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Abstract

A forecasting exercise is presented to assess the predictive potential of a daily price index based on online

prices, compiled by web scrapping by the private company PriceStats in cooperation with a finance research

corporation, State Street Global Markets, as a predictor for a measure of the monthly core inflation rate in

Argentina, known as “resto IPCBA” and published by the Statistics Office of the Government of the City of

Buenos Aires. Mixed frequency regression models offer a convenient arrangement to accommodate variables

sampled at different frequencies and hence many specifications are tested. Various classes of MIDAS models

are found to produce a slight boost in terms of out-of-sample predictive performance at immediate horizons

when compared to benchmark naïve models and estimators. Additionally, an analysis of intraperiod forecasts,

reveals a slight trend towards increased forecast accuracy as the daily variable approaches a full month for

certain horizons.

Keywords: MIDAS, distributed lags, core inflation, forecasting
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1 Introduction

Forecasting inflation as frequently as possible has become increasingly important in Argentina as it is essential

for economic agents to adjust wages and prices. In regard to this matter, having timely updates about the

future trajectory of the inflation rate is essential for conducting monetary policy, specially, since the Central

Bank is transitioning towards an inflation targeting regime. Recent developments in the use of “big data” has

greatly facilitated tracking macroeconomics variables in real-time. A remarkable example is the construction

of online price indexes that are sampled daily, at a much higher frequency when compared to standard price

indexes from statistical offices that are often sampled monthly. A natural question arises of whether this

information can help anticipate the lower frequency inflation (in terms of which inflation targets are usually

defined). Ghysels et al. (2004) introduced a regression framework that allows the exploitation of times series

sampled at different frequencies, known in the literature as Mixed Data Sampling (MIDAS) regression models.

The methodology reduces to fitting a regression model to some low frequency variable using high frequency

data as regressors. As it will be shown later, this technique closely resembles distributed lag models. In this

paper, I will employ this methodology to assess whether the combination of price series sampled at different

frequencies is an effective tool to improve forecast accuracy compared to naïve models, in particular using the

online price index constructed by PriceStats in cooperation with State Street Global Markets.

The rest of the paper is organized as follows, in Section (2) I present a brief introduction to MIDAS models;

in Section (3) I go through existing research on applications of MIDAS regressions to forecasting inflation as

well as the derivation of some useful models and results; in Section (4) I describe the forecasting exercise

and comment on the results and the accuracy of the models in terms of root mean square error (RMSFE) and

in Section (5) I present a short conclusion; and motivate further research in this area.

2 MIDAS Regression Models

MIDAS regression models propose a data driven method to aggregate high frequency variables into lower

frequency predictors and provides an alternative to the well known “bridge” approach (Schumacher, 2016)

where the high frequency variables are aggregated with equal weights (flat aggregation).1 Ghysels et al.

(2004) suggest to combine yt , a low frequency process, and xτ a high frequency process that is observed a

discrete and fixed number of times m each time a new value of yt is observed, in a plain regression equation,

yt =
m−1
∑

j=0

θ j x t− j/m + ut , (1)

or more compactly,

yt = xtθ + ut , (2)

where xt ≡ [x t . . . x t−(m−1)/m] is a 1×m row vector that collects all the xτ corresponding to period t and

θ ≡ [θ0 . . .θm−1]′ is the m×1 vector of weight coefficients.2 Each j high frequency observation x t− j/m within

the low frequency period t enters the model linearly as a variable accompanied by its specific weight, θ j ,

totaling m explanatory variables and m weights, plus an error term. The high frequency subindex τ needs to

1In fact, this can be considered as a special case of a MIDAS regression.
2This equation may also include constants, trends, seasonal terms or other low frequency explanatory variables.
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be represented in terms of the low frequency index t by noting that τ= t−1+ j/m for j = 1, . . . , m since m is

fixed, where x t−0/m would be the most recent observation. This structure, in fact, conceals a high frequency

lag polynomial θ (L1/m) ≡
∑m−1

j=0 θ j L
j/m x t so that L j/m x t = x t− j/m in a similar fashion to a distributed lags

model.

In order to provide a clearer perspective, it is perhaps easier to introduce matrix notation. Defining X ≡

[x′1 . . .x′T ]
′ as the T ×m matrix that groups all the xt vectors together; y ≡ [y1 . . . yT ]′, the collection of

the low frequency observations of size T ×1; and u≡ [u0 . . . uT ]′, the residuals of the same length as y, it is

possible to unveil a simple multiple regression equation,
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. (3)

Indeed this problem can be solved by ordinary least squares (OLS) and this method will produce consistent

coefficient estimates. Equation (1) is usually referred to as the unrestricted MIDAS regression model (U-

MIDAS).3 However, an inconvenience arises when m, the length of the vector θ, is large relative to the sample

size T , which is often the case with MIDAS regressions. When this occurs, the models suffers from parameter

proliferation and OLS estimation produces poor estimates and consequently, poor forecasts. A simple way to

overcome this deficiency is to impose restrictions on the coefficients of the high frequency lag polynomial and

restate each θ j as function of some q hyperparameters and its subindex j (its position within the low frequency

lag polynomial) in a such a way that q >> m. Each θ j is redefined as θ j ≡ w j(γ; j) where γ is the collection

of q hyperparameters that characterize the weight function w j(·). Equation (1) is then transformed to,

yt = λ
m−1
∑

j=0

�

w j(γ; j)
∑ j=0

m−1 w j(γ; j)

�

x t− j/m + ut . (4)

where λ is an impact parameter and the weights are normalized so that they sum up to unity. Ghysels et al.

(2004) initially recommended what is known as the exponential Almon polynomial as a candidate for weight

function as it allows for many different shapes and depends only on very few parameters. This is an exponen-

tiated version of an Almon lag polynomial well known in the distributed lags literature,4

θ j(γ1, . . . ,γq; j) = e
∑q

s=1 γs js
. (a)

Another conventional candidate is the beta probability density (also normalized),

θ j(γ1,γ2; j) = zγ1−1
j (1− z j)

γ2−1, (b)

with z j ≡ j/(m− 1).

Parameterization as in Equation (a) has proved to be quite popular and has become the standard among

researchers, particularly when q = 2.

The introduction of constrained coefficients like the parameterizations above has many far-reaching implica-

tions. The model turns nonlinear and lacks a closed form solution. It is necessary to resort to nonlinear least
3Foroni et al. (2015) present a detailed assessment of this model.
4See for example the book by Judge et al. (1985).
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squares and approximate the solution by numerical optimization routines. Additionally, the constraints are

highly likely to introduce a bias in each θ j . However, based on Monte Carlo simulations, when the sample

size is small relative to the number of parameters, Ghysels et al. (2016) argue that both parameter estimation

precision and out-of-sample forecast accuracy gained by the increase in degrees of freedom, far offset the

effects of the bias generated by misspecified constraints.

MIDAS models are intended as a direct forecasting tool as this can be more robust against misspecification

(Marcellino et al., 2006) and are horizon specific in opposition to iterative forecasting in bridge equations; in

other words, parameter estimates will differ based on the desired forecast horizon h, since the projection will

be done on a different information set.5 Setting W (L1/m;γ)≡
∑m−1

j=0 w j(γ; j)L1/m, the h period ahead forecast

will be given by,

ŷT+h|T = λ̂hW (L1/m; γ̂h)xT . (5)

Note that MIDAS regressions allow for noninteger forecast horizons, i.e. intraperiod forecasts. One simply

needs to project on x t+ j/m for desired t and j.

To get to Equation (5), it is first necessary to estimate,

yt = λW (L1/m;γ)x t−h + ut , (6)

and then compute ŷT+h|T with the estimated parameters, λ̂h and γ̂h), and {x t , . . . , x t−(m−1)/m}.

An immediate extension of the MIDAS regression model that is going to be employed throughout this paper

is to allow for more than m high frequency regressors, for example by including px lags of the vector xt ,

totaling m× Lx high frequency variates where Lx = px + 1, as sort of a distributed lags model that is known

as MIDAS-DL,

yt =
px
∑

r=0

(θrxt−r)
′ + ut , (7)

or in matrix form,
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Estimation of different weight functions for each θ in Equation (7) constitutes the multiplicative or aggregates based

MIDAS model. On the contrary, employing a single weight function for all m× Lx coefficients θr is also possible, and this

last version will be employed in the paper.

Other possible extensions include adding high frequency leads (Andreou et al., 2013), building high frequency factors

(Marcellino and Schumacher, 2010), incorporating cointegration relations (Miller, 2013), developing a bayesian frame-

work (Rodriguez and Puggioni, 2010), integrating markov switching (Guérin and Marcellino, 2013), estimating multivari-

ate models (Ghysels et al., 2007), using infinite polynomials (Ghysels et al., 2007) or adding low frequency autoregressive

augmentations (Ghysels et al., 2007; Clements and Galvão, 2008; Duarte, 2014), for example. Foroni and Marcellino

(2013) provide a comprehensive survey of possible extensions in a recent survey about mixed frequency models.

5Marcellino et al. (2006) go through an extensive comparison of direct and iterated approaches to forecasting.
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3 Literature Review

Clements and Galvão (2008) were among the first to study applications of MIDAS regressions to macroeconomic variables.

In their paper, they forecast U.S. real quarterly output growth in combination with three different monthly variables:

industrial production, employment growth and capacity utilization. They find a slight increase in out-of-sample forecast

accuracy in terms of RMSFE both with vintage and revised data compared to two benchmarks (an autoregression and

an ADL model), particularly, for short term horizons. They also derive and assess a model with autoregressive dynamics

introduced as a common factor shared by the low and the high frequency lag polynomials. Based on Ghysels et al. (2007)

comments, they argue that including an autoregressive term in a standard MIDAS model, as in the next equation,

yt = φ yt−1 +λW (L1/m)x t + ut , (9)

induces a seasonal response from yt to x t irrespective of whether x t exhibits a seasonal pattern. They suggest to further

restrict the model, by adding a common lag polynomial shared between yt and x t ,

(1−φL)yt = λ(1−φL)W (L1/m)x t + ut , (10)

so that when writing the model in distributed lag representation, the polynomial in L cancels out, eliminating the spurious

seasonal response. A multi-step generalization of Equation (10) for h step ahead forecasts would be,

(1−φL f +1)yt = λ(1−φL f +1)W (L1/m)x t + ut , (11)

where f is just the integer part of the forecast horizon h.

Armesto et al. (2010) analyze the performance of MIDAS models for the U.S. economy regarding four different variable

combinations: i) quarterly GDP growth and monthly employment growth; ii) monthly CPI inflation and daily fed funds

rate; iii) monthly industrial production growth and a measure of term spread; and iv) employment growth and again a

measure of term spread. They contrast the results of flat aggregation, the exponential Almon polynomial and a step weight

function, but are unable to find a dominant model specification. They test configurations which include both leads and

lags and provide detailed results for intraperiod forecasting performance of the models, computed by accumulating lead

variables as the leads approach a full low frequency period. They find an erratic pattern for the RMSFE of the models as a

function of the leads included in them. This implies that, in a real time setting, it is not trivial which intraperiod forecasts

are the most accurate.

Monteforte and Moretti (2013) develop MIDAS models to forecast the euro area harmonized price index inflation. They

put forward a two step approach involving low and high frequency variables. In the first place, they estimate a generalized

dynamic factor model (Forni et al., 2000) for the inflation rate based on a set of variables, then extract a common compo-

nent and separate that into a long-run and a cyclical or short run component. The second step consists in fitting the model

of Clements and Galvão (2008) to capture short term dynamics and use financial time series as high frequency regressors,

in addition to the long-run component previously estimated as well as other low frequency variables. They design three

MIDAS models, M1, M2 and M3, each with different high frequency regressors: i) M1 includes the short term interest

rate and changes in interest rate spread and oil future prices; ii) M2 uses changes in the wheat price, oil future quotes

and the exchange rate; and finally, iii) M3 consists of long-term rates and changes in the interest rates spreads and in the

short-term rate. They contrast the out-of-sample performance in terms of RSMFE of these models against the equation

for the inflation rate of two different low frequency VARs, a random walk, an autoregressive moving average model and

an autoregression. They compute all the intraperiod forecasts for the MIDAS models, the monthly average of these daily

forecasts and compare this mean to all the low frequency models. All the analysis is conducted for one-month-ahead and

two-month-ahead forecasts. They find on average a 20% reduction in forecast error dispersion. The authors also provide

a last empirical exercise, by using forecast combinations with the MIDAS models and the inflation rate implied by financial

derivatives, but are not able to find any significant gains this way.
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Duarte (2014) discusses in detail the implications of autoregressive augmentations in MIDAS regression models and differ-

ent ways to incorporate them. The author explores the out-of-sample performance of MIDAS models with autoregressive

augmentations with no restrictions, models with an autoregressive augmentation with a common factor restriction and

models with autoregressive augmentations with no restrictions and a multiplicative scheme to aggregation, and compares

those models to the same versions but excluding the autoregressive component and to two benchmarks, a low frequency

autoregression and a low frequency multiple regression model. She computes forecasts for quarterly euro area GDP growth

based on three different series: i) industrial production, ii) an economic sentiment indicator and iii) the Dow Jones Euro

Stoxx index. She disregards the seasonal spikes impulse responses as the relevant impulse responses, as she argues that

it is not possible to single out a particularly relevant impulse response for a mixed frequency process since they vary de-

pending on when the shocks occur within the low frequency process. Although there is no superior model among all of

those tested, the author finds sizable gains compared to the naïve benchmarks at all horizons.

Breitung and Roling (2015) propose a “nonparametric” MIDAS model to forecast monthly inflation rates using a daily pre-

dictor. Instead of imposing any particular polynomial parametrization, the nonparametric approach consists on enforcing

some degree of smoothness to the lag distribution by minimizing a penalized least squares cost function,

S(θ) = (y −Xθ)′(y −Xθ) +ηθ′D′Dθ, (12)

where D is a (m− 1)× (m+ 1) matrix such that,

D =
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and η is a pre-specified smoothing parameter. They call this estimator the Smoothed Least Squares (SLS) estimator and

its structure closely resembles the well known Hodrick-Prescott filter. If η is not known, they suggest to solve for the η

that minimizes the Akaike Information Criterion. Their target variable is the harmonized index of consumer prices for

the euro area and they use a commodity price index as a high frequency regressor. They compare their model against the

recursive unconditional mean and the parametric MIDAS model (exponential Almon weights) for two different forecast

horizons. They conclude that the commodity index paired with the nonparametric MIDAS results in a reasonably good

one-month-ahead forecast. Additionally, the authors conduct a Monte Carlo experiment and compare their model to four

parametric MIDAS alternatives: the exponential Almon polynomial, a hump shaped function, a declining linear function

and sinusoidal type. They find that the nonparametric method attains similar performance compared to the parametric

competitors.

4 Data, Exercise and Results

In this paper, the out-of-sample predictive performance of a daily inflation rate series computed from a daily price index

based on online prices is analyzed in order to forecast a monthly price index, employing many different MIDAS regression

model specifications mentioned in the previous two sections.

4.1 Data

The online index is compiled by the company PriceStats in cooperation with State Street Global Markets, a leading financial

research corporation. PriceStates is a spin-off company that emerged from the Billions Prices Project at MIT, founded by

professors Alberto Cavallo and Roberto Rigobon. It is the first company, institution or organization to apply a big data
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approach to produce real-time (daily) price indexes to track general price inflation and other related metrics. Essentially,

they collect daily data of prices from a multiplicity of online retailers by “web scraping” (i.e. recording price information

contained inside specific HyperText Markup Language (HTML) tags in the retailers’ websites) and aggregate the data by

replicating the methodology of standard consumer price indexes, as is done by National Statistics Offices with offline

prices. Cavallo (2013) analyses in detail the methodology and provides comparisons between online and offline price

indexes for Argentina, Brazil, Chile, Colombia and Venezuela. He concludes that online prices are able to track well the

dynamic behavior of inflation rates over time with the exception of Argentina. In fact, the construction of online price

indexes was initially motivated in order to provide the public with an alternate measure of the inflation rate in Argentina,

since that from the years 2007 to 2015, there were large discrepancies between the official price indexes compiled by

the National Institute of Statistics and Census (INDEC) and price indexes compiled by provincial statistics offices or those

compiled by private consultants. Throughout the rest of the paper, this price index will be referred to as the State Street

PriceStats Index (SSPS). Data for Argentina is available since November 1, 2007 with a 3 day publication lag.

A provincial price index that raised itself to prominence in recent years is the consumer price index compiled by the

General Department of Statistics and Censuses of the Government of the Autonomous City of Buenos Aires, known as

IPCBA. Although this index only contemplates the territory of the City of Buenos Aires (with a population close to 3

million), it should be reasonable to expect that price dynamics in the Buenos Aires Metropolitan Area (which encompasses

a much larger population, close to 14 million or 1/3 or the total population of Argentina) share most of its features with

the pricing structure of the City Buenos Aires, due to arbitrage by reason of geographical proximity, would prevent large

distortions, at least in nonregulated markets. A more restricted version of the index is also published, called “resto IPCBA”

(rIPCBA) and it serves as a measure of core inflation. Compared to the headline version, it excludes products with strong

seasonal patterns and regulated prices (public utility services), and represents 78.15% of the headline index. rIPCBA is

available since July 2012 and is released monthly, with approximately a two week publication lag.

The above indexes and as well as other provincial private and public price indexes are closely monitored by the monetary

authorities, as well as the general public, particularly the recently released National Price Consumer Index by INDEC, that

as the name implies is the only index with full national coverage. However, this index still consists of less than a year of

data points and this severely limits the possibilities of drawing any relevant inference as of today.

4.2 Forecasting Exercise

By combining the high frequency daily inflation rate of SSPS, πSSPS
τ
≡ 100∆ ln PSSPS

τ
, and the low frequency monthly

core inflation rate of rIPCBA, the target variable, πr I PCBA
t ≡ 100∆ ln P r I PCBA

t , I will estimate different MIDAS models and

examine if these specifications can outperform single frequency naïve models. Work done by Atkeson and Ohanian (2001),

Stock and Watson (2007) and Faust and Wright (2009) found evidence for the US that naïve models, are sometimes not

easily beaten by more sophisticated models.

Inflation in Argentina in recent years has been high, unstable and volatile, particularly from 2012 to most of 2016 when

Argentina experienced high monetization of fiscal deficits, strict capital controls and two major devaluations of the cur-

rency.6 The average monthly core inflation rate according to rIPCBA has been fluctuating around 2.2% and 2.1% for the

monthly aggregated SSPS series, with coefficients of variation at 34% and 55%, respectively. This should pose a significant

challenge to formulate accurate forecasts. Figure 1 illustrates the comparison between these two indexes and provides a

quick glimpse at the potential predictive power of the high frequency index. Overall and for the scope of this work, rIPCBA

is available from July 2012 to June 2017 (60 data points) while SSPS ranges from November 1, 2007 to June 30, 2017

(3530 data points).

6The last one coinciding with the lifting of the majority of the capital controls in December 2015 and a subsequent transition to a

flexible exchange rate regime and inflation targeting.
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Figure 1: Comparison between rIPCBA inflation and SPSS inflation aggregated to monthly frequency

The MIDAS specifications to be estimated are the MIDAS-DL, the unrestricted autoregressive MIDAS-DL (MIDAS-ADL) and

the autoregressive MIDAS-DL with the common factor restriction (MIDAS-ADL-CF). All MIDAS specifications are tested

with a number of high frequency variables equal to m× Lx ,7 with Lx ∈ {1,2,3}, and forecasts are computed for periods

T + 1 (h = 0), T + 2 (h = 1) and T + 3 (h = 2) over a 24 observation evaluation sample, spanning from 2015.07 to

2017.06, and a 12 observation subsample from 2016.07 to 2017.06 (a period with a more stable inflation rate), using

recursive (expanding) windows. MIDAS-ADL-CF models include quadratic and cubic variations of the standard Almon

polynomial and the exponential version, as well as the Beta probability density function. MIDAS-ADL models further add

flat aggregation (equal weights); and, moreover, MIDAS-DL add the nonparametric (NP) model described in Section 3.

In addition, all these models are compared to two benchmarks: i) the low frequency recursive unconditional mean and ii)

a low frequency first order autoregression.

In a first stage, the models are estimated with a balanced dataset. There is exact frequency matching; m daily observations

from the same month or Lx groups of m daily observations from the same months correspond to a specific low frequency

monthly observation of the dependent variable. In total, two sets of 168 RMSFE are computed, one corresponding to the

large sample and the other to a reduced subsample.

A second stage involves estimating intraperiod forecasts for the best selected Lx for each period based on the results

from the large sample of the first stage and briefly analyzing the stability of the forecasts as more recent information is

incorporated in the models. Forecasts from the autoregression and the unconditional mean remain the same throughout

the month.

To account for the fact that SSPS is an irregularly spaced series, the frequency is assumed fixed at m= 28, and so days 29,

30 and 31 of each month are discarded.8

Estimation is conducted in R with the midasr package developed by Ghysels et al. (2016) and optimization is performed

with three routines included in optimx9 for models without a closed form solution or with the lm function from the stats

package for linear models. Models that require optimx are solved sequentially, they are first solved with ucminf, then

7MIDAS-ADL-CF includes at least m × Lx , high frequency regressors or more since the common factor restriction may increase the

number of variables depending on the forecast horizon and the number of high frequency lags.
8This is not contemplated in Figure 1. Daily observations are aggregated considering full data.
9Details about this package can be found in Nash and Varadhan (2011).
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with nlminb and finally with Nelder-Mead; inputting as initial conditions the solution from the previous algorithm. The

first algorithm is initialized taking as starting conditions the hypothesis of equal weights and a null impact parameter. This

strategy delivered reasonable results empirically and serves as a rough check on whether the high frequency regressors

are actually relevant.

4.3 Empirical Results

Tables (1) and (2) summarize the main results of the first stage. In general, for h = 0 (nowcasts), larger values of Lx

produce better results while this tends to reverse when forecasting further into the future, i.e. h= 1 or h= 2. For h= 1, the

result is ambiguous for the larger sample but the smaller sample indicates that a result in the middle like Lx = 2 performs

best. MIDAS-ADL specifications exhibit slightly worse predictive accuracy compared to MIDAS-DL and MIDAS-ADL-CF for

h = 0, the latter two also being able to produce a small gain at around 10% when compared to the autoregression and a

larger 25% against the recursive unconditional mean.10 The smaller sample greatly amplifies these results. For h= 1, the

results are again ambiguous but for h = 2, there seems to be an indication that MIDAS-DL models outperform the rest.

Note that for each h, there is a flat aggregation model that preformed very well, even better at times than standard MIDAS

models but overall, the there is not a single MIDAS model that systematically outperforms the rest.

Figures (2) to (4) condense the main findings of the second stage. Forecasts for period T +1 display a clear trend towards

better accuracy as the the high frequency variable reaches a full low frequency period. In day 1 to day 28 point to point

comparison, the RMSFE is reduced by approximately 20% and particularly, in the second half of the month, the models

start to surpass the accuracy of the autoregression by a 15% at most for some days. This trend is less evident for the

MIDAS-ADL models, except in the case of flat aggregation. The improved performance when evaluated in the subsample

suggests that it is even possible to obtain better results as the inflation rate stabilizes. Similar behavior, although less

evident, is observed for forecasts for period T + 3 in the case of MIDAS-DL models. Forecasts for period T + 2 display a

rather erratic pattern with the exception of the flat aggregation MIDAS-DL and MIDAS-ADL models.

Figures (5) zooms in on the evolution of all intraperiod forecasts for models that performed best for each specific period,

either T + 1, T + 2 or T + 3. In spite of the intraperiod forecasts evidencing some volatility within the month, this does

not seem to be a major concern as inflation stabilizes at the end of the sample. Additionally, note that forecasting further

into the future yields a dynamic closer to the unconditional mean of the whole process.

Even though the results look promising, they should be interpreted with caution since that even the “large” out-of-sample

evaluation set, actually, constitutes a very small sample by literature standards and this prevents any meaningful inference

from conventional predictive accuracy tests such as those proposed by Giacomini and White (2006), for example. In the

near future, as more observations accumulate, these results could be used as a training sample from which to compute

inverse mean square error weights and perform forecast combinations, which could prove to be effective in mitigating

intraperiod forecast volatility.

10Tables with RMSE ratios are presented in the Appendix.
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Table 1: Out-of-sample predictive performance, RMSFE

h= 0 h= 1 h= 2

Lx = 1 Lx = 2 Lx = 3 Lx = 1 Lx = 2 Lx = 3 Lx = 1 Lx = 2 Lx = 3

Almon (d = 2)

MIDAS-DL 0.701 0.703 0.633 0.889 0.804 0.803 0.794 0.804 0.824

MIDAS-ADL 0.660 0.668 0.636 0.882 0.817 0.811 0.825 0.817 0.840

MIDAS-ADL-CF 0.678 0.701 0.626 0.887 0.802 0.797 0.811 0.807 0.853

Almon (d = 3)

MIDAS-DL 0.730 0.702 0.641 0.919 0.833 0.813 0.807 0.796 0.822

MIDAS-ADL 0.687 0.659 0.646 0.914 0.853 0.817 0.835 0.804 0.838

MIDAS-ADL-CF 0.710 0.721 0.635 0.936 0.823 0.805 0.816 0.805 0.861

Exp. Almon (d = 2)

MIDAS-DL 0.749 0.753 0.635 0.974 0.873 0.833 0.818 0.821 0.816

MIDAS-ADL 0.673 0.656 0.673 0.901 0.839 0.843 0.840 0.805 0.805

MIDAS-ADL-CF 0.699 0.707 0.623 0.909 0.832 0.830 0.802 0.787 0.826

Exp. Almon (d = 3)

MIDAS-DL 0.803 0.727 0.636 0.856 0.859 0.834 0.819 0.821 0.822

MIDAS-ADL 0.689 0.649 0.670 0.902 0.844 0.850 0.835 0.835 0.834

MIDAS-ADL-CF 0.670 0.724 0.629 1.020 0.844 0.835 0.828 0.833 0.834

Beta

MIDAS-DL 0.712 0.710 0.646 0.833 0.773 0.785 0.765 0.783 0.781

MIDAS-ADL 0.635 0.711 0.690 0.821 0.791 0.797 0.807 0.817 0.815

MIDAS-ADL-CF 0.654 0.705 0.629 0.827 0.768 0.778 0.810 0.807 0.811

Flat

MIDAS-DL 1.347 0.694 0.637 0.830 0.749 0.769 0.784 0.815 0.827

MIDAS-ADL 1.052 0.671 0.636 0.821 0.768 0.814 0.798 0.839 0.853

Nonparametric

MIDAS-DL 0.691 0.704 0.637 0.869 0.804 0.806 0.787 0.799 0.825

Autoregressive

p = 1 0.695 0.695 0.695 0.794 0.794 0.794 0.848 0.848 0.848

Unconditional Mean

ȳ 0.860 0.860 0.860 0.872 0.872 0.872 0.880 0.880 0.880

Notes: The evaluation sample comprises 24 data points, from 2015.07 to 2017.06. Characters in bold

indicate the best number of variables, Lx , for each model and forecast horizon, h. Characters in italics

indicate the best model for each number of variables, Lx , and forecast horizon, h.
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Table 2: Out-of-sample predictive performance, RMSE

h= 0 h= 1 h= 2

Lx = 1 Lx = 2 Lx = 3 Lx = 1 Lx = 2 Lx = 3 Lx = 1 Lx = 2 Lx = 3

Almon (d = 2)

MIDAS-DL 0.573 0.556 0.459 0.668 0.525 0.552 0.502 0.512 0.509

MIDAS-ADL 0.517 0.535 0.478 0.644 0.543 0.560 0.560 0.550 0.560

MIDAS-ADL-CF 0.562 0.586 0.471 0.657 0.560 0.572 0.572 0.583 0.585

Almon (d = 3)

MIDAS-DL 0.607 0.591 0.464 0.705 0.548 0.565 0.513 0.494 0.500

MIDAS-ADL 0.549 0.556 0.490 0.683 0.592 0.574 0.579 0.544 0.564

MIDAS-ADL-CF 0.628 0.629 0.484 0.703 0.613 0.583 0.581 0.576 0.617

Exp. Almon (d = 2)

MIDAS-DL 0.623 0.536 0.466 0.807 0.586 0.549 0.519 0.519 0.533

MIDAS-ADL 0.552 0.509 0.509 0.652 0.535 0.555 0.560 0.554 0.554

MIDAS-ADL-CF 0.653 0.590 0.474 0.654 0.551 0.574 0.564 0.570 0.570

Exp. Almon (d = 3)

MIDAS-DL 0.635 0.594 0.462 0.546 0.538 0.543 0.519 0.519 0.524

MIDAS-ADL 0.538 0.503 0.514 0.717 0.536 0.547 0.552 0.552 0.546

MIDAS-ADL-CF 0.617 0.612 0.473 0.997 0.551 0.564 0.562 0.588 0.587

Beta

MIDAS-DL 0.631 0.526 0.482 0.594 0.473 0.521 0.480 0.508 0.522

MIDAS-ADL 0.563 0.526 0.502 0.567 0.490 0.527 0.540 0.573 0.564

MIDAS-ADL-CF 0.612 0.543 0.485 0.580 0.505 0.541 0.546 0.569 0.576

Flat

MIDAS-DL 0.615 0.544 0.428 0.614 0.476 0.505 0.479 0.532 0.548

MIDAS-ADL 0.574 0.521 0.426 0.598 0.499 0.530 0.512 0.547 0.580

Nonparametric

MIDAS-DL 0.569 0.569 0.465 0.651 0.526 0.550 0.488 0.504 0.508

Autoregressive

p = 1 0.604 0.604 0.604 0.609 0.609 0.609 0.674 0.674 0.674

Unconditional Mean

ȳ 0.607 0.607 0.607 0.612 0.612 0.612 0.616 0.616 0.616

Notes: The evaluation sample comprises 12 data points, from 2016.07 to 2017.06. Characters in bold

indicate the best number of variables, Lx , for each model and forecast horizon, h. Characters in italics

indicate the best model for each number of variables, Lx , and forecast horizon, h.
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Figure 2: Evolution of RMSFE of period T + 1 forecasts within a month for selected models with Lx = 3
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Figure 3: Evolution of RMSFE of period T + 2 forecasts within a month for selected models with Lx = 2
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Figure 4: Evolution of RMSFE of period T + 3 forecasts within a month for selected models with Lx = 1
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Figure 5: Evolution of intraperiod forecasts for selected models and forecast horizons
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5 Conclusion

For some particular MIDAS specifications, there is a slight improvement compared to the low frequency benchmark au-

toregression and the recursive unconditional mean. In principle, this would imply that high frequency online price indices

have a good potential to forecast future behavior of consumer inflation for immediate horizons in Argentina. This could

serve as a useful complementary tool to assess the out-of-sample performance of perhaps more sophisticated models. Fu-

ture research could focus on building an alternative variable such as a daily financial factor as suggested by Monteforte

and Moretti (2013) or comparing against measures of market expectations in order to further validate the findings of this

paper.
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Appendix

Table A.1: Out-of-sample predictive performance, ratio to RMSE of autoregressive model ×100

h= 0 h= 1 h= 2

Lx = 1 Lx = 2 Lx = 3 Lx = 1 Lx = 2 Lx = 3 Lx = 1 Lx = 2 Lx = 3

Almon (d = 2)

MIDAS-DL 100.8 101.1 91.0 112.0 101.3 101.2 93.6 94.8 97.2

MIDAS-ADL 94.9 96.1 91.4 111.1 103.0 102.2 97.3 96.3 99.0

MIDAS-ADL-CF 97.5 100.8 90.1 111.8 101.1 100.5 95.7 95.1 100.5

Almon (d = 3)

MIDAS-DL 105.0 100.9 92.2 115.9 104.9 102.4 95.2 93.9 96.9

MIDAS-ADL 98.8 94.8 92.9 115.2 107.5 102.9 98.4 94.8 98.8

MIDAS-ADL-CF 102.2 103.7 91.3 118.0 103.7 101.5 96.2 94.9 101.5

Exp. Almon (d = 2)

MIDAS-DL 107.7 108.3 91.3 122.8 110.0 105.0 96.5 96.8 96.2

MIDAS-ADL 96.8 94.3 96.8 113.5 105.8 106.2 99.1 94.9 94.9

MIDAS-ADL-CF 100.5 101.7 89.6 114.5 104.9 104.6 94.6 92.7 97.4

Exp. Almon (d = 3)

MIDAS-DL 115.5 104.5 91.5 107.8 108.3 105.1 96.5 96.8 96.9

MIDAS-ADL 99.0 93.4 96.3 113.7 106.3 107.1 98.4 98.4 98.3

MIDAS-ADL-CF 96.3 104.2 90.4 128.5 106.4 105.3 97.6 98.2 98.3

Beta

MIDAS-DL 102.4 102.0 92.9 104.9 97.4 98.9 90.1 92.3 92.1

MIDAS-ADL 91.3 102.2 99.2 103.5 99.7 100.4 95.1 96.3 96.1

MIDAS-ADL-CF 94.0 101.4 90.4 104.2 96.7 98.1 95.4 95.2 95.6

Flat

MIDAS-DL 193.7 99.8 91.6 104.6 94.4 96.9 92.4 96.1 97.6

MIDAS-ADL 151.2 96.5 91.4 103.4 96.8 102.5 94.1 98.9 100.6

Nonparametric

MIDAS-DL 99.3 101.2 91.5 109.4 101.3 101.5 92.8 94.2 97.3

Unconditional Mean

ȳ 123.7 123.7 123.7 109.9 109.9 109.9 103.8 103.8 103.8

Notes: The evaluation sample comprises 24 data points, from 2015.07 to 2017.06. Characters in bold

indicate the best number of variables, Lx , for each model and forecast horizon, h. Characters in italics

indicate the best model for each number of variables, Lx , and forecast horizon, h.
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Table A.2: Out-of-sample predictive performance, ratio to RMSFE of unconditional mean ×100

h= 0 h= 1 h= 2

Lx = 1 Lx = 2 Lx = 3 Lx = 1 Lx = 2 Lx = 3 Lx = 1 Lx = 2 Lx = 3

Almon (d = 2)

MIDAS-DL 81.5 81.8 73.6 101.9 92.2 92.1 90.2 91.3 93.6

MIDAS-ADL 76.7 77.7 73.9 101.1 93.7 93.0 93.7 92.8 95.4

MIDAS-ADL-CF 78.9 81.5 72.8 101.7 92.0 91.4 92.2 91.6 96.9

Almon (d = 3)

MIDAS-DL 84.9 81.6 74.5 105.4 95.5 93.2 91.7 90.5 93.4

MIDAS-ADL 79.9 76.7 75.1 104.8 97.8 93.6 94.8 91.3 95.2

MIDAS-ADL-CF 82.6 83.8 73.8 107.4 94.4 92.4 92.7 91.4 97.8

Exp. Almon (d = 2)

MIDAS-DL 87.1 87.5 73.9 111.7 100.1 95.5 93.0 93.3 92.7

MIDAS-ADL 78.2 76.3 78.3 103.2 96.2 96.6 95.4 91.4 91.4

MIDAS-ADL-CF 81.2 82.2 72.4 104.2 95.4 95.2 91.1 89.3 93.8

Exp. Almon (d = 3)

MIDAS-DL 93.4 84.5 73.9 98.1 98.5 95.6 93.0 93.3 93.3

MIDAS-ADL 80.1 75.5 77.9 103.4 96.7 97.4 94.8 94.8 94.7

MIDAS-ADL-CF 77.8 84.2 73.1 116.9 96.8 95.8 94.0 94.6 94.7

Beta

MIDAS-DL 82.8 82.5 75.1 95.5 88.6 90.0 86.8 89.0 88.7

MIDAS-ADL 73.8 82.6 80.2 94.1 90.7 91.4 91.7 92.8 92.6

MIDAS-ADL-CF 76.0 81.9 73.1 94.8 88.0 89.2 92.0 91.7 92.1

Flat

MIDAS-DL 156.6 80.7 74.1 95.1 85.8 88.2 89.1 92.6 94.0

MIDAS-ADL 122.3 78.0 73.9 94.1 88.0 93.3 90.7 95.3 96.9

Nonparametric

MIDAS-DL 80.3 81.8 74.0 99.6 92.2 92.4 89.4 90.8 93.7

Autoregressive

p = 1 80.9 80.9 80.9 91.0 91.0 91.0 96.3 96.3 96.3

Notes: The evaluation sample comprises 24 data points, from 2015.07 to 2017.06. Characters in bold

indicate the best number of variables, Lx , for each model and forecast horizon, h. Characters in italics

indicate the best model for each number of variables, Lx , and forecast horizon, h.
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Table A.3: Out-of-sample predictive performance, ratio to RMSFE of autoregressive model ×100

h= 0 h= 1 h= 2

Lx = 1 Lx = 2 Lx = 3 Lx = 1 Lx = 2 Lx = 3 Lx = 1 Lx = 2 Lx = 3

Almon (d = 2)

MIDAS-DL 94.8 92.0 76.0 109.7 86.1 90.6 74.4 75.9 75.5

MIDAS-ADL 85.5 88.6 79.1 105.7 89.1 91.9 83.1 81.7 83.1

MIDAS-ADL-CF 93.0 97.1 77.9 107.8 92.0 93.9 85.0 86.5 86.8

Almon (d = 3)

MIDAS-DL 100.5 97.8 76.9 115.8 90.0 92.7 76.2 73.3 74.2

MIDAS-ADL 90.8 92.1 81.2 112.1 97.2 94.2 86.0 80.7 83.7

MIDAS-ADL-CF 104.0 104.1 80.1 115.5 100.6 95.8 86.2 85.5 91.7

Exp. Almon (d = 2)

MIDAS-DL 103.2 88.7 77.1 132.5 96.2 90.2 77.0 77.1 79.0

MIDAS-ADL 91.4 84.3 84.2 107.1 87.9 91.2 83.1 82.2 82.2

MIDAS-ADL-CF 108.2 97.7 78.4 107.4 90.5 94.2 83.8 84.6 84.6

Exp. Almon (d = 3)

MIDAS-DL 105.1 98.4 76.5 89.7 88.4 89.1 77.0 77.0 77.8

MIDAS-ADL 89.1 83.3 85.1 117.8 88.1 89.9 82.0 82.0 81.0

MIDAS-ADL-CF 102.1 101.3 78.4 163.7 90.4 92.6 83.5 87.3 87.2

Beta

MIDAS-DL 104.5 87.1 79.8 97.5 77.7 85.5 71.2 75.4 77.4

MIDAS-ADL 93.3 87.0 83.1 93.1 80.4 86.6 80.1 85.0 83.8

MIDAS-ADL-CF 101.4 89.8 80.2 95.3 82.9 88.8 81.1 84.4 85.5

Flat

MIDAS-DL 101.8 90.0 70.9 100.8 78.2 82.9 71.1 79.0 81.4

MIDAS-ADL 95.0 86.3 70.6 98.3 81.9 87.1 75.9 81.2 86.1

Nonparametric

MIDAS-DL 94.2 94.2 77.0 106.8 86.4 90.4 72.4 74.8 75.5

Unconditional Mean

ȳ 100.5 100.5 100.5 100.5 100.5 100.5 91.5 91.5 91.5

Notes: The evaluation sample comprises 12 data points, from 2016.07 to 2017.06. Characters in bold

indicate the best number of variables, Lx , for each model and forecast horizon, h. Characters in italics

indicate the best model for each number of variables, Lx , and forecast horizon, h.
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Table A.4: Out-of-sample predictive performance, ratio to RMSFE of unconditional mean ×100

h= 0 h= 1 h= 2

Lx = 1 Lx = 2 Lx = 3 Lx = 1 Lx = 2 Lx = 3 Lx = 1 Lx = 2 Lx = 3

Almon (d = 2)

MIDAS-DL 94.4 91.6 75.7 109.2 85.7 90.1 81.4 83.0 82.6

MIDAS-ADL 85.1 88.2 78.7 105.1 88.7 91.4 90.9 89.3 90.8

MIDAS-ADL-CF 92.6 96.6 77.6 107.3 91.5 93.4 92.9 94.6 94.8

Almon (d = 3)

MIDAS-DL 100.0 97.4 76.5 115.2 89.5 92.3 83.3 80.1 81.1

MIDAS-ADL 90.4 91.7 80.8 111.5 96.7 93.7 94.0 88.3 91.5

MIDAS-ADL-CF 103.5 103.7 79.7 114.9 100.1 95.3 94.3 93.4 100.2

Exp. Almon (d = 2)

MIDAS-DL 102.7 88.3 76.7 131.8 95.7 89.7 84.1 84.2 86.4

MIDAS-ADL 90.9 84.0 83.8 106.6 87.4 90.7 90.9 89.8 89.8

MIDAS-ADL-CF 107.7 97.3 78.1 106.9 90.0 93.7 91.6 92.5 92.5

Exp. Almon (d = 3)

MIDAS-DL 104.6 97.9 76.1 89.2 87.9 88.7 84.2 84.2 85.1

MIDAS-ADL 88.7 82.9 84.7 117.2 87.6 89.4 89.6 89.6 88.5

MIDAS-ADL-CF 101.6 100.8 78.0 162.8 90.0 92.2 91.2 95.5 95.3

Beta

MIDAS-DL 104.0 86.7 79.5 97.0 77.3 85.1 77.8 82.4 84.7

MIDAS-ADL 92.8 86.6 82.7 92.6 80.0 86.1 87.6 92.9 91.6

MIDAS-ADL-CF 100.9 89.4 79.9 94.8 82.5 88.3 88.6 92.3 93.4

Flat

MIDAS-DL 101.3 89.6 70.6 100.3 77.8 82.5 77.7 86.3 88.9

MIDAS-ADL 94.6 85.9 70.2 97.8 81.5 86.6 83.0 88.7 94.1

Nonparametric

MIDAS-DL 93.7 93.7 76.6 106.3 85.9 89.9 79.1 81.8 82.5

Autoregressive

p = 1 99.5 99.5 99.5 99.5 99.5 99.5 109.3 109.3 109.3

Notes: The evaluation sample comprises 12 data points, from 2016.07 to 2017.06. Characters in bold

indicate the best number of variables, Lx , for each model and forecast horizon, h. Characters in italics

indicate the best model for each number of variables, Lx , and forecast horizon, h.
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