
Gold, Robert

Working Paper

Petri Nets in Software Engineering

Arbeitsberichte - Working Papers, No. 5

Provided in Cooperation with:
Technische Hochschule Ingolstadt (THI)

Suggested Citation: Gold, Robert (2004) : Petri Nets in Software Engineering, Arbeitsberichte -
Working Papers, No. 5, Fachhochschule Ingolstadt - University of Applied Sciences, Ingolstadt,
https://nbn-resolving.de/urn:nbn:de:bvb:573-203

This Version is available at:
https://hdl.handle.net/10419/202557

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

 https://creativecommons.org/licenses/by-nc-nd/3.0/de/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://nbn-resolving.de/urn:nbn:de:bvb:573-203%0A
https://hdl.handle.net/10419/202557
https://creativecommons.org/licenses/by-nc-nd/3.0/de/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Petri Nets in Software
Engineering

von Prof. Dr. Robert Gold

Arbeitsberichte
Working Papers

Kompetenz schafft Zukunft
Creating competence for the future

Arbeitsberichte
Working Papers

Petri Nets in Software

Engineering

von Prof. Dr. Robert Gold

Heft Nr. 5 aus der Reihe
"Arbeitsberichte - Working Papers"

ISSN 1612-6483

Ingolstadt, im Juni 2004

 F a c h h o c h s c h u l e

I n g o l s t a d t

U n i v e r s i t y o f
App l i ed Sc iences

Abstract

 In this paper we investigate the
use of Petri nets in software
engineering extending the classical
software development process with
simulation and mathematical analysis
based on place/transition nets. The
advantage is that requirements can
be validated earlier and fault
detection and correction is less
expensive. We show how to construct
nets from basic patterns and
demonstrate this for an application in
automotive electronics, the cruise
control with distance warning. The
resulting nets can be simulated and
analysed using Petri net tools and
embedded into an object-oriented
framework, where transitions are
triggered by messages.

1

0 Introduction

Almost every process model for software development is build around the

phases requirements analysis, preliminary and detailed design, implementation,

integration and test. The V-model (Figure 1), an extension of the well-known

waterfall model, depicts the development phases in the form of the letter V with

the verification activities module test, integration test and system test between

them [Bal98], [Bal00], [Car02], [Ger97], [Jal97].

Fig. 1: V-model

One inherent problem of such process models is that, since the first executable

software emerges not before the end of the integration, the requirements cannot

be validated earlier. This means that faults introduced in the requirements

analysis or the design phase due to misunderstandings or forgotten require-

ments remain in the software until the final validation and therefore they are

expensive to detect and correct [Bal00], [Boe81], [Jal97]. Rapid prototyping and

prototyping models improve this situation, but they are also very expensive

since prototypes should not be used in the further development process.

Requirements
analysis

Preliminary
design

Detailed design

Implementation

Integration

System test

Integration test

Module test

2

We need means to validate earlier without unnecessary or additional costs. The

solution is simulation using an executable model of the requirements together

with mathematical proof techniques. Of course building the model will create

considerable additional effort, but it is returned by lower fault correction costs

and also by the possibility of code generation. An additional benefit of code

generation is to avoid faults which are introduced by hand-coding.

The executable model of the requirements complements the textual or semi-

formal specification and thus forms a new kind of specification paradigm, which

combines the best of formal and informal specification of software.

Simulation requires an executable and hence a formal model of the software. It

should be a mathematical model in order to allow mathematical proof techni-

ques. On the other side the model should be feasible in practice for software

engineers and not only for specialists. A graphical visualisation of the model is

equally important to enhance the understanding of the software requirements.

The rest of the paper is structured as follows. In Chapter 1 we introduce the V2-

model which extends the V-model with simulation, validation and code gene-

ration. Basic definitions about place/transition nets are given in Chapter 2. In

Chapter 3 we show how to construct nets from patterns and simulate the

resulting nets. In the following Chapter 4 some mathematical methods for

analysis are summarised. How to integrate the Petri net model into an object-

oriented framework and to generate code is shown in Chapter 5.

1 The V2-Model

The output of each activity in the V-model (Figure 1) is one or more develop-

ment products. The requirements analysis produces the software requirements,

the design phases a set of design documents, the implementation the source

code and the integration the software executable on the target hardware. Other

documents are test and quality management documents, e.g. test specifica-

tions, and project and configuration management documents. If we restrict the

set of products to requirements, source code and executable software, we get

Figure 2.

3

Fig. 2: V-model of development products

Validation shows whether the software satisfies the requirements. When model-

ling and simulation is used, the requirements can be validated before the source

code is created and the source code can be derived from the model. The soft-

ware is no longer verified against the requirements, but against the model

(Figure 3).

Fig. 3: V-model with simulation

The source code can be generated from the model, if a formal mathematical

notation is used for the model. Since the model abstracts from implementation

and hardware details, the code generation has to fill them in. If this can be done

automatically and if the code generator itself is verified, verification of the soft-

ware is unnecessary. But in many cases the generated code has to be opti-

mised manually and therefore verification can not be omitted, e.g. if for the inte-

gration in a real-time operating system additional timing information is needed,

which cannot be captured in the model, but it is crucial for fulfilling the required

functionality.

This process is described by the V2-model (Figure 4). Dot-dash lines mark acti-

vities which can be carried out automatically unless hand-coding or hand-opti-

misation is necessary [Gol02].

Software
requirements

Software on
target hardware

Source code

Validation

Software
requirements Model

Validation
Software on

target hardware

Source code

Verification

4

Fig. 4: V2-Model

2 Place/Transition Nets

Petri nets are a well-known formal model which combine a rich mathematical

theory with a useful graphical notation. Amongst the many different types of

Petri nets place/transition nets form a simple but in many cases practically

sufficient net class [Bau96], [RR98].

Definition: A fourtuple N = (S, T, F, M0) is called place/transition net or net for

short, if

S is a finite set of places,

T is a finite set of transitions with S ∪ T ≠ { } and S ∩ T = { },

F ⊆ (S × T) ∪ (T × S) is the flow relation,

M0: S → N0 is the initial marking function.

Places model local states of the system, transitions the actions. State changes

are modelled by the flow relation. The flow relation connects places with

transitions and transitions with places, but not elements of the same type. The

initial state of the system is represented by the initial marking (Figure 5). For

better understanding places and transitions will sometimes be labelled uniquely

by strings. An example net is shown in Figure 6.

Software
requirements Model

Validation
Software on

target hardware

Source code

Verification

Code
generation

5

Fig. 5: Graphical notation of nets

Fig. 6: Example net

States of the system are represented by markings of the net and depicted by

black dots (tokens) in the places. The dynamic behaviour can be described by

the flow of tokens initiated by the firing of transitions.

Definition: Let N = (S, T, F, M0) be a net. A function M: S → N0 is called a

marking of N. A transition t ∈ T is enabled at a marking M if for all s ∈ S with

(s, t) ∈ F : M(s) ≥ 1. The set of such places is called preset of the transition. The

set of places s ∈ S with (t, s) ∈ F is called postset of the transition. An enabled

transition may occur, yielding the follower marking M' with M'(s) = M(s) - 1 for

all places s in the preset but not in the postset of the transition, M'(s) = M(s) + 1

for all places s in the postset but not in the preset of the transition and M'(s) =

M(s) for all other places s. This is denoted by M [t〉 M'. The set of reachable

markings [M0〉 is the smallest set of markings of N such that M0 ∈ [M0〉 and if

M1 ∈ [M0〉 and M1 [t〉 M2 for t ∈ T then M2 ∈ [M0〉.

place (local state)

transition (action)

flow relation

place with token

6

An example for transition occurrences and token flow is shown in Figure 7.

Fig. 7: Example for transition occurrences

For a more detailed introduction to place/transition nets see e.g. [Bau96],

[GV03], [RR98].

3 Construction of Nets from Patterns

In the analysis phase we have to construct a net from informal requirements. In

our approach we identify patterns in the requirements and compose the net of

them by place fusion. This composition method has been thoroughly studied in

literature e.g. in [BG94], [Gol95].

We find in nets the typical basic patterns action, branch, merge and synchroni-

sation of concurrent subsystems (Figures 8, 9, 10).

⇒

⇒ ⇒

⇒

⇒

7

Fig. 8: Basic patterns action and branch of concurrent subsystems

Fig. 9: Basic pattern merge of concurrent subsystems

Fig. 10: Basic pattern synchronisation of concurrent subsystems

In general we have n-m-patterns that is transitions with n places in their presets

and m places in their postsets. By fusion of places the patterns causality,

concurrency and conflict can be composed from the basic action pattern

(Figure 11).

⇒

⇒

⇒ ⇒

8

Fig. 11: Composed patterns causality, concurrency and conflict

Example: We will demonstrate the construction of nets for the cruise control

with distance warning in automotive electronics (Figure 12).

Fig. 12: User interface of the cruise control with distance warning

Let us consider a cruise control with the following functionality. After the cruise

control is turned on (slider to ON) the actual velocity of the vehicle can be

stored with the SET-button (button to +) and will be held constantly on this

control value. Using the SET-button again (button to + or –) the value of the

velocity is incremented or decremented by 2 km/h. If the driver uses the brake

of the vehicle the control of the velocity is suspended. It can be resumed (slider

to RESUME and back to ON). In suspended state the actual velocity is com-

pared with the stored control velocity and a buzzer is activated for one second if

the control velocity is exceeded. The cruise control is turned off by pushing the

slider to OFF.

Sequential actions
(causality)

Alternative (conflict) Concurrency

RESUME ON OFF

–
SET

+

9

If we ignore the turning off of the cruise control we can distinguish the actions t1

(turn on), t2 (store velocity), t3 (increment velocity), t4 (decrement velocity), t5

(brake), t6 (control velocity exceeded) and t7 (resume) with causalities t1 → t2 →

t5 → t7 and conflicts t3 ↔ t4 ↔ t5 , t6 ↔ t7 and get the (ccd-) net as shown in the

left part of Figure 13.

Fig. 13: Net for the cruise control with distance warning

Now we extend the cruise control by a distance warning functionality. Together

with the first storing of the velocity the concurrent measurement of the distance

to the vehicle driving in front is activated. The measured distance is compared

to a computed minimal distance. If the measured distance is lower than the

computed and the cruise control is activated, the control is suspended, the

vehicle is decelerated and the driver is informed by a warning lamp.

off

turn on

ready

store velocity

cruise control active

decrement
velocity

distance warning active,
distance above minimum

distance
falls below
minimum

distance
exceeds
minimum

distance below
minimum

suspended

resume brake

distance
falls below
minimum /
decelerate

increment velocity

t1

t2
t3

t4

t7 t5 t10 t8 t9

control velocity
exceeded

t6

s1

s2

s3

s4

s5

s6

10

We get the actions t8 (measured distance falls below minimal distance) and t9

(measured distance exceeds minimal distance) with causality t8 → t9. The action

t2 will be extended to a branch in concurrent subsystems. A third action t10

models the synchronisation of the concurrent subsystems since the cruise

control and the distance measurement are concurrent but not independent

(Figure 13).

Since action t8 does not suspend the cruise control, we have to make sure that

this action only happens if the control is already suspended. On the other hand

we have to avoid that the control is resumed if the distance is below the

minimum, in other words is has to be above the minimum (Figure 13).

A net resulting from this composition process can be simulated using Petri net

tools in order to validate the functionality of the model.

A list of Petri net tools can be found on the home page of the Petri Net World

http://www.daimi.au.dk/PetriNets or in [Wik97].

Example: We specify simulation runs of the ccd-net:

Run 1 (activate the ccd): turn on – store velocity

Run 2 (change the control velocity): turn on – store velocity – increment velocity

– decrement velocity

Run 3 (suspend the ccd because of slower vehicle in front, accelerate and

resume the ccd): turn on – store velocity – distance falls below minimum /

decelerate – distance exceeds minimum – control velocity exceeded – resume

Run 4 (suspend the ccd by braking, accelerate and resume the ccd): turn on –

store velocity – brake – control velocity exceeded – resume

Run 5 (suspend the ccd by braking, change the velocity of the front vehicle and

resume the ccd): turn on – store velocity – brake – distance falls below

minimum – distance exceeds minimum – resume

11

4 Analysis with Reachability Graphs, Linear In-

variants and Model Checking

Equally important for early validation as simulation is mathematical analysis. We

show three of the most accepted methods: deadlock analysis with reachability

graphs, linear invariant analysis and model checking.

Definition: A net N = (S, T, F, M0) is called deadlock-free, if for all reachable

markings there is an enabled transition, i.e.

∀ M ∈ [M0〉 : ∃ t ∈ T, M' ∈ [M0〉 : M [t〉 M'

Example: The graph of reachable markings (reachability graph) of the ccd-net is

shown in Figure 14 where markings are written as row vectors.

Fig. 14: Reachability graph of the ccd-net

The net is deadlock-free, since each node in the reachability graph has at least

one outgoing edge.

The definition of linear invariants is based on the description of the flow relation

of nets by matrices.

1, 0, 0, 0, 0, 0

0, 1, 0, 0, 0, 0

0, 0, 1, 0, 1, 0

0, 0, 0, 1, 1, 0 0, 0, 0, 1, 0, 1

t1

t2

t3

t4

t5

t6

t7 t10 t8

t9

t6

12

Definition: The incidence-matrix of a net N = (S, T, F, M0) with S = { s1, ..., sn }

and T = { t1, ..., tm } is the matrix C = (cij)i = 1, ..., n, j = 1, ..., m defined by

cij = 1, if si in the postset but not in the preset of the transition tj

cij = -1, if si in the preset but not in the postset of the transition tj

cij = 0, otherwise

If markings are interpreted as column vectors with n components and M1 [tj〉 M2 ,

we have

M2 = M1 + C ⋅ ej

where ej is the j-th unit vector.

Example: The ccd-net has the following incidence matrix:

 -1 0 0 0 0 0 0 0 0 0
 1 -1 0 0 0 0 0 0 0 0
C = 0 1 0 0 -1 0 1 0 0 -1
 0 0 0 0 1 0 -1 0 0 1
 0 1 0 0 0 0 0 -1 1 -1
 0 0 0 0 0 0 0 1 -1 1

Let M1 = (0, 0, 1, 0, 1, 0)T and M2 = (0, 0, 0, 1, 0, 1)T. We have M1 [t10〉 M2 ,

C ⋅ e10 = (0, 0, -1, 1, -1, 1)T (10th column of C) and M2 = M1 + C ⋅ e10.

Definition: A place invariant y: S → Z of a net N = (S, T, F, M0) is a solution of

CT ⋅ y = 0. The set of place invariants of a net form therefore a vector space. A

place invariant y is called non-negative if y(s) ≥ 0 for all s ∈ S.

Let y be a place invariant. Then

∀ M ∈ [M0〉 : y
T ⋅ M = yT ⋅ M0

(token conservation law).

Example: The ccd-net has the following set of place invariants:

{ y = (λ + µ, λ + µ, λ, λ, µ, µ)T | λ, µ ∈ Z }

13

The non-negative place invariant (1, 1, 1, 1, 0, 0)T means that the sum of tokens

in the places s1, s2, s3, s4 is constantly 1 in each reachable marking, the cruise

control is either off, ready, active or suspended. The same holds for the inva-

riant (1, 1, 0, 0, 1, 1)T and the distance measurement.

In the rest of the chapter we present the linear time logic and model checking

following [GV03].

Absence of deadlocks as defined above is a property of the net that can be

proved by checking all reachable markings. Other properties depend on execu-

tions of the net and therefore need a language that takes into account that the

truth of a formula can change over time. Such properties can be classified into

safety and liveness properties [AS87]. Safety means that nothing undesired

happens, liveness on the other hand states that a required property is satisfied

by all executions of the net.

We consider a temporal logic called LTL [Pnu81] which is a restriction of the

very general temporal logic CTL*.

Definition: A LTL (linear time logic) formula is either

• an atomic proposition, i.e. a condition on the number of tokens in a place or

• composed of LTL formulae: ¬f, f1 ∧ f2, °f, [f1 ∪ f2] where f, f1, f2 are LTL

formulae.

The operator ⇒ is derived as usual, i.e. f1 ⇒ f2 means ¬(f1 ∧ ¬f2).

The semantics of LTL formulae is defined using the reachability graph of the

net, where we add for each node without successor an edge from the node to

itself. A formula f holds for a net N with initial marking M0 and a fixed infinite

path (M0, M1, M2, …) in the reachability graph, denoted by < N, M0 > |= f :

< N, M0 > |= p ⇔ the atomic proposition p holds in the marking M0

< N, M0 > |= ¬f ⇔ not < N, M0 > |= f

< N, M0 > |= f1 ∧ f2 ⇔ < N, M0 > |= f1 and < N, M0 > |= f2

14

< N, M0 > |= °f ⇔ < N, M1 > |= f

< N, M0 > |= [f1 ∪ f2] ⇔ it exists i ≥ 0 such that for all 0 ≤ j < i :

 < N, Mj > |= f1 and < N, Mi > |= f2

The temporal operators sometimes and always, denoted by F and G respec-

tively, are defined by

F f = [true ∪ f]

G f = ¬F ¬f = ¬ [true ∪ ¬f]

where f is a LTL formula. These operators state that f holds sometimes on the

path, i.e. at least at one state, and always on the path, i.e. at all states of the

path, respectively.

Example: We consider the net for mutual exclusion as shown in Figure 15. One

interesting liveness property of the mutual exclusion algorithm is “Each process

that requests the critical section will obtain it”. This means that for an arbitrary

execution always holds that if the place wait1 holds a token the place cs1 will be

marked sometimes later and the same for process 2. This is expressed by the

LTL formula f

G [wait1 = 1 ⇒ F (cs1 = 1)] ∧ G [wait2 = 1 ⇒ F (cs2 = 1)]

where s = 1 means that the place s contains one token. We have to prove

< N, M0 > |= f

In the following we present an automata-theoretic approach for verification of

LTL formulae. The idea is that a property can be characterised not only by a

formula but also by an automaton, the so-called Büchi automaton, that accepts

the set of behaviours which satisfies the property. By intersection with the set of

infinite behaviours of the net represented by the reachability graph we find the

set of behaviours of the net that satisfies the property. Another possibility is to

construct the Büchi automaton that accepts the set of behaviours which satis-

fies the negation of the property. If the intersection with the set of behaviours of

15

the net is non-empty, we proved that the negation is true and therefore the

property does not hold.

Fig. 15: Mutual exclusion net

The intersection of the sets of behaviours is constructed by the synchronised

product of the reachability graph and the Büchi automaton. In this product the

states are pairs (n, x) where n is a state in the reachability graph and x is a state

of the Büchi automaton. There is a transition from (n, x) to (m, y) if and only if

• it exists a transition from n to m in the reachability graph,

• it exists a transition from x to y in the Büchi automaton labelled by a

condition c and

• c is true in n.

The initial states of the product are the pairs of states where the components

are initial states in the reachabilty graph and the Büchi automaton respectively.

A state is accepting state in the product, if the corresponding state in the Büchi

automaton is accepting.

If there is an infinite path in the synchronised product of the reachabilty graph

and the Büchi automaton for the negation of the property, that encounter

infinitely often an accepting state, there is an execution of the net where the

liveness property does not hold.

idle1

idle2

wait2

wait1 cs1

cs2

request1

request2

enter1

enter2

free1

free2

s1 s2 s3

s4 s5 s6

s7

16

Example: The negation of the property of the mutual exclusion net in the

example above is

F [wait1 = 1 ∧ G (cs1 < 1)] ∨ F [wait2 = 1 ∧ G (cs2 < 1)]

and can be characterised by a Büchi automaton (Figure 16).

Fig. 16: Büchi automaton for the negation of the property of the mutual

exclusion net

The initial state is A, the accepting states are B and C. The transitions are

labelled by conditions on markings.

The reachability graph is shown in Figure 17 where M0 = (1, 0, 0, 1, 0, 0, 1),

M1 = (0, 1, 0, 1, 0, 0, 1), M2 = (1, 0, 0, 0, 1, 0, 1), M3 = (0, 0, 1, 1, 0, 0, 0), M4 =

(0, 1, 0, 0, 1, 0, 1), M5 = (1, 0, 0, 0, 0, 1, 0), M6 = (0, 0, 1, 0, 1, 0, 0), M7 = (0, 1,

0, 0, 0, 1, 0).

Fig. 17: Reachability graph of the mutual exclusion net

The synchronised product (Figure 18) has 8 ⋅ 3 = 24 states with initial state

(M0, A).

M0

M1 M2

M3 M4

M6

M5

M7

request1 request2

enter1 enter2 free1 free2

request2
request1

request2 request1
enter1 enter2 free1 free2

A

true

wait1 = 1 ∧ cs1 < 1
B

cs1 < 1

wait2 = 1 ∧ cs2 < 1
C

cs2 < 1

17

Fig. 18: Synchronised product for the negation of the property of the mutual

exclusion net

Parts of the graph not reachable from the initial marking have been omitted in

Figure 18. In the graph an infinite path, that encounter infinitely often an accep-

ting state, exists, e.g. the path drawn in dashed lines. On this path process 1

waits for the critical section without entering it. That means that the property

does not hold in the net.

Proving a liveness property therefore means detection of cycles in graphs which

can be done in time linear in the size of the graph. In our example we build up

the graph entirely and then looked for cycles. The number of nodes in the syn-

chronised product is in the worst case the product of the numbers of nodes of

the reachability graph and the Büchi automaton and therefore can be extremely

high, possibly too high to store in memory. So-called on-the-fly methods com-

pute the cycles without building up the graph entirely. Details can be found in

the literature e.g. in [GV03].

(M0, A)

(M1, A) (M2, A)

(M3, A) (M4, A)

(M6, A)

(M5, A)

(M7, A)

(M1, B)

(M3, B) (M4, B)

(M6, B) (M7, B)

(M2, C)

(M4, C)

(M6, C)

(M5, C)

(M7, C)

18

5 Object-Oriented Design and Code Generation

The Petri net model is only one part of the overall, in most cases object-oriented

design. We introduce a class for each net with a private array attribute for the

marking (Figure 19). Transitions become methods that are triggered by messa-

ges and may themselves call methods of other classes (Figure 20).

Fig. 19: Net class

Fig. 20: Transitions triggered by messages

Messages can be received by the net at any time, but they lead to the occur-

rence of a transition only if it is enabled. In the other case the message will be

discarded. The return-value will be true, if the transition is enabled and occurs

and false otherwise.

Example: The class for the ccd-net is shown in Figure 21. The attribute vel_cntr

holds the control value of the velocity. The methods velocity_control and

distance_comp implement the control of the velocity and the comparison of the

 CNet

-marking : int[n]
// other attributes

+CNet() : void
+t1() : bool
…
+tm() : bool
// other methods

Obj2 : Class2 net : CNet

ti()

Obj1 : Class1

method()

19

measured distance with the computed minimal distance respectively. For better

readability the methods have been given names related to the application.

Fig. 21: Class for the ccd-net

We embed the ccd-net into a simulation environment consisting of a simple

vehicle dynamics simulation, a buzzer to notify if the stored control velocity is

exceeded, a warning lamp to inform the driver that the measured distance is

below the minimal distance, a lamp that is switched on if the cruise control is

active and a simple user interface.

The sequence diagram in Figure 22 shows the reaction on using the brake

pedal. In consequence the velocity is decremented (set_vel_act_brake), the

method brake is called, if the cruise control is active, and the state of the activity

lamp is set (set_state).

The approaches to code generation from Petri nets can be classified into

centralised, decentralised and hybrid approaches [GV03]. In the first approach a

centralised scheduler determines which transitions are enabled and dispatches

enabled transition sequentially. A disadvantage is that parallelism in the model

is not preserved. Furthermore the sequential scheduler forms a bottleneck

especially for large nets. On the other hand, the decentralised approach assigns

a process to each place and each transition. Parallelism is now preserved at the

expense of performance since synchronisation is very time consuming. Combi-

 CNet

-marking : int[6]
-vel_cntr : float = 0

+CNet() : void
+on() : bool // t1
+store() : bool // t2
+inc() : bool // t3
+dec() : bool // t4
+brake() : bool // t5
+fast() : bool // t6
+resume() : bool // t7
+low() : bool // t8
+high() : bool // t9
+low_brake() : bool // t10
+velocity_control() : void
+distance_comp() : void

20

ning both approaches into the hybrid approach means structuring the net into

components that should be executed concurrently. The best choice for such

components are sequential state machines because they can be easily

implemented by a sequential process.

Fig. 22: Sequence diagram for the ccd-net

In our approach we use information from the construction of the net from pat-

terns for the decomposition into components. The branch and merge patterns

identify three components, two parallel processes and the process preceding,

following the branch respectively. The synchronisation pattern induces that the

access to places from different parallel components have to be synchronised, in

our approach by semaphores.

Definition: A component C of a net N = (S, T, F, M0) is a subnet (SC, TC, FC,

M0
C) where SC ⊆ S, TC ⊆ T, FC = { (x, y) ∈ F | x, y ∈ SC ∪ TC }, M0

C(s) = M0(s)

for all s ∈ SC. A decomposition of a net is a set of components such that each

place and each transition of the net is element of exactly one component. A

place s ∈ S has to be protected, if it is in the pre- or postset of two transitions

t1 ∈ TC1, t2 ∈ TC2 from different components C1, C2. We introduce a semaphore

for each place s to be protected which synchronises the accesses to the place s

of all transitions t for which s is in the pre- or postset of t.

veh : CVeh

set_vel_act
_brake()

net : CNet

brake()

act_lamp :
CLamp

set_state()

User

21

Example: In the ccd-net the transition t2 (store velocity) implements the branch

pattern and thus induces three components C1, C2, C3 where C2 and C3 are

parallel (Figure 23). These components will be implemented as three pro-

cesses.

Fig. 23: Decomposition of the ccd-net

The arcs across the border of components (drawn in dashed lines in Figure 23)

form synchronisations between these processes. The places s3, s4, s5 involved

therein have to be protected by semaphores. Place s3 is accessed by the

transitions t2, t3, t4, t5, t7, t10. Therefore we need a semaphore for the synchroni-

sation of these transitions. Place s4 is accessed by the transitions t5, t6, t7, t8, t10,

which have to be synchronised. Place s5 is accessed by the transitions t2, t7, t8,

t9, t10. All in all there does not remain much parallelism in the net only between

C1

C2

C3

off

turn on

ready

store velocity

cruise control active

decrement
velocity

distance warning active,
distance above minimum

distance
falls below
minimum

distance
exceeds
minimum

distance below
minimum

suspended

resume brake

distance
falls below
minimum /
decelerate

increment velocity

t1

t2
t3

t4

t7 t5 t10 t8 t9

control velocity
exceeded

t6

s1

s2

s3

s4

s5

s6

22

t6 and t9. Note that semaphores must be reserved in a well-defined order,

otherwise a deadlock could occur.

The velocity control and the distance comparison work independently and thus

can be implemented in two other parallel processes.

A transition is implemented as a method of the class CNet in the following way:

bool CNet::t()

{

 bool res; // return value: true if transition is

 // enabled and occurs, false otherwise

 // reserve semaphores for protected places in well-defined order

 Lock(sema1);

 Lock(sema2);

 ...

 // all locks successful?

 if (IsLocked(sema1) && IsLocked(sema2) && ...)

 {

 // transition enabled?

 if (/* preset of transition marked? */)

 {

 // change marking

 ...

 res = true;

 }

 else

 res = false;

 // free semaphores

 ...

 Unlock(sema2);

 Unlock(sema1);

 }

 else

 res = false;

 return res;

}

The Petri net implementation is one part of the overall software system. There-

fore the test of the integration of the code generated from the net model is one

part of the whole software test. We reuse the simulation runs and check the

implementation against the model. This means that for each simulation run one

or more corresponding test cases are added to the software test specification.

Example: For the ccd-net five simulation runs were specified. For each run a

test case is added that triggers the transitions in the order specified in the runs.

23

6 Conclusion

In this paper we presented an integrated software engineering approach for the

usage of Petri nets in software development from analysis to testing of software.

The Petri net model forms one part of the software besides other components

like user interfaces, data bases, communication routines. Net modules are ideal

for the reactive parts of the system such as the control in our example cruise

control with distance warning.

References

[AS87] Alpern, B.; Schneider, F.B.: Recognizing safety and liveness. Distri-

buted Computing 2(3): 117-126 (1987)

[Bal98] Balzert, H.: Lehrbuch der Software-Technik. Spektrum Akademischer

Verlag, Bd. 2 (1998)

[Bal00] Balzert, H.: Lehrbuch der Software-Technik. Spektrum Akademischer

Verlag, Bd. 1, 2.Auflage (2000)

[Bau96] Baumgarten, B.: Petri-Netze. Spektrum Akademischer Verlag, 2.Auf-

lage (1996)

[BG94] Brauer, W.; Gold, R.: Concurrent processes and Petri nets. In:

Schwichtenberg, H. (Ed.), Proof and Computation, Springer (1994),

pages 1-64

[Boe81] Boehm, B.: Software engineering economics. Prentice-Hall (1981)

[Car02] Carnegie Mellon University, Software Engineering Institute: The Capa-

bility Maturity Model Integration, v1.1(2002)

[Ger97] German Ministry of the Interior (Ed.): V-Model. June 1997

[Gol95] Gold, R.: A compositional dataflow semantics for Petri nets. Acta

Informatica 32:627-654 (1995)

24

[Gol02] Gold, R.: Specification and simulation of distributed systems: Process

models and dataflow networks. 11th International Colloquium on

Numerical Analysis and Computer Science with Applications, Plovdiv,

Bulgaria, 2002

[GV03] Girault, C.; Valk, R.: Petri nets for systems engineering. Springer

(2003)

[Jal97] Jalote, P.: An integrated approach to software engineering. Springer,

2.Ed. (1997)

[Pnu81] Pnueli, A.: The temporal semantics of concurrent programs. Theore-

tical Computer Science, 13:45-60, 1981

[RR98] Reisig, W.; Rozenberg, G. (Hrsg.): Lectures on Petri nets. Springer,

Vol. I: Basic Models (1998), Vol. II: Applications (1998) (Lecture Notes

in Computer Science, Volume 1491, 1492)

[Wik97] Wikarski, D.: Petri net tools - a comparative study. Research Reports

of FB Informatik, TU Berlin, Report Nr. 97-4 September 1997

Author biography

Prof. Dr. Robert Gold has been holding the lectureship

for Engineering Mathematics and Data Processing at

Fachhochschule Ingolstadt since 1998.

Gold was born in 1962 in Schrobenhausen/Bavaria. He

studied computer science at Technical University

Munich, where he also obtained his PhD degree.

Before he changed to FH Ingolstadt he worked as a

software developer in the automotive industry for Conti

Temic and Siemens. Gold has been the dean

of the department of electrical engineering and

computer science of Fachhochschule Ingolstadt since

2003.

Contact: robert.gold@fh-ingolstadt.de

mailto:robert.gold@fh-ingolstadt.de

Impressum

Herausgeber
Der Präsident der
Fachhochschule Ingolstadt

Esplanade 10
85049 Ingolstadt
Telefon: 08 41 / 93 48 - 0
Fax: 08 41 / 93 48 - 200
E-Mail: info@fh-ingolstadt.de

Druck
Hausdruck

Die Beiträge aus der FH-Reihe
"Arbeitsberichte/ Working Papers"
erscheinen in unregelmäßigen Abständen.

Alle Rechte, insbesondere das Recht der
Vervielfältigung und Verbreitung sowie der
Übersetzung vorbehalten. Nachdruck, auch
auszugsweise, ist gegen Quellenangabe
gestattet, Belegexemplar erbeten.

Internet
Dieses Thema können Sie, ebenso wie die
früheren Veröffentlichungen aus der FH-Reihe
"Arbeitsberichte - Working Papers", unter der
Adresse www.fh-ingolstadt.de nachlesen.

ISSN 1612-6483

