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Abstract

Cho, Cooley, and Kim (RED, 2015) (CCK) consider the welfare effects of removing
multiplicative productivity shocks from real business cycle models. In a model that
admits an analytical solution they argue convincingly that the positive welfare effect
of removing uncertainty can be dominated by a negative mean effect arising from the
optimal response of household labor supply. While the presentation of this model is
quite elaborate, the details of their subsequent quantitative analysis of several versions
of the standard real business cycle model remain vague. We lay out the general pro-
cedure of computing second-order accurate approximations of welfare gains or losses
in the canonical dynamic stochastic general equilibrium model. In order to be able to
consider mean preserving increases in the size of shocks we extend the computation of
second-order approximations of the policy functions pioneered by Schmitt-Grohé and
Uribe (JEDC, 2004). Our computations show that different from the results reported
in CCK the mean effect never dominates the fluctuations effect. Welfare measures
computed from weighted residuals methods confirm the logic behind our perturba-
tion approach and verify the accuracy of our estimates.



1 INTRODUCTION

Would economic agents benefit if the business cycle could be removed? And if so, by how
much? Lucas (1987) started this discussion by arguing these benefits are negligible. He
considers a representative, risk-averse consumer facing a stochastic consumption stream.
The consumer values this stream according to an additively separable intertemporal utility
function with iso-elastic period utility. The expected mean of the stream grows at a con-
stant rate and the fluctuations around this trend match the variance of trend deviations
of quarterly real U.S. consumption. For plausible values of the coefficient of relative risk-
aversion (his Table 2 considers values between 1 and 20) he estimates a welfare gain not
exceeding 0.1 percent of annual consumption, i.e., about $ 8.5 in 1983.

Since then, many researchers have estimated the welfare costs of business cycles in more
elaborate models.1 These include departures from the specification of preferences and of
the consumption process (as, e.g., Obstfeld (1994), Dolmas (1998), Tallarini (2000), and
Barro (2009)), models with uninsurable idiosyncratic risk (as, e.g., İmrohoroğlu (1989),
Krebs (2003), De Santis (2007), and Krusell et al. (2009)), the consideration of nominal
frictions (as, e.g., Cho et al. (1997) and Galí et al. (2007)), endogenous growth (as, e.g.,
Barlevy (2004) and Heer and Maußner (2015)), and model uncertainty (Barillas et al.
(2009)). The range of estimates is wide, from being close to Lucas’ 0.1 percent to several
orders of magnitude beyond. For instance, İmrohoroğlu (1989), p.1378 estimates 0.3
percent of average consumption, Krebs (2003), p. 862 finds 7.48 percent, Tallarini (2000),
Table 3 calculates costs between 2.1 and 12.6 percent, and in the model of Barro (2009)
the society would be willing to reduce GDP by about 20% to eliminate rare disasters.

In a recent paper Cho, Cooley, and Kim (2015) (henceforth CCK) contribute a method-
ological argument to the debate. They distinguish between the effect of uncertain con-
sumption and leisure (their “fluctuations effect” ) and the effect of optimal adjustment of
factor inputs to multiplicative shocks (their “mean effect”). The fluctuations effect captures
risk-aversion. Risk-averse economic agents are characterized by concave utility functions,
so that according to Jensen’s inequality the expected utility of a lottery does not exceed the
utility obtained from the expected outcome of the lottery. Therefore, they will benefit if the
lottery is replaced by a certain stream of consumption and leisure equal to expected con-
sumption and leisure from the lottery. Lucas (1987) only measures this effect. However,
in a production economy, expected consumption and leisure are not exogenously given.
Consider, for instance, the standard real business cycle model driven a by a single shock to
total factor productivity (TFP). If economic agents respond optimally to this shock, the re-
duced form production function may become convex in the shock so that, again by Jensen’s
inequality, expected output exceeds production at the expected level of TFP. Therefore, re-
moving uncertainty might be detrimental to economic welfare. CCK measure this mean
effect by comparing life-time utility at the expected levels of consumption and leisure with
those obtained in a deterministic environment.

The proper measurement of both the fluctuations and the mean effect requires that the
means of the shocks that drive the economy are not unrelated to the standard deviations.

1See Barlevy (2005) for a survey of the literature.
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To see this for the fluctuations effect consider the process {Ct+s}∞s=0 := {exp (zt+s)}∞s=0,
where zt+s is i.i.d. normally distributed with mean µ and standard deviation τ. Then
E(Ct+s) = exp (µ+ 0.5τ2) so that different degrees of uncertainty τ are associated with
different amounts of expected consumption E(Ct+s). Hence, in order not to mix level ef-
fects with the effect of removing uncertainty, one must assume µ(τ) := −0.5τ2. To see
this for the mean effect, consider the example model from Section 2.2 of CCK where a rep-
resentative agent chooses consumption ct , labor supply nt , and his future stock of capital
kt+1 to maximize

Ut := Et

¨∞
∑

s=0

β s 1
1−η

(ct+s −αnt+s)
1−η

«

, β ∈ (0, 1),

subject to

yt+s = At+sk
θ
t+sn

1−θ
t+s , θ ∈ (0, 1),

kt+s+1 = yt+s − ct+s,

kt > 0 given.







for s = 1, 2, . . .

(E)

The optimal response of labor nt to the TFP shock At yields the reduced form production
function

yt =
�

1− θ
α

�
1−θ
θ

A
1
θ
t kt

which is convex in TFP. Assume again that At is i.i.d. log-normal with mean µ and standard
deviation τ. The standard assumption in the literature is µ= 0, so that in the deterministic
model with τ = 0, TFP is equal to unity while expected TFP in the stochastic economy is
equal to E(At) = exp(0.5τ2) > 1. Therefore, if we want to evaluate the mean effect we
must eliminate the influence of τ on the expected level of TFP, requiring µ(τ) := −0.5τ2.
More generally, thus, measuring the welfare effects of economic fluctuation necessitates
models whose driving processes possess the mean preserving spread property, i.e., stochas-
tic processes whose means depend on their standard deviation.

For the example given in (E) CCK derive analytically the restrictions which the parame-
ters must meet for the overall effect of uncertainty to be negative. In more general mod-
els the question whether or not the mean effect dominates the fluctuations effect cannot
be answered analytically. In Section 3 of their paper CCK employ numerical methods to
compute the welfare effects of removing uncertainty in several well-known models: the
stochastic growth model, the Hansen (1985) real business cycle model, and a simplified
version of the two-country model of Backus et al. (1992). While their discussion of the
example is elaborate and traceable, the description of their numerical method leaves two
issues unsolved.

The first issue concerns the definition of the welfare measure. CCK refer to two papers
by Stephanie Schmitt-Grohé and Martin Uribe (henceforth SGU)). Their first reference,
Schmitt-Grohé and Uribe (2004b), and footnote 9 reveal that they employ the Matlab
code of SGU and compute a second-order perturbation solution. Their second reference is
Schmitt-Grohé and Uribe (2007). In this paper SGU compute unconditional welfare effects
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of various fiscal and monetary policy rules. They distinguish these from conditional effects
which are based on the assumption that both the reference and the alternative economy
start at the deterministic steady state.2 CCK do not mention which measure they compute.

The second issue concerns the distribution of the shocks that drive the model. As re-
quired, CCK consider processes with the mean preserving spread property. Thus, the means
of the innovations are generally different from zero and depend on the variance of the
shocks. As a consequence, perturbing the variance also requires to adjust the mean ap-
propriately. To the best of our knowledge, the Matlab programs of SGU assume means of
zero which are independent of the perturbation parameter. CCK provide no discussion,
whether or not they have adapted this code to fit their assumption, and their posted code
does not compute their welfare measures.

The contribution of our paper, therefore, is first and foremost methodological. We extend
the canonical stochastic general equilibrium (DSGE) model of Schmitt-Grohé and Uribe
(2004b) to allow for stochastic processes that have the mean-preserving spread property.
For this extended model we derive the second-order perturbation solution and provide
Matlab code that implements this solution.3 Our solution appropriately adjusts the level
effect of the perturbation parameter. Thus, it also shifts the agent’s value function required
for welfare comparisons. Next we consider conditional and unconditional welfare measures
that can be decomposed into the fluctuations and the mean effect and relate their compu-
tation to the perturbation solution of the canonical DSGE model. We apply our techniques
to recompute the welfare effects of removing fluctuations from the model that underlies
Figure 2 of CCK.4 Different from this Figure, our results show that the mean effect never
dominates the fluctuations effect. Finally, and in order to convince the reader of the logic
behind our extension of the canonical DSGE model, we compare our perturbation solution
of this model with those obtained from two different weighted residuals methods. Even
though these methods produce much more accurate solutions in terms of Euler residuals,
this increased degree of precision has negligible effects on the conditional welfare measure
and on the unconditional measure for moderate degrees of uncertainty.

From here we proceed with a brief description of the benchmark real business cycle
model in Section 2. This model, taken from CCK, serves as an example of the canonical
DSGE model presented in Section 3.1 and as a framework to illustrate the computation of
conditional and unconditional welfare measures in Section 3.2. In Section 3.3 we sketch
the solution of this model via two weighted residuals methods. Section 4 presents our
quantitative results. In particular, we provide conditional and unconditional welfare gains
from removing fluctuations from the model of Section 2 and compare them to those of
CKK. Section 5 concludes. The Appendix covers the detailed derivation of our second-
order solution as well as the detailed presentation of our weighted residuals methods.

2Schmitt-Grohé and Uribe (2004a) is more elaborate about the computation of these measures. However,
one has to study their Matlab code in order to resolve the details presented in Section 3.2.

3This code is also part of a toolbox that accompanies the textbook of Heer and Maußner (2009)
and can be downloaded from http://www.wiwi.uni-augsburg.de/vwl/maussner/dge_book_
downloads/2nd_edition/CoRRAM-M_8March18_.zip.

4CCK present their results in terms of graphs that display the welfare measure as a function of the coefficient
of risk-aversion and of the variance of the TFP shock.
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2 THE MODEL

In Section 3.1 of their paper CCK consider a standard real business cycle model similar
to Hansen (1985). Output yt is produced from capital kt and labor nt according to the
production function

yt = At k
θ
t n1−θ

t . (1)

The natural log of total factor productivity At is governed by an AR(1)-process

ln At = ρ ln At−1 + εt , εt i.i.d. N
�

−
τ2

2(1+ρ)
,τ2

�

. (2)

The innovations in the process εt are i.i.d. normal. Its mean is chosen so that the uncondi-
tional expectation of At is equal to unity and independent of the standard deviation τ.5 The
current-period utility function u is of the Cobb-Douglas type and depends on consumption
ct and leisure nt:

6

u(ct , 1− nt) :=

¨

1
1−η

�

cαt (1− nt)1−α
�1−η

for η 6= 1,

α ln ct + (1−α) ln(1− nt) for η= 1.
(3)

Thus, for given values of α ∈ (0, 1) the coefficient of relative risk aversion,

CRRA := −
∂ 2u/∂ c2

∂ u/∂ c
c = 1+α(η− 1),

increases with η.
Capital depreciates at the constant rateδ ∈ (0, 1], and the representative agent discounts

future utilities at the rate β ∈ (0, 1). This agent chooses consumption, leisure, and the
future stock of capital to maximize the expected life-time utility

Vt := Et

¨∞
∑

s=0

β su(ct+s, 1− nt+s)

«

, β ∈ (0, 1)

subject to the resource constraints

yt+s ≥ ct+s + it+s,

kt+s+1 = (1−δ)kt+s + it+s,

0≤ ct+s, kt+s+1, and nt+s ∈ (0,1)







for s = 0, 1, . . .

and a given initial stock of capital kt . Expectations Et are conditioned on information
available at time t. We provide the equilibrium conditions of this model in Appendix A.

Table 1 presents the parameter values chosen by CCK for those parameters which remain
constant. CCK vary the values of η and τ in order to demonstrate their effect on economic
welfare.

5See Cho et al. (2015) footnote 10.
6CCK use σ instead of η as a measure of risk aversion in the utility function. We employ the notation

of Schmitt-Grohé and Uribe (2004b) for the canonical DSGE model. They designate the perturbation
parameter by the Greek letter σ .
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Table 1: Calibration of the model

Parameter Description Value

α utility weight of consumption 0.35
β discount factor 0.99
δ rate of capital depreciation 0.025
ρ autocorrelation of log of TFP shock 0.95

3 SECOND-ORDER APPROXIMATIONS OF WELFARE EFFECTS IN DSGE
MODELS

This section draws on the work of SGU. In Schmitt-Grohé and Uribe (2004b) they pro-
pose a canonical framework for dynamic stochastic general equilibrium (DSGE) models
and develop formulas for a second-order approximate solution of this class of models. In
Schmitt-Grohé and Uribe (2006, 2007) they develop measures for welfare comparisons.

3.1 Canonical DSGE model

Variables and equilibrium conditions. Let xt ∈ Rn(x) denote a vector of n(x) endoge-
nous state variables, i.e., variables whose period t value is given at the beginning of period
t but evolves endogenously from period to period. The vector yt ∈ Rn(y) collects n(y) en-
dogenous variables being determined within period t. The driving forces of the model
are n(z) purely exogenous variables gathered in the vector zt ∈ Rn(z). The equilibrium
conditions are given by

0(n(x)+n(y))×1 = Etg (xt+1,zt+1,yt+1,xt ,zt ,yt) , (4a)

where Et denotes mathematical expectations as of time t and g : R2(n(x)+n(y)+n(z)) →
Rn(x)+n(y). We denote the vector of all state variables by wt :=

�

xT zT
�T
∈ Rn(w) where

n(w) = n(x) + n(z).

Driving process. Schmitt-Grohé and Uribe (2004b) specify the driving process of the
exogenous variables as

zt+1 = Rzt +σΩνt+1.

The matrix R has all its eigenvalues within the unit circle. The parameter σ ≥ 0 is an
arbitrary scalar factored out from the matrix Ω and plays the role of the perturbation
parameter. Without loss of generality we will fix σ = 1 for the stochastic model in the
following. The vector νt+1 ∈ Rn(z) is distributed independently and identically with mean
0n(z)×1 and variance In(z),

7 and the matrix Ω determines the covariance of the innovations

εt+1 := σΩνt+1

7 In denotes the identity matrix of dimension n.

6



since Et(εt+1ε
T
t+1) = σ

2ΩΩT . Forσ = 0 the process becomes deterministic and approaches
the zero vector: limt→∞ zt = 0n(z)×1. If the deterministic model has a stable solution at the

point
�

xT 01×n(z) yT
�T

solving

0(n(x)+n(y))×1 = g
�

x,0n(z)×1,y,x,0n(z)×1,y
�

,

one can invoke the implicit function theorem to approximate the solution for a nearby 8

stochastic model σ = 1.
To motivate our extension let us revert for the moment to the one-shock model in Section

2, where zt = [ln(At)]. Note, if we assume εt+1 ∼ i.i.d. N(−τ2/(2(1+ρ)),τ2), as in (2),
an equivalent formulation is given by

εt+1 := −
τ2

2(1+ρ)
+τνt+1 = µ̃(τ) +τνt+1, νt+1 ∼ iidN(0,1),

where µ̃(τ) = − τ2

2(1+ρ) . Setting further R := ρ andΩ := τ as well asσ = 1 for the stochastic
model, the AR(1) specification (2) for log productivity implies that

zt+1 = Rzt + µ̃(σΩ) +σΩνt+1. (4b)

Most importantly, note already here that this specification guarantees not only that the
mean preserving spread property is met for the stochastic model with σ = 1, but also that
it remains throughout valid when perturbing and taking derivatives with respect to σ.

Now, if µ̃ was non-zero but independent of σΩ, one could simply convert the previous
system to

z̄t+ = Rz̄t +σΩνt+1 where z̄t := zt −
�

In(z) − R
�−1
µ̃,

being equivalent to the process of SGU. Since the required transformation would then
be independent of σΩ and therefore in particular of the perturbation parameter σ, the
second-order approximation derived in Schmitt-Grohé and Uribe (2004b) remains valid.

However, this is different if µ̃(σΩ) is non-constant as it is the case in the problem at
hand. In order to adequately account for the effect of uncertainty in the model, i.e. in
order to adequately cancel out any shift of the mean in productivity in the perturbation
approach, the variance-covariance matrix and the mean vector in (4b) have to be per-
turbed simultaneously with σ.

Consequently, the second-order Taylor approximation for the stochastic model constructed
around σ = 0 differs from the standard results in Schmitt-Grohé and Uribe (2004b), if the
gradient or Hessian matrix of µ(σ) := µ̃(σΩ) at σ = 0 are non-trivial. Obviously, for the
present case where µ(σ) = − σ2τ2

2(1+ρ) we get

µ′(0) = −
τ2σ

1+ρ

�

�

�

σ=0
= 0,

µ′′(0) = −
τ2

(1+ρ)
< 0.

8I.e. if the elements on the diagonal of ΩΩT are not too large.
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This motivates our extension of the shock process as part of the canonical DSGE model:

0n(z)×1 = zt+1 − Rzt −µ(σ)−σΩνt+1, νt+1 i.i.d. N
�

0n(z)×1, In(z)

�

, (4c)

µ(σ = 0) = 0n(z)×1, (4d)

µσ(σ = 0) = 0n(z)×1, (4e)

µσσ(σ = 0) 6= 0n(z)×n(z). (4f)

Approximate solution. The stationary point of the deterministic model is found as so-
lution of

0(n(x)+n(y))×1 = g
�

x,0n(z)×1,y,x,0n(z)×1,y
�

.

The solution of the perturbed model are vector valued functions hx : Rn(x)+n(z)+1 → Rn(x)

and hy : Rn(x)+n(z)+1→ Rn(y) given by

xt+1 = hx(wt ,σ), (5a)

yt = hy(wt ,σ). (5b)

Schmitt-Grohé and Uribe (2004b) show how to compute a second-order approximation
of these functions at the point of expansion

�

xT ,01×n(z), 0
�T

, i.e. at the stationary point of
the deterministic model. The form of this solution reads

hx(xt ,zt ,σ) = x+H x
w (wt −w) + 1

2

�

In(x) ⊗ (wt −w)T
�

H x
ww (wt −w) + 1

2 H x
σσ
σ2, (6a)

hy(xt ,zt ,σ) = y+H y
w (wt −w) + 1

2

�

In(y) ⊗ (wt −w)T
�

H y
ww (wt −w) + 1

2 H y
σσ
σ2. (6b)

Setting σ = 1 in these equations delivers the solution of the stochastic model.
The Matlab code provided by Schmitt-Grohé and Uribe (2004b) for the computation of

the matrices H x
ww, H y

ww, H x
σσ

, and H y
σσ

rests on tensor formulas. In the Appendix B we apply
a chain rule for the second derivative of a vector-valued composite function as proposed
by Gomme and Klein (2011) and extend the computation of H x

σσ
and H y

σσ
to the case of

perturbed means as specified in (4c). As can be expected, it turns out that H x
σσ

and H y
σσ

differ from the standard case by a term involving the Hessian of µ(σ), which we interpret
as the effect from considering mean preserving spreads. This term is essential in order
to adequately cancel out any effects in the policy functions from unwanted shifts in the
means when alternating the degree of uncertainty in the model.

3.2 Welfare measures

Conditional measure. Suppose we have two different equilibrium time paths i ∈ {a, r}
of the model of Section 2. Let

Vi t := Et

¨∞
∑

s=0

β s 1
1−η

cα(1−η)i t+s (1− ni t+s)
(1−α)(1−η)

«

(7)
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denote the associated life-time utility, and note that it is conditioned on the given initial
capital stock kt and the known initial realization of the TFP shock ln At . Let i = r denote
our reference equilibrium to which we want to compare an alternative equilibrium i = a.
Schmitt-Grohé and Uribe (2004a), p. 17f define the welfare measure as the fraction of
consumption which the representative agent would be willing to forgo in equilibrium r
to be equally well-off as in the alternative equilibrium a. Here we follow CCK and define
λc as the fraction of consumption which has to be given to the representative agent in
equilibrium r in order to be as well-off as in equilibrium a, i.e.,

Vat = Et

¨∞
∑

s=0

β s 1
1−η

[(1+λc)cr t+1]
α(1−η)(1− nr t+s)

(1−α)(1−η)

«

= (1+λc)α(1−η)Vr t .

Solving for λc yields

λc =
�

Vat

Vr t

�
1

α(1−η)

− 1. (8)

The superscript c shall remind the reader that this measure is conditioned on the initial
point (kt , ln At).

In order to evaluate λc, we will use the second-order approximation of Vi t at the station-
ary solution:

Vi t ' Vi +HVi
w (wt −w) + 1

2(wt −w)T HVi
ww(wt −w) + 1

2 HVi
σσ

. (9)

To get this solution, we must add an equation for the variable Vi t to the system (4) and
define an initial condition (wt−w). The first requirement is easily met, because the infinite
sum (7) has a recursive representation:

Vi t =
1

1−η
cα(1−η)t (1− nt)

(1−α)(1−η) + βEt Vi t+1. (10)

The answer to the second question derives from our ultimate goal. We want to compare an
economy without uncertainty and, thus, without TFP shocks to one with a given amount
of risk as specified by the choice of τ2. Therefore, we may assume that both economies
start at the stationary solution and that the one without shocks stays there for ever. This
gives

Vr =
1

(1− β)(1−η)
cα(1−η)(1− n)(1−α)(1−η)

for the reference solution. The second-order approximation of Vat follows from (6b) for
wt −w= 0n(w) and is given by

Vat ' Vr +
1
2 HVa

σσ
,

where HVa
σσ

is the element of the vector H y
σσ

which refers to the variable Vat . In the model
of Section 2 the non-zero mean of εt+1 increases the absolute value of HVa

σσ
< 0, so that

the effect of uncertainty dominates the mean effect even for small values of τ.
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Unconditional measure. Schmitt-Grohé and Uribe (2006) also develop a measure of
unconditional welfare gains or losses. They are not very specific about the details but
inspection of their Matlab programs allows one to recover the general procedure. We
start by integrating both sides of equation (7) with respect to the distribution of the state
variables wt . This gives

V u
it := E

¨

Et

�∞
∑

s=0

β s 1
1−η

cα(1−η)i t+s (1− ni t+s)
(1−α)(1−η)

�«

, (11)

whereE denotes unconditional expectations. As before, letλu (u for unconditional) denote
the fraction of consumption cr t+s the representative household would require to be as well-
off in equilibrium r as in equilibrium a:

V u
at = E

¨

Et

�∞
∑

s=0

β s 1
1−η

((1+λu)cr t+s)
α(1−η) (1− nr t+s)

(1−α)(1−η)

�«

,

= (1+λu)α(1−η)V u
r t .

Accordingly, λu is given by

λu =

�

V u
at

V u
r t

�
1

α(1−η)

− 1. (12)

In order to obtain the unconditional moments, we take unconditional expectations E on
both sides of equation (6b):

Eȳt = H y
wEw̄t +

1
2E
�

In(y) ⊗ w̄T
t

�

H y
www̄t +

1
2 H y

σσ
,

where the bar denotes deviations from the stationary solution, i.e., ȳt := yt − y and w̄t :=
wt −w. Employing the trace operator to the second term on the right-hand side of this
equation and letting Γ w denote the covariance matrix of the states gives

Eȳt = H y
wEw̄t +

1
2





tr
�

H y1
wwΓ

w
	

...
tr {H yn(y)Γ w}



+ 1
2 H y

σσ
. (13)

The unconditional expectation of the states follows from stacking equations (6a) and (4c),

w̄t+1 = H̃w
ww̄t +

1
2

�

In(w) ⊗ w̄T
t+1

�

H̃w
www̄t +

1
2 H̃w

σσ
+ ν̃t+1,

H̃w
w :=

�

H x
w

0n(z)×n(x) R

�

, H̃w
ww :=

�

H x
ww

0n(z)n(w)×n(w)

�

, ν̃t+1 :=
�

0n(x)×1

µ+Ωνt+1

�

,

where µ = µ(σ = 1) and taking expectations on both sides. The result is a linear system
in the unknown vector Ew̄t

�

In(w) − H̃w
w

�

Ew̄t = Eν̃t+1 +
1
2





tr
�

H̃w1
wwΓ

w
	

...
tr
�

H̃
wn(w)
ww Γ

w
	



+ 1
2 H̃w

σσ
. (14)
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In the last step we determine the covariance matrix Γ w from the linearized solution for the
vector of states:

w̄t+1 = H̃w
ww̄t + ν̃t+1.

The matrix Γ w solves the discrete Lyapunov equation9

Γ w = H̃w
wΓ

w
�

H̃w
w

�T
+Σν̃, Σν̃ =

�

0n(x)×n(x) 0n(x)×n(z)
0n(z)×n(x) ΩΩT

�

. (15)

Note that the Matlab program of Schmitt-Grohé and Uribe (2004b) does not consider the
term Eν̃t+1 = [01×n(x),µ

T ]T , so that the unconditional measure λu is biased by i) disre-
garding this effect and by ii) disregarding the effect of µσσ on the vector H̃w

σσ
.

Mean and Fluctuations Effect. CCK decompose the welfare effect into two components.
The mean effectωm reflects the optimal response of labor supply and capital accumulation
to the productivity shock. It may be increasing in the standard deviation of the productivity
shock τ. The second componentωu captures risk-aversion, and, thus, will always decrease
in the amount of uncertainty as measured by τ. CCK define the mean effect as the fraction
of consumption required by agents living in the stationary environment to be equally well-
off as agents who enjoy the expected value of consumption and leisure obtained from living
in the stochastic environment. Let c̃ and ñ denote the expected values of consumption and
hours obtained from the solution of equation (13). Then, the mean effect is defined by

(1+ωm)α(1−η)Vr = Ṽ :=
∞
∑

s=0

β s c̃α(1−η)(1− ñ)(1−α)(1−η). (16)

Accordingly, the fluctuations effect solves the equation

V u
at = (1+ω

f )α(1−η)Ṽ , (17)

so that agents in the stochastic environment enjoy the same unconditional expected life-
time utility as those agents being provided with a steady stream of consumption equal to
(1+ω f )c̃ and working a constant fraction of ñ hours. Combining

V u
at = (1+λ

u)Vt

with the previous two equations gives

(1+ωm)(1+ω f ) = (1+λu),

so that the welfare effect λu is approximately equal to the sum of the mean and the fluc-
tuations effect.

9For the derivation of this equation see, e.g., Hamilton (1994), p. 264f or Lütkepohl (2005) p. 26f.
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3.3 Mean Weighted Residuals Methods

In order to check the logic underlying our assumptions in (4c)-(4f) and the accuracy of
our perturbation solution, we also solve the model with two variants of a mean weighted
residuals method (see Appendix C for a detailed description). In particular, we use a finite
element method (FEM)10 and a Chebyshev-Galerkin method (CGM)11 to approximate the
solutions n(kt , lnAt) for hours and V (kt , lnAt) for the value function. In both of these
methods it is easy to implement the assumption on the mean of the innovations in equation
(2): In the step where conditional expectations with respect to the distribution of εt+1 have
to be taken, we only have to adjust the mean.

The finite element method employs a grid Γ ⊂ R2 over the space of the state variables.
Between the grid points cubic C 2 splines approximate the respective function. We deter-
mine the function values at the grid points such that the residuals from (4a) vanish. In
order to evaluate expectations with respect to the N (µ,Ω)-distributed vector of innova-
tions εt+1 we employ Gauss-Hermite quadrature.

The Chebyshev-Galerkin method employs a tensor product base of Chebyshev polynomi-
als to approximate the solution for hours and the value function. For instance, the solution
for hours is approximated by

ĥ(kt , zt) :=
d1
∑

i=1

d2
∑

j=1

φi, j Ti−1(ψ1(kt))T j−1(ψ2(zt)), zt := ln At

where Tl denotes the l-th order Chebychev polynomial, d1, d2 ∈ N are the degrees of
approximation, and ψi, i = 1, 2 are bijections between [k, k̄] and [z, z̄], respectively, into
the domain of Chebyshev polynomials [−1,1]. The d1d2 coefficients φi, j solve a system of
non-linear equations which requires that weighted sums of the residuals of (4a) vanish.

4 RESULTS

In this section we present the welfare gains and losses computed for the model from Sec-
tion 2 and discuss the accuracy of these measures. Our results rest on the benchmark
calibration of the model in Table 1. In order to study the effects of different degrees of
risk-aversion and uncertainty, we follow CCK and solve the model for ten different values
of the parameter η and five different values of the parameter τ. As in CCK, we report
the measures in percent of income, i.e., instead of λ we report λ̃ := λ(c/y), where c and
y denote, respectively, the stationary value of consumption and income. Our results are
summarized in Table 2 and illustrated in Figure 1. The second column in Table 2 desig-
nates the measure, where the superscript c (u) refers to the conditional (unconditional)
measure and the subscript 0 indicates that we have neglected the effect of the shifting
mean on the solution. Solutions based on a second-order perturbation are labeled “pert”
in the third column of Table 2 while those obtained from the weighted residuals methods
are labeled “proj”.
10See, e.g., McGrattan (1995).
11See, e.g., Judd (1992) and for a textbook presentation Heer and Maußner (2009), Chapter 6.
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4.1 Welfare Measures

First, consider Figure 1. In its panel (a) it displays the conditional and in its panel (b)
the unconditional welfare measures from our extension of the perturbation solution of the
model. Panels (c) and (d) show our attempts to reproduce Figure 2 of CCK. Finally, panel
(e) displays the conditional measure from our Galerkin-Chebshev solution while panel (f)
shows the unconditional measure from our finite elements solution.

First, note that both the conditional and the unconditional measures from our method in-
dicate welfare gains from removing the business cycle for all combinations of risk-aversion
and the amount of risk as parameterized by η and τ, respectively. Hence, the fluctuations
effect always dominates the mean effect, so that the representative agent living in the sta-
tionary and certain environment would not want to live in the stochastic economy, i.e.,
λ̃i < 0. This is quite different from the results reported in Figure 2 of CCK. In panels (c)
and (d) we try to reproduce their Figure 2 by ignoring the effect of µσσ on the solution
of the model. However, we computed the unconditional measure from equation (14) by
assuming Eν̃t+1 = −τ2/(2(1+ ρ)). The graphs show that both measures are positive for
values of η smaller than (about) 4 (Panel (c)) and 5.5 (Panel (d)). In Figure 2 of CCK
the graphs cut the abscissa at a value of η slightly larger than 5. In addition, the starting
and endpoints of each graph in Panel (d) are close to those in Figure 2 of CCK, so that we
suspect that their Figure 2 reports the unconditional welfare measure but does not perturb
the mean of the innovations in equation (2).12

Thus, as a first result, we note that a proper implementation of the mean preserving
spread property requires to perturb both the mean and the variance of the innovations.
Otherwise one overstates the mean relative to the fluctuations effect. This can be seen
by comparing the lines labeled ωm and ωm

0 in Table 2. They show, respectively, the mean
effect computed from our proposed method and the mean effect, if we disregard the effect
of µσσ on Hσσ. The latter overstates the former by at least 56.7 percent and at most by
111.7 percent.

Table 2: Welfare Measures

η M S τ
0.003 0.007 0.011 0.015 0.019

1.0 λ̃c pert −0.000951 −0.005179 −0.012788 −0.023777 −0.038146
λ̃c

0 pert 0.002888 0.015728 0.038844 0.072246 0.115949
λ̃c proj −0.000951 −0.005178 −0.012784 −0.023760 −0.038067
λ̃u pert −0.001130 −0.006149 −0.015184 −0.028233 −0.045293
λ̃u

0 pert 0.004233 0.023050 0.056931 0.105899 0.169982
λ̃u proj −0.001091 −0.006059 −0.014953 −0.024757 −0.019034
ω̃m pert 0.004801 0.026135 0.064527 0.119961 0.192414
ω̃m

0 pert 0.010163 0.055317 0.136540 0.253739 0.406778
continued on next page

12We also computed the unconditional measure λ̃u by assuming Eν̃t+1 = 0 in equation (14). The point of
intersection of the graphs with the abscissa remains about the same, yet the size of the effects becomes
smaller. For instance, we find λ̃u(η = 1,τ = 0.019) = 0.126 and λ̃u(η = 10,τ = 0.019) = −0.072 while
Figure 2 of CCK clearly shows a value above 0.15 and below -0.1, respectively.
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η M S τ
0.003 0.007 0.011 0.015 0.019

ω̃u proj 0.004915 0.026400 0.064924 0.120071 0.190095

2.0 λ̃c pert −0.002074 −0.011291 −0.027878 −0.051828 −0.083132
λ̃c

0 pert 0.001766 0.009613 0.023742 0.044157 0.070865
λ̃c proj −0.002074 −0.011290 −0.027873 −0.051805 −0.083022
λ̃u pert −0.002305 −0.012551 −0.030988 −0.057608 −0.092399
λ̃u

0 pert 0.003057 0.016646 0.041115 0.076477 0.122755
λ̃u proj −0.002264 −0.012454 −0.030701 −0.053140 −0.063826
ω̃m pert 0.004870 0.026518 0.065488 0.121788 0.195431
ω̃m

0 pert 0.010233 0.055715 0.137594 0.255888 0.410623
ω̃u proj 0.004988 0.026788 0.065874 0.121655 0.192116

3.0 λ̃c pert −0.003079 −0.016761 −0.041377 −0.076909 −0.123331
λ̃c

0 pert 0.000761 0.004141 0.010227 0.019020 0.030520
λ̃c proj −0.003079 −0.016760 −0.041374 −0.076890 −0.123206
λ̃u pert −0.003268 −0.017788 −0.043911 −0.081618 −0.130878
λ̃u

0 pert 0.002095 0.011406 0.028171 0.052399 0.084102
λ̃u proj −0.003223 −0.017684 −0.043550 −0.076115 −0.092269
ω̃m pert 0.005168 0.028135 0.069479 0.129205 0.207320
ω̃m

0 pert 0.010530 0.057332 0.141581 0.263286 0.422464
ω̃u proj 0.005288 0.028409 0.069841 0.128765 0.202015

4.0 λ̃c pert −0.004024 −0.021903 −0.054063 −0.100466 −0.161058
λ̃c

0 pert −0.000185 −0.001005 −0.002481 −0.004613 −0.007401
λ̃c proj −0.004024 −0.021904 −0.054068 −0.100468 −0.160946
λ̃u pert −0.004110 −0.022371 −0.055218 −0.102611 −0.164494
λ̃u

0 pert 0.001252 0.006818 0.016839 0.031319 0.050262
λ̃u proj −0.004063 −0.022262 −0.054749 −0.095558 −0.119368
ω̃m pert 0.005585 0.030407 0.075086 0.139622 0.224013
ω̃m

0 pert 0.010947 0.059602 0.147181 0.273682 0.439104
ω̃u proj 0.005708 0.030683 0.075406 0.138769 0.217019

5.0 λ̃c pert −0.004930 −0.026832 −0.066216 −0.123017 −0.197137
λ̃c

0 pert −0.001091 −0.005938 −0.014661 −0.027257 −0.043721
λ̃c proj −0.004930 −0.026835 −0.066237 −0.123062 −0.197083
λ̃u pert −0.004867 −0.026488 −0.065367 −0.121441 −0.194615
λ̃u

0 pert 0.000495 0.002697 0.006660 0.012385 0.019874
λ̃u proj −0.004816 −0.026375 −0.064726 −0.112567 −0.141774
ω̃m pert 0.006086 0.033132 0.081810 0.152112 0.244026
ω̃m

0 pert 0.011448 0.062326 0.153898 0.286149 0.459055
ω̃u proj 0.006211 0.033407 0.082052 0.150825 0.235319

6.0 λ̃c pert −0.005807 −0.031603 −0.077973 −0.144812 −0.231968
λ̃c

0 pert −0.001968 −0.010714 −0.026451 −0.049164 −0.078838
λ̃c proj −0.005808 −0.031611 −0.078019 −0.144930 −0.232027
λ̃u pert −0.005555 −0.030231 −0.074591 −0.138537 −0.221932
λ̃u

0 pert −0.000193 −0.001052 −0.002598 −0.004831 −0.007750
λ̃u proj −0.005502 −0.030115 −0.073747 −0.126707 −0.159711
ω̃m pert 0.006653 0.036220 0.089428 0.166259 0.266684
ω̃m

0 pert 0.012016 0.065413 0.161509 0.300270 0.481648
ω̃u proj 0.006782 0.036491 0.089585 0.164102 0.255843

continued on next page
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η M S τ
0.003 0.007 0.011 0.015 0.019

7.0 λ̃c pert −0.006662 −0.036249 −0.089414 −0.166000 −0.265783
λ̃c

0 pert −0.002823 −0.015367 −0.037929 −0.070480 −0.112982
λ̃c proj −0.006663 −0.036263 −0.089496 −0.166222 −0.266018
λ̃u pert −0.006186 −0.033658 −0.083029 −0.154163 −0.246867
λ̃u

0 pert −0.000824 −0.004485 −0.011075 −0.020589 −0.033026
λ̃u proj −0.006130 −0.033540 −0.081926 −0.139761 −0.174899
ω̃m pert 0.007278 0.039622 0.097821 0.181840 0.291629
ω̃m

0 pert 0.012641 0.068814 0.169894 0.315823 0.506520
ω̃u proj 0.007409 0.039887 0.097877 0.179115 0.279194

8.0 λ̃c pert −0.007498 −0.040792 −0.100591 −0.186675 −0.298729
λ̃c

0 pert −0.003659 −0.019916 −0.049148 −0.091301 −0.146300
λ̃c proj −0.007499 −0.040814 −0.100721 −0.187037 −0.299214
λ̃u pert −0.006765 −0.036807 −0.090777 −0.168496 −0.269706
λ̃u

0 pert −0.001404 −0.007642 −0.018865 −0.035066 −0.056234
λ̃u proj −0.006707 −0.036689 −0.089369 −0.151139 −0.186802
ω̃m pert 0.007956 0.043311 0.106916 0.198718 0.318639
ω̃m

0 pert 0.013319 0.072501 0.178980 0.332671 0.533452
ω̃u proj 0.008089 0.043564 0.106846 0.195450 0.304857

9.0 λ̃c pert −0.008318 −0.045246 −0.111541 −0.206905 −0.330912
λ̃c

0 pert −0.004480 −0.024378 −0.060145 −0.111692 −0.178895
λ̃c proj −0.008319 −0.045279 −0.111733 −0.207446 −0.331726
λ̃u pert −0.007299 −0.039707 −0.097905 −0.181665 −0.290658
λ̃u

0 pert −0.001938 −0.010548 −0.026038 −0.048390 −0.077581
λ̃u proj −0.007239 −0.039588 −0.096099 −0.160934 −0.195470
ω̃m pert 0.008683 0.047265 0.116665 0.216804 0.347567
ω̃m

0 pert 0.014046 0.076454 0.188720 0.350725 0.562298
ω̃u proj 0.008819 0.047504 0.116462 0.213040 0.332751

10.0 λ̃c pert −0.009125 −0.049624 −0.122291 −0.226737 −0.362406
λ̃c

0 pert −0.005287 −0.028764 −0.070947 −0.131702 −0.210841
λ̃c proj −0.009126 −0.049669 −0.122561 −0.227503 −0.363636
λ̃u pert −0.007791 −0.042378 −0.104466 −0.193771 −0.309884
λ̃u

0 pert −0.002430 −0.013228 −0.032646 −0.060658 −0.097224
λ̃u proj −0.007728 −0.042260 −0.102175 −0.169828 −0.200871
ω̃m pert 0.009457 0.051472 0.127035 0.236033 0.378307
ω̃m

0 pert 0.014819 0.080660 0.199079 0.369920 0.592951
ω̃u proj 0.009594 0.051690 0.126688 0.231625 0.362831

Notes: λ̃c and λ̃u denote, respectively, the conditional and unconditional welfare measure. ω̃m is the mean
effect. All measures are in percent of income. The index 0 refers to measures where we have ignored the effect
of µσσ on Hσσ. Lines labeled pert in column S denote the welfare measure from the perturbation solution,
while those labeled pert derive from the projection solution.

Let us turn now to the size of the effects. As is to be expected, the welfare loss increases
with increasing risk-aversion, measured by the parameter η, and with increasing uncer-
tainty, measured by the parameter τ. The welfare gains from removing fluctuation are
small. According to Table 2, they range from 0.00051 percent to 0.36 percent of income
for the conditional measure and from 0.0011 percent to 0.31 percent for the unconditional
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Figure 1: Welfare Measures

(a) Conditional Measure (Perturbation) (b) Unconditional Measure (Perturbation)

(c) Conditional Measure (CCK) µσσ = 0 (d) Unconditional Measure (CCK) µσσ = 0

(e) Conditional Measure (CGM) (f) Unconditional Measure (FEM)
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measure. For the latter and in terms of U.S. real per capita income in 2017 of about 52
thousand Dollars (see https://fred.stlouisfed.org) the representative household
would be willing to give up between 58 cents and 162.5 Dollars of annual consumption in
order to stay within the certain environment. For the common choice of τ= 0.007 and an
intermediate value of η = 5 the figure would be 14 Dollars of annual consumption. This
is not far from Lucas’s $ 8.5.

Thus, as a second result, we confirm CCK and find small welfare gains from removing the
cycle in the benchmark real business cycle model for plausible values of the risk-aversion
parameter and the standard deviation of the TFP shock. However, the discrepancy between
our proposed solution and the solution which ignores the perturbed mean is large. The
percentage deviation∆i := |(λ̃i

0−λ̃
i)/λ̃i| lies between 41.8 percent and almost 404 percent

for the conditional welfare measure (i = c) and between 68.6 percent and 475 percent for
the unconditional measure (i = u).

The lines labeled ω̃m in Table 2 report the size of the mean effect as computed from
equation (16). The size of this effect is increasing in both the risk aversion parameter η
and the standard deviation τ and ranges between 0.05 percent of income and 0.38 percent.
Relative to the absolute value of the overall effect, the mean effect is large for η = 1 (log
preferences) and about 4.25 times the size of the overall effect, irrespective of the value
of τ. For η= 2 it is still about twice the size of the overall effect. For the remaining values
of η between 3 and 10 the mean effect is between 1.6 and 1.17 of the size of the overall
effect.

4.2 Accuracy

In order to add proof for the accuracy of our method to implement the mean preserving
spread property we also show solutions from our mean weighted residuals methods. We
gauge the accuracy of all three solutions of the model with Euler equation residuals. For
both functional equations (A.40) and (A.41) defined in Appendix C we compute the per-
centage increase in consumption that would be required to equate the left-hand side to
the right-hand side, if we insert the approximate instead of the true policy function.13 We
compute the residuals on an equal spaced rectangular grid of 100× 100 points over the
square [0.85k, 1.15k]× [−3.7τ/

p

1−ρ2, 3.7τ/
p

1−ρ2]. The maximum absolute value
from this grid is our accuracy measure.

In terms of this measure, and as is well-known from, e.g., Aruoba et al. (2006) and Heer
and Maußner (2008), the perturbation solution performs worst. Its Euler residuals for the
functional equation (A.41) (which determines the value function required in equation (8))
range from 0.06 percent forη= 1 and τ= 0.003 to 3.99 percent forη= 10 and τ= 0.019.
For the finite element method they range from 0.00077 percent for η= 1 and τ= 0.003 to
0.01233 percent for η= 1 and τ= 0.019. Even more accurate is the Chebyshev-Galerkin
method with a minimum Euler equation residual of 2.2 × 10−8 percent for η = 1 and
τ= 0.003 and a maximum value of 7.96×10−6 for η= 10 and τ= 0.019. For this reason

13See Christiano and Fisher (2000) for this kind of Euler residuals. The original concept is introduced in
Judd and Guu (1997).
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we also present the conditional welfare measure computed from this solution in the lines
labeled proj in column S of Table 2 and displayed in panel (e) of Figure 1.

The absolute difference between both measures lies between 1.1 × 10−6 percentage
points for η= 9 and τ= 0.003 and 1.2×10−3 percentage points for η= 10 and τ= 0.019.
For the latter this difference is equal to about 62 cents of annual U.S. income in 2017.
Hence, even though the perturbation solution is quite less accurate outside a small neigh-
borhood of the stationary solution, this imprecision is of almost negligible consequence
for the conditional welfare measure.

In order to compare unconditional measures from the perturbation approach to those
obtained from the weighted residuals methods we have to resort to simulation, since the
distribution of the state variables wt := (kt , ln At)T is unknown. Our estimate of the un-
conditional mean of V u

t from equation (11) is

Vat =
1
T

T
∑

s=0

V̂ (kt+s, ln At+s),

where V̂ (kt , ln At) denotes the approximate FEM solution of the value function. Since the
welfare effects for small values of η and τ are of the order of magnitude between 10−4

and 10−5, we must choose T very large. To see this, note that the variance of the sample
mean z̄ of log TFP is equal to

var(z̄) =
1
T 2

τ2

1−ρ2

�

T +
2

(1−ρ)2
�

(T − 1)ρ − Tρ2 +ρT+1
�

�

.

For T = 5 × 108 this is still as large as 1.7 × 10−5. Table 2 displays the means from 15
simulations of size T = 5 × 108 each. Compared to the results from the perturbation
solution the FEM solution yields smaller effects being close to those from the perturbation
solution for τ ≤ 0.011. For τ = 0.015 the FEM measures are between 7 and 13 percent
smaller than those from the perturbation solution. For the even larger value of τ= 0.019,
the FEM measure is between 27 and 58 percent smaller. We trace this difference to the
fluctuations effect, since the FEM measure of the unconditional mean effect is close to
the mean effect from the perturbation solution. At the maximum, the former exceeds the
latter by 2.4 percent for η = 2 and τ = 0.030) and is 4.3 percent below the latter for
(η = 8 and τ = 0.019). We, thus, conclude that the perturbation approach overestimates
the unconditional fluctuations effect for large TFP shocks.

As a third result, we therefore note that our perturbation method delivers reliable es-
timates of the conditional welfare measure and also for the unconditional measure if the
amount of uncertainty in the model as measured by τ is of moderate size.

5 CONCLUSION

Our paper is inspired by the contribution of Cho, Cooley, and Kim (2015) (CCK) who argue
convincingly that the welfare effects of economic fluctuations in production economies
consist of two parts. The fluctuations effect captures the fact that risk-averse economic
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agents would prefer living in a certain environment. The mean effect stems from the
optimal adjustment of input factors. Economic agents may benefit from this effect, if the
reduced form aggregate production function is convex in the shocks that drive the model.
Measuring both effects without distortion requires that the shocks are modeled as mean-
preserving spreads.

Introducing mean preserving spreads into a model requires to consider their means as
functions of their variance. As a consequence, approximations based on perturbing the
variance should adequately and simultaneously also perturb the mean. Otherwise, by
comparing different levels of uncertainty, the researcher exogenously introduces shifts
of the means and mixes level effects with effects from removing uncertainty. Yet, avail-
able perturbation methods and code assumes that the mean of innovations in the vector-
autoregressive process for shocks is not perturbed. As a consequence, the impact of the
mean preserving spreads is missing in the second-order approximation of the value func-
tion, which in turn is required to compute the conditional and unconditional welfare mea-
sure. Furthermore, the non-zero means also bias the computation of unconditional mo-
ments required to compute the unconditional welfare measure.

The main contribution of this paper, therefore, is to extend the canonical stochastic dy-
namic equilibrium model to allow for mean preserving spreads. We derive formulas for the
computation of second-order approximations of the policy functions and provide the re-
spective Matlab code. We find that our second order solution differs from the standard case
and interpret this term as the effect of unwanted shifts in means. We then recompute the
welfare effects of removing fluctuations in the benchmark real business cycle model that
underlies Figure 2 in CCK. Different form their results, the mean effect never dominates
the fluctuations effect. Finally, we solve the model with the aid of two weighted residuals
methods and confirm both our method and our revised results. Hence, we conclude that
the positive welfare effects of the business cycle reported by CCK for small degrees of risk
aversion cannot be traced to a large mean effect, driven by economic agents using eco-
nomic fluctuations to their advantage. Rather, they result from exogenously introduced
shifts in the production function that were not adequately removed.

We, therefore, hope that our paper will clarify and resolve a methodological issue in-
volved in the proper computation of the welfare effects of economic fluctuations.
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Appendix

A EQUILIBRIUM CONDITIONS OF THE MODEL

In this part of the Appendix we map the model of Section 2 into the canonical DSGE
model of equations (4). The model has one endogenous state variable, the capital stock
xt := kt , and one shock, the log of TFP zt := ln At . The not predetermined variables
are yt := [yt , ct , it , nt ,λt , Vt]T . The variable λt is equal to the Lagrange multiplier of the
constraint

0≤ yt − ct − (kt+1 − (1−δ)kt)

and introduced for notational convenience. The model’s equations g are given by

g1 (xt+1,zt+1,yt+1,xt ,zt ,yt) = yt − At n
1−θ
t kθt , (A.1a)

g2 (xt+1,zt+1,yt+1,xt ,zt ,yt) =

¨

λt −αcα(1−η)−1
t (1− nt)(1−α)(1−η) for η 6= 1,

λt −
α
ct

for η= 1,
(A.1b)

g3 (xt+1,zt+1,yt+1,xt ,zt ,yt) = (1− θ )
yt

nt
−

1−α
α

ct

1− nt
, (A.1c)

g4 (xt+1,zt+1,yt+1,xt ,zt ,yt) = yt − ct − it , (A.1d)

g5 (xt+1,zt+1,yt+1,xt ,zt ,yt) = kt+1 − (1−δ)kt − it , (A.1e)

g6 (xt+1,zt+1,yt+1,xt ,zt ,yt) = 1− β
λt+1

λt

�

1−δ+ θ
yt+1

kt+1

�

, (A.1f)

g7 (xt+1,zt+1,yt+1,xt ,zt ,yt) =

¨

Vt −
1

1−η cα(1−η)t (1− nt)(1−α)(1−η) − βVt+1 for η 6= 1,

Vt −α ln ct − (1−α) ln(1− nt)− βVt+1 for η= 1,
(A.1g)

Equation (A.1a) is the production function, equation (A.1b) is the first-order condition with
respect to consumption ct , equation (A.1c) is the first-order condition for labor supply,
equation (A.1d) is the resource constraint, equation (A.1e) is the law of motion of the
capital stock, equation (A.1f) is the Euler equation for capital accumulation, and (A.1g)
is the recursive definition of expected life-time utility. Introducing the parameter σ into
the model in order to perturb the volatility τ of shocks, the mean of the innovations in the
AR(1)-process of the log of the TFP shock is given by

µ(σ) := −
(στ)2

2(1+ρ)
(A.2)

so that – as required by (4d) - (4f) –

µ(σ = 0) = 0,

µσ(σ = 0) = −σ
τ2

(1+ρ)

�

�

�

σ=0
= 0,

µσσ(σ = 0) = −
τ2

(1+ρ)
< 0.
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The stationary solution of the model at σ = 0 and EZ = 1 solves the system of equations:

y
k
=

1− β(1−δ)
βθ

, (A.3a)

c
k
=

y
k
−δ, (A.3b)

n
1− n

= α
1− θ
1−α

y/k
c/k

. (A.3c)

Given the solution for n, the levels of output, consumption, and the capital follow from
the solutions of y/k and c/k. Investment follows from the stationary version of equation
(A.1e) and is equal to i = δk. The stationary version of equation (A.1g) implies

V =

¨

cα(1−η)(1−n)(1−α)(1−η)

(1−β)(1−η) for η 6= 1,
α ln c+(1−α) ln(1−n)

1−β for η= 1.

B COMPUTATION OF SECOND-ORDER COEFFICIENTS FOR MODELS WITH

NON-ZERO MEANS

In this section we extend the computation of second-order coefficient matrices H x
ww, H y

ww,
H x
σσ

, and H y
σσ

in the solutions (6) to the case of also perturbing the means of the inno-
vations εt+1 as defined in (4d)-(4f). We follow Gomme and Klein (2011) and employ the
chain rule for Hessian matrices of Magnus and Neudecker (1999). Though the effect of
assumption about the mean will show up only in the vectors Hw

σσ
and H y

σσ
, we also derive

the linear system whose solution yields Hw
ww and H y

ww. The reason is that we distinguish
between endogenous states xt and shocks zt while Gomme and Klein (2011) merge both
in the vector wt . The next subsection introduces some notation and presents the chain
rules. Section B.2 derives the linear systems of equations whose solutions are the matrices
of second-order coefficients.

B.1 Second-order derivatives of composite functions

Let f = ( f 1, . . . , f m) : Rn → Rm and g= (g1, . . . ,gl) : Rm → Rl denote vector valued
functions and let x ∈ Rn, y ∈ Rm, and z ∈ Rl denote real vectors. The composite function
h(x) := g ◦ f: Rn→ Rl is defined by

h(x) := (g ◦ f)(x) =









g1( f 1(x), f 2(x), . . . , f m(x))
g2( f 1(x), f 2(x), . . . , f m(x))

...
g l( f 1(x), f 2(x), . . . , f m(x))









. (A.4)

The Jacobian of this function with respect to x, denoted by hx = (hi, j)i=1,...,l; j=1,...,n ∈ Rl×n

has the typical element

hi j :=
m
∑

s=1

∂ g i

∂ ys
(f(x))

∂ f s

∂ x j
(x), i = 1,2, . . . l; j = 1, 2, . . . , n. (A.5)
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The typical element of the Hessian matrix hx x = (h̃qk)q=1,...,nl,k=1,...,m is obtained by differ-
entiating (A.5) with respect to xk and is given by

h̃(i−1)n+ j,k :=
m
∑

s=1

∂ g i

∂ ys
(f(x))

∂ 2 f s

x j xk
(x) +

m
∑

s=1

m
∑

r=1

∂ f s

∂ x j
(x)

∂ 2 g i

∂ ys∂ yr
(f(x))

∂ f r

∂ xk
(x),

i = 1, 2, . . . , l; j, k = 1, 2, . . . , n.

(A.6)

Thus, the matrix hx x is of dimension nl×n, where block i = 1, . . . , l of size n×n represents
the Hessian matrix of the map g i with respect to the vector x.

The chain rule of Magnus and Neudecker (1999), Theorem 9, shows that hx x as in (A.6)
can be written in terms of the Jacobian and Hessian matrices of g and f by:

hx x =
�

Il ⊗ fT
x

�

gy yfx +
�

gy ⊗ In

�

fx x . (A.7)

Here gy = (gi j)i=1,...,l; j=1,...,m denotes the Jacobian matrix of g with typical element gi j :=
∂ g i/∂ y j(f(x)). Its Hessian gy y = ( g̃qk)q=1,...,lm; j=1,...,m consists of l blocks of size m × m
with typical element g(i−1)l+k, j := ∂ 2 g i/∂ y j∂ yk(f(x)). The Jacobian and Hessian of f with
respect to the vector x, denoted by fx and fx x , respectively, are defined analogously.

B.2 Computation of second-order coefficients

Preliminaries. In a first step we put the canonical model (4) into the framework of Sec-
tion B.1. In the vector

st =
�

xt+1,zt+1,yt+1,xt ,zt ,yt

�

∈ R2(n(x)+n(z)+n(y))

we gather the arguments of the vector valued function g so that (4a) can be written as

0(n(x)+n(y))×1 = Etg (st) , (A.8a)

We can now employ (5) and (4c) to define the maps

f :Rn(w)+1→ Rn(s) ,(wt ,σ) 7→ f(wt ,σ),

u :Rn(w)+1→ Rn(w)+1,(wt ,σ) 7→ u(wt ,σ)

by

f(wt ,σ) :=















hx(wt ,σ)
Πzt +µ(σ) +σΩνt+1

hy
�

u(wt ,σ)T
�

xt

zt

hy(wt ,σ)















, (A.8b)

u(wt ,σ) :=





hx(wt ,σ)
Πzt +µ(σ) +σΩνt+1

σ



 . (A.8c)
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Therefore, the first set of equilibrium conditions (4a) is the composite function Et(g ◦
f)(wt ,σ).

In order to simplify the notation in the upcoming derivations we additionally introduce

u(wt ,σ) :=
�

hx(wt ,σ)
Πzt +σΩεt+1

�

(A.9)

for the first n(w) component functions of u so that

u(wt ,σ) =
�

u(wt ,σ)
σ

�

.

We already note that the Jacobian uw of u with respect only to wt satisfies

uw =
�

uw
01×n(w)

�

. (A.10)

Matrices for the Vector of States. Differentiating Et(g ◦ f) twice with respect to wt and
evaluating the result at the point s yields a system of equations in the coefficients of the
matrices hx

ww and hy
ww. To find this system, we employ (A.7). The Hessian matrix of g ◦ f

with respect to wt , (g ◦ f)ww, is a matrix of size (n(x) + n(y))n(w)× n(w). Thus:

0(n(x)+n(y))n(w)×n(w) = (g ◦ f)ww =
�

In(x)+n(y) ⊗ fT
w

�

gssfw +
�

gs ⊗ In(w)

�

fww. (A.11)

In this expression, the matrices gs and gss are, respectively, the Jacobian matrix and the
Hessian matrix of the system of equations with respect to the 2(n(x)+n(z)+n(y)) variables
of the model. The Jacobian fw and the Hessian fww follow from (A.8b) and (A.8c) via
differentiation with respect to wt . For the Jacobian matrix we get (remember the partition
w=

�

xT ,zT
�T

):

fw =















hx
x hx

z
0n(z)×n(x) Π

hy
x hx

x hy
x hx

z + hy
zΠ

In(x) 0n(x)×n(z)
0n(z)×n(x) In(z)

hy
x hy

z















, (A.12)

where the third line follows from

(hy ◦ u)w = hy
u uw =

�

hy
x hy

z hy
σ

�





hx
x hx

z
0n(z)×n(x) Π
01×n(x) 01×n(z)



=
�

hy
x hy

z

�

�

hx
x hx

z
0n(z)×n(x) Π

�

︸ ︷︷ ︸

=:uw

.

(A.13)
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In order to evaluate the Hessian, we first apply (A.7) to the composite function (hy ◦
u)(wt ,σ) in the thrid line of (A.8b). This yields

(hy ◦ u)ww =
�

In(y) ⊗ uT
w

�

hy
wwuw +

�

hy
(w,σ) ⊗ In(w)

�

uww

=
�

In(y) ⊗ uT
w

�

hy
wwuw +

�

hy
w ⊗ In(w)

�

uww,
(A.14)

where the second equality makes use of (A.10). The matrix uw is given by the right-most
matrix in equation (A.13). Differentiating this matrix with respect to wt yields

uww =
�

hx
ww

0n(z)n(w)×n(w)

�

(A.15)

so that

(hy ◦ u)ww =
�

In(y) ⊗ uT
w

�

hy
wwuw +

�

hy
w ⊗ In(w)

�

�

hx
ww

0n(z)n(w)×n(w)

�

,

=
�

In(y) ⊗ uT
w

�

hy
wwuw +

�

hy
x ⊗ In(w) hy

z ⊗ In(w)

�

�

hx
ww

0n(z)n(w)×n(w)

�

,

=
�

In(y) ⊗ uT
w

�

hy
wwuw +

�

hy
x ⊗ In(w)

�

hx
ww.

(A.16)

The remaining parts of the Hessian of f are easy to compute directly from the definition in
(A.8b).. Just note that, e.g., the definition x i t := f i(wt ,σ), i = 1, . . . , n(x) has the Hessian
matrix f i

ww = 0n(w)×n(w). Therefore, the matrix fww is given by

fww =















hx
ww

0n(z)n(w)×n(w)
�

In(y) ⊗ uT
w

�

hy
wwuw +

�

hy
x ⊗ In(w)

�

hx
ww

0n(x)n(w)×n(w)
0n(z)n(w)×n(w)

hy
ww















. (A.17)

In order to evaluate the second term on the right-hand side of equation (A.11) we partition
the Jacobian of g. Let gi, i ∈ {x , z, y, x ′, z′, y ′} denote the derivatives of g with respect to
xt , zt , yt , xt+1, zt+1, and yt+1. Therefore:
�

gs ⊗ In(w)

�

fww

=
�

gx ′ ⊗ In(w) gz′ ⊗ In(w) gy ′ ⊗ In(w) gx ⊗ In(w) gz ⊗ In(w) gy ⊗ In(w)

�

fww,

=
�

gx ′ ⊗ In(w)

�

hx
ww +

�

gy ′ ⊗ In(w)

�

C1hy
wwC2 +

�

gy ′ ⊗ In(w)

�

C3hx
ww +

�

gy ⊗ In(w)

�

hy
ww,

= B1hy
ww + B2hx

ww + B3C1hy
wwC2 + B3C3hx

ww.
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where

B1 = gy ⊗ In(w),

B2 = gx ′ ⊗ In(w),

B3 = gy ′ ⊗ In(w),

C1 = In(y) ⊗ C T
2 ,

C2 =
�

hx
x hx

z
0n(z)×n(x) Π

�

,

C3 = hy
x ⊗ In(w).

(A.18)

Finally, let

A1 :=
�

In(x)+n(y) ⊗ AT
2

�

gssA2,

A2 := fw =















hx
x hx

z
0n(z)×n(x) Π

hy
x hx

x hy
x hx

z + hy
zΠ

In(x) 0n(x)×n(z)
0n(z)×n(x) In(z)

hy
x hy

z















(A.19)

so that the system of equations (A.11) can be written as

−A1 = B1hy
ww + B3C1hy

wwC2 + (B2 + B3C3)h
x
ww. (A.20)

This is a linear system in the unknown coefficient matrices hy
ww and hx

ww. A straightforward
way to solve this system is to employ the vec operator:14

−vec(A1) =
�

In(w) ⊗ B1

�

vec(hy
ww) +

�

C T
2 ⊗ B3C1

�

vec(hy
ww)

+
�

In(w) ⊗ (B2 + B3C3)
�

vec(hx
ww),

=
�

In(w) ⊗ B1 + C T
2 ⊗ B3C1, In(w) ⊗ (B2 + B3C3)

�

�

vec(hy
ww)

vec(hx
ww)

�

.

(A.21)

The second way to solve equation (A.20) is to note that this a generalized Sylvester equa-
tion (see Kågström and Poromaa (1994), equation (1.1))

AR− LB = C , (A.22a)

DR− LE = F. (A.22b)

The linear algebra package (LAPACK), whose routines are freely available on the world
wide web at http://www.netlib.org/lapack/, provides routines to solve this kind of

14We use

vec(ABC) = (C T ⊗ A)vec(B).

See, e.g, Sydsæter et al. (1999), equation (23.18).
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equation. To put (A.20) into the form (A.22), note first that (A.20) can be written as

−A1
︸︷︷︸

=:C

=
�

B1, B2 + B3C3

�

︸ ︷︷ ︸

=:A

�

hy
ww

hx
ww

�

︸ ︷︷ ︸

=:R

−
�

B3C1,0(n(x)+n(y))n(w)×n(x)n(w)

�

�

hy
ww

hx
ww

�

︸ ︷︷ ︸

=:L

(−C2)
︸ ︷︷ ︸

=:B

(A.23a)

so that (A.22b) reduces to the definition of the matrix L:
�

B3C1,0(n(x)+n(y))n(w)×n(x)n(w)

�

︸ ︷︷ ︸

=:D

R− L In(w)
︸︷︷︸

=:E

= 0(n(x)+n(y))n(w)×n(w)
︸ ︷︷ ︸

=:F

. (A.23b)

Coefficients of the Perturbation Parameter. We will now employ (A.7) to the composite
function Et(g ◦ f) with respect to σ. The respective Hessian (g ◦ f)σσ is a column vector
with n(x) + n(y) elements:

0(n(x)+n(y))×1 = Et (g ◦ f)σσ = Et

��

In(x)+n(y) ⊗ fT
σ

�

gssfσ + (gs ⊗ I1) fσσ
	

. (A.24)

The Jacobian of f with respect to σ follows from differentiating (A.8b). This gives:

fσ =















hx
σ

µσ(σ) +Ωνt+1

hy
u uσ

0n(x)×1

0n(z)×1

hy
σ















, hy
u uσ =

�

hy
x hy

z hy
σ

�





hx
σ

µσ(σ) +Ωνt+1

1





︸ ︷︷ ︸

=:uσ

. (A.25)

Remember that all derivatives in this expression must be evaluated at σ = 0 and s =
(x,0n(z)×1,y,x,0n(z)×1,y). It is well-known from Schmitt-Grohé and Uribe (2004b) that

hx
σ
= 0n(x)×1, hy

σ
= 0n(y)×1, hx

wσ = 0n(x)×n(x), hy
wσ = 0n(y)×n(x). (A.26)

These results continue to hold due to assumptions (4d) and (4e). Therefore, fσ is equal
to:

fσ =















0n(x)×1

Ωνt+1

hy
zΩνt+1

0n(x)×1

0n(z)×1

0n(y)×1















=















0n(x)×n(z)
In(z)
hy

z
0n(x)×n(z)
0n(z)×n(z)
0n(y)×n(z)















Ωνt+1 =: NΩνt+1. (A.27)

Differentiating equation (A.25) again with respect to σ yields

fσσ =















hx
σσ

µσσ
M

0n(x)×1

0n(z)×1

hy
σσ















. (A.28)
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The matrix M derives from applying (A.7) to the composite function (hy ◦ u)(σ).

M := (hy ◦ u)σσ = M1 +M2 =
�

In(y) ⊗ uT
σ

�

hy
uuuσ

︸ ︷︷ ︸

=:M1

+
�

hy
u ⊗ I1

�

uσσ
︸ ︷︷ ︸

=:M2

,

hy
uu =









hy1
uu

hy2
uu
...

h
yn(y)
uu









, hyi
uu =





hyi
x x hyi

xz hyi
xσ

hyi
zx hyi

zz hyi
zσ

hyi
σx hyi

σz hy1
σσ



 , uσσ =
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(A.29)

To evaluate this expression at σ = 0 and s, we again employ (A.26) and (4e) and get

M1 =









uT
σ

01×(n(x)+n(z)+1) . . . 01×(n(x)+n(z)+1)
01×(n(x)+n(z)+1) uT

σ
. . . 01×(n(x)+n(z)+1)

...
...

. . .
...

01×(n(x)+n(z)+1) 01×(n(x)+n(z)+1) . . . uT
σ

















hy1
uu

hy2
uu
...

h
yn(y)
uu













0n(x)×1

Ωνt+1

1





=









νT
t+1Ω

T hy1
zzΩνt+1

νT
t+1Ω

T hy2
zzΩνt+1

...
νT

t+1Ω
T h

yn(y)
zz Ωνt+1









+ hy
σσ
=: M11 + hy

σσ

(A.30)

and
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z 0n(y)×1

�
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x hx
σσ
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z µσσ. (A.31)

Summarizing the results in (A.27), (A.30), and (A.31), the expression in (A.24) is equal
to
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The final step is to evaluate the conditional expectations in this expression. First note that
each element

∆i = (NΩνt+1)
T g i

ss (NΩνt+1) = ν
T
t+1Ω

T

︸ ︷︷ ︸

∆i1

N T g i
ss (NΩνt+1)

︸ ︷︷ ︸

=:∆i2

of the first term in the previous equation is a scalar ∆i =∆i1∆i2. Per definition, the trace
of a scalar is equal to the scalar itself, tr(∆i) =∆i so that we can apply a well known result
of the trace operator15

tr(AB) = tr(BA).

Thus,

Et∆i = Et tr(∆i) = Et tr(∆i1∆i2) = Et tr(∆i2∆i1) = tr(Et(∆i2∆i1))

= tr
�

N T g i
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�
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T
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T
�

.

In the same way we can determine Et M11:
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Finally, consider an extension of the trace operator proposed by Gomme and Klein (2011):
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. (A.32)

This operator returns the traces of the m blocks of the mn×n matrix X in the m-dimensional
column vector x. Accordingly, the system of linear equations (A.24) can be written as:

− trm
��

In(x)+n(y) ⊗ N T
�

gssNΩΩ
T
�

− gy ′ trm
��

In(y) ⊗ (ΩΩT )
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=
�

gy + gy ′ gx ′ + gy ′h
y
x

�

�

hy
σσ

hx
σσ

�

.

(A.33)

The term in the second line of this expression distinguishes the standard solution from our
extended version of the canonical DSGE model in (4).

15See, e.g., Sydsæter et al. (1999), equation (19.22).
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C WEIGHTED RESIDUALS METHODS

C.1 Residual Functions

Consider the equilibrium conditions of the model in (A.1a) and let

h: R+ ×R→ [0,1] and V : R+ ×R→ R

with zt := ln At denote the policy function for nt and the value function Vt , respectively:

nt = h(kt , zt) and Vt = V (kt , zt).

First, observe that given the state variables kt , zt and the policy function h we can succes-
sively solve for the remaining variables as follows:

yt = y(kt , zt , h)
(A.1a)
:= exp(zt)k

θ
t h(kt , zt)

1−θ , (A.34)

ct = c(kt , zt , h)
(A.1c)
:= (1− θ )

α

1−α
y(kt , zt , h)
h(kt , zt))

(1− h(kt , zt)), (A.35)

λt = λ(kt , zt , h)
(A.1b)
:= αc(kt , zt , h)α(1−σ)−1(1− h(kt , zt))

(1−α)(1−σ), (A.36)

kt+1 = k(kt , zt , h)
(A.1e)
:= (1−δ)kt + y(kt , zt , h)− c(kt , zt , h), (A.37)

zt+1 = ρzt + εt+1, εt+1 ∼ N
�

−
τ2

2(1+ρ)
,τ2

�

. (A.38)

Therefore all period t variables can be expressed by kt , zt and h(kt , zt) while all variables
of period t + 1 can be expressed by kt , zt , h(kt , zt) and εt+1. We introduce the notation

rhs1(kt , zt ,εt+1, h) := β
λt+1

λt

�

θ
yt+1

kt+1
+ 1−δ

�

=

= β
λ(k(kt , zt , h),ρzt + εt+1, h)

λ(kt , zt , h)

�

θ
y(k(kt , zt , h),ρzt + εt+1, h)

k(kt , zt , h)
+ 1−δ

�

(A.39a)

and

rhs2(kt , zt ,εt+1, h, V ) := V (k(kt , zt , h),ρzt + εt+1) (A.39b)

From (A.1f) the policy function h solves the following equation for all kt and zt

R1(kt , zt , h) := 1−
∫

R
rhs1(kt , zt ,εt+1, h)

1
p

2πτ2
exp



−

�

εt+1 +
τ2

2(1+ρ)

�2

2τ2



 dεt+1 = 0.

(A.40)

Analogously from (A.1g), V satisfies

R2(kt , zt , h, V ) := V (kt , zt)−
c(kt , zt , h)α(1−η)(1− h(kt , zt))(1−α)(1−η)

1−η

− β
∫

R
rhs2(kt , zt ,εt+1, h, V )

1
p

2πτ2
exp



−

�

εt+1 +
τ2

2(1+ρ)

�2

2τ2



 dεt+1 = 0 (A.41a)
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for all kt and zt if η 6= 0 or

R2(kt , zt , h, V ) := V (kt , zt)−α ln(c(kt , zt , h))− (1−α) ln(1− h(kt , zt))

− β
∫

R
rhs2(kt , zt ,εt+1, h, V )

1
p

2πτ2
exp



−

�

εt+1 +
τ2

2(1+ρ)

�2

2τ2



 dεt+1 = 0 (A.41b)

for all kt and zt if η= 1.
Suppose we have approximated h by some function ĥ and V by V̂ . Replacing h and V in

the residual functions R1 and R2 yields functions R1(kt , zt , ĥ) and R2(kt , zt , ĥ, V̂ ). In order
to evaluate these functions at a given point (kt , zt)we have to compute the respective inte-
grals. We use Gauss-Hermite quadrature with M points ei and weights wi, i = 1,2, . . . , M
to perform this task. Thus, we define the residual functions

R̂1(kt , zt , ĥ) := 1−
1
p
π

M
∑

i=1

wirhs1

�

kt , zt ,
p

2τei −
τ2

2(1+ρ)
, ĥ
�

, (A.42a)

R̂2(kt , zt , ĥ, V̂ ) := V̂ (kt , zt)−

¨

1
1−η

�

c(kt , zt , ĥ)α(1−η)(1− ĥ(kt , zt))(1−α)(1−η)
�

for η 6= 1

α ln(c(kt , zt , ĥ)) + (1−α) ln(1− ĥ(kt , zt)) for η= 1

−
β
p
π

M
∑

i=1

wirhs2

�

kt , zt ,
p

2τei −
τ2

2(1+ρ)
, ĥ, V̂

�

. (A.42b)

C.2 Finite Element Method

We first choose a discrete grid Γ ⊂ R2 for the state variables (kt , zt) with a total of N grid
points. With SΓ ,v : R2→ R defined as the cubic C 2 spline interpolating the function values
in v ∈ RN over the grid Γ , we search for appropriate approximations of h and V within the
class
�

ĥv1
= SΓ ,v1

: R2→ R|v1 ∈ RN
	

and
�

V̂v2
= SΓ ,v2

: R2→ R|v2 ∈ RN
	

.

Next, we determine the unknown function values in v1 and v2 at the grid points by im-
posing the conditions that the residuals vanish at all grid points in Γ . I.e. we solve the
following system of equations for v1 and v2:

0= R̂1(kt , zt , ĥv1
),

0= R̂2(kt , zt , ĥv1
, V̂v2
)

«

∀(kt , zt) ∈ Γ . (A.43)

C.3 Chebyshev-Galerkin Method

We approximate the functions h(kt , zt) and V (kt , zt) by combinations of Chebyshev poly-
nomials, i.e.:

ĥ(k, z) :=
dn

1
∑

i=1

dn
2
∑

j=1

φn
i j Ti−1(ψ1(k))T j−1(ψ2(z)), (A.44a)
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V̂ (k, z) :=
dV

1
∑

i=1

dV
2
∑

j=1

φV
i j Ti−1(ψ1(k))T j−1(ψ2(z)). (A.44b)

Since the domain of the Chebyshev polynomials of order l = 0, 1,2, . . . , Tl(x) is the interval
x ∈ [−1, 1], we must choose boundaries for the stock of capital k and the log of the TFP
shock z and map the respective intervals [k, k̄] and [z, z̄] to this domain. The functions
ψ j, j = 1,2 perform this task. Let rt , t = 1, 2, . . . , m1 and qs, s = 1, 2, . . . , m2 denote the
roots of the Chebyshev polynomials of order m1 and m2, respectively. Furthermore, let
ψ̃1 and ψ̃2 define the inverse mappings from [−1, 1] to [k, k̄] and [z, z̄], respectively. We
determine the coefficients from (A.44) as solutions the system of d1d2 non-linear equations
given by:

0=
π

m1

π

m2

m1
∑

t=1

m2
∑

s=1

R̂1(ψ̃1(rt)), ψ̃2(qs), ĥ)Ti−1(rt)T j−1(qs) ∀i = 1, . . . dn
1 , j = 1, . . . , dn

2 ),

(A.45a)

0=
π

m1

π

m2

m1
∑

t=1

m2
∑

s=1

R̂2(ψ̃1(rt)), ψ̃2(qs), ĥ, V̂ )Ti−1(rt)T j−1(qs)∀i = 1, . . . , dV
1 , j = 1, . . . , dV

2 .

(A.45b)
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