A Service of

[) [J
(] [)
J ﬂ Leibniz-Informationszentrum
° Wirtschaft
o Leibniz Information Centre
h for Economics

Make Your Publications Visible.

Gold, Robert

Working Paper

Petri Nets in Software Engineering

Arbeitsberichte - Working Papers, No. 5

Provided in Cooperation with:
Technische Hochschule Ingolstadt (THI)

Suggested Citation: Gold, Robert (2004) : Petri Nets in Software Engineering, Arbeitsberichte -
Working Papers, No. 5, Fachhochschule Ingolstadt - University of Applied Sciences, Ingolstadt,

https://nbn-resolving.de/urn:nbn:de:bvb:573-203

This Version is available at:
https://hdl.handle.net/10419/202557

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen

Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dirfen die Dokumente nicht fiir 6ffentliche oder kommerzielle
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten,

gelten abweichend von diesen Nutzungsbedingungen die in der dort

genannten Lizenz gewahrten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

.: A https://creativecommons.org/licenses/by-nc-nd/3.0/de/

WWW.ECONSTOR.EU

Mitglied der

Leibniz-Gemeinschaft ;

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://nbn-resolving.de/urn:nbn:de:bvb:573-203%0A
https://hdl.handle.net/10419/202557
https://creativecommons.org/licenses/by-nc-nd/3.0/de/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Fachhochschule
Ingolstadt

University of
Applied Sciences

Arbeitsberichte

Working Papers

Kompetenz schafft Zukunft
Creating competence for the future

Petri Nets in Software
Engineering

von Prof. Dr. Robert Gold

Arbeitsberichte
Working Papers

Petri Nets in Software
Engineering

von Prof. Dr. Robert Gold

Heft Nr. 5 aus der Reihe
"Arbeitsberichte - Working Papers"
ISSN 1612-6483

Ingolstadt, im Juni 2004

Fachhochschule
Ingolstadt

University of
Applied Sciences

Abstract

In this paper we investigate the
use of Petri nets in software
engineering extending the classical
software development process with
simulation and mathematical analysis
based on place/transition nets. The
advantage is that requirements can
be validated earlier and fault
detection and correction is less
expensive. We show how to construct
nets from basic patterns and
demonstrate this for an application in
automotive electronics, the cruise
control with distance warning. The
resulting nets can be simulated and
analysed using Petri net tools and
embedded into an object-oriented
framework, where transitions are
triggered by messages.

0 Introduction

Almost every process model for software development is build around the
phases requirements analysis, preliminary and detailed design, implementation,
integration and test. The V-model (Figure 1), an extension of the well-known
waterfall model, depicts the development phases in the form of the letter V with
the verification activities module test, integration test and system test between
them [Bal98], [Bal00], [Car02], [Ger97], [Jal97].

Requirements
analysis

_____ Integration test —____)
\ - ~ Integration

Preliminary
design

J— Module test ——__
» R

Detailed design

Implementation

Fig. 1: V-model

One inherent problem of such process models is that, since the first executable
software emerges not before the end of the integration, the requirements cannot
be validated earlier. This means that faults introduced in the requirements
analysis or the design phase due to misunderstandings or forgotten require-
ments remain in the software until the final validation and therefore they are
expensive to detect and correct [Bal00], [Boe81], [Jal97]. Rapid prototyping and
prototyping models improve this situation, but they are also very expensive
since prototypes should not be used in the further development process.

We need means to validate earlier without unnecessary or additional costs. The
solution is simulation using an executable model of the requirements together
with mathematical proof techniques. Of course building the model will create
considerable additional effort, but it is returned by lower fault correction costs
and also by the possibility of code generation. An additional benefit of code
generation is to avoid faults which are introduced by hand-coding.

The executable model of the requirements complements the textual or semi-
formal specification and thus forms a new kind of specification paradigm, which
combines the best of formal and informal specification of software.

Simulation requires an executable and hence a formal model of the software. It
should be a mathematical model in order to allow mathematical proof techni-
ques. On the other side the model should be feasible in practice for software
engineers and not only for specialists. A graphical visualisation of the model is
equally important to enhance the understanding of the software requirements.

The rest of the paper is structured as follows. In Chapter 1 we introduce the V3-
model which extends the V-model with simulation, validation and code gene-
ration. Basic definitions about place/transition nets are given in Chapter 2. In
Chapter 3 we show how to construct nets from patterns and simulate the
resulting nets. In the following Chapter 4 some mathematical methods for
analysis are summarised. How to integrate the Petri net model into an object-
oriented framework and to generate code is shown in Chapter 5.

1 The V?-Model

The output of each activity in the V-model (Figure 1) is one or more develop-
ment products. The requirements analysis produces the software requirements,
the design phases a set of design documents, the implementation the source
code and the integration the software executable on the target hardware. Other
documents are test and quality management documents, e.g. test specifica-
tions, and project and configuration management documents. If we restrict the
set of products to requirements, source code and executable software, we get
Figure 2.

Validation
Software Software on

requirements ~ T T~ ™ target hardware

~. 7

Source code

Fig. 2: V-model of development products

Validation shows whether the software satisfies the requirements. When model-
ling and simulation is used, the requirements can be validated before the source
code is created and the source code can be derived from the model. The soft-
ware is no longer verified against the requirements, but against the model
(Figure 3).

Validation Verification
Software Software on

requirements target hardware

TN S

Source code

Fig. 3: V-model with simulation

The source code can be generated from the model, if a formal mathematical
notation is used for the model. Since the model abstracts from implementation
and hardware details, the code generation has to fill them in. If this can be done
automatically and if the code generator itself is verified, verification of the soft-
ware is unnecessary. But in many cases the generated code has to be opti-
mised manually and therefore verification can not be omitted, e.g. if for the inte-
gration in a real-time operating system additional timing information is needed,
which cannot be captured in the model, but it is crucial for fulfilling the required
functionality.

This process is described by the V?-model (Figure 4). Dot-dash lines mark acti-
vities which can be carried out automatically unless hand-coding or hand-opti-
misation is necessary [Gol02].

Validation Verification
Software Software on

requirements *TTTTT~ - Model Bl > target hardware

Code ™
generation Ty

Source code

Fig. 4: V-Model

2 Place/Transition Nets

Petri nets are a well-known formal model which combine a rich mathematical
theory with a useful graphical notation. Amongst the many different types of
Petri nets place/transition nets form a simple but in many cases practically
sufficient net class [Bau96], [RR98].

Definition: A fourtuple N = (S, T, F, M) is called place/transition net or net for

short, if

S is a finite set of places,
T is a finite set of fransitions with SU T={} and SN T={},
Fc(SxT)u(TxS) isthe flow relation,

My: S — Ng is the initial marking function.

Places model local states of the system, transitions the actions. State changes
are modelled by the flow relation. The flow relation connects places with
transitions and transitions with places, but not elements of the same type. The
initial state of the system is represented by the initial marking (Figure 5). For
better understanding places and transitions will sometimes be labelled uniquely
by strings. An example net is shown in Figure 6.

Q place (local state)

transition (action)

— > flow relation

@ place with token

Fig. 5: Graphical notation of nets

CTDﬂHQ

7N
O— =0 O
NV

Fig. 6: Example net

States of the system are represented by markings of the net and depicted by
black dots (tokens) in the places. The dynamic behaviour can be described by

the flow of tokens initiated by the firing of transitions.

Definition: Let N = (S, T, F, My) be a net. A function M: S — Ny is called a
marking of N. A transition t € T is enabled at a marking M if for all s € S with
(s,) € F:M(s) > 1. The set of such places is called preset of the transition. The
set of places s € S with (t, s) € Fis called postset of the transition. An enabled

transition may occur, yielding the follower marking M’ with M'(s) = M(s) - 1 for

all places s in the preset but not in the postset of the transition, M{(s) = M(s) + 1
for all places s in the postset but not in the preset of the transition and M{(s) =
M(s) for all other places s. This is denoted by M [f) M. The set of reachable
markings [Mo) is the smallest set of markings of N such that My € [My) and if
M; e [Myy and M [ty M, for te Tthen M> e [Mo).

An example for transition occurrences and token flow is shown in Figure 7.

Fig. 7: Example for transition occurrences

For a more detailed introduction to place/transition nets see e.g. [Bau96],
[GV03], [RRI8].

3 Construction of Nets from Patterns

In the analysis phase we have to construct a net from informal requirements. In
our approach we identify patterns in the requirements and compose the net of
them by place fusion. This composition method has been thoroughly studied in
literature e.g. in [BG94], [Gol95].

We find in nets the typical basic patterns action, branch, merge and synchroni-

sation of concurrent subsystems (Figures 8, 9, 10).

T 7

= =

S5 6 o Jeo

Fig. 8: Basic patterns action and branch of concurrent subsystems

R R

=

Fig. 9: Basic pattern merge of concurrent subsystems

P R

=

ofsRNchc

Fig. 10: Basic pattern synchronisation of concurrent subsystems

In general we have n-m-patterns that is transitions with n places in their presets
and m places in their postsets. By fusion of places the patterns causality,

concurrency and conflict can be composed from the basic action pattern

(Figure 11).

Sequential actions Concurrency Alternative (conflict)

© oe
5 b6

Fig. 11: Composed patterns causality, concurrency and conflict

Example: We will demonstrate the construction of nets for the cruise control

with distance warning in automotive electronics (Figure 12).

+ RESUME ON OFF

[] [] []

Fig. 12: User interface of the cruise control with distance warning

Let us consider a cruise control with the following functionality. After the cruise
control is turned on (slider to ON) the actual velocity of the vehicle can be
stored with the SET-button (button to +) and will be held constantly on this
control value. Using the SET-button again (button to + or —) the value of the
velocity is incremented or decremented by 2 km/h. If the driver uses the brake
of the vehicle the control of the velocity is suspended. It can be resumed (slider
to RESUME and back to ON). In suspended state the actual velocity is com-
pared with the stored control velocity and a buzzer is activated for one second if
the control velocity is exceeded. The cruise control is turned off by pushing the
slider to OFF.

If we ignore the turning off of the cruise control we can distinguish the actions t
(turn on), & (store velocity), t; (increment velocity), & (decrement velocity), ts
(brake), ts (control velocity exceeded) and t; (resume) with causalities ty — t —
s — t; and conflicts t; <> 4 < 5, s <> t7 and get the (ccd-) net as shown in the

left part of Figure 13.

S off
t, turn on
So ready

t, | store velocity

increment velocity t

decrement
velocity

distance warning active,
distance above minimum

fy

cruise control active

S5

distance distance
ts | fallsbelow | f | exceeds
minimum minimum

AV

distance below
decelerate minimum

resume t brake | B

control velocity
exceeded

fg

suspended

Fig. 13: Net for the cruise control with distance warning

Now we extend the cruise control by a distance warning functionality. Together
with the first storing of the velocity the concurrent measurement of the distance
to the vehicle driving in front is activated. The measured distance is compared
to a computed minimal distance. If the measured distance is lower than the
computed and the cruise control is activated, the control is suspended, the

vehicle is decelerated and the driver is informed by a warning lamp.

We get the actions t3 (measured distance falls below minimal distance) and ty
(measured distance exceeds minimal distance) with causality &3 — t3. The action
L will be extended to a branch in concurrent subsystems. A third action t
models the synchronisation of the concurrent subsystems since the cruise
control and the distance measurement are concurrent but not independent
(Figure 13).

Since action f3 does not suspend the cruise control, we have to make sure that
this action only happens if the control is already suspended. On the other hand
we have to avoid that the control is resumed if the distance is below the

minimum, in other words is has to be above the minimum (Figure 13).

A net resulting from this composition process can be simulated using Petri net
tools in order to validate the functionality of the model.

A list of Petri net tools can be found on the home page of the Petri Net World
http://www.daimi.au.dk/PetriNets or in [Wik97].

Example: We specify simulation runs of the ccd-net:

Run 1 (activate the ccd): turn on — store velocity

Run 2 (change the control velocity): turn on — store velocity — increment velocity

— decrement velocity

Run 3 (suspend the ccd because of slower vehicle in front, accelerate and
resume the ccd): turn on — store velocity — distance falls below minimum /

decelerate — distance exceeds minimum — control velocity exceeded — resume

Run 4 (suspend the ccd by braking, accelerate and resume the ccd): turn on —
store velocity — brake — control velocity exceeded — resume

Run 5 (suspend the ccd by braking, change the velocity of the front vehicle and
resume the ccd): turn on — store velocity — brake — distance falls below

minimum — distance exceeds minimum — resume

10

4 Analysis with Reachability Graphs, Linear In-
variants and Model Checking

Equally important for early validation as simulation is mathematical analysis. We
show three of the most accepted methods: deadlock analysis with reachability
graphs, linear invariant analysis and model checking.

Definition: A net N = (S, T, F, My) is called deadlock-free, if for all reachable
markings there is an enabled transition, i.e.

VMe[My:3te T, M'e [My) : M[t)y M’
Example: The graph of reachable markings (reachability graph) of the ccd-net is

shown in Figure 14 where markings are written as row vectors.

1,0,0,0,0,0

»

0,1,0,0,0,0

SR

_L 0,0,1,0,1,0

f 0,0,0,1,1,0—’0,0,0,1,0,1 ﬁ f
fy

ly

Fig. 14: Reachability graph of the ccd-net

The net is deadlock-free, since each node in the reachability graph has at least

one outgoing edge.

The definition of linear invariants is based on the description of the flow relation
of nets by matrices.

11

Definition: The incidence-matrix of a net N= (S, T, F, My) with S={ sy, ..., s}

veey

cij= 1, if s;in the postset but not in the preset of the transition ¢
cj= -1, if s;in the preset but not in the postset of the transition ¢

cj =0, otherwise

If markings are interpreted as column vectors with n components and M; [t) M-,

we have
M,=M; +C- €
where g; is the j-th unit vector.

Example: The ccd-net has the following incidence matrix:

(1000000000)
14100000000
C=|0100-10100-1
000010-100 1
0100000-11-1
(0000000 1-11)

Let M; = (0, 0,1, 0,1, 0)" and M, = (0, 0, 0, 1, 0, 1)". We have My [t0) Mo,
C-en=(0,0,-1,1,-1,1)" (10" column of C) and Mo = M; + C - eqo.

Definition: A place invariant y: S — Z of anet N= (S, T, F, M) is a solution of

C" - y = 0. The set of place invariants of a net form therefore a vector space. A

place invariant y is called non-negative if y(s) >0 forall se S.
Let y be a place invariant. Then

VY Me [My):y' - M=y" - M
(token conservation law).

Example: The ccd-net has the following set of place invariants:

{y=(A+m A+u, A A uu) | A ue Z)

12

The non-negative place invariant (1,1, 1, 1, 0, 0)T means that the sum of tokens
in the places sy, Sp, S3, S4 is constantly 1 in each reachable marking, the cruise
control is either off, ready, active or suspended. The same holds for the inva-
riant (1, 1, 0, 0, 1, 1)" and the distance measurement.

In the rest of the chapter we present the linear time logic and model checking
following [GVO03].

Absence of deadlocks as defined above is a property of the net that can be
proved by checking all reachable markings. Other properties depend on execu-
tions of the net and therefore need a language that takes into account that the
truth of a formula can change over time. Such properties can be classified into
safety and liveness properties [AS87]. Safety means that nothing undesired
happens, liveness on the other hand states that a required property is satisfied
by all executions of the net.

We consider a temporal logic called LTL [Pnu81] which is a restriction of the

very general temporal logic CTL*.

Definition: A LTL (linear time logic) formula is either

e an atomic proposition, i.e. a condition on the number of tokens in a place or
e composed of LTL formulae: —f, fi A K, °f, [f U f»] where f, f;, f> are LTL
formulae.

The operator = is derived as usual, i.e. fy = b means —(f; A).

The semantics of LTL formulae is defined using the reachability graph of the
net, where we add for each node without successor an edge from the node to
itself. A formula f holds for a net N with initial marking My and a fixed infinite
path (Mo, My, Mo, ...) in the reachability graph, denoted by < N, My > |=

<N, My>|=p < the atomic proposition p holds in the marking My

<N, My >|=—f < not<N, My>|=fF

<N,Mo>|=f1/\f2 <:><N,M0>|=f18.nd<N,Mo>|=f2

13

<N, My > |=°f o <N M>|=f

<N, My>=[iuf] < itexists i>0suchthatforall0<j<i:
<N,I\/Ij>|=f1 and < N, M,‘>|=f2

The temporal operators sometimes and always, denoted by F and G respec-

tively, are defined by

Ff=[true uf]

Gf=—|F—|f=—|[trueu—|f]

where fis a LTL formula. These operators state that f holds sometimes on the
path, i.e. at least at one state, and always on the path, i.e. at all states of the

path, respectively.

Example: We consider the net for mutual exclusion as shown in Figure 15. One
interesting liveness property of the mutual exclusion algorithm is “Each process
that requests the critical section will obtain it”. This means that for an arbitrary
execution always holds that if the place wait1 holds a token the place cs1 will be
marked sometimes later and the same for process 2. This is expressed by the
LTL formula f

G[waiti=1=F(cs1=1)] A G[wait2=1=F (cs2=1)]
where s = 1 means that the place s contains one token. We have to prove
<N, My>|=f

In the following we present an automata-theoretic approach for verification of
LTL formulae. The idea is that a property can be characterised not only by a
formula but also by an automaton, the so-called Bdchi automaton, that accepts

the set of behaviours which satisfies the property. By intersection with the set of
infinite behaviours of the net represented by the reachability graph we find the
set of behaviours of the net that satisfies the property. Another possibility is to
construct the Blchi automaton that accepts the set of behaviours which satis-
fies the negation of the property. If the intersection with the set of behaviours of

14

the net is non-empty, we proved that the negation is true and therefore the
property does not hold.

request1 wait1 enter1 csi freel

OO

S3

St

idle1
S7
idle2
S4 : S5 : Se :
T request2 wait2 enter2 cs2 free2

Fig. 15: Mutual exclusion net

The intersection of the sets of behaviours is constructed by the synchronised
product of the reachability graph and the Blchi automaton. In this product the
states are pairs (n, x) where nis a state in the reachability graph and x is a state

of the Buchi automaton. There is a transition from (n, x) to (m, y) if and only if

e it exists a transition from nto min the reachability graph,

e it exists a transition from x to y in the Blchi automaton labelled by a
condition ¢ and

e cistrueinn.

The initial states of the product are the pairs of states where the components
are initial states in the reachabilty graph and the Blchi automaton respectively.
A state is accepting state in the product, if the corresponding state in the Blchi
automaton is accepting.

If there is an infinite path in the synchronised product of the reachabilty graph
and the Buchi automaton for the negation of the property, that encounter
infinitely often an accepting state, there is an execution of the net where the
liveness property does not hold.

15

Example: The negation of the property of the mutual exclusion net in the
example above is

Flwaitl1=1AG(cs1<1)] v F[wait2=1AG (cs2<1)]

and can be characterised by a Blchi automaton (Figure 16).

cs2 < 1 true csl <1

@ wait2=1/\c32<1ﬂ waitl =1 Acsl < 1
- A =

N

Fig. 16: Blchi automaton for the negation of the property of the mutual

exclusion net

The initial state is A, the accepting states are B and C. The transitions are
labelled by conditions on markings.

The reachability graph is shown in Figure 17 where My, = (1, 0, 0, 1, 0, 0, 1),
M;=(0,1,0,1,0,0,1), M»=(1,0,0,0,1,0,1), Ms=(0,0,1,1,0,0, 0), My =
(0,1,0,0,1,0,1), Ms=(1,0,0,0,0,1,0), Ms = (0,0, 1,0, 1,0, 0), M = (0, 1,
0,0,0,1,0).

» M, <=
M; M,
freel enter1 enter2 free2
A/I’equeStZ requesH\A

Ms M, Ms
freet enteri enter2 free2
request2 l l requesti
MG M7

Fig. 17: Reachability graph of the mutual exclusion net

The synchronised product (Figure 18) has 8 - 3 = 24 states with initial state
(Mo, A).

16

/
(Mi A) l (Mi, A)
\V
(Ms, A) 74 ‘ (My, A)

AN
AN
AN
AN
AN
AN
AN
AN
AN
AN
(M2! C) (Mh\B) ﬁ\
~2% N
(My, C) 5, C) (Ms, B (M4,\B) NQ
~< N
\\\\
(M6! C) (M7! C) (MG! B) (M7! B)

Fig. 18: Synchronised product for the negation of the property of the mutual

exclusion net

Parts of the graph not reachable from the initial marking have been omitted in
Figure 18. In the graph an infinite path, that encounter infinitely often an accep-
ting state, exists, e.g. the path drawn in dashed lines. On this path process 1
waits for the critical section without entering it. That means that the property

does not hold in the net.

Proving a liveness property therefore means detection of cycles in graphs which
can be done in time linear in the size of the graph. In our example we build up
the graph entirely and then looked for cycles. The number of nodes in the syn-
chronised product is in the worst case the product of the numbers of nodes of
the reachability graph and the Blchi automaton and therefore can be extremely
high, possibly too high to store in memory. So-called on-the-fly methods com-
pute the cycles without building up the graph entirely. Details can be found in
the literature e.g. in [GVO03].

17

5 Object-Oriented Design and Code Generation

The Petri net model is only one part of the overall, in most cases object-oriented
design. We introduce a class for each net with a private array attribute for the
marking (Figure 19). Transitions become methods that are triggered by messa-

ges and may themselves call methods of other classes (Figure 20).

CNet

-marking : int[n]
// other attributes

+CNet() : void
+t1() : bool

;L.t-m() : bool
// other methods

Fig. 19: Net class

% net : CNet Obj2 : Class2
Obj1 : Class1
i |
> method() l

Fig. 20: Transitions triggered by messages

Messages can be received by the net at any time, but they lead to the occur-
rence of a transition only if it is enabled. In the other case the message will be
discarded. The return-value will be true, if the transition is enabled and occurs

and false otherwise.

Example: The class for the ccd-net is shown in Figure 21. The attribute vel_cntr
holds the control value of the velocity. The methods velocity control and
distance_comp implement the control of the velocity and the comparison of the

18

measured distance with the computed minimal distance respectively. For better
readability the methods have been given names related to the application.

CNet

-marking : int[6]
-vel_cntr : float =0

+CNet() : void

+on() : bool // t1
+store() : bool // 2
+inc() : bool //t3
+dec() : bool // t4
+brake() : bool // 15
+fast() : bool //t6
+resume() : bool //t7
+low() : bool //18
+high() : bool //19
+low_brake() : bool /110
+velocity_control() : void
+distance_comp() : void

Fig. 21: Class for the ccd-net

We embed the ccd-net into a simulation environment consisting of a simple
vehicle dynamics simulation, a buzzer to notify if the stored control velocity is
exceeded, a warning lamp to inform the driver that the measured distance is
below the minimal distance, a lamp that is switched on if the cruise control is

active and a simple user interface.

The sequence diagram in Figure 22 shows the reaction on using the brake
pedal. In consequence the velocity is decremented (set_vel_act brake), the
method brake is called, if the cruise control is active, and the state of the activity

lamp is set (set_state).

The approaches to code generation from Petri nets can be classified into
centralised, decentralised and hybrid approaches [GV03]. In the first approach a
centralised scheduler determines which transitions are enabled and dispatches
enabled transition sequentially. A disadvantage is that parallelism in the model
is not preserved. Furthermore the sequential scheduler forms a bottleneck
especially for large nets. On the other hand, the decentralised approach assigns
a process to each place and each transition. Parallelism is now preserved at the

expense of performance since synchronisation is very time consuming. Combi-

19

ning both approaches into the hybrid approach means structuring the net into
components that should be executed concurrently. The best choice for such
components are sequential state machines because they can be easily
implemented by a sequential process.

veh : CVeh net : CNet act lamp :
ClLamp
User i i i
| setvel act ! ! |
_brake() i i i
T S— 1 1
[} [}
brake() i i
» [}
g [}
set_state() i
» |
e L
[}
[}
|
[}
Rt T |
[} [}
[} [}
[} [}
[} [}
[} [}
I T | |
L ! ! !

Fig. 22: Sequence diagram for the ccd-net

In our approach we use information from the construction of the net from pat-
terns for the decomposition into components. The branch and merge patterns
identify three components, two parallel processes and the process preceding,
following the branch respectively. The synchronisation pattern induces that the
access to places from different parallel components have to be synchronised, in

our approach by semaphores.

Definition: A component C of a net N = (S, T, F, M) is a subnet (S¢, T¢, Fe,
M%) where Scc S, Tec T, Fe={ (x, Y) € F| x, ye Scu Tc}, Mo%(s) = My(s)

for all s e Sc. A decomposition of a net is a set of components such that each

place and each transition of the net is element of exactly one component. A
place s € S has to be protected, if it is in the pre- or postset of two transitions
ti e Te, b € Teo from different components Cy, Co. We introduce a semaphore
for each place s to be protected which synchronises the accesses to the place s

of all transitions t for which s is in the pre- or postset of t.

20

Example: In the ccd-net the transition £ (store velocity) implements the branch
pattern and thus induces three components Cy, Cp, Cs where C, and Cs are
parallel (Figure 23). These components will be implemented as three pro-

cesses.

-

/ t, | turnon \

\ S ready /
\\ II
\ //
CQ e T ~~o \\\ /
//’ \\\ \ ‘.
7 , NN t, | store vetbcity
ingrement velocity ts | N s e
/ \ ~o _-
/// \\\ ‘~/< _____ e C3
/ \ 7 AN
/ p S-S ~ : :
/ decrement //‘/\\ TN distance warning active,
; Vvelocity A 7 ~_ distance above minimum
! \ , N
1 . \ /0. AN
! ty cruise cortrol gctive ___——— \
i T \
i >~ _ \
| Sk \
\ o .)
I i i P distance distance
\ resume | & brake | & | / L | to t; | fallsbelow | f | exceeds
\ 1o -1 minimum minimum
\ . 1/)/ !
cantrol velocity SN _— /
1
\ exceeded _-~] ~Histance” Ss J
| ~-77 falig bélow . /
N fs __/———"Trinpum / Q distance below
NS v decelarate minimdim
N d

Fig. 23: Decomposition of the ccd-net

The arcs across the border of components (drawn in dashed lines in Figure 23)
form synchronisations between these processes. The places s3, Ss4, S5 involved
therein have to be protected by semaphores. Place s; is accessed by the
transitions b, B3, i, B, t7, tio. Therefore we need a semaphore for the synchroni-
sation of these transitions. Place s, is accessed by the transitions s, t, t7, 13, to,
which have to be synchronised. Place ss is accessed by the transitions b, t7, g,
fa, tio- All in all there does not remain much parallelism in the net only between

21

ls and fy. Note that semaphores must be reserved in a well-defined order,

otherwise a deadlock could occur.

The velocity control and the distance comparison work independently and thus

can be implemented in two other parallel processes.

A transition is implemented as a method of the class CNet in the following way:

bool CNet::t ()
{

bool res; // return value: true if transition is
// enabled and occurs, false otherwise

// reserve semaphores for protected places in well-defined order

Lock (semal) ;

Lock (sema?) ;

// all locks successful?
if (IsLocked(semal) && IsLocked(sema2) && ...)
{

// transition enabled?

if (/* preset of transition marked? */)

{

// change marking

res = true;
}
else

res = false;

// free semaphores

Unlock (semaZ2) ;
Unlock (semal) ;

}
else
res = false;

return res;
}
The Petri net implementation is one part of the overall software system. There-
fore the test of the integration of the code generated from the net model is one
part of the whole software test. We reuse the simulation runs and check the
implementation against the model. This means that for each simulation run one

or more corresponding test cases are added to the software test specification.

Example: For the ccd-net five simulation runs were specified. For each run a
test case is added that triggers the transitions in the order specified in the runs.

22

6 Conclusion

In this paper we presented an integrated software engineering approach for the

usage of Petri nets in software development from analysis to testing of software.

The Petri net model forms one part of the software besides other components

like user interfaces, data bases, communication routines. Net modules are ideal

for the reactive parts of the system such as the control in our example cruise

control with distance warning.

References

[AS87]

[Balog]

[Baloo]

[Bau96]

[BG9Y4]

[Boe81]

[Car02]

[Ger97]
[Gol95]

Alpern, B.; Schneider, F.B.: Recognizing safety and liveness. Distri-
buted Computing 2(3): 117-126 (1987)

Balzert, H.: Lehrbuch der Software-Technik. Spektrum Akademischer
Verlag, Bd. 2 (1998)

Balzert, H.: Lehrbuch der Software-Technik. Spektrum Akademischer
Verlag, Bd. 1, 2.Auflage (2000)

Baumgarten, B.: Petri-Netze. Spektrum Akademischer Verlag, 2.Auf-
lage (1996)

Brauer, W.; Gold, R.: Concurrent processes and Petri nets. In:
Schwichtenberg, H. (Ed.), Proof and Computation, Springer (1994),
pages 1-64

Boehm, B.: Software engineering economics. Prentice-Hall (1981)

Carnegie Mellon University, Software Engineering Institute: The Capa-
bility Maturity Model Integration, v1.1(2002)

German Ministry of the Interior (Ed.): V-Model. June 1997

Gold, R.: A compositional dataflow semantics for Petri nets. Acta
Informatica 32:627-654 (1995)

23

[Gol02]

[GV03]

[Jal97]

[Pnu81]

[RRO8]

[Wik97]

Gold, R.: Specification and simulation of distributed systems: Process
models and dataflow networks. 11th International Colloquium on
Numerical Analysis and Computer Science with Applications, Plovdiv,
Bulgaria, 2002

Girault, C.; Valk, R.: Petri nets for systems engineering. Springer
(2003)

Jalote, P.: An integrated approach to software engineering. Springer,
2.Ed. (1997)

Pnueli, A.: The temporal semantics of concurrent programs. Theore-
tical Computer Science, 13:45-60, 1981

Reisig, W.; Rozenberg, G. (Hrsg.): Lectures on Petri nets. Springer,
Vol. I: Basic Models (1998), Vol. Il: Applications (1998) (Lecture Notes
in Computer Science, Volume 1491, 1492)

Wikarski, D.: Petri net tools - a comparative study. Research Reports
of FB Informatik, TU Berlin, Report Nr. 97-4 September 1997

24

Author biography

Prof. Dr. Robert Gold has been holding the lectureship
for Engineering Mathematics and Data Processing at

Fachhochschule Ingolstadt since 1998.

Gold was born in 1962 in Schrobenhausen/Bavaria. He
studied computer science at Technical University
Munich, where he also obtained his PhD degree.
Before he changed to FH Ingolstadt he worked as a
software developer in the automotive industry for Conti
Temic and Siemens. Gold has been the dean
of the department of electrical engineering and
computer science of Fachhochschule Ingolstadt since
2003.

Contact: robert.gold@fh-ingolstadt.de

mailto:robert.gold@fh-ingolstadt.de

Impressum

Herausgeber
Der Prasident der
Fachhochschule Ingolstadt

Esplanade 10
85049 Ingolstadt
Telefon: 0841/9348-0

Fax: 08 41/93 48 - 200
E-Mail: info@fh-ingolstadt.de
Druck

Hausdruck

Die Beitrage aus der FH-Reihe
"Arbeitsberichte/ Working Papers"
erscheinen in unregelmafligen Abstanden.

Alle Rechte, insbesondere das Recht der
Vervielfaltigung und Verbreitung sowie der
Ubersetzung vorbehalten. Nachdruck, auch
auszugsweise, ist gegen Quellenangabe
gestattet, Belegexemplar erbeten.

Internet

Dieses Thema kdnnen Sie, ebenso wie die
friheren Veroffentlichungen aus der FH-Reihe
"Arbeitsberichte - Working Papers", unter der
Adresse www.fh-ingolstadt.de nachlesen.

ISSN 1612-6483

