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Aguiar et al. (2018) propose the Shapley distance as a measure of the extent to which

output sharing among the stakeholders of an organization can be considered unfair. It

measures the distance between an arbitrary pay profile and the Shapley pay profile under a

given technology, the latter profile defining the fair distribution. We provide an axiomatic

characterization of the Shapley distance, and show that it can be used to determine the

outcome of an underlying bargaining process. We also present applications highlighting

how favoritism in income distribution, egalitarianism, and taxation violate the different

ideals of justice that define the Shapley value. The analysis has implications that can be

tested using real-world data sets.
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1 Introduction

Assume that an organization1 compensates its agents using a pay scheme that possibly violates

one or more of the following ideals of justice:

1- Symmetry: equally productive agents receive the same pay.

2- Efficiency: the entire output of the organization is shared among the agents.

3- Marginality: if the adoption of a new technology increases the marginal productivity of

an agent, that agent’s pay should not decrease relative to the old technology.

How can we measure violations of these ideals of justice for the compensation rule utilized

by the organization? As an answer to this question, Aguiar et al. (2018) propose the Shapley

distance, which, for a given production technology f , measures the distance between an arbitrary

pay profile and the Shapley pay profile at f given by the Shapley value (Shapley (1953)).

The Shapley value is the only pay scheme that satisfies all of the three aforementioned ideals

(Young (1985)). In fact, the axioms characterizing the Shapley value make it a desirable

concept of fairness (or distributive justice), as is generally acknowledged in the literature (Yaari

(1981), Roth (1988), Serrano (2013)). Moreover, Aguiar et al. (2018) provide an orthogonal

decomposition of the Shapley distance into terms that indicate violations of each of the Shapley

axioms. This chapter continues this line of research by analyzing the properties characterizing

the Shapley distance.

Our main contribution is to axiomatize the Shapley distance as a measure of injustice. We

also show that the Shapley distance can be used to determine the outcome of a bargaining

procedure. We imagine a situation in which agents have to implement a fairness prescription

F , defined as the set of payoffs induced, under a fixed technology f , by a set of compensation

rules F satisfying certain ideals of justice. There is an initial pay profile φ that works as a

reference point. Agents may want to depart from φ, but they should implement an outcome

that belongs to the fairness prescription F . This defines a bargaining function that maps

any pair (F, φ) to an element of F . We show that the Shapley distance is the unique (up

to monotone transformations) index defining a bargaining function that satisfies Anonymity

and Independence of Irrelevant Alternatives (IIA), for the set of compensation rules that obey

symmetry, efficiency, and marginality.2

Using several illustrations that include favoritism, egalitarianism, and tax distortions, we

1We consider an organization as a group of agents including the owner or the principal if any, with each

member possibly performing an activity and endowed with a technology.
2Some of our ideas are reminiscent of Nash’s (1950) pioneering axiomatic characterization of a bargaining

solution; see Binmore et al. (1992), Thomson (1994), or Serrano (2008) for surveys of the bargaining literature.
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show how the Shapley distance can be applied to determine the extent to which a given in-

come distribution departs from the fair ideal, and how unfairness can be further unbundled to

determine its origins.

Together with Aguiar et al. (2018), we contribute to the literature that studies economic

inequality using game theory (e.g., Einy & Peleg (1991) and Nembua & Wendji (2016)). In

particular, we provide an axiomatic foundation to a notion of unfairness, namely the Shapley

distance. A similar axiomatic approach can be used to characterize the decomposition of this

distance as provided in Aguiar et al. (2018)

The rest of this chapter is organized as follows. After dealing with preliminaries in section

2, section 3 introduces the Shapley distance and our notion of unfairness and contains our main

results. Section 4 presents several applications showing the different ways in which favoritism,

egalitarianism, and taxation distort fairness in revenue sharing. Section 5 concludes.

2 Preliminaries

2.1 Organization and Data Set

In this section, we introduce preliminary definitions. We follow Aguiar et al. (2018). Let N

be a nonempty and finite set of agents, with |N | = n. A coalition is a nonempty subset C of

agents: C ⊆ N , C 6= ∅.

An organization is a pair (N, f) where f : 2N 7→ R is a technology such that f(∅) = 0. In

what remains, we fix N , so that an organization is completely defined by a technology f . We

denote by Γ the set of all organizations.

A pay scheme is a way to share the output produced by the grand coalition N of agents.3

Definition 1. (Pay scheme) A pay scheme is a function Φ : Γ 7→ Rn that maps any technology

f to a vector Φ(f) = (Φ1(f),Φ2(f), . . . ,Φn(f)) = φ ∈ Rn such that
∑

i∈N Φi(f) ≤ f(N). φ is

called a pay profile, and for each agent i ∈ N , φi ∈ R is interpreted as the payoff of i out of the

output f(N). The set of all pay schemes is denoted Θ.

Notice that we allow for negative payoffs, interpreted as taxation. We also recall the notions

of observation and data generating pay scheme introduced by Aguiar et al. (2018).

An observation is a pair (f, φ) where f is a technology and φ ∈ Rn is a pay profile, defined

as a distribution of the output generated by the grand coalition, formally φi ∈ R, for each

3Our framework also works if the organization is sharing total cost or total profit. The interpretation of the

axioms will have to be done in terms of the context in those cases.
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i ∈ N , and
∑
i∈N

φi ≤ f(N). In fact, any vector φ ∈ Rn such that
∑

i∈N φi ≤ f(N) is called a

pay profile in the sequel, even if it is not the result of applying a pay scheme.

Definition 2. (Data generating pay scheme) We say that Φ : Γ→ Rn is a data generating

pay scheme if it is the unique pay scheme such that Φ(f) = φ for any observation (f, φ).

In the context of a limited data set, given by a single observation, we do not have the details

about how the data generating pay scheme Φ distributes the total output for a technology that

is not the observed technology f . We only know the realized pay profile φ for f . However, we

have full information on f , (i.e., we know the exact magnitudes of f(C) for all C ⊆ N).

2.2 The Shapley Value as an Ideal for Fairness

In this subsection, we recall the definition of the Shapley value as well as its fundamental

characterization as a fair pay scheme. This characterization provides an axiomatic basis for

analyzing the different ways in which an arbitrary pay scheme might violate basic principles

of fairness, as departures from the Shapley value prescription. The following definition will be

needed for the statement of these characterizations.

Definition 3. Let i, j ∈ N be two agents, and f be a technology.

1. The marginal contribution at f of agent i ∈ N to a set C ⊆ N such that i /∈ C is

f(C ∪ {i})− f(C), and it is denoted by mc(i, f, C).

2. Agent i is a null-agent at f if for any set C ⊆ N such that i /∈ C, we have mc(i, f, C) = 0.

3. Agents i and j are said to be substitutes at f if for any coalition C ⊆ N such that i, j /∈ C,

mc(i, f, C) = mc(j, f, C).

We now define the axioms that characterize the Shapley value.

Axiom 1. (Symmetry)

A pay scheme Φ satisfies symmetry if for any technology f , and any agents i and j that are

substitutes at f , Φi(f) = Φj(f).

Axiom 2. (Efficiency)

A pay scheme Φ is efficient if for any technology f ,
∑
i∈N

Φi(f) = f(N).

Axiom 3. (Marginality)

A pay scheme Φ satisfies marginality if for any technologies f and g, any agent i ∈ N ,

[mc(i, f, C) ≥ mc(i, g, C);∀C ⊆ N \ {i}]⇒ [Φi(f) ≥ Φi(g)].
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The symmetry axiom is a no-discrimination condition (horizontal equity), requiring that

agents who have identical marginal contributions under a technology f receive the same pay.

Efficiency requires that the output of the grand coalition be fully shared among the various

contributors, and it can also be justified in terms of Pareto optimality. Marginality means that,

if a new technology increases the marginal productivity (or the vector of marginal contributions)

of an agent, that agent’s pay should not decrease relative to the old technology. This is an old

property in neoclassical economic theory, requiring that the payoff of an agent depend only on

his marginal productivity given other agents’ inputs.

The result set out below establishes necessity and sufficiency to characterize the Shapley

payoff function (defined by equation (1) below). The axioms just presented also establish the

Shapley value a fairness ideal.

Claim 1. (Young (1985)) There exists a unique pay scheme, denoted Sh, that satisfies the

efficiency, symmetry, and marginality axioms, and, for any technology f , it is given by:

Shi(f) =
∑

C⊆N\{i}

|C|!(n− |C| − 1)!

n!
[f(C ∪ {i})− f(C)], for all i ∈ N. (1)

3 The Shapley Distance as a Measure of Unfairness

In this section, we provide an axiomatic characterization of the notion of the Shapley distance

introduced in Aguiar et al. (2018). It measures the level of unfairness associated with any

pay profile φ by the distance between that pay profile and the Shapley value. Aguiar et al.

(2018) show that it can be decomposed into terms that indicate violations of the axioms that

characterize the Shapley value. We recall this decomposition and illustrate it through several

examples.

3.1 An Axiomatic Characterization of the Shapley Distance

In this section, we provide an axiomatic characterization of the Shapley distance. Let d :

Rn × Rn → R+ be a distance in Rn. Denote the Euclidean norm defined in Rn by || · ||. Also,

denote the inner product associated with the Euclidean norm by < ·, · >. We have the following

definition of the Shapley distance.

Definition 4. (Shapley distance) For any technology f , the Shapley distance of a pay profile

φ ∈ Rn for f , denoted d(φ,Sh(f)), is the distance between φ and the Shapley pay profile

Sh(f) ∈ Rn at f .
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We axiomatize below the Shapley distance. First, we need some definitions.

We consider the set of fairness prescriptions of an arbitrary set of pay schemes.

Definition 5. (Fairness prescription) Given a technology f and a set of pay schemes F ⊆ Θ,

a set of profiles F ⊆ Rn is a fairness prescription for f in F if, for each φ ∈ F , there exists

Φ ∈ Θ such that φ = Φ(f).

Our fairness index will be the result of a bargaining procedure, where an original pay profile

φ works as a reference point. The intuition is that an arbitrator requires all agents to implement

a fairness prescription, but the agents are free to choose a new pay profile. They may want to

depart from the status-quo φ altogether. The result of this procedure is a fairness bargaining

function.

Definition 6. (Fairness bargaining function) A fairness bargaining function is a mapping

C : {F} × {φ} → F for any fairness prescription F and pay profile φ.

We propose an axiomatic approach to studying the properties that the fairness bargaining

function ought to have.

Let σ : N → N be a permutation of agents. We define σ(F ) as the set of fairness prescrip-

tions such that ϕ ∈ σ(F ) is a permutation of an element η ∈ F . The first axiom requires that

the fairness bargaining function is invariant with respect to permutations of the prescriptions

and the reference pay profile φ.

Axiom 4. (Anonymity)

For all F ⊆ Rn, all φ ∈ Rn, and any permutation σ on N , (Cσ(i)(F, φ))i∈N = C(σ(F ), (φσ(i))i∈N).

The second condition requires that the solution to the fairness bargaining problem be opti-

mal.

Axiom 5. (Independence of Irrelevant Alternatives (IIA))

For any set S ⊆ F ⊆ Rn and any φ ∈ Rn, C(F, φ) ∈ S implies C(F, φ) = C(S, φ).

Without loss of generality,4 we also assume that any F ⊆ Θ is convex and closed.

Lemma 1. The only fairness bargaining function that satisfies Anonymity and IIA is the min-

imal distance bargaining function

C(F, φ) = argminv∈Fd(v, φ).

4Our analysis also works for cases where this is not the case, but the particular case we study for a Euclidean

Shapley Distance with the given fairness prescriptions is covered in this restriction.
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Proof. To check that the minimal distance bargaining function satisfies Anonymity and IIA

is trivial. To prove uniqueness, we observe that anonymity axiom implies the following two

axioms: Invariance to permutations (IP) and Nash symmetry (NS).

(i) A fairness prescription is closed to permutations whenever: φ ∈ F implies (φσ(i))i∈N ∈ F

for any permutation of the set of agents σ : N → N .

Invariance to permutations (IP): If F is closed to permutations then Ci(F, φ) = Cj(F, φ) for

all i, j ∈ N .

(ii) A fairness prescription F is called symmetric if the set F is symmetric around the 45

degree line.

Nash symmetry (NS): If F is symmetric and φi = φj for all i, j ∈ N , then Ci(F, φ) = Cj(F, φ)

for all i, j ∈ N .

If axioms (IP) and (NS) hold then the symmetry axiom to a line property in Rubinstein &

Zhou (1999) holds. A line is < a, α > where a ∈ Rn is a reference and α ∈ Rn is a direction,

such that the points of the line are a+ tα where t is a real number.

We say that F is symmetric to a line < a, α > if for every orthogonal direction β (β′α = 0),

a+tα+β ∈ F implies that a+tα−β ∈ F . The condition of Rubinstein & Zhou (1999) requires

that if F is symmetric to a line < φ, α > where φ is a pay profile, then (Ci(F ))i∈N ∈< φ, α >.

In fact, axiom (IP) means that if F is symmetric with respect to the line (t, · · · , t)′ for any

real number t, then (Ci(F, φ))i∈N ∈ (t, · · · , t)′. Axiom (NS) requires that, if F is symmetric

with respect to the 45 degree line and φi = φj, then (Ci(F, φ))i∈N ∈ (t, · · · , t)′ (i.e., Ci(F, φ) =

Cj(F, φ) for all i, j ∈ N). Axioms (IP) and (NS) imply that if F is symmetric for any line going

through φ, then the solution will be on that line. This is proved in Rubinstein & Zhou (1999).

Then by Proposition 2.1 in Rubinstein & Zhou (1999), we establish that (IP), (NS) and (IIA)

axioms imply that

C(F, φ) = argminv∈Fd(v, φ).

.

Next we define our fairness index.

Definition 7. (Fairness index) A fairness index is a mapping (ρ : Rn×{φ} 7→ R+) such that

there exists a fairness bargaining function C defined as follows:

C(F, φ) = argminv∈Fρ(v, φ).

We are ready to present our main result.
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Theorem 1. (Shapley Distance). Let C be a bargaining function that satisfies Anonymity

and IIA. Then the Shapley distance is the unique (up to monotone transformations) value of

the fairness index defining C at any point (F, φ) where F is induced by the set F of pay schemes

that satisfy symmetry, efficiency, and marginality.

Proof. By Lemma 1, the bargaining function C is defined by the minimal distance function:

C(F, φ) = argminv∈Fd(v, φ) for any convex and closed set F . By Claim 1 (see also Young

(1985)), we know that, for any technology f , the fairness prescription F induced by the set

of pay schemes that satisfy symmetry, efficiency, and marginality is the singleton {Sh(f)},

which is a convex and closed set. It follows that C(F, φ) = argminv∈{Sh(f)}d(v, φ). But

minv∈{Sh(f)}d(v, φ) = d(Sh(f), φ), which completes the proof.

Different choices of the distance function provide different fairness indices. We focus now on

a particular choice, the Euclidean distance, which is shown by Aguiar et al. (2018) to have an

additive (and orthogonal) comparability property in terms of the different axioms of fairness,

hence justifying its use. As recalled below, the square of the Shapley distance has a unique

decomposition into terms that measure violations of the classical axioms of the Shapley

value. This approach is analogous to that of Aguiar & Serrano (2017) who study departures

of a demand function from rationality. Despite the similarities in the two approaches, in this

paper we address a different question in a different environment.

Moreover, in finite data sets, these terms can be used to make partial inferences about

the violations of the axioms defined for complete data sets, and to make complete inference

about the violations of the axioms defined for a fixed technology, for the subset of monotone

technologies, (see also Aguiar & Serrano (2016)). This is of interest because the observer

usually does not have information about a pay scheme under different technologies making it

practically impossible to check the validity of the axioms that require comparisons between

different technologies.

3.2 A Decomposition of the Shapley Distance with Limited Datasets

We now present a decomposition of the Euclidean Shapley distance, or Shapley Distance for

short. In this section, we follow the set-up in ?. Let f be a technology and φ ∈ Rn an observed

pay profile generated by a pay scheme that may not be known (to the observer). We can always

decompose it into a sum of the Shapley value at the observed technology f and an error term

φ = Sh(f) + esh, by defining esh = φ − Sh(f) ∈ Rn. Moreover, we show that the error term

esh can be further decomposed uniquely into three vectors that are orthogonal to each other,
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with these vectors being respectively connected to the violation of symmetry (sym), efficiency

(eff), and marginality (mrg). Formally, this means that we can write esh = esym + eeff + emrg

such that the inner product of these axioms errors (roughly their correlation) is zero.

Aguiar et al. (2018) find this orthogonal decomposition to be the result of the following

procedure. First they find the closest pay scheme to φ that satisfies sym; then they find the

closest pay scheme to φ that satisfies eff in addition to sym; and finally they find the closest

pay scheme to φ that satisfies mrg in addition to sym and eff , which is simply the Shapley

value itself. The described order, in which these constraints are imposed, is the only one that

produces the orthogonality of the different error vectors. This decomposition is also meaningful

as each component measures a quantity of economic interest that completely and effectively

“isolates” one of the three conditions sym, eff and mrg.

Begin by fixing a pair consisting of an observed pay profile and a technology (f, φ) and

consider the Shapley distance of φ at this point, which is:

||esh|| = ||φ− Sh(f)||.

Let vsym be the closest pay scheme to φ that satisfies symmetry (pointwise under the chosen

norm) (i.e., vsym ∈ argminv∈Θ||φ − v(f)|| s.t. v satisfies sym).5 Aguiar et al. (2018) prove

that each entry evaluated at f is given by vsymi that corresponds to the average pay according

to φ among the agents who are substitutes of i under f . They then establish that φ can be

written uniquely as the sum of its symmetric part vsym = vsym(f) and a residual esym that is

orthogonal to vsym under the Euclidean inner product:

φ = vsym + esym.

In a similar way, let vsym,eff be the pay scheme that is pointwise closest to the symmetric

pay scheme vsym and that satisfies efficiency (i.e. vsym,eff ∈ argminv∈Θ||vsym − v(f)|| s.t. v

satisfies sym and eff). ? prove that vsym,effi = vsym,effi (f) is given by the summation of vsymi

and the output wasted by φ divided by the number of agents in N . It follows that vsym can be

uniquely written as:

vsym = vsym,eff + eeff ,

where eeff is the negative of the wasted output by φ divided by the number of agents in N .

Finally, remark that the pay scheme satisfying the axiom of marginality that is pointwise

closest to the symmetric and efficient pay scheme vsym,eff , which we denote by vsym,eff,mrg, must

5Existence is easy to verify noticing that the space of symmetric pay schemes is convex and closed.
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be the Shapley value because of the uniqueness established in Claim 1. Thus vsym,eff,mrg =

Sh(f). Thus, we let emrg = vsym,eff − Sh(f). Notice that we can always decompose φ

(pointwise) as:

φ = Sh(f) + esh,

because φ and Sh(f) belong to the same vector space. With all this in hand, Aguiar et al.

(2018) establish the following main result.

Theorem 2. (Aguiar et al. (2018)) For any given observation (f, φ), we have the unique

pointwise decomposition:

φ = Sh(f) + esym + eeff + emrg.

Moreover, the distance to the Shapley pay scheme can be uniquely decomposed as:

||esh||2 = ||esym||2 + ||eeff ||2 + ||emrg||2,

into its symmetry, efficiency, and marginality departures, such that for any i, j ∈ {sym, eff,mrg},

i 6= j, < ei, ej >= 0.

The proposed decomposition of the Shapley distance that we just stated has economic

meaning described hereunder:

a) ||esym||2 =
∑
i∈N

[φi − vsymi ]2, where for any agent i, vsymi is the average payoff within the

class [i]f of agents who are substitutes of i at f . This means that ||esym||2 is a dispersion

measure within equivalence classes of agents. In other words, this quantity measures

horizontal inequity, which is the inequality among agents who are identical.

b) ||eeff ||2 = E2/n, where E = [f(N)−
∑
i∈N

φi] is the total waste produced by the pay profile.

This means that ||eeff ||2 increases solely due to the lack of efficiency.

c) ||emrg||2 =
∑
i∈N

[vsym,eff−Sh(f)]2, where vsym,eff is the symmetrized and efficient pay profile

that is closest to the original pay profile φ. This means that ||emrg||2 is a measure of

departures from the marginality principle conditional on fulfilling horizontal equity and

efficiency.

To the best of our knowledge, ||esh||2, introduced in (?), is the first measure of departures

from the Shapley axioms. It has the advantage of providing a unified treatment of the three

axioms in the form of a numerical and additive decomposition. Furthermore, in the decomposi-

tion analysis, each component of ||esh||2 measures a violation of a Shapley axiom, with the main

result providing a formal and unified theoretical foundation for using the three components.
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4 Some Applications

In this section, we feature several applications of our analysis. They are attempts to enhance

our understanding of inequality, and answer the question of when income inequality can be

considered unfair. The different applications show how favoritism, egalitarianism, and taxation

distort fairness in revenue distribution.

4.1 Favoritism

Consider the following simple example:

Example 1. The nephew’s problem. Let an organization consist of a set of agents N = {1, 2, 3}

and a technology f defined as follows: f(N) = 10, f({1, 2}) = 4, f({1, 3}) = f({2, 3}) = 9,

f({i}) = 0 for i = 1, 2, 3. The environment describes a firm owned by agent 3, who employs a

nephew (agent 1). Agent 2 is also employed in the firm, with no family connections to the other

two people. Although from the point of view of productivities, agents 1 and 2 are substitutes,

agent 3, exhibiting favoritism toward agent 1, allows him to show up to work only half of the

time, leading to output waste. In addition, the uncle has set the pay scheme Φ(f) = (2, 1, 4).

Note that the Shapley value yields the pay profile Sh(f) = (2.5, 2.5, 5). Thus, the overall

Shapley distance is 3.5, decomposed as 0.5 (attributed to the violation of symmetry) and 3

(attributed to the violation of efficiency). No violation of marginality is observed, after one

corrects for the other two failures: the moves in R3 describe a first transition from (2, 1, 4) to

(1.5, 1.5, 4)–correcting for symmetry–, and then to (2.5, 2.5, 5) -correcting for efficiency-, which

is the Shapley value. In this example, favoritism causes an efficiency flaw that, according to

our measure, is 6 times as important as the lack of symmetry.

4.2 Egalitarianism versus Fairness

Our second illustration relates to the egalitarian pay scheme. Before showing it, we need to

present a generalization, due to Hsiao & T.E.S. (1993), Pongou et al. (2017), and Pongou &

Tondji (2018), of the framework of an organization, to an environment where agents have more

than two options (i.e, active or inactive). A production environment is modeled as a list

G = (N,L,G) where N = {1, 2, . . . , n} is a nonempty finite set of agents of cardinality n;

L = {0, 1, 2, . . . , l} is a nonempty finite set of hours of labor or effort levels that an agent can

supply, with 0 denoting a situation of inaction; and G is a production function that maps each

action profile x = (x1, . . . , xn) ∈ Ln to a real number –output– G(x). The function G can also
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be interpreted as the aggregate profit or cost function. Interpreting it as the profit function

might be useful in certain settings, in that it could be incorporating both production and cost

functions. Regardless of the interpretation, we assume that G(0, 0, . . . , 0) = 0, which means

that no output is produced when all the agents are inactive.

We denote by ei the ith unit vector (0, 0, . . . , 0, 1, 0, . . . , 0), where all the entries are zero

except the ith component which is one. We will also use the symbols E and C, which we

define as explained hereunder. Let x, x ∈ Ln be two effort profiles. We write x E x to mean

that xi 6= xi ⇒ xi = 0, and we write x C x to mean that x E x and x 6= x. For example,

(1, 7, 5, 0, . . . , 0) C (1, 7, 5, 1, 5, 0, . . . , 0). We denote by |x| = | {i ∈ N : xi > 0} | the number of

agents who are not inactive at x. We maintain the assumption of monotonicity in the production

function environment. The analogous monotonicity property for the production function says

that G(x) ≤ G(y) whenever xE y.

For any production environment G = (N,L,G), a pay scheme for the production maps any

effort profile x ∈ Ln to a non null payoff profile ΦG(x) = (ΦG
1 (x),ΦG

2 (x), . . . ,ΦG
n (x)), where

for all i ∈ N , ΦG
i (x) ∈ R is interpreted as the payoff earned by i out of the output G(x). In

the production environment, an observation is a triple (x,G,ΦG(x)) where φ = ΦG(x) is an

observed pay profile for any production function G and for any effort profile x.

The corresponding Shapley value for the environment G, denoted by ShG, is given by:

ShGi (x) =
∑

xC x, xi=0

(|x|)!(|x| − |x| − 1)!

(|x|)!
[G(x+ xiei)−G(x)], for all i ∈ N. (2)

Aguiar et al. (2018) show that, for a fixed level of efforts x, all the information given by the

production environment can be equivalently expressed using a technology.

We now show how the egalitarian pay scheme distorts fairness in revenue distribution. This

pay scheme is the benchmark that implements perfect equality. It divides the output in equal

parts to each agent. So, this pay scheme is clearly efficient. Evidently, given different levels of

efforts and productivities, the egalitarian pay scheme may not be fair, failing marginality. Our

aim is to measure the divergence of the egalitarian pay scheme from the Shapley value and to

identify the sources of this divergence. We do this through the following example in which, for

simplicity, we assume two agents, with each choosing his effort level from a set that contains

two levels.

Example 2. Consider a production environment G = (N,L,G) where N = {1, 2} is the set

of agents, L = {0, 1} is the set of effort levels, and G is the (monotone) production function
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defined as follows:

G(x) =

 1 if x 6= (0, 0)

0 if x = (0, 0)
(3)

Consider the egalitarian pay scheme Eq defined as follows:

Eq1(x) =
1

2
G(x) and Eq2(x) =

1

2
G(x), for each x ∈ L2.

For each x ∈ L2, we have Eq1(x) + Eq2(x) = G(x), which means that Eq is efficient.

In order to quantify the violations of the properties that characterize the Shapley value, let us

first derive the Shapley payoff of each agent at each vector x. The Shapley payoff profile at each

x is given by the following matrices: ShG(X) =

(0, 0) (0, 1)

(1, 0) (1
2
, 1

2
)

, where X =

(0, 0) (0, 1)

(1, 0) (1, 1)


is the matrix that contains all of the possible vectors of effort levels, with the first component

of each cell denoting the effort level of agent 1, and the second component denoting the effort

level of agent 2.

The egalitarian payoff profile is given by: Eq(X) =

(0, 0) (1
2
, 1

2
)

(1
2
, 1

2
) (1

2
, 1

2
)

.

Using the difference between the two matrices, ShG(X) − Eq(X) =

 (0, 0) (−1
2
, 1

2
)

(1
2
, −1

2
) (0, 0)

,

we can compute the Shapley distance ‖ShG −Eq‖2 =

0 1
2

1
2

0

.

Note that Theorem 2 applies for each fixed effort level, equivalently for each entry of the

matrix X.

We now determine how the amount by which the violation of each property characterizing

the Shapley value contributes to the total violation of fairness by an egalitarian payoff for any

production function and any number of agents. We know that:

Eq(x) = ShG(x) + esym + eeff + emrg.

1. Let esym = Eq− vsym = 0. For all effort levels x, because Eq satisfies symmetry trivially.

2. Let eeff = vsym − vsym,eff = 0. For all effort levels x, because Eq satisfies efficiency

trivially.

3. Let emrg = vsym,eff−ShG = Eq−ShG. This means that the Shapley distance in general

for this case is equal to ||ShG−Eq||2 = ||emrg||2. This implies that a perfectly egalitarian

pay profile may still be unfair given certain productivity and effort levels.
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4.3 Taxes

In our third example, we illustrate how a tax levied over a fair wage can alter the fairness in

an economy.

Example 3. Consider a small economy of two agents 1 and 2 who have to work to produce

goods and services. Each agent has two options, either go to work (option W ), or stay at home

(option H). The production function is given by: f(H,H) = 0, f(H,W ) = 2, f(W,H) = 1, and

f(W,W ) = 5. We observe that both agents work (i.e., we observe the effort profile (W,W )).

This implies that the Shapley wage function allocates a payoff of 2 dollars to agent 1, and a

payoff of 3 dollars to agent 2.

We assume that both agents have to contribute for a public good. For simplicity, we assume

that the benefits from the public good are not received immediately and we can ignore them

in the payoff profile. The vector Φ = (2(1− α), 3(1− α)) represents the revenues of agents net

of contributions, given that each agent contributes a positive proportion α of his/her revenue.

How far is Φ(f) from the Shapley allocation Shf = (2, 3)?

The Shapley distance is given by ||esh||2 = ||Shf − Φ||2 = 13α2. We now determine how

the amount by which the violation of each fairness property characterizing the Shapley value

contributes to the total violation of 13α2.

1. esym = Φ−vsym. Since agents are not identical, it follows that Φi = vsymi and esym = (0, 0).

2. eeff = Φ − vsym,eff . For each i ∈ {1, 2}, vsym,effi = Φi + 5−
∑

Φi

2
. After calculations,

vsym,eff = (4+α
2
, 6−α

2
), and ||eeff ||2 = 25α2

2
.

3. emrg = ShF − vsym,eff = (−α
2
, α

2
). Then, ||emrg||2 = α2

2
. A quick verification confirms

that ||emrg||2 + ||eeff ||2 = 13α2. In general, we observe that the tax has an increasing and

nonlinear distortion of fairness. When α → 0 there is no unfairness in the economy, and

when α→ 1 the unfairness level reaches its maximum.

Assuming that each agent contributes half of his/her revenue (i.e., α = 1
2
), the departure

from the Shapley allocation is ||esh|| = 1.8 dollars. In addition, 96.15 percent of this value is

explained by the violation of efficiency, and 3.85 percent by lack of marginality.

The previous example provides an upper bound to the cost of fairness. However, we made

the strong assumption that there is no enjoyment of the public good by the agents. Here we

relax that assumption and provide a lower bound of the cost of fairness.
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Example 4. We consider the same economy defined in Example 3, but we assume that there

is monetary (equivalent) benefit of the public good that can be enjoyed by both agents imme-

diately. The total tax revenue is given by 5α dollars. We assume that each agent enjoyment of

the public good is 5
2
α dollars. This implies that the adjusted payoff after taxes and considering

the public good utility is Φ = (1 − α)(2, 3) + α(5
2
, 5

2
). In other words, the government is able

to implement a convex combination of the Shapley wage and the egalitarian wage using a fully

efficient tax to provide a public good that produces the same enjoyment to both agents.

The Shapley distance is given by ||esh||2 = ||Shf − Φ||2 = α2

2
. We notice that the new

pay scheme is both efficient and symmetric, hence ||esh||2 = ||emrg||2, which coincides with the

marginality error in the previous example. In this example, the government is able to eliminate

the efficiency loss and only the marginality loss remains. Note that when α→ 1 there is a loss

of ||esh|| = 1√
2
≈ 0.707 dollars in terms of unfairness to produce a fully egalitarian income. This

is 14.14% of the total output. This is of course a lower bound to the cost of fairness (while the

previous example represented an upper bound).

For our final example, we consider a different tax scheme and explore its implications for

fairness.

Example 5. We consider the same economy defined in Example 3, but we assume that the

investment in the public good is done by using a lump-sum tax scheme, as opposed to the

proportional tax scheme. Specifically, each agent contributes the amount ti, i ∈ {1, 2}, such

that t1+t2 = X, where X represents the worth of the public good. The vector Φ = (2−t1, 3−t2)

represents the revenues net of taxes. What could be the values of ti, such that the vector Φ is

close to the Shapley payoff vector Shf = (2, 3)? The distance between the two vectors Φ and

Shf is given by the numerical expression d(t1, t2) = t21 + t22. To answer the question posed, we

should solve the following minimization problem:

minimize
x

t21 + t22

subject to 0 ≤ t1 ≤ 2 ; 0 ≤ t2 ≤ 3 ; t1 + t2 = X ; 0 < X ≤ 5.

(4)

Solving problem 4 yields t∗1 = min(2, X
2

) and t∗2 = min(3, X − t∗1). Assume that the amount of

the public good X equals 4.5 dollars, then agent 1 contributes t∗1 = 2 dollars, agent 2 contributes

t∗2 = 2.5 dollars. The payoff vector is Φ = (0, 0.5) net of taxes. The distance between both

allocations Φ and Shf is ||esh|| = 3.20 dollars. The vector Φ does not violate the symmetry

property, since agents are not identical. The violation of efficiency, measured by ||esh|| = 3.18

dollars, represents 98.78 percent of the total measure of unfairness ( ||e
eff ||2
||esh||2 = 98.78), whereas
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only ( ||e
mrg ||2
||esh||2 = 1.22) of unfairness is explained by the lack of marginality. Again, this is an

upper bound of the cost of fairness. Due to the decomposition, it is easy to see that the way

to reduce the important cost of fairness is to reduce the efficiency error. This can be done by

taking into account the benefits of the public good. If the benefits of the public good are fully

internalized, only the marginality error will matter, and that is smaller than in the tax schemes

of previous examples.

5 Conclusions

We have provided an axiomatic characterization of the Shapley distance, which is a measure

of unfairness in revenue distribution introduced by Aguiar et al. (2018). It is defined as the

distance between an arbitrary pay profile and the Shapley pay profile under a given technology.

Aguiar et al. (2018) provide a decomposition of this distance into terms that measure violations

of each of the Shapley axioms. In this chapter, we have shown that the Shapley distance is the

unique (up to monotone transformations) index defining a bargaining function that satisfies

Anonymity and IIA for the set of pay schemes that obey symmetry, efficiency, and marginality.

The analyses are illustrated through examples showing the different ways in which favoritism,

egalitarianism, and taxation distort fairness in revenue sharing. We have also identified a tax

scheme that minimizes this distortion.
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