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Static Stability in Games 
Part II: Asymmetric Games 

Igal Milchtaich* 

August 2017 

Static stability in strategic games differs from dynamic stability in only considering the 

players’ incentives to change their strategies. It does not rely on any assumptions about the 

players’ reactions to these incentives and it is thus not linked with any particular dynamics. 

This paper introduces a general notion of (local) static stability of strategy profiles that is 

applicable to any 𝑁-player strategic game. It examines a number of important classes of 

games, with strategy spaces or payoff functions that have special structures, where this 

general notion takes a simple, concrete form. The paper explores the relations between 

these special cases of static stability and different versions of dynamic stability, and connects 

static stability in general, asymmetric games with the related, but essentially weaker, notion 

of static stability of strategies in symmetric games. JEL Classification: C72. 

Keywords: Static stability, stability of equilibrium. 

1 The Framework  
A system is at an equilibrium state if there is no (net) force pushing it towards a different 

state. In game theory, where forces may be equated with incentives, this idea is embodied 

by the Nash equilibrium solution concept, which requires that there is no incentive for any 

player to change his strategy unilaterally. If, moreover, any unilateral move would actually 

harm the mover, the equilibrium is said to be strict. Stability differs from equilibrium in also 

considering the forces acting at states that are (usually, only slightly) different from the one 

under consideration. Roughly speaking, it requires that these forces push the system in the 

direction of that state. More precisely, this description concerns static stability, as it does 

not involve a law of motion that specifies how forces translate into actual movement of the 

system. For example, a ball at the bottom of a pit is stable but one at the top of a hill is not. 

In both cases, the net force acting on the ball vanishes, but any displacement would result in 

a non-zero force, which is directed towards the equilibrium point in the first case and away 

from it in the second case. This description is static rather than kinetic. It does not involve 

motion, and therefore does not invoke Newton’s second law. 

In game theory, static stability of a strategy profile 𝑦 can analogously be defined in terms of 

the players’ incentives to move towards 𝑦 when they start at a different strategy profile 𝑥. In 

particular, for 𝑥 that differs from 𝑦 only in the strategy of a single player 𝑖, a unilateral 

change of strategy from 𝑥𝑖  to 𝑦𝑖  must make player 𝑖 better off. The challenge is to extend 

this requirement to 𝑥 that differ from 𝑦 in 𝑘 ≥ 2 coordinates, so that going from 𝑥 to 𝑦 
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requires (at least) 𝑘 unilateral moves, which can be performed in 𝑘! different orders. The 

extension is enabled by a particular view of the players’ payoffs, more specifically, of the 

change in the payoff of a player who performs a unilateral move. The view is that a positive 

or negative payoff difference quantifies the player’s willingness or reluctance to move (with 

reluctance identified with the willingness to make the opposite move) or the degree to 

which the move is readily made. This interpretation provides a conceptual framework within 

which different players’ payoffs can be compared, and contrasts with the often taken view 

that payoffs are incomparable and, in particular, that each player’s payoff function is 

determined (at most) up to arbitrary increasing affine transformations. The alternative view 

expressed above entails that only shifts by additive constants and scaling of all payoff 

functions by a common factor are inconsequential. The significance of this divergence is that 

the overall willingness or reluctance to move can be quantified by the average over all 𝑘! 

paths from 𝑥 to 𝑦 of the sum of the 𝑘 individual payoff increments along each path. The 

strategy profile 𝑦 is said to be globally stable, globally weakly stable or globally definitely 

unstable if this average is positive, nonnegative or negative, respectively, for all 𝑥 ≠ 𝑦. Put 

differently, the expression corresponding to the reverse paths, from 𝑦 to 𝑥, is required to be 

negative, nonpositive or positive, respectively. In the first case, 𝑦 is necessarily a strict 

equilibrium, and in the second case, it is an equilibrium. However, as the following example 

shows, these necessary conditions are not sufficient for global stability or weak stability.  

Example 1. Games in the plane. The strategy sets of player 1 and player 2 are the real line ℝ. 

Their payoff functions are   

ℎ1(𝑥1, 𝑥2) = −𝑥1
2 + 3𝑥1𝑥2  and  ℎ2(𝑥1, 𝑥2) = −

1

2
𝑥2
2 − 𝑥1𝑥2. 

It is not difficult to see that the origin is the unique equilibrium, and it is moreover strict. A 

path from (0,0) to any other strategy profile (𝑥1, 𝑥2) goes through either (𝑥1, 0) or (0, 𝑥2). 

In the first case, where player 1 is the first to move, the sum of the movers’ payoff 

increments is −𝑥1
2 − 𝑥2

2/2 − 𝑥1𝑥2, and when player 2 move first, it is  −𝑥2
2/2 − 𝑥1

2 + 3𝑥1𝑥2. 

The average of the two expressions is −𝑥1
2 + 𝑥1𝑥2 − 𝑥2

2/2 = −(𝑥1 − 𝑥2/2)
2 − 𝑥2

2/4, which 

is negative for all (𝑥1, 𝑥2) ≠ (0,0) . This proves that the equilibrium in this game is globally 

stable. By contrast, in the game obtained by dropping the second term in ℎ2, where the 

payoff functions are   

ℎ1(𝑥1, 𝑥2) = −𝑥1
2 + 3𝑥1𝑥2  and  ℎ2(𝑥1, 𝑥2) = −

1

2
𝑥2
2, 

the corresponding average is −𝑥1
2 + 3𝑥1𝑥2/2 − 𝑥2

2/2. This expression is positive for any 

(𝑥1, 𝑥2) ≠ (0,0) that is a multiple of (2,3), which implies that the strict equilibrium (0,0) is 

not even globally weakly stable. 

Stability becomes a local concept when the requirement described above is restricted to 

strategy profiles 𝑥 that are close to 𝑦. The restriction is meaningful when the strategy set 𝑋𝑖 

of each player 𝑖 is a topological space. The product topology on the set 𝑋 = ∏ 𝑋𝑖𝑖  of all 

strategy profiles then gives a meaning to a neighborhood of a strategy profile 𝑥: it is any set 

whose interior includes 𝑥. In an 𝑁-player game with such strategy spaces, where the payoff 

(1) 

(2) 
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function of player 𝑖 is ℎ𝑖: 𝑋 → ℝ, consider for any two strategy profiles 𝑥 and 𝑦 and a 

permutation 𝜋 of (1,2, … , 𝑁) the path from 𝑦 to 𝑥 in which the players change their 

strategies in the order specified by 𝜋. Thus, player 𝜋(1) moves first, from 𝑦𝜋(1) to 𝑥𝜋(1) 

(which may or may not be the same strategy), then player 𝜋(2) moves, and so on. 

Summation of the movers’ changes of payoff and averaging over the set Π of all 

permutations gives the expression  

1

𝑁!
∑∑(ℎ𝜋(𝑗)(𝑦 ∣ 𝑥{𝜋(1),𝜋(2),…,𝜋(𝑗)}) − ℎ𝜋(𝑗)(𝑥 ∣ 𝑦{𝜋(𝑗),𝜋(𝑗+1),…,𝜋(𝑁)}))

𝑁

𝑗=1𝜋∈Π

, 

where 𝑦 ∣ 𝑥𝑆 denotes the strategy profile where the players in and outside the set 𝑆 play 

according to the strategy profiles 𝑥 and 𝑦, respectively (and similarly with 𝑥 and 𝑦 

interchanged). This expression quantifies the overall incentive to move from 𝑦 to 𝑥. The 

incentive to move in the opposite direction, from 𝑥 to 𝑦, is given by the negative of (3).  

Definition 1. A strategy profile 𝑦 in an 𝑁-player game is stable, weakly stable or definitely 

unstable if it has a neighborhood where (3) is negative, nonpositive or positive, respectively, 

for all 𝑥 ≠ 𝑦.  

In principal, for these notions to be well defined, the topologies on the players’ strategy sets 

need to be specified. In practice, the topologies can often be inferred from the context, as 

there are unique natural ones. However, regardless of the latter, an important special case 

of the definition involves the trivial topology on 𝑋, where the only neighborhood of any 

strategy is the entire strategy set. It is not difficult to see that stability, weak stability or 

definite instability with respect to this topology implies the same condition for any other 

topology, and it coincides with the global version of the property, as defined above.  

The somewhat unwieldy expression (3) can be put into a simpler form, which also suggests 

an alternative interpretation of the inequality defining stability. As the next lemma shows, 

this inequality roughly means that, when players only play according to 𝑥 or according to 𝑦, 

those doing the former fare worse on average. Specifically, for strategy profiles 𝑥 and 𝑦 in an 

𝑁-player game, define 𝐼(𝑥, 𝑦), the total payoff of 𝑥 players against 𝑦 players, by 

𝐼(𝑥, 𝑦) =∑[
1

(𝑁𝑗)
∑ ℎ̅𝑆( 𝑦 ∣∣ 𝑥𝑆 )
𝑆

|𝑆|=𝑗

]

𝑁

𝑗=1

 

= ∑
1

(𝑁|𝑆|)
ℎ̅𝑆( 𝑦 ∣∣ 𝑥𝑆 )

𝑆

=∑
1

(𝑁|𝑆|)
ℎ̅𝑆∁( 𝑥 ∣∣ 𝑦𝑆 )

𝑆

, 

where, for a set of players 𝑆 ⊆ {1,2, … , 𝑁}, |𝑆| is the number of players in 𝑆 and ℎ̅𝑆 =

(1/|𝑆|)∑ ℎ𝑖𝑖∈𝑆  is their average payoff, which is defined as 0 if 𝑆 = ∅. Note that the 

expression in square brackets is the average of ℎ̅𝑆( 𝑦 ∣∣ 𝑥𝑆 ) over all sets 𝑆 of size 𝑗. The last 

equality in (4) is obtained by replacing the summation variable 𝑆 with the complementary 

set 𝑆∁. 

(3) 

 (4) 
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Lemma 1. Expression (3) is equal to 𝐼(𝑥, 𝑦) − 𝐼(𝑦, 𝑥).  

Proof. Each of the payoffs in (3) has the form ℎ𝑖( 𝑦 ∣∣ 𝑥𝑆 ) or ℎ𝑖( 𝑥 ∣ 𝑦𝑆 ), with 𝑖 ∈ 𝑆. 

Specifically, 𝑖 is given by the equation 𝑖 = 𝜋(𝑗) and 𝑆 is given by the equation 𝑆 =

{𝜋(1), 𝜋(2), … , 𝜋(𝑗)} or by 𝑆 = {𝜋(𝑗), 𝜋(𝑗 + 1), … , 𝜋(𝑁)}. In both cases, for every pair (𝑆, 𝑖) 

with 𝑖 ∈ 𝑆 there are precisely (|𝑆| − 1)! (𝑁 − |𝑆|)! pairs (𝜋, 𝑗) satisfying the two equations 

(as 𝑗 is uniquely determined by |𝑆|). Therefore, (3) is equal to 

∑∑
(|𝑆| − 1)! (𝑁 − |𝑆|)! 

𝑁!
(ℎ𝑖( 𝑦 ∣∣ 𝑥𝑆 ) − ℎ𝑖( 𝑥 ∣ 𝑦𝑆 ))

𝑖∈𝑆𝑆≠∅

= 𝐼(𝑥, 𝑦) − 𝐼(𝑦, 𝑥). 

 ∎ 

A strategy profile 𝑦 that is stable but not globally stable is not necessarily an equilibrium. 

However, it is still a “local strict equilibrium” in the sense that for every player 𝑖 and all 

𝑥𝑖 ≠ 𝑦𝑖 in some neighborhood of 𝑦𝑖  

ℎ𝑖( 𝑦 ∣∣ 𝑥𝑖 ) − ℎ𝑖(𝑦) < 0, 

where 𝑦 ∣ 𝑥𝑖  denotes the strategy profile that differs from 𝑦 only in that player uses 

strategy 𝑥𝑖. This conclusion, which follows from the definition of stability by examining the 

special case of a strategy profile that differs from 𝑦 in only one coordinate, may also be 

interpreted as the requirement that, when the players move one by one to 𝑦 from any 

nearby strategy 𝑥, the last mover gains from his move. This requirement is weaker than 

stability, which differs in considering all the steps from 𝑥 to 𝑦 rather than only the last step. 

By contrast, the requirement that the first mover gains, at least on average, turns out to be a 

stronger condition than stability. This condition is formalized by the next definition and is 

analyzed by the proposition following it. 

Definition 2. A strategy profile 𝑦 in an 𝑁-player game is locally superior if it has a 

neighborhood where for all 𝑥 ≠ 𝑦 

1

𝑁
∑(ℎ𝑖(𝑥) − ℎ𝑖( 𝑥 ∣∣ 𝑦𝑖 ))

𝑁

𝑖=1

< 0. 

Proposition 1. Every locally superior strategy profile is stable, but not conversely. 

Proof. A locally superior strategy 𝑦 has a rectangular neighborhood where inequality (6) 

holds for all 𝑥 ≠ 𝑦. In that neighborhood, a similar inequality holds with the strategy profile 

𝑥 replaced by 𝑦 ∣ 𝑥𝑆, for any set of players 𝑆 such that 𝑦 ∣ 𝑥𝑆 is different from 𝑦. Division by 

(𝑁−1|𝑆|−1) and summation over all nonempty sets 𝑆 give 

0 > ∑
1

(𝑁−1|𝑆|−1)

1

𝑁
∑(ℎ𝑖( 𝑦 ∣∣ 𝑥𝑆 ) − ℎ𝑖( 𝑦 ∣ 𝑥𝑆∖{𝑖} ))

𝑖∈𝑆𝑆≠∅

 

= ∑
1

(𝑁|𝑆|)|𝑆|
∑ℎ𝑖( 𝑦 ∣∣ 𝑥𝑆 )

𝑖∈𝑆𝑆≠∅

−∑∑
1

( 𝑁−1|𝑆∖{𝑖}|)𝑁
ℎ𝑖( 𝑦 ∣ 𝑥𝑆∖{𝑖} )

𝑆
𝑖∈𝑆

𝑖

 

(5) 

(6) 
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=∑
1

(𝑁|𝑆|)
ℎ̅𝑆( 𝑦 ∣∣ 𝑥𝑆 )

𝑆

−∑∑
1

(𝑁−1|𝑆| )𝑁
ℎ𝑖( 𝑦 ∣∣ 𝑥𝑆 )

𝑆
𝑖∉𝑆

𝑖

 

= 𝐼(𝑥, 𝑦) −∑
1

(𝑁|𝑆|)
ℎ̅𝑆∁( 𝑦 ∣∣ 𝑥𝑆 )

𝑆

= 𝐼(𝑥, 𝑦) − 𝐼(𝑦, 𝑥). 

By Lemma 1, this proves that 𝑦 is stable.  

To see that (even global) stability is not a sufficient condition for local superiority, note that 

𝑦 = (0,0) is not locally superior in the game (1), because the left-and side of (6) is equal to 

the expression −𝑥1
2/2 + 𝑥1𝑥2 − 𝑥2

2/4, which is positive if 𝑥1 = 𝑥2 ≠ 0. ∎ 

2 Multilinear Games 
A multilinear 𝑁-player game is one where the strategy space 𝑋𝑖 of each player 𝑖 is the unit 

simplex in some Euclidean space ℝ𝑛𝑖 , with (possibly, player-specific) 𝑛𝑖 ≥ 1, and the payoff 

function ℎ𝑖 is linear in each of its 𝑁 arguments. The topology on the strategy space is given 

by the Euclidean distance. As the following theorem shows, in this class of games stability 

has a simple, strong meaning.   

Theorem 1. For a strategy profile 𝑦 in a multilinear 𝑁-player game the following conditions 

are equivalent: 

(i) 𝑦 is stable,  

(ii) 𝑦 is locally superior, 

(iii) 𝑦 is a strict equilibrium. 

Proof. (i) ⇒ (iii). If 𝑦 is stable, then for every player 𝑖 inequality (5) holds for all 𝑥𝑖 ≠ 𝑦𝑖 in 

some neighborhood of 𝑦𝑖. Therefore, for every 𝑥𝑖 ≠ 𝑦𝑖, a similar inequality in which 𝑥𝑖  is 

replaced with 𝜖𝑥𝑖 + (1 − 𝜖)𝑦𝑖 holds for sufficiently small 𝜖 > 0. However, by linearity of ℎ𝑖 

in the 𝑖th coordinate (player 𝑖’s own strategy), that inequality is equivalent to (5), which 

proves that 𝑦 is a strict equilibrium.  

(iii) ⇒ (ii). Suppose that 𝑦 is a strict equilibrium, so that (5) holds for all 𝑖 and 𝑥𝑖 ≠ 𝑦𝑖. For 

each player 𝑖, let 𝑍𝑖 be the collection of all strategies 𝑧𝑖 = (𝑧𝑖
1, 𝑧𝑖

2, … , 𝑧𝑖
𝑛𝑖) ∈ 𝑋𝑖 that satisfy 

𝑧𝑖
𝑗
= 0 for some 𝑗 with 𝑦𝑖

𝑗
> 0. This is a compact subset of 𝑋𝑖 that does not include 𝑦𝑖, and 

therefore the expression on the left-hand side of (5) is bounded away from zero for 𝑥𝑖 ∈ 𝑍𝑖. 

Thus, there is some 𝛿𝑖 > 0 such that 

ℎ𝑖( 𝑦 ∣∣ 𝑧𝑖 ) − ℎ𝑖(𝑦) ≤ −𝛿𝑖 , 𝑧𝑖 ∈ 𝑍𝑖 . 

Since 𝑍𝑖  is compact, it follows from (7) that there is a neighborhood of 𝑦 where for every 

strategy profile 𝑥 

ℎ𝑖( 𝑥 ∣∣ 𝑧𝑖 ) − ℎ𝑖(𝑥) ≤ −𝛿𝑖/2, 𝑧𝑖 ∈ 𝑍𝑖 . 

For every strategy 𝑥𝑖 ≠ 𝑦𝑖, there is a unique 0 < ϵ𝑖 ≤ 1 (which depends on 𝑥𝑖) such that 

for some (indeed, a unique) 𝑧𝑖 ∈ 𝑍𝑖 

(7) 

(8) 
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𝑥𝑖 = (1 − ϵ𝑖)𝑦𝑖 + ϵ𝑖𝑧𝑖 . 

By linearly of ℎ𝑖 in the 𝑖th coordinate, the last equation and (8) imply that (1 − ϵ𝑖)(ℎ𝑖(𝑥) −

ℎ𝑖( 𝑥 ∣∣ 𝑦𝑖 )) = ϵ𝑖(ℎ𝑖( 𝑥 ∣∣ 𝑧𝑖 ) − ℎ𝑖(𝑥)) < 0. This conclusion proves that there is a 

neighborhood of 𝑦 where (6) holds for all 𝑥 ≠ 𝑦. 

(ii) ⇒ (i). Proposition 1. ∎ 

3 Potential Games 
An 𝑁-player game is a potential game (Monderer and Shapley 1996) if it admits an (exact) 

potential, which is a real-valued function 𝑃 on the set of strategy profiles such that, 

whenever a single player 𝑖 changes his strategy, the resulting change in 𝑖’s payoff equals the 

change in 𝑃. Thus,  

ℎ𝑖( 𝑥 ∣∣ 𝑦𝑖 ) − ℎ𝑖(𝑥) = 𝑃( 𝑥 ∣∣ 𝑦𝑖 ) − 𝑃(𝑥), 𝑥 ∈ 𝑋, 𝑦𝑖 ∈ 𝑋𝑖 . 

For potential games, stability and instability of strategy profiles have particularly simple 

characterizations in terms of the extremum points of the potential. 

Theorem 2. A strategy profile 𝑦 in an 𝑁-player game with a potential 𝑃 is stable, weakly 

stable or definitely unstable if and only if 𝑦 is a strict local maximum point, local maximum 

point or strict local minimum point of 𝑃, respectively. A global maximum point of 𝑃 is both 

globally weakly stable (and if it is a strict global maximum point, globally stable) and an 

equilibrium.  

Proof. The first part of the theorem is an immediate corollary of the fact that, by the 

definition of 𝑃, expression (3) can be written as 

1

𝑁!
∑∑(𝑃(𝑦 ∣ 𝑥{𝜋(1),𝜋(2),…,𝜋(𝑗)}) − 𝑃(𝑥 ∣ 𝑦{𝜋(𝑗),𝜋(𝑗+1),…,𝜋(𝑁)}))

𝑁

𝑗=1𝜋∈Π

=  𝑃(𝑥) − 𝑃(𝑦). 

The special case where the topology is the trivial one and the definition of 𝑃 immediately 

give the second part of the theorem. ∎ 

4 Games with Differentiable Payoffs 
Consider an 𝑁-player game where the strategy space of each player 𝑖 is a set in a Euclidean 

space ℝ𝑛𝑖, with 𝑛𝑖 ≥ 1, and the topology is given by the Euclidean distance. A strategy 

profile 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑁) is viewed as an 𝑛-dimensional column vector, where 𝑛 = ∑ 𝑛𝑖𝑖 . It 

is an interior strategy profile if each strategy 𝑥𝑖  lies in the interior of player 𝑖’s strategy space 

(equivalently, if 𝑥 lies in the interior of the product space). The gradient with respect to the 

components of player 𝑖’s strategy is denoted ∇𝑖 and is viewed as an 𝑛𝑖-dimensional column 

vector (of first-order differential operators). For any 𝑖 and 𝑗, ∇𝑖∇𝑗
T is therefore an 𝑛𝑖 × 𝑛𝑗 

matrix (of second-order differential operators). In particular, ∇𝑖∇𝑖
Tℎ𝑖 is the Hessian matrix of 

player 𝑖’s payoff function with respect to the player’s own strategy. These Hessian matrices 

are the diagonal blocks in the 𝑛 × 𝑛 block matrix  



7 

𝐻 = (
∇1∇1

Tℎ1 ⋯ ∇1∇𝑁
Tℎ1

⋮ ⋱ ⋮
∇𝑁∇1

Tℎ𝑁 ⋯ ∇𝑁∇𝑁
Tℎ𝑁

). 

The value that the matrix 𝐻 attains when its entries are evaluated at a strategy profile 𝑥 is 

denoted 𝐻(𝑥). The following result, which is a generalization of Proposition 7 in Milchtaich 

(2012), connects this value with the stability or instability of the strategy profile. 

Theorem 3. In an 𝑁-player game where the strategy space of each player is a set in a 

Euclidean space, let 𝑦 be an interior equilibrium with a neighborhood where the players’ 

payoff functions are twice continuously differentiable. A sufficient condition for 𝑦 to be 

stable or definitely unstable is that 𝐻(𝑦) is negative definite or positive definite, 

respectively, and a necessary condition for weak stability is that it is negative semidefinite.1  

Proof. By Lemma 1, and with 𝜒𝑆 denoting the characteristic function of a set of players 𝑆, 

expression (3) can be written as  

1

𝑁
∑∑

1

( 𝑁−1|𝑆∖{𝑖}|)
(𝜒𝑆(𝑖) ℎ𝑖( 𝑦 ∣∣ 𝑥𝑆 ) − 𝜒𝑆∁(𝑖) ℎ𝑖( 𝑦 ∣∣ 𝑥𝑆 ))

𝑖𝑆

. 

For 𝑥 tending to 𝑦, equivalently, ϵ𝑖 = 𝑥𝑖 − 𝑦𝑖 → 0 for all 𝑖, (10) can be written as  

1

𝑁
∑∑

1

( 𝑁−1|𝑆∖{𝑖}|)
(𝜒𝑆(𝑖) − 𝜒𝑆∁(𝑖))(ℎ𝑖 +∑∇𝑗

Tℎ𝑖  ϵ𝑗
𝑗∈𝑆

+
1

2
∑∑ϵ𝑘

T ∇𝑘∇𝑗
Tℎ𝑖  ϵ𝑗

𝑘∈𝑆𝑗∈𝑆

)

𝑖𝑆

+ 𝑜(‖𝜖‖2), 

where the payoff function ℎ𝑖 and its partial derivatives are evaluated at the point 𝑦 and ‖𝜖‖ 

is the (Euclidean) length of the vector ϵ = (ϵ1, ϵ2, … , ϵ𝑁) = 𝑥 − 𝑦. For each player 𝑖, the 

coefficient of ℎ𝑖 in (11) is 

1

𝑁
∑

1

( 𝑁−1|𝑆∖{𝑖}|)
(𝜒𝑆(𝑖) − 𝜒𝑆∁(𝑖))

𝑆

=
1

𝑁
∑

1

( 𝑁−1|𝑆∖{𝑖}|)
[(𝜒𝑆(𝑖) − 𝜒𝑆∁(𝑖)) + (𝜒𝑆∪{𝑖}(𝑖) − 𝜒(𝑆∪{𝑖})∁(𝑖))]

𝑆
𝑖∉𝑆

 

= 0, 

where the second equality holds because the condition 𝑖 ∉ 𝑆 implies that the expression in 

square brackets is zero. For each 𝑖 and 𝑗, the coefficient of ∇𝑗
Tℎ𝑖  ϵ𝑗 in (11) is 

1

𝑁
∑

1

( 𝑁−1|𝑆∖{𝑖}|)
(𝜒𝑆(𝑖) − 𝜒𝑆∁(𝑖))

𝑆
𝑗∈𝑆

, 

which by a similar argument is zero if 𝑗 ≠ 𝑖. For each 𝑖, 𝑗 and 𝑘, the coefficient of 

ϵ𝑘
T ∇𝑘∇𝑗

Tℎ𝑖  ϵ𝑗 is  

                                                            
1 𝐻 is said to be negative definite, negative semidefinite or positive definite if the symmetric matrix 

(1/2)(𝐻 + 𝐻T) has the same property, equivalently, if all the eigenvalues of the symmetric matrix 

are negative, nonpositive or positive, respectively. 

(9) 

(10) 

(11) 
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1

2𝑁
∑

1

( 𝑁−1|𝑆∖{𝑖}|)
(𝜒𝑆(𝑖) − 𝜒𝑆∁(𝑖))

𝑆
𝑗,𝑘∈𝑆

, 

which again is zero if 𝑗 and 𝑘 are both different from 𝑖. If 𝑗 = 𝑘 = 𝑖, then (12) is equal to  

1

2𝑁
∑

1

(𝑁−1|𝑆|−1)𝑆
𝑖∈𝑆

=
1

2𝑁
∑
(𝑁−1𝑙−1 )

(𝑁−1𝑙−1 )

𝑁

𝑙=1

=
1

2
, 

and if 𝑘 = 𝑖 but 𝑗 ≠ 𝑖 or vice versa, then it is equal to 

1

2𝑁
∑

1

(𝑁−1|𝑆|−1)𝑆
𝑗,𝑘∈𝑆

=
1

2𝑁
∑
(𝑁−2𝑙−2 )

(𝑁−1𝑙−1 )

𝑁

𝑙=2

=
1

2𝑁
∑

𝑙 − 1

𝑁 − 1

𝑁

𝑙=2

=
1

4
. 

Finally, ∇𝑖ℎ𝑖 = 0 for each player 𝑖, because the interior equilibrium 𝑦 necessarily satisfies 

these first-order maximization conditions. Therefore, (11) reduces to  

∑(
1

4
∑ϵ𝑖

T ∇𝑖∇𝑗
Tℎ𝑖  ϵ𝑗

𝑗

+
1

4
∑ϵ𝑘

T ∇𝑘∇𝑖
Tℎ𝑖  ϵ𝑖

𝑘

)

𝑖

+ 𝑜(‖𝜖‖2) =
1

2
ϵT𝐻(𝑦)ϵ + 𝑜(‖𝜖‖2), 

where the equality holds because, at 𝑦, the partial derivatives of ℎ𝑖 commute and therefore 

ϵ𝑘
T ∇𝑘∇𝑖

Tℎ𝑖  ϵ𝑖 = ϵ𝑘
T (∇𝑖∇𝑘

Tℎ𝑖)
T ϵ𝑖 = ϵ𝑖

T ∇𝑖∇𝑘
Tℎ𝑖  ϵ𝑘. If 𝐻(𝑦) is negative definite or positive 

definite and ϵ ≠ 0, then ϵT𝐻ϵ is negative or positive, respectively, and its absolute value is 

at least |𝜆0|‖𝜖‖
2, where 𝜆0 ≠ 0 is the eigenvalue closest to 0 of (1/2)(𝐻(𝑦) + 𝐻(𝑦)T). 

Therefore, in the first or second case, (13) is positive or negative for 𝜖 sufficiently close to 0, 

which proves that (3) is negative or positive, respectively, for 𝑥 sufficiently close to 𝑦. Thus, 

𝑦 is stable or definitely unstable, respectively. If 𝐻(𝑦) is not negative semidefinite, then 

(1/2)(𝐻(𝑦) + 𝐻(𝑦)T) has an eigenvector 𝜂 with eigenvalue 𝜆 > 0, so that 𝜂T𝐻(𝑦)𝜂 is 

positive and equal to 𝜆‖𝜂‖2. This means that there are strategy profiles 𝑥 arbitrarily close to 

𝑦 for which (3) is positive, so that 𝑦 is not weakly stable. ∎ 

4.1 Comparison with dynamic stability 
The notion of static stability, as defined in this paper, is based on incentives rather than 

motion. Dynamic stability, by contrast, is based on explicit assumptions about the way that 

incentives to move translate into actual changes of strategies. For example, if the players’ 

strategy spaces are unidimensional (i.e., 𝑛𝑖 = 1 for all 𝑖), the law of motion may take the 

form  

𝑑𝑥𝑖
𝑑𝑡
= 𝑑𝑖ℎ𝑖,𝑖(𝑥1, 𝑥2, … , 𝑥𝑁), 𝑖 = 1,2, … , 𝑁, 

where 𝑑𝑖 > 0 for all 𝑖 and ℎ𝑖,𝑖 is a shorthand for the partial derivative 𝜕ℎ𝑖/𝜕𝑥𝑖. This system 

of differential equations, where 𝑡 is the time variable, expresses the assumption that the 

rate of change of each strategy 𝑥𝑖  is proportional to the corresponding marginal payoff. With 

these dynamics, the condition for asymptotic stability of an interior equilibrium 𝑦 with a 

neighborhood where the players’ payoff functions have continuous second-order derivatives 

(12) 

(13) 

(14) 
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is that, at 𝑦, the (Jacobian) matrix 

(

𝑑1ℎ1,11 ⋯ 𝑑1ℎ1,1𝑁
⋮ ⋱ ⋮

𝑑𝑁ℎ𝑁,𝑁1 ⋯ 𝑑𝑁ℎ𝑁,𝑁𝑁

) 

(where ℎ𝑖,𝑗𝑘 = 𝜕
2ℎ𝑖/𝜕𝑥𝑘𝜕𝑥𝑗) is stable, that is, all its eigenvalues have negative real parts. 

This condition is usually required to hold for all positive adjustment speeds 𝑑1, 𝑑2, … , 𝑑𝑁 

(Dixit 1986), a requirement known as D-stability of the matrix 𝐻(𝑦) (which is obtained from 

the matrix above by setting 𝑑1 = 𝑑2 = ⋯ = 𝑑𝑁 = 1). D-stability is a weaker condition than 

negative definiteness; every negative definite matrix is D-stable but not conversely.2 For 

example, in the two-player case (𝑁 = 2), 𝐻 is D-stable if and only if  

ℎ1,11 ≤ 0 and ℎ2,22 < 0 or vice versa, and ℎ1,11ℎ2,22 > ℎ1,12ℎ2,21 

(Hofbauer and Sigmund 1998), but it is negative definite if and only if it satisfies the stronger 

condition 

ℎ1,11, ℎ2,22 < 0 and ℎ1,11ℎ2,22 >
1

4
(ℎ1,12 + ℎ2,21)

2
. 

Moreover, as the following example shows, D-stability of 𝐻(𝑦) is not a sufficient condition 

for static stability of the equilibrium 𝑦.  

Example 1 (continued). The origin (0,0) is an asymptotically stable equilibrium of the two-

player game (1), for which 

𝐻 = (
−2 3
−1 −1

), 

because (15) holds. As shown, the equilibrium is also (statically) stable, and this fact also 

follows from Theorem 3, because (16) holds. By contrast, in the game (2), where  

𝐻 = (
−2 3
0 −1

), 

the equilibrium (0,0) is not even weakly stable, because one eigenvalue of (1/2)(𝐻 + 𝐻T) 

is positive. However, (15) still holds, so that the equilibrium is asymptotic stable.  

While asymptotic stability with respect to the dynamics (14) is an essentially weaker 

condition than static stability, the same is not necessarily true for other kinds of dynamic 

stability. In particular, static stability does not imply asymptotic stability with respect to 

another natural adjustment process, in which the two players alternate in myopically playing 

a best response to their opponent’s strategy. As seen in Figure 1, starting from any other 

strategy profile, these dynamics quickly bring the players to the origin in the game (2)  but 

take them increasingly farther away from it in (1). Thus, the situation is the opposite of that 

for static stability, as the equilibrium (0,0) is stable for (1) but not for (2), and it is also 

                                                            
2 Unlike negative definiteness, for which a number of useful characterizations are known, necessary 

and sufficient conditions for D-stability of 𝑛 × 𝑛 matrices are known only for small 𝑛 (Impram et al. 

2005), and they are reasonably simple only for 𝑛 = 2. See below. 

(15) 

(16) 
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different from the situation for the simultaneous and continuous adjustment process (14), 

for which the equilibrium is asymptotically stable in both games.   

These differences between the different kinds of stability can be understood by noting that, 

if both inequalities in the first part of (15) are strict, the second part can be written as  

(−
ℎ2,21
ℎ2,22

)(−
ℎ1,12
ℎ1,11

) < 1. 

Thus, asymptotic stability of an interior equilibrium 𝑦 with respect to the dynamics (14) 

essentially requires that, at that point, the product of the slope of player 2’s reaction curve 

and the reciprocal of the slope of player 1’s curve be less than 1. This condition is similar to, 

but weaker than, the condition for asymptotic stability of the equilibrium with respect to 

alternating best responses, which is that the absolute value of the product be less than 1 

(Fudenberg and Tirole 1995). The stronger condition, which means that player 1’s reaction 

curve is steeper than that of player 2, is not implied by (15). The condition is also not implied 

by, and it does not imply, negative definiteness of 𝐻, as demonstrated by the fact that it 

does not hold for the game in (1) but does hold for (2).  

A general lesson that can be learned from the above analysis is that there is no single, 

general notion of dynamic stability with which static stability can be meaningfully compared. 

Even for a specific, simple class of games, one kind of dynamic stability may be weaker than 

static stability while another may be incomparable with it. 

Strategy of player 1 

Player 1’s 
reaction curve 

 

St
ra

te
gy

 o
f 

p
la

ye
r 

2
 

Player 2’s reaction 
curve in (1) 

Player 2’s reaction 
curve in (2)  

Figure 1. The players’ reaction curves in the two games in Example 1. Player 1’s reaction curve (upward 
sloping line) is the same in both games, but those of player 2 (horizontal and downward sloping lines) are 
different. The arrows show possible trajectories under the alternating-best-responses dynamics, in which 
player 1 moves first, then player 2, then player 1 again, and so on. For the game given by (2) (solid arrows), 
the trajectory ends at the equilibrium point (𝟎, 𝟎). For the game in (1) (dotted arrows), it spirals ways.  
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5 Comparison with Stability in Symmetric Games 
A symmetric 𝑁-player game is specified by the players’ common strategy space 𝑋, which in 

the present context is assumed to be a topological space, and a single payoff function 

𝑔: 𝑋𝑁 → ℝ that is invariant to permutations of its second through 𝑁th arguments. If one 

player uses strategy 𝑥 and the other players use 𝑦, 𝑧, … , 𝑤, in any order, the first player’s 

payoff is 𝑔(𝑥, 𝑦, 𝑧, … , 𝑤). A strategy 𝑦 is an equilibrium strategy, with the equilibrium payoff 

𝑔(𝑦, 𝑦, … , 𝑦), if  

𝑔(𝑦, 𝑦, … , 𝑦) ≥ 𝑔(𝑥, 𝑦, … , 𝑦), 𝑥 ∈ 𝑋. 

Static stability for symmetric games (Milchtaich 2017) differs from that for general 

games, referred to hereafter as asymmetric games, in that the concept is applied to 

strategies rather than strategy profiles. A strategy 𝑦 is considered stable if, when the players 

move one-by-one from 𝑦 to any nearby strategy 𝑥, their moves harm them on average. 

Definition 3. A strategy 𝑦 in a symmetric 𝑁-player game with payoff function 𝑔 is stable, 

weakly stable or definitely unstable if it has a neighborhood where, for every strategy 𝑥 ≠ 𝑦, 

the inequality  

1

𝑁
∑(𝑔(𝑥, 𝑥, … , 𝑥⏟  ,

𝑗−1 times

𝑦, … , 𝑦⏟  
𝑁−𝑗 times

) − 𝑔(𝑦, 𝑥, … , 𝑥⏟  ,
𝑗−1 times

𝑦,… , 𝑦⏟  
𝑁−𝑗 times

))

𝑁

𝑗=1

< 0, 

a similar weak inequality or the reverse (strict) inequality, respectively, holds. 

This definition of stability generalizes a number of more special concepts of statics stability, 

which are applicable only to specific classes of symmetric games, such as evolutionarily 

stable strategy, or ESS (Milchtaich 2017). Conceptually, it is similar to Definition 1, and in a 

sense, the latter can be derived from it. The link between the two definitions is provided by 

the concept of symmetrization of an asymmetric game. An 𝑁-player game ℎ, where the 

strategy space 𝑋𝑖 of each player 𝑖 is a topological space, is symmetrized by letting the players 

switch roles, with all possible permutations considered. This yields a symmetric 𝑁-player 

game where the players’ common strategy space is the space 𝑋 = 𝑋1 × 𝑋2 ×⋯× 𝑋𝑁 of all 

strategy profiles in the asymmetric game, with the product topology. For a player in 𝑔, a 

strategy 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑁) ∈ 𝑋 specifies the strategy 𝑥𝑖  the player will use when called to 

assume the role of any player 𝑖 in ℎ, and the payoff is defined as his average payoff in the 𝑁! 

possible assignments of players in 𝑔 to roles in ℎ. Formally, for any 𝑁 strategies in 𝑋, 

𝑥1 = (𝑥1
1, 𝑥2

1, … , 𝑥𝑁
1 ), 𝑥2 = (𝑥1

2, 𝑥2
2, … , 𝑥𝑁

2 ), … , 𝑥𝑁 = (𝑥1
𝑁 , 𝑥2

𝑁 , … , 𝑥𝑁
𝑁), 

𝑔(𝑥1, 𝑥2, … , 𝑥𝑁) =
1

𝑁!
∑ ℎ𝜋(1)(𝑥1

𝜋−1(1) 
, 𝑥2
𝜋−1(2) 

, … , 𝑥𝑁
𝜋−1(𝑁) )

𝜋∈Π

, 

where Π is the set of all permutation of (1,2, … , 𝑁) and ℎ𝑖 denotes the payoff function of 

player 𝑖 in ℎ. (Note that superscripts in this formula index players’ strategies in the 

symmetric game 𝑔 while subscripts refer to roles in the asymmetric one ℎ. For 𝜋 ∈ Π, player 

𝑖 in 𝑔 is assigned to role 𝜋(𝑖) in ℎ.)  

(17) 

(18) 

(19) 
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Theorem 4. A strategy profile 𝑦 in an (asymmetric) 𝑁-player game ℎ is stable, weakly stable 

or definitely unstable if and only if it has the same property as a strategy in the game 𝑔 

obtained by symmetrizing ℎ. A strategy profile is an equilibrium in ℎ if and only if it is an 

equilibrium strategy in 𝑔. In this case, the equilibrium payoff in 𝑔 is equal to the players’ 

average equilibrium payoff in ℎ. 

Proof. By (19), the sum in (18) is equal to 

1

𝑁!
∑∑(ℎ𝜋(1)(𝑦 ∣ 𝑥{𝜋(1),𝜋(2),…,𝜋(𝑗)}) − ℎ𝜋(1)(𝑥 ∣ 𝑦{𝜋(1),𝜋(𝑗+1),𝜋(𝑗+𝑛),…,𝜋(𝑁)}))

𝑁

𝑗=1𝜋∈Π

. 

The payoffs in (20) have the form ℎ𝑖( 𝑦 ∣ 𝑥𝑆 ) or ℎ𝑖( 𝑥 ∣∣ 𝑦𝑆 ), with 𝑖 ∈ 𝑆. Specifically, 𝑖 is given 

by the equation 𝑖 = 𝜋(1) and 𝑆 is given by the equation 𝑆 = {𝜋(1), 𝜋(2), … , 𝜋(𝑗)} or by 

𝑆 = {𝜋(1), 𝜋(𝑗 + 1), 𝜋(𝑗 + 𝑛), … , 𝜋(𝑁)}. In both cases, for every pair (𝑆, 𝑖) with 𝑖 ∈ 𝑆 there 

are precisely (|𝑆| − 1)! (𝑁 − |𝑆|)! pairs (𝜋, 𝑗) satisfying the two equations (as 𝑗 is uniquely 

determined by |𝑆|). Therefore, (20) is equal to  

∑∑
(|𝑆| − 1)! (𝑁 − |𝑆|)! 

𝑁!
(ℎ𝑖( 𝑦 ∣ 𝑥𝑆 ) − ℎ𝑖( 𝑥 ∣∣ 𝑦𝑆 ))

𝑖∈𝑆𝑆≠∅

. 

By Lemma 1, this expression is equal to (3). The equality proves the first part of the theorem. 

The strategy profile 𝑦 is an equilibrium strategy in 𝑔 if and only if the expression obtained by 

setting 𝑥2 = 𝑥3 = ⋯ = 𝑥𝑁 = 𝑦 in the right-hand side of (19) is maximized by choosing 

𝑥1 = 𝑦. That expression can be simplified by partitioning the set of permutations Π into 𝑁 

equal-size parts, each of cardinality (𝑁 − 1)!, according to the value 𝑖 of 𝜋(1). Thus, the 

expression under consideration is equal to 

1

𝑁
∑ℎ𝑖(𝑦1, 𝑦2, … , 𝑥𝑖

1, … , 𝑦𝑁)

𝑁

𝑖=1

. 

Clearly, choosing 𝑥1 = 𝑦 maximizes this sum if and only if, for each 𝑖, the 𝑖th term is 

maximized by choosing 𝑥𝑖
1 = 𝑦𝑖. The latter is also the condition for 𝑦 to be an equilibrium in 

ℎ. If it holds, then the maximum (obtained by setting 𝑥𝑖
1 = 𝑦𝑖  in each of the terms) is the 

players’ average equilibrium payoff in ℎ. ∎ 

Another notion of static stability in symmetric games is local superiority (or strong 

uninvadability; Bomze 1991). Its definition differs from that of stability in that (18) is 

replaced with the inequality

𝑔(𝑥, 𝑥, … , 𝑥) − 𝑔(𝑦, 𝑥, … , 𝑥) < 0. 

Thus, a change of strategy from 𝑥 to 𝑦 is required to benefit the first player who makes 

this move. It is easy to see that a strategy profile 𝑥 in an asymmetric game ℎ is locally 

superior if and only if 𝑥 is locally superior as a strategy in the symmetric game 𝑔 obtained by 

symmetrizing ℎ. Indeed, the left-hand sides of (6) and (21) are equal. 

(20) 

(21) 
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In a symmetric game 𝑔, a strategy 𝑦 that is stable or even globally stable (that is, stable with 

respect to the trivial topology) is not always an equilibrium strategy of even a “local 

equilibrium strategy”. That is, the inequality in (17) may not hold for 𝑥 arbitrary close to 𝑦. 

For example, in the symmetric two-player game where the strategy space is the real line and 

𝑔(𝑥, 𝑦) = 𝑥2 − 3𝑥𝑦, the origin 0 is globally stable but it is not a local equilibrium strategy. 

This contrasts with the situation for asymmetric games, where a stable strategy profile is 

always a local strict equilibrium. This difference suggests that, in some sense, the first kind of 

stability is weaker than the second kind.  

In some classes of symmetric games, a stable strategy is automatically an equilibrium 

strategy. For example, this is so for symmetric 𝑛 × 𝑛 games, where a strategy is stable if and 

only if it is an ESS (Milchtaich 2017). However, even in this case, the stability condition is in a 

sense weaker than the corresponding one for asymmetric games, as an ESS is not necessarily 

a pure strategy and therefore the (symmetric) equilibrium specified by it is not necessarily 

strict. This contrasts with the situation for asymmetric 𝑚 × 𝑛, or bimatrix games, where a 

strategy profile is stable if and only if it is a strict (hence, pure) equilibrium (Theorem 1).  

By the last fact and Theorem 4, the stable strategies in the game 𝑔 obtained by 

symmetrizing a bimatrix game ℎ are the strict equilibria in ℎ. This conclusion is similar, and 

closely related, to the well-known fact that a strategy profile 𝑦 in 𝑔 is an ESS if and only if it 

is a strict equilibrium in ℎ (Selten 1980). The similarity reflects (indeed, it proves) the fact 

that in a game obtained by symmetrizing a bimatrix game, a strategy is stable if and only if it 

is an ESS. Thus, these symmetric games are similar in this respect to a symmetric 𝑛 × 𝑛 

games (although they are generally not 𝑛 × 𝑛 games, for any 𝑛).  

5.1 Inessentially asymmetric games  
A direct comparison between the concepts of stability of a strategy in a symmetric game and 

stability of a strategy profile in an asymmetric game is provided by the inessentially 

asymmetric games. An asymmetric 𝑁-player game ℎ is inessentially asymmetric if the 

players share a common strategy space and for every strategy profile (𝑥1, 𝑥2, … , 𝑥𝑁) and 

permutation 𝜋 of (1,2, … , 𝑁) 

ℎ𝑖(𝑥𝜋(1), 𝑥𝜋(2), … , 𝑥𝜋(𝑁)) = ℎ𝜋(𝑖)(𝑥1, 𝑥2, … , 𝑥𝑁), 𝑖 = 1,2, … , 𝑁. 

Thus, if the players’ strategies are shuffled, such that each player 𝑖 takes the strategy of 

some other player 𝜋(𝑖), the latter’s old payoff becomes player 𝑖’s new payoff. In other 

words, the rules of the game ignore the players’ identities, and are therefore completely 

specified by the payoff function of any single player, and in particular by ℎ1. The latter may 

be viewed as the payoff function in a symmetric game. In fact, for fixed strategy space and 

number of players 𝑁, the mapping ℎ ↦ ℎ1 is a one-to-one correspondence between the set 

of inessentially asymmetric games and the set of symmetric games. It may thus seem that 

there is little difference between the two concepts. And, indeed, inessentially asymmetric 

games are usually referred to simply as symmetric games (von Neumann and Morgenstern 

1953). However, there is in fact a substantive, non-technical difference between describing a 

particular situation as a symmetric game and describing it as an inessentially asymmetric 

game, with each alternative corresponding to a different interpretation of the situation. This 

(22) 
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fact is well recognized in the biological game theory literature, where inessential asymmetry 

is often referred to by other names such as uncorrelated asymmetry (Maynard Smith and 

Parker 1976; the correlation referred to here is that between the players’ traits and their 

payoff functions). A symmetric pairwise contest with identical contestants, such as two 

equal-size males seeking to obtain a newly vacated territory, is best modeled as a symmetric 

game such as Chicken, or the Hawk–Dove game. Precedence or other perceivable 

asymmetries between the contestants, which do not by themselves change the payoffs (i.e., 

the stakes or the opponents’ fighting abilities), make the contest an inessentially asymmetric 

game, and, in reality, may significantly affect the contestants’ behavior (Maynard Smith 

1982; Riechert 1998). 

The differences between a symmetric game and the corresponding inessentially asymmetric 

game are reflected by the differences between the corresponding notions of stability: 

stability of a strategy in the first case and stability of a strategy profile in the second case. 

The second notion is more general, in that it is applicable also to strategy profiles in which 

different players are using different strategies. However, even in the case of a symmetric 

strategy profile, in which all players use the same strategy 𝑦, and even if 𝑦 is an equilibrium 

strategy in the symmetric game (i.e., it satisfies (17)), stability of 𝑦 in the symmetric game 

and stability of the symmetric equilibrium (𝑦, 𝑦, … , 𝑦) in the essentially asymmetric game 

are not the same thing. In fact, the second requirement is stronger.3  

Proposition 2. A symmetric strategy profile  𝑦⃗ = (𝑦, 𝑦, … , 𝑦) in an inessentially asymmetric 

𝑁-player game ℎ is an equilibrium if and only if strategy 𝑦 is an equilibrium in the 

corresponding symmetric game 𝑔 (= ℎ1). If  𝑦⃗ is stable in ℎ, then 𝑦 is stable in 𝑔. However, 

the converse does not necessarily hold even if  𝑦⃗ is an equilibrium and 𝑁 = 2.  

Proof. The first assertion follows from the fact that, in a symmetric strategy profile in an 

inessentially asymmetric game, some player can gain from a unilateral change of strategy if 

and only if player 1 can gain from making the same move. To prove the second assertion, 

consider another symmetric strategy profile 𝑥⃗ = (𝑥, 𝑥, … , 𝑥), a player 𝑖 and a set of players 𝑆 

with 𝑖 ∈ 𝑆. Let 𝜋 be a permutation that maps 1 to 𝑖 (that is, 𝜋(1) = 𝑖) and maps 2,3, … , |𝑆| 

to the other elements of 𝑆 (if any). By (22),  

ℎ𝑖( 𝑦⃗ ∣ 𝑥⃗𝑆) = ℎ1(𝑥, … , 𝑥⏟  ,
|𝑆| times

𝑦,… , 𝑦⏟  
|𝑆∁| times

). 

It follows from this equality by (4) that  

𝐼(𝑥⃗, 𝑦⃗) − 𝐼(𝑦⃗, 𝑥⃗) =∑(ℎ1(𝑥, … , 𝑥⏟  ,
𝑗 times

𝑦,… , 𝑦⏟  
𝑁−𝑗 times

) − ℎ1(𝑦, … , 𝑦⏟  ,
𝑗 times

𝑥,… , 𝑥⏟  
𝑁−𝑗 times

))

𝑁

𝑗=1

 

= ∑(𝑔(𝑥, 𝑥, … , 𝑥⏟  ,
𝑗−1 times

𝑦,… , 𝑦⏟  
𝑁−𝑗 times

) − 𝑔(𝑦, 𝑥, … , 𝑥⏟  ,
𝑁−𝑗 times

𝑦,… , 𝑦⏟  
𝑗−1 times

))

𝑁

𝑗=1

, 

                                                            
3 For bimatrix games, a related difference holds for the index and degree of the symmetric 

equilibrium, which may depend on whether it is viewed as an equilibrium in the inessentially 

asymmetric bimatrix game or in the corresponding symmetric 𝑛 × 𝑛 one (Demichelis and Germano 

2000). 
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where the second equality once again uses (22) (for the second term). As the last sum is 

easily seen to be equal to that in (18), 𝑦 is stable in 𝑔 if and only if 𝐼(𝑥⃗, 𝑦⃗) − 𝐼(𝑦⃗, 𝑥⃗) < 0 for 

all 𝑥 ≠ 𝑦 in some neighborhood of 𝑦. By Lemma 1, a sufficient condition for this is that 𝑦⃗ is 

stable.  

To see that the last condition is not necessary, consider any symmetric 2 × 2 game, with 

payoff matrix 𝐴, that has an ESS (equivalently, a stable strategy) 𝑦 that is not pure. As the 

strategy profile (𝑦, 𝑦) is also not pure, by Theorem 1 it is not a stable equilibrium in the 

corresponding inessentially asymmetric bimatrix game (𝐴, 𝐴T). ∎ 

As the proof of Proposition 2 clearly suggests, the reason why stability of a symmetric 

strategy profile (𝑦, 𝑦, … , 𝑦) (in an inessentially asymmetric game) is a more stringent 

requirement than stability of the strategy 𝑦 (when the game is viewed as a symmetric one) is 

that the former takes into consideration a larger set of alternatives. An alternative to a 

strategy is another (nearby) strategy 𝑥, to which all the players move. The alternatives to a 

strategy profiles include (nearby) strategy profiles that are not symmetric, which means that 

only some of the players may move to 𝑥 while the others stick with 𝑦 or move to other 

strategies. The special case that involves only one player moving from 𝑦 implies that 

(𝑦, 𝑦, … , 𝑦) is stable only if it is a local strict equilibrium. As indicated, stability of the 

strategy 𝑦 does not require this condition. 

In an inessentially asymmetric game with differentiable payoffs and a unidimensional 

strategy space (𝑛𝑖 = 1 for all 𝑖), the matrix 𝐻 defined by (9) is symmetric at any symmetric 

strategy profile where the second-order derivatives exist. A symmetric matrix is negative 

definite if and only if it is D-stable. As shown in Section ‎4.1, this means that static stability of 

a symmetric strategy profile is essentially equivalent to asymptotic stability with respect to 

the dynamics (14). For example, in the two-player case (𝑁 = 2), or games in the plane, the 

inessential asymmetry condition (22) implies that, at any interior symmetric strategy profile, 

ℎ1,11 = ℎ2,22  and  ℎ1,12 = ℎ2,21. 

With these equalities, (15) and (16) are both equivalent to  

ℎ1,11, ℎ2,22 < 0  and  |
ℎ2,21
ℎ2,22

| < 1. 

At any interior equilibrium, the second-order maximization condition ℎ𝑖,𝑖𝑖 ≤ 0 holds 

automatically for 𝑖 = 1,2, and the first part of (23) only adds the requirement that the 

inequalities are strict. As shown in Section ‎4.1, the inequality in the second part means that 

the equilibrium is asymptotically stable with respect to alternating best responses. Thus, for 

an interior symmetric equilibrium, this kind of (dynamic) stability, asymptotic stability with 

respect to the continuous dynamics (14), and static stability are all essentially equivalent to 

one another and to the condition that, at the equilibrium point, the slope of player 2’s 

reaction curve is less than 1 but greater than −1. This pair of inequalities is stronger than 

the condition for static stability of an equilibrium strategy in a symmetric game, which 

consists of the first inequality only (Milchtaich 2017). This difference is another example of 

the more lenient nature of the stability condition in symmetric games in comparison with 

inessentially asymmetric games.  

(23) 
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