the procedure continues; but if not, then acyclic satisfiability fails. Continuing in

this manner, the procedure will enumerate all the elements of X if and only if the set

of lower-contour set restrictions Rε(D) is acyclically satisfiable. Moreover, we show

that testing takes only polynomially many steps in the number of observations in D.

Theorem 2 Acyclic satisfiability of Rε(D) is testable in polynomial time in |D|
using de Clippel and Rozen (2018)’s enumeration procedure.

Proof. de Clippel and Rozen (2018)’s procedure requires one to iteratively find, after

already having found a identified a set of i − 1 bundles S ⊆ X in previous steps,

a bundle xi ∈ X \ S such that Γ(xi, v) \ S = ∅ for some v ∈ Cε(x
i). As there

are only |X| ≤ |D| such elements to rank, it suffices to show that in each step, one

can determine in polynomial time whether there is a remaining bundle satisfying the

selection criterion. Let {c1, . . . , cJ} ⊆ RL
++ be the generating vectors of Cε(x), that

is, Cε(x) = {
∑J

j=1 αjc
j | αj ≥ 0 ∀j,

∑J
j=1 αj > 0}. Then the problem in each step is

tantamount to checking whether:

(4)

∃ (α1, . . . , αJ) ≥ ~0 s.t.
J∑
j=1

αj > 0 and (
J∑
j=1

αjc
j) · (x′ − x) > 0, ∀ x′ ∈ X \ S, x′ 6= x.

A linear program with weak inequalities is solvable in polynomial time (Kar-

markar, 1984) in the size of inputs, |X| (which is at most the number of observations

|D|) and J (which is a function of L). The above problem has strict inequalities,

but it is equivalent to the following linear programming problem that has only weak
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inequalities, and solvable in at most polynomial time in |D|:

(5) ∃ (γ1, . . . , γJ) ≥ ~0 s.t. (
J∑
j=1

γjc
j) · (x′ − x) ≥ 1, ∀ x′ ∈ X \ S, x′ 6= x.

Solutions to (5) also solve (4). Conversely, if (α1, . . . , αJ) solves (4), then (α1

σ
, . . . , αJ

σ
),

where σ = (
∑J

j=1 αjc
j) · (x′ − x), solves (5). Q.E.D.

Our result shows that testing grows at most polynomially with the size of the

data, |D|. As can be seen from the proof, solving the linear program in each step of

the enumeration procedure is also polynomial in the number J of generating vectors

for the cones Cε(x). While it is simple to find a formula to identify the generating

vectors, their number grows quickly in L. Of course, the dimensionality of consump-

tion bundles is typically very small in lab experiments. It may be large in real life.

However, demand data tends to have different products aggregated into a relatively

small number of categories, yielding a relatively low value for L and thus a reason-

able value for J . Such aggregation may in fact yield ε-Rationalizability, even if the

consumer is rational, since the tradeoffs across artificially-constructed categories may

not perfectly reflect the consumer’s true tradeoffs.

4. Special Cases

In Sections 4.1-4.3, we consider the testable implications of ε-Rationalizability for

three of the most classic, and most often applied, assumptions on the utility function:

quasi-linearity, homotheticity, and additive separability.

Recall from Section 3 that acyclic satisfiability is a natural extension of SARP

for situations where the revealed restrictions on a preference are more complicated

than simple comparisons (e.g. ‘x must be preferred to y or z’ instead of ‘x must

be preferred to y’). Since the empirical content of ε-Rationalizability corresponds

to such revealed restrictions, acyclic satisfiability and the enumeration procedure

provide an intuitive framework for testing. There does not seem to be a natural way

to extend these ideas when checking for ε-rationalizability by a utility function that

is also, for instance, quasi-linear. Even for standard rationalizability by quasi-linear,

homothetic, or additively-separable utility functions, the classic tests are typically

described instead by the existence of a solution to certain sets of inequalities. This
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makes the tests somewhat harder to interpret, though still practically useful.8

This section illustrates how the classic, inequality-based approach extends to ε-

Rationalizability for these special classes of utility functions, and how the introduction

of ε relaxes the inequalities in each case. Key variables in the inequalities correspond

to the gradient of the consumer’s utility function at the observed choices. Under

rationality, these unobservable gradients have to be proportional to the observable

price vector. This relationship breaks down when introducing ε, but prices nonetheless

reveal a range of possible gradients. The graphical approach we take for quasi-linear

and homothetic utilities, based on shifting chosen bundles along the income-offer curve

so as to fall in the same indifference class, makes the inequalities easier to understand.

For additively-separable utilities, we gain intuition by building on Rubinstein and

Salant (2012)’s idea of a decision maker who uses only ‘nearby’ preferences, which in

this context sheds light on how to interpret misperception of MRS.

4.1 Quasi-linear Utility

A special case of interest is that of a consumer with quasi-linear preferences.

Suppose there is an (L + 1)st good, money, in which the preference is linear. In this

case, the market value of the non-monetary goods consumed need not exhaust the

consumer’s income. As in most situations, we assume that the modeler does not have

access to information about the consumer’s monetary endowment, either before or

after consumption. The analysis would remain unchanged even if these variables were

observed.

The demand data D is quasi-linearly rationalizable if there exists a regular utility

function u : RL
+ → R such that for each (p, x) ∈ D, there are positive monetary

endowments mB (before consumption) and mA (after consumption) for which (x,mA)

solves

max
{(y,m)∈RL+1

+ | p·y+m≤p·x+mB}
u(y) +m.

Following the same motivation as the general case, we say that D is quasi-linearly

ε-rationalizable if there exists a regular utility function u : RL
+ → R such that

(6)
p`
p`′

(1− ε) ≤MRSu``′(x) ≤ p`
p`′

( 1

1− ε

)
and p`(1− ε) ≤

∂u

∂x`
(x) ≤ p`

( 1

1− ε

)
,

8Similarly, we could prove Theorem 1 by developing a generalization of Afriat’s inequality-based
approach for ε-Rationalizablity, but the resulting test would be less intuitive than the one proposed.
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for each ` 6= `′ in {1, . . . , L} and each observation (p, x) ∈ D. In this case, u is

said to quasi-linearly ε-rationalize the demand data. The consumer’s utility function

over extended bundles (x,m) takes the form u(x) + m, and must satisfy the same

conditions as before over all L + 1 goods. Conditions involving the (L + 1)st good

(money) simplify to the second type of inequality above.

To understand the testable implications of quasi-linear ε-rationalizability, it is

instructive to start with ε = 0 (Rationality). If u : RL
+ → R quasi-linearly rationalizes

D, then one can augment each observation (p, x) with a monetary level m(p, x) ≥ 0

so that the consumer becomes indifferent among all augmented bundles:

u(x) +m(p, x) = u(x′) +m(p′, x′),

for all (p, x) and (p′, x′) in D.9 Importantly, quasi-linearity ensures that MRS’s are

invariant to monetary levels, as the indifference curves are all parallel shifts along the

monetary dimension. Using this fact, strict quasi-concavity of u implies

(7) p · x+m(p, x) < p · x′ +m(p′, x′),

for all (p, x) and (p′, x′) in D such that x 6= x′. Figure 1(a) illustrates this reasoning

when L = 1.

Differentiability implies a second necessary condition. Optimality of the aug-

mented bundle requires in particular that the bundle of non-monetary goods is pre-

ferred over all cheaper alternatives: for all (p, x) ∈ D, u(x) ≥ u(y) for all y such

that p · y ≤ p · x. Differentiability of u implies that D may contain two observations

where the same bundle is consumed at two price vectors, only if the budget sets for

non-monetary goods coincide, that is,

(8) If (p, x), (p′, x) ∈ D, then p and p′ are co-linear.

The following observation, which is proved in the Appendix, establishes that these

inequalities are not only necessary but also sufficient.10 In fact, beyond regularity, one

9Indeed, simply fix some ū larger or equal than the utility of any bundle x appearing in D, and
take m(x, p) = ū− u(x) for all (x, p) ∈ D.

10This observation is similar to Brown and Calsamiglia (2007, Theorem 2.2), with a couple of
differences. First, they look for a quasi-linear rationalization with a continuous, concave and strictly
monotone utility (as opposed to regularity). As such, they do not have condition (8) and their
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Figure 1: Illustrations of the construction in the case ε = 0.

can even find a utility function that is strictly concave and infinitely differentiable.

Observation 1 The demand data D satisfies (7) for some m : D → R+ and (8)

if and only if there exists a regular u : RL
+ → R that quasi-linearly rationalizes D.

The above reasoning extends to positive ε’s, but we must first identify candidate

marginal rates of substitution from the data. Observing (p, x) ∈ D informs us that

the gradient of the true utility function u(·)+m at x belongs to the convex polyhedron

Cql
ε (p, x) defined by the inequalities in (6). Contrary to (8), the same bundle x may

be demanded under price vectors generating different budget sets. Such observations

tell us that the gradient of the true utility function u(·)+m at x belongs to the convex

polyhedron Cql
ε (x) = ∩{p|(p,x)∈D}Cql

ε (p, x).

After conjecturing a gradient λ(x) ∈ Cql
ε (x) for each demanded bundle x, the same

reasoning as in the case ε = 0 identifies the following necessary condition: in addition

to finding the λ’s as above, one must find nonnegative monetary levels m(p, x) for

every observation (p, x) ∈ D, such that these jointly satisfy:

(9) λ(x) · x+m(p, x) < λ(x) · x′ +m(p′, x′),

version of (7) has only weak inequalities. Second, the proofs are different. Only sufficiency remains
in our case, which follows fairly simply from Matzkin and Richter (1991, Theorem 2∞); by con-
trast, they show necessity using subgradients of concave functions and sufficiency using Rockafeller
(1970)’s cyclical monotonicity and his related construction. Finally, our proof shows that strict
quasi-concavity and strict concavity cannot be empirically distinguished in this setting.
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for all (p, x), (p′, x′) ∈ D for x 6= x′. We now show these conditions are also sufficient.

Theorem 3 The demand data D is quasi-linearly ε-rationalizable if and only if

(9) is satisfied for some choices of λ(x) ∈ Cql
ε (x) and m(p, x) ≥ 0 for each (p, x) ∈ D.

Proof. It remains to establish sufficiency. Suppose the condition is satisfied, and

construct the auxiliary data D′ = (λ(x), x)x∈X . By construction, the demanded

bundles in D′ are all unique, so D′ trivially satisfies condition (8). For each x ∈ X,

fix p(x) such that (p(x), x) ∈ D, and let m(λ(x), x) = m(p(x), x). Then D′ satisfies

(7), since D satisfies (9). By Observation 1, D′ is quasi-linearly rationalizable using

some regular utility function u : RL
+ → R. Quasi-linear ε-rationalizability of D, using

this same u, follows from λ(x) ∈ Cql
ε (x) for all x ∈ X. Q.E.D.

Note that testing quasi-linear ε-rationalizability amounts to solving a linear pro-

gramming problem with some strict inequalities. As before, the problem is equivalent

to one with weak inequalities (see Lemma 1 in the Appendix), and thus solvable in

polynomial time in the number of observations, |D|.

4.2 Homothetic Utility

Another special case of interest is that of a consumer with homothetic preferences. Say

that a utility function u is homothetic if it is homegenous of degree 1: u(αx) = αu(x)

for each α > 0 and each bundle x ∈ RL
+. The demand data D is homothetically ε-

rationalizable if Definition 1 applies with the added restriction that u is homothetic.

It is instructive once again to first understand the testable implications with ε = 0

(Rationality). If u : RL
+ → R homothetically rationalizes D, then one can rescale each

demanded bundle x by a factor α(x) ≥ 1 so that the consumer becomes indifferent

among all rescaled bundles:

α(x)u(x) = α(x′)u(x′),

for all x, x′ ∈ X.11 Importantly, homotheticity ensures that MRS’s are invariant to

rescaling. Using this fact, strict quasi-concavity of u implies

(10) α(x)p · x < α(x′)p · x′,
11Indeed, simply fix some ū larger or equal than the utility of any bundle x ∈ X, and take

α(y) = ū/u(y) for all y ∈ X (u(y) > 0, since homotheticity and strong monotonicity imply that u is
strictly positive on RL

++).
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for all (p, x) and (p′, x′) in D such that x 6= x′. Figure 1(b) illustrates this reasoning

when L = 2. Differentiability also implies (8), just as in the quasi-linear case.

The following observation, which is proved in the Appendix, shows that these

inequalities are also sufficient.12 In fact, beyond regularity, one can even find a utility

function that is strictly concave and infinitely differentiable.

Observation 2 The demand data D satisfies (8) and (10), for some α : X →
[1,∞), if and only if there is a regular u : RL

+ → R that homothetically rationalizes D.

The above ideas extends to positive ε’s, but we must first use the data to identify

candidate marginal rates of substitution. As a demanded bundle x ∈ X might be

chosen at different price vectors, the data informs us that the gradient of the true

utility function u at x belongs to the cone Cε(x) defined in (2). After finding a

gradient λ(x) for each x ∈ X, the reasoning from the case ε = 0 may be repeated to

yield the following necessary condition: in addition to finding the λ’s as above, one

must find α(x) ≥ 1 for all x ∈ X, such that these jointly satisfy:

(11) α(x)λ(x) · x < α(x′)λ(x) · x′,

for all x, x′ ∈ X with x 6= x′. We now show these conditions are also sufficient. Thus,

testing homothetic ε-rationalizability amounts to a bilinear programming problem,

which in this case is solvable in polynomial time (see Lemma 2 in the Appendix).

Theorem 4 The demand data D is homothetically ε-rationalizable if and only if

(11) is satisfied for some choices of λ(x) ∈ Cε(x) and α(x) ≥ 1 for each x ∈ X.

Proof. It remains to establish sufficiency. Suppose the condition is satisfied, and con-

struct the auxiliary data D′ = (λ(x), x)x∈X . By construction, the demanded bundles

in D′ are all unique, so D′ trivially satisfies condition (8). Moreover, D′ satisfies (10)

because the α’s and λ’s satisfy (11). By Observation 2, D′ is homothetically ratio-

nalizable by a regular utility function u : RL
+ → R. Homothetic ε-rationalizability of

D, using this same u, follows from λ(x) ∈ Cε(x) for all x ∈ X. Q.E.D.

12Observation 2 is related to Varian (1983, Theorem 2), as the inequalities (10) are similar to those
in the third item of his theorem (Varian normalizes prices by total expenditure, making this simi-
larity less obvious). The most relevant difference is that he does not require strict concavity/quasi-
concavity, which leads to weak inequalities and no condition (8). Consequently, our proof is different
from Varian’s, instead mimicking our previous argument for quasi-linearity. Again, it follows fairly
simply from Matzkin and Richter (1991, Theorem 2∞), but in this case uses their construction to
obtain only one representative indifference curve, that is used to build a homothetic utility function.
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4.3 Additive Separability

Consider a consumer whose utility function is additively separable. Say that a regular

utility function u : RL
+ → R is additively separable if there exist strictly concave,13

differentiable and strictly monotone utility functions u` : R+ → R for each `, such

that u(x) =
∑L

`=1 u`(x`) for all x ∈ RL
+. Simple addition of the u`’s is without loss

of generality, as they can absorb scaling factors. The demand data D is additively ε-

rationalizable if Definition 1 applies with the restriction that u is additively separable.

In this context, we develop an interesting observation relating to Rubinstein and

Salant (2012)’s notion of a decision maker who uses only preferences that are ‘close’ to

her true one. In particular, additive ε-rationalizability is equivalent to the consumer

making each choice optimally using a utility function which has an analogous additive

structure: it uses the same u`’s as her true utility function u, but coefficients scaling

the u`’s twist her MRS to a limited extent.

Observation 3 D is additively ε-rationalizable by u(·) =
∑L

`=1 u`(·) if and only if

there exists α : D → R++ such that for all (p, x) ∈ D,

(12a) x = arg max
{p·y≤p·x}

L∑
`=1

α`(p, x)u`(x`), and

(12b) 1− ε ≤ α`(p, x)

α`′(p, x)
≤ 1

1− ε
, for all `, `′ ∈ {1, . . . , L}.

Proof. We begin with necessity. Given regularity, note that condition (12a) holds

for x ∈ RL
++ if and only if the first-order conditions for optimality hold. Thus opti-

mality for the additive utility function in (12a) holds by setting α`(p, x)/α`′(p, x) :=

(p`/p`′)MRSu`′,`(x). The bounds (12b) are implied by ε-Rationalizability using u.

For sufficiency, (12a) implies that for each (p, x) ∈ D, the optimality condition

(α`(p, x)/α`′(p, x))MRSu`,`′(x) = p`/p`′ holds for all `, `′. Using (12b), it is easy to see

that u(·) =
∑L

`=1 u`(·) additively ε-rationalizes D. Q.E.D.

Consider, for instance, an intertemporal interpretation where x` is the amount of

good ` in time-period `, and the consumer’s true preferences are given by discounted

13Strict concavity may seem much stronger than our usual requirement of strict quasi-concavity.
However, they are almost the same in this additive setting: in a classic result which builds on
Arrow’s earlier observation, Debreu and Koopmans (1982) show that quasi-concavity of a continuous,
additively separable utility function implies that all but one u`’s must be concave, and the last must
have features of concavity too.
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utility (i.e., u` = δ`ũ for a utility function ũ which is common across all `’s). Then

Observation 3 means that all the consumer’s errors could be attributed to misper-

ception of discounting functions by a scaling factor, in the spirit of quasi-hyperbolic

discounting. Similarly, in a setting with risk, where each ` is a state of the world, all

her errors could be attributed to misperception of probabilities.

Observation 3 is also helpful for understanding the testable implications of additive

ε-Rationalizability. Indeed, if the demand data D is additively ε-rationalizable by u,

then Observation 3 allows us to find a weighting function α so that each observation

(p, x) is rational for the utility function
∑

` α`(p, x)u`(y`). Then, by extending the

ideas from Varian (1983) for standard rationalizability by an additively separable

utility function, we prove the following characterization in the Appendix. As before,

testing the conditions is polynomial in |D| (see Lemma 3 in the Appendix). Recalling

that X is the set of demanded bundles, let X` = {x` | x ∈ X}.

Theorem 5 D is additively ε-rationalizable if and only if there exist β : D → RL
++

and z` : X` → R for each ` such that

(13a) z`(x
′
`) < z`(x`) + β`(p, x)p`(x

′
` − x`) if x` 6= x′`,

(13b) β`(p, x)p` = β`(p
′, x′)p′` if x` = x′`, and

(13c) 1− ε ≤ β`(p, x)

β`′(p, x)
≤ 1

1− ε
,

for all goods `, `′ and all (p, x), (p′, x′) ∈ D.

We recover Varian’s classic result when ε = 0 (Rationality), in which case β`(p, x)

is the same across all goods by equation (13c). To gain some intuition, it can be seen

from the proof in the Appendix that β`(p, x)p` represents the modeler’s guess about

the consumer’s marginal utility of u` at x`. Utility maximization means it must

be proportional to p`, with the proportionality constant (the Lagrange multiplier)

independent of `. Introducing ε adds a degree of freedom, allowing for variations

across goods in the limited range given in (13c). Notice, however, that the modeler’s

guess cannot contradict itself in the event that the consumer picks the same quantity

of good ` in two different observations, hence requirement (13b).
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A special case of interest, relevant for applications to discounted utility (exponen-

tial or not) and expected utility, is when there is a common ũ(·) : R+ → R such that

u`(·) = δ(`)ũ(·) for each `. Theorem 5 and its proof can be adapted to obtain testable

implications in those cases as well.

5. Measuring Irrationality through Tradeoff Misperception

ε-Rationalizability limits the degree to which marginal rates of substitutions and

opportunity costs can differ. It naturally lends itself to a new way of measuring the

extent of irrationality in demand data; namely, a Tradeoff-Misperception Index may

be defined by taking the infimum over all ε such that the data is ε-rationalizable.14

This provides an alternative measure to Afriat (1973)’s Critical Cost Inefficiency

Index, which computes the minimal factor by which the consumer’s budgets must be

shrunk to eliminate all revealed-preference cycles. To formalize Afriat’s index, define

for σ ∈ [0, 1] a strict revealed preference x �A,σ y if (p, x) ∈ D and σp · x > p · y;

and a weak revealed preference x �A,σ y if D contains a sequence of observations

(p1, x1), . . . , (pn, xn) where x1 = x, xn = y, and for each i ∈ {1, . . . , n − 1}, either

xi = xi+1 or σpi · xi ≥ pi · xi+1. Then the Critical Cost Inefficiency Index is the

infimum of 1− σ over those σ ∈ [0, 1] such that x �A,σ y implies not y �A,σ x for all

observed choices x, y.15

In this section, we develop a deeper understanding of the Tradeoff-Misperception

Index. First, we establish a surprising relationship with Afriat’s index. Second, we

discuss benefits and drawbacks of our index versus money metrics in general. Finally,

following Halevy et al (2018), we show how the Tradeoff-Misperception Index can

also be used to study the goodness of fit of parametric classes of preferences.

14While it would be difficult to find the Tradeoff-Misperception Index with arbitrary precision, it
takes only n applications of the enumeration procedure to identify the index with ± 1

2n precision.
First, test for 1/2-rationalizability; then test 1/4-rationalizability if the previous test succeeds, and
3/4-rationalizability otherwise; and continue this recursively n− 2 more times.

15Varian (1990) generalizes Afriat’s index to allow the (proportional) budget adjustment to vary
per observation. Houtman and Maks (1985) propose another classic index, the smallest subset of the
data that needs to be dropped to make it rationalizable. Halevy et al (2018) points out that these
indices can be viewed as being in the same umbrella class, with different restrictions on the possible
budget adjustments, and different ways of aggregating across observations. We refer the reader to
Halevy et al (2018, Appendix B) for a thorough discussion of some other metrics that don’t fall
under this umbrella, such as Echenique, Lee and Shum (2011) and Apesteguia and Ballester (2015).
One can also consider measures of irrationality by creating a demand function through interpolation
and using the norm of the resulting Slutsky matrix (Aguiar and Serrano, 2017).
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5.1 The Relation to Afriat’s Critical Cost Inefficiency Index

The Tradeoff-Misperception Index measures local errors in assessing the marginal

rates of substitution. Afriat’s Critical Cost Inefficiency Index, by contrast, exam-

ines global monetary effects: what percentage of income is lost by making irrational

choices? While these measures may appear unrelated, there is a perhaps unexpected

connection between the two.

Theorem 6 For any ε ≥ 0 and any demand data D, if the Tradeoff-Misperception

Index is less than or equal to ε, then Afriat’s Critical Cost Inefficiency Index is also

less than or equal to ε. However, the converse is false.

Theorem 6 establishes that the Tradeoff-Misperception Index is more demanding

than the Critical Cost Index: a small error in perception of MRS means only small

budgetary adjustments are needed to eliminate revealed preference cycles, but not

vice-versa. The first statement in the result is proved below; and a counterexample

to its converse is given in Example 1 below that. Using Halevy et al (2018, Theorem

1), a corollary of Theorem 6 is that demand data which is ε-rationalizable will satisfy

their notion of v-GARP, where v = (1 − ε, . . . , 1 − ε), ensuring that there will be

a locally non-satiated (even concave) utility function which rationalizes the revealed

preferences remaining after all incomes are scaled by 1 − ε à la Afriat to eliminate

cycles.

Proof. Theorem 1 shows D is ε-rationalizable if and only if Rε(D) is acyclically sat-

isfiable. As seen from the proof of that result, acyclic satisfiability of Rε(D) implies

that for every x ∈ X, there is v(x) ∈ Cε(x) such that the auxiliary demand data

D′ = (v(x), x)x∈X is rationalizable (in the classic sense) by a regular utility function

u. We will use u to show that Afriat’s index for the original data D is at most ε.

Take any (p, x) ∈ D, and consider the indifference curve of u passing through x. As

illustrated in Figure 2(a), the budget set may not be tangent to the indifference curve

at x, but the line determined by the vector v(x) is tangent, given the rationalizability

of D′. We claim that p·y
p·x ≥ 1 − ε for any bundle y above this tangent line, i.e., any

y such that v(x) · y ≥ v(x) · x. This holds trivially if p = v(x), so suppose they are

different and consider the optimization problem

min
{y | v(x)·y≥v(x)·x}

p · y.
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(b) Illustration for Example 1.

Figure 2: Understanding the relationship with Afriat’s index in Theorem 6.

The constraint must bind at the optimum, else the objective could be further reduced.

Also, as seen in Figure 2(a), linearity of the objective and constraint imply the solution

must occur at a bundle y with only one positive component: that is, there is ` such

that y` = v(x)·x
v`(x)

and yi = 0 for all i 6= `. Using the fact that v(x) ∈ Cε(x), the minimal

expenditure satisfies:

p · y = p`y` = p`

L∑
i=1

vi(x)

v`(x)
xi ≥ (1− ε)p`

L∑
i=1

pi
p`
xi = (1− ε)p · x.

By quasi-concavity of u, any bundle z with u(z) ≥ u(x) must satisfy v(x) ·z ≥ v(x) ·x.

Hence, the above inequality shows that if each budget set is scaled down by 1 − ε,
the choice x from the original budget set is strictly preferred, according to u, to

all bundles in the shrunken budget set. To finish the proof that the Critical Cost

Inefficiency Index is at most ε, observe that any cycle in �A,1−ε would imply a cycle

in the corresponding utilities generated by u, which is impossible. Q.E.D.

We now show by example that Afriat’s index can be strictly smaller than our own;

and that, moreover, there exists demand data where the two indices coincide.

Example 1 Consider demand data with two observations: the bundle x = (a, b)

is chosen at the price vector p = (1, π), and the bundle x′ = (b, a) is chosen at the

price vector p′ = (π, 1), where π > 1. This situation is illustrated in Figure 2(b). We
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first claim that the Tradeoff Misperception Index is 1− 1
π

. To see this, remember from

the proofs of Theorems 1 and 6 that ε-Rationalizability ensures there is a selection of

v(x̃) ∈ Cε(x) for each x̃ ∈ X so that the auxiliary data (v(x̃), x̃)x̃∈X is rationalizable

in the classic sense by a regular utility function u. Hence v(x) (respectively, v(x′))

determines the slope of the tangent to the indifference curve of u at the bundle x

(respectively, x′). The red line in the figure, which connects x and x′, has slope −1.

If v1(x)
v2(x)

≤ 1, then the tangent to the indifference curve of u at the bundle x would be

flatter than the red line, and strict quasi-concavity of u would imply that u(x) > u(x′).

Analogously, if v1(x′)
v2(x′)

≥ 1, then u(x′) > u(x). Hence at least one of these relationships

must be false. A necessary condition for v1(x)
v2(x)

> 1, and in fact also for v1(x′)
v2(x′)

< 1,

is ε > 1 − 1
π

(e.g., 1 < v1(x)
v2(x)

≤ 1
π

1
1−ε since v(x) ∈ Cε(x)). Conversely, if ε > 1 − 1

π

then we can rationalize the auxiliary data using a regular u. To see this, notice that

MRSu12(x) must belong to (1−ε
π
, 1
1−ε

1
π
) and MRSu12(x

′) must belong to ((1− ε)π, π
1−ε).

The condition on ε amounts to (1− ε)π < 1, so MRSu12(x) can be larger than 1 and

MRSu12(x
′) can be smaller than 1. Hence there is room to construct a regular utility

function u while avoiding a WARP violation, by making the tangent at x steeper than,

and the tangent at x′ flatter than, the red line connecting them.

Noteworthily, the Tradeoff Misperception Index is 1− 1
π

independently of the values

a, b. For any x and x′ which are oppositely placed at the frontier of their respective

budget sets, these choices correspond to the same sizable error in local perception of

MRS. By contrast, Afriat’s index becomes arbitrarily small as x, x′ get arbitrarily

close to the intersection of the two budget sets. Thus the Tradeoff-Misperception

Index is more demanding: data considered near-rational under Afriat’s measure might

not be considered near-rational under our measure. There also exists demand data

where the two measures agree. To see this, shift x to the vertical axis and x′ to the

horizontal axis. Since p · x = p′ · x′ and x′ = (p′ · x′/π, 0), Afriat’s index is given by

1− p·x′
p·x = 1− p′·x′/π

p·x = 1− 1
π

.

5.2 Comparisons of Robustness

The Tradeoff-Misperception Index is based on ε-Rationalizability, which relies on

finding a regular utility function. The definition of regularity could be generalized

at the cost of more burdensome notation to require only quasi-concavity and strict

monotonicity; but ε-Rationalizability loses bite without quasi-concavity, as the defi-

nition is based on first-order conditions. In this dimension, Afriat’s index and other
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money metrics have a benefit over our index, in that they are robust to whether

underlying preferences are convex.

However, a benefit of the Tradeoff-Misperception Index over Afriat’s index, and

similar money metrics, is that our concept is robust to more general settings. Indeed,

it is well defined even for nonlinear budget sets and other domains of choice.16 While

the Afriat index is clearly defined for linear budget sets, one can imagine at least

three possible ways to extend it to nonlinear ones.

To illustrate, suppose Afriat’s index is one-half: does this mean we shrink by 1/2

the budget frontier, the consumer’s endowment, or the consumer’s monetary income?

For a simple example where these differ, suppose the consumer has $10 to spend on

two goods: apples, which cost $1 each, and bananas, which cost $1 each for up to five

bananas and $0.50 for each additional one. The quantity discount on bananas means

the consumer’s budget set is non-linear. Proportionally shrinking the budget set

seems intuitive, as it retains the original shape; but this leads to a different outcome

than shrinking monetary income. Indeed, with only $5 to spend, the budget set

would simply be linear. Of course, in non-monetary settings, a consumer’s income is

given by the value of their endowment. In the classic setting with linear prices, one

can halve the budget by halving the endowment. Suppose we halve the consumer’s

endowment in our example. If the consumer is an apple farmer who brings 10 apples

to the market, then he faces a linear budget with only 5 apples (corresponding to

an ‘income’ of $5). But if the consumer is a banana farmer who brings 15 bananas

to the market, then she still faces a nonlinear budget set with only 7.5 remaining

(corresponding to an ‘income’ of $7.50). Thus shrinking the endowment may not lead

to a robust solution.

Such concerns would not arise for the Tradeoff-Misperception Index, as it only

considers how well an individual understands her marginal-utility tradeoffs, and in-

volves no adjustments to constraint sets. For other domains of choice, such as players

deciding what strategy to use in a game, it is unclear how to apply a money metric at

all. By contrast, the Tradeoff-Misperception Index applies whenever a regular utility

can be defined on the domain of choice.

5.3 Measuring Goodness of Fit

Halevy et al (2018) investigates the use of money metrics for assessing the good-

16Rational choice from nonlinear budget sets is studied by Forges and Minelli (2009).
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ness of fit of parametric classes of preferences. They define loss functions for a general

class of money metrics, and show that these can be additively decomposed into two

components: one which measures irrationality and one which captures preference mis-

specification. As formalized below, analogous results apply for our notion of tradeoff

misperception.

For any two positive vectors x, y ∈ RL
++, define

ε(x, y) := min{ε | ε ∈ [0, 1] and 1− ε ≤ x`/x`′

y`/y`′
≤ 1

1− ε
, ∀ `, `′ = 1, . . . , L}.

To understand goodness of fit for a class of utility function, first consider a single

regular utility function u : RL
+ → R. The Tradeoff-Misperception vector for a regular

utility function u, νtm(D, u) associates to each (p, x) ∈ D the number ε(p,∇u(x)).

Let the Tradeoff-Misperception Index for u, Itm(D, u), be the largest component of

the vector νtm(D, u). This index picks up the largest distance (measured in terms of

tradeoff misperception) between the price vector and the marginal rate of substitution

across all observations.17 The Tradeoff-Misperception Index for a class U of regular

utility functions is Itm(D,U) = inf{Itm(D, u) | u ∈ U}.
Let U∗ denote the set of all regular utility functions, and let I∗tm(D) be a shortcut

for Itm(D,U∗). Then we have the following observation.

Observation 4 The following statements hold:

(i) Take any u ∈ U∗ and ε ∈ [0, 1). Then u ε-rationalizes the consumer data D if

and only if Itm(D, u) ≤ ε.

(ii) If the consumer data D is ε-rationalizable then I∗tm(D) ≤ ε. Conversely, if

I∗tm(D) ≤ ε then D is ε′-rationalizable for all ε′ > ε.

(iii) If U ⊆ U ′, then Itm(D,U ′) ≤ Itm(D,U). In particular, I∗tm(D) ≤ Itm(D,U).

(iv) Itm(D,U) = I∗tm(D) + [Itm(D,U)− I∗tm(D)], for any U ⊆ U∗.

Parts (i) and (ii) clearly follow from Definition 1, and formalize a straightforward

connection between the Tradeoff-Misperception index and ε-Rationalizability. Part

17One can think of many other ways to aggregate the vector into an index, as in Halevy et al.
(2018) who introduces an aggregation function f . For concreteness and notational simplicity, we
restrict attention to the max aggregator. A similar worst-case scenario approach singles out the
Afriat inconsistency index among Varian’s class of money metric indices.
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(ii) takes into account that the class of regular utility functions is open due to strict

quasi-concavity. These results lead to a simple decomposition in part (iv) of Itm

for any class U of regular utility functions in terms of (1) tradeoff misperception

with respect to the whole class of regular utility functions, and (2) any remaining

discrepancy due to misspecification arising from the use of a smaller class U . Part

(iii), which ensures that the discrepancy from misspecification is nonnegative, follows

from monotonicity of the infimum in the class of utility functions.

6. Misperception in Prices

In our model, consumers perceive prices accurately, but may misperceive utility

tradeoffs at the margin. Market prices inform the modeler of the subjective tradeoff

the consumer used to reach her decision. This provides bounds on the MRS of the true

underlying preference, which can be used to formulate testable implications. Recent

extensions of consumer theory have instead explored the implications of standard

utility maximization when prices are misperceived. This section draws connections

between this approach and ours, and shows how our testing methodology can prove

useful in the case of misperceived prices as well.

Let u be a consumer’s utility function, let p be the true price vector, let ps be the

price vector perceived by the consumer, and let e be her endowment. Presumably,

the modeler observes p and perhaps e, but neither u nor ps. Testable implications

arise after positing how ps crystallizes as a function of p. For the moment, let us

discuss consumer choices while treating ps as a known exogenous variable. Things

seem simple at first: the consumer picks the u-maximal bundle given what she thinks

she can afford (ps · x ≤ ps · e). Bounded rationality in this sense simply boils down

to rational choice applied to misperceived prices. Unfortunately, this approach is ill-

defined, as the real budget constraint involves p and not ps. When it comes to paying

for the chosen bundle, there may be too little money to pay for it, or some income

may be left unused.

As Gabaix (2014) puts it, we would naturally like to think of an “agent [who]

is boundedly rational, but smart enough to exhaust his budget.” One can imag-

ine different adjustment methods to make the consumer’s choice fall on the actual

(p) budget line; see Chetty, Looney and Kroft (2007) and Gabaix (2014).18 Gabaix

18The 2007 working-paper version of Chetty et al. (2009) has a more complete discussion of this
topic than the published version.

23



(2014) explores the case of a consumer who exhausts her true income and uses per-

ceived prices when comparing opportunity costs to marginal rates of substitution. As

illustrated in Figure 3(a), choices are obtained by identifying where the income-offer

curve for ps crosses the actual budget line.19 We refer to this as the first adjustment

rule. Another option, mentioned in Chetty et al. (2007) and Gabaix (2014), is to ad-

just the consumption level of a pre-specified good so as to shift the consumer’s chosen

bundle from the ps to the p budget line. This is illustrated in Figure 3(b). We refer

to this as the second adjustment rule. Choosing which good to adjust is somewhat

ad hoc in general, with the exception of quasi-linear settings, where the numeraire is

a natural choice. In that case, however, the two adjustment rules coincide.

e

x1

x2

x

(a) The first adjustment rule.

e

x1

x2

x

(b) The second adjustment rule.

Figure 3: Illustrations of two possible adjustment rules for regaining budget balance
under the correct prices. The dotted lines correspond to misperceived price ratios.

We now return to the question of how ps crystallizes. Gabaix’s (2014) sparse-

max model captures a decision maker who, for instance, realizes that spending time

understanding the state of the Amazonian forest or interest rates in some distant

country will be costly and yet have very little effect on her decision. The decision

maker knows default values of such variables (e.g., long-run averages) and optimally

allocates effort in determining what price estimate, somewhere between the default

value and the true value, to obtain. Formally, denoting the default price vector by pd,

the perceived price for good ` is ps` = pd` +m`(p`−pd` ), where m` ∈ [0, 1] represents the

19While consumer theory constitutes an important application, it is worth noting that Gabaix
develops his theory for even more general decision problems.
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extent to which the consumer shifts the perceived price of the good from the default

value to the actual price. While Gabaix’s theory endogenously determines the vector

m = (m1, . . . ,mL),20 we suggest a variant where any m ∈ [0, 1]L is conceivable:

(14) ps ∈ C(p, pd) = {(pd` +m`[p` − pd` ])L`=1 | m ∈ [0, 1]L}.

Clearly, the perceived prices generated by Gabaix’s theory belong to C(p, pd). Thus,

requiring price vectors to belong to C(p, pd) leads to predictions that are less precise

than Gabaix’s, but robust to a wide variety of theories of subjective price formation.

Suppose that the modeler observes the consumer picking x under the price vector

p, while conjecturing that default prices are given by pd. Under the first adjustment

rule discussed above, this observation reveals that the gradient of u at x is proportional

to some ps ∈ C(p, pd). This defines a different convex set of possible gradients than

for ε-Rationalizability, with the key exogenous variables being p and pd instead of

p and ε. The same testing methodology applies, with analogous lower contour-set

restrictions, simply by replacing Cε(p, x) by the new set of possible gradients. While

Gabaix (2014) derives properties of the Slutsky matrix of the full demand function

associated to the sparse-max model, this adaptation of Theorem 1 provides testable

implications in the spirit of Afriat for a more permissive theory of subjective prices.

It is also interesting to consider a consumer whose utility is quasi-linear in the

(L + 1)st good, given our observation that the two adjustment rules coincide in this

case. Without loss of generality, the price of good L + 1 is normalized to 1 (and

never misperceived), in which case it is understood that the price vectors p, pd and

ps for the other goods are expressed in terms of this numeraire. We will focus once

again on the case where ps belongs to C(p, pd). When the modeler witnesses the

consumer picking the bundle (x,m) ∈ RL+1, the consumer’s expected consumption

level in good L + 1 cannot be known for sure: it is equal to ps · (e − x) + eL+1, but

the modeler does not know ps. As should be clear from the analysis in Section 4.1,

quasi-linearity makes this lack of information irrelevant, as the test we provide for

quasi-linearity does not require the modeler to have access to information about the

consumer’s monetary endowment, either before or after consumption. Then, as for

the first adjustment rule, testing can be performed simply by replacing Cql
ε (p, x) by

20This corresponds to Step 1 of his theory. By contrast, the analysis of the previous paragraph,
as summarized in Figure 3(a), corresponds to Step 2.
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the appropriate set of possible gradients derived from C(p, pd) as above.
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Appendix

Proof of Observation 1 (Testable implications of quasi-linear rationalizability)

Necessity was established in the text. As for sufficiency, observe that the assumptions

of Theorem 2∞(c) of Matzkin and Richter (1991) hold with λi = 1, thanks to (7) and

(8). Hence, there exists a regular utility function u (in fact, even strictly concave and

infinitely differentiable) u : RL
+ → R such that the gradient of u at x is p, for each

(p, x) ∈ D.21 Thus u quasi-linearly rationalizes D, as desired. Q.E.D.

Lemma 1 Testing if (9) is satisfied for some choices of λ(x) ∈ Cql
ε (x) and m(p, x) ≥

0 for each (p, x) ∈ D is equivalent to a linear program with weak inequalities.

Proof. First observe that for each x, λ(x) ∈ Cql
ε (x) if and only if λ(x) =

∑
j αj(x)cj(x)

for some α(x) = (α1(x), . . . , αJ(x)) ≥ 0 with α(x) · ~1 = 1, where the cj(x)’s are the

extreme points of Cql
ε (x). We claim the original problem, with λ’s replaced using

α’s and cj’s as above, is equivalent to finding γ : X → RJ
+ and n : D → R+ such

that γ(x) · ~1 = γ(x′) · ~1 and (
∑

j γj(x)cj(x)) · (x′ − x) + (n(p′, x′) − n(p, x)) ≥ 1, for

all (p, x), (p′, x′) in D with x 6= x′. Given a solution to the original problem, define

σ = min(p,x),(p′,x′)∈D,x′ 6=x(
∑

j αj(x)cj(x)) · (x′ − x) + (m(p′, x′) −m(p, x)) > 0. Then

γ, n given by γ(x) = α(x)/σ and n(p, x) = m(p, x)/σ for all (p, x) solve the second

problem. Now suppose γ, n solve the second problem. Observe that it is impossible

to have γ(x) · ~1 = 0 for some x (and thus all x); otherwise γj(x) = 0 for all j and x,

implying n(p′, x′) − n(p, x) ≥ 1 for all x 6= x′, a contradiction. As γ(x) · ~1 > 0 for

all x ∈ X, define α(x) = γ(x)/(γ(x) · ~1) for all x ∈ X. Then α, n solve the original

problem, proving the desired equivalence. Q.E.D.

Proof of Observation 2 (Testable implications of homothetic rationalizability)

Necessity was established above. As for sufficiency, observe that the assumptions of

Theorem 2∞(c) of Matzkin and Richter (1991) hold for the observations {α(x)x|x ∈
X} with (in their notations) ui = 0 and λi = 1, thanks to (8) and (10). Hence,

21To see this, first look at the proof of Lemma 2 in Matzkin and Richter’s paper. Their equation
(4.19a) tells that the gradient of φi at a demanded bundle xi is λipi. Then inequality (4.15a) tells
that the minimum defining U in equation (4.18) is achieved by φi in a neighborhood of xi. Finally,
using (5.1c) in the proof of Theorem 2∞, a convolution argument à la Chiappori and Rochet (1987)
provides an infinitely differentiable utility function u that preserves these properties. Given our
inequalities (7), λi = 1 for all data points i, and the gradient of u at x is p for all (p, x) ∈ D.
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there exists a regular utility function w : RL
+ → R (in fact, even strictly concave and

infinitely differentiable) such that w(α(x)x) = ui = 0 and the gradient of w at α(x)x

is p, for each x ∈ X.22 Let IC0 be the zero-utility indifference curve, that is, all

bundles y ∈ RL
+ such that w(y) = 0. For all z ∈ RL

+ \ {~0}, let u(z) = w(βz)/β, where

β > 0 is the unique scalar such that βz ∈ IC0.
23 Let u(~0) = 0. Clearly, u inherits

regularity from w, and homothetically rationalizes D. Q.E.D.

Lemma 2 Testing if (11) is satisfied for some choices of λ(x) ∈ Cε(x) and α(x) ≥ 1

for each x ∈ X is equivalent to a tractable bilinear program.

Proof. First, note this problem is equivalent to the following one with weak inequal-

ities: find β(x) ≥ 1 and µ(x) ∈ Cε(x) for each x ∈ X such that 1 + β(x)µ(x) ·
x ≤ β(x′)µ(x) · x′ for all x, x′ ∈ X with x 6= x′. A solution to this new prob-

lem clearly solves (11). Conversely, take α’s and λ’s solving (11); then for each

x 6= x′, α(x)λ(x) · x + δ(x, x′) = α(x′)λ(x) · x′, where δ(x, x′) > 0. Dividing

the equality for each x by minx′∈X\{x} δ(x, x
′) > 0, and setting β(x) = α(x) and

µ(x) = λ(x)/minx′∈X\{x} δ(x, x
′) (which must still belong to the cone Cε(x)), we

obtain a solution to the new problem. Finally, using the same trick as Brown and

Calsamiglia (2007) when they study (standard) rationalizability by a utility that is

both quasilinear and homothetic, the change of variables β(x) = exp(z(x)) results

in smooth, convex inequalities that should be solvable in polynomial time in |D| by

interior point methods. Q.E.D.

Proof of Theorem 5 (Testable implications of additive ε-rationalizability)

We begin with necessity. SupposeD is additively ε-rationalizable by u(·) =
∑L

`=1 u`(·).
For each observation (p, x), let α(p, x) ∈ RL

++ be a vector of weights as in Observation

3. Since x maximizes
∑

` α`(p, x)u`(y`) for all y ∈ RL
+ such that p · y ≤ p · x, there

exists a Lagrange multiplier γ(p, x) > 0 (independent of `) such that

(15)
du`
dx`

(x`) =
γ(p, x)p`
α`(p, x)

, for all goods `.

22The explanation in Footnote 21 applies here too.
23To check that it is well-defined, notice first that w(~0) < 0 since w is strictly monotone and there

are larger bundles with zero utility. Also, one can check that w(βz) tends to infinity as β tends to
infinity. To see this, note that the partial derivative of w with respect to each good is larger than
a strictly positive constant, thanks to (4.19b) in Matzkin and Richter (1991) and the properties of
the convolution they use to prove their Theorem 2∞. For the interested reader, that convolution
argument is available in greater detail in Lemma 2∞ of the 1987 working paper. By the intermediate
value theorem, there exists β such that βz ∈ IC0; and strict monotonicity of w ensures uniqueness.
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For each good `, by strict concavity of u`, it must be that

u`(y`) < u`(x`) +
du`
dx`

(x`)(y` − x`), for all y ∈ RL
+ with y` 6= x`.

By (15), this is equivalent to

u`(y`) < u`(x`) +
γ(p, x)

α`(p, x)
p`(y` − x`), for all y ∈ RL

+ with y` 6= x`.

In particular, this inequality must apply to any y ∈ X with y` 6= x`. The necessary

conditions (13a) and (13c) follow by taking z`(x`) = u`(x`), for each x ∈ X, and

β`(p, x) = γ(p, x)/α`(p, x), for each (p, x) ∈ D. Finally, (13b) follows from equation

(15), as γ(p,x)p`
α`(p,x)

must equal
γ(p′,x′)p′`
α`(p′,x′)

if x` = x′`.

We now show sufficiency. Given the inequalities (13a), there exists for each good

` a strictly concave, infinitely differentiable and strictly monotone utility function

u` : R+ → R such that u`(x`) = z`(x`) and du`(x`)/dx` = β`(p, x)p` for each (p, x) ∈ D
(which is well-defined by (13b)). Writing α`(p, x) for 1/β`(p, x), this implies that for

each (p, x) ∈ D, the bundle x maximizes
∑L

`=1 α`(p, x)u`(y`) for all y ∈ RL
+ such that

p ·y ≤ p ·x. Clearly, the α’s inherit property (13c) from the β’s, and we conclude from

Observation 3 that D is additively ε-rationalizable by u(·) =
∑K

k=1 u`(·). Q.E.D.

Lemma 3 Testing if (13a)–(13c) are satisfied for some choices of β : D → RL
+ and

z` : X` → R for each ` is equivalent to a linear program with weak inequalities.

Proof. We prove that the problem is equivalent to the following linear program with

weak inequalities: find β̂ : D → RL
+ and ẑ` : X` → R for each ` such that 1 ≤

ẑ`(x`) − ẑ`(x
′
`) + β̂`(p, x)p`(x

′
` − x`) if x` 6= x′`′ , β̂`(p, x)p` = p′`β̂`(p

′, x′) if x` = x′`′

and 1− ε ≤ β̂`(p,x)

β̂`′ (p,x)
≤ 1

1−ε hold for all (p, x), (p′, x′) ∈ D and all `. A solution to this

new problem clearly solves the original, since β̂ must be strictly positive to satisfy

the ratio inequalities. Conversely, take β and z`’s satisfying the original problem.

Since there are finitely many inequalities in (13a) and they are all strict, one can find

η > 0 such that they continue to hold when adding η to the left-hand side. Setting

β̂`(p, x) = β`(p, x)/η and each ẑ`(x`) = z`(x`)/η solves the new problem. Q.E.D.
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