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Abstract

This paper studies the optimal design of dynamic research contests. We introduce
interim transfers, which are paid in every period while the contest is ongoing, to an
otherwise standard setting. We show that a contest where: (i) the principal can stop
the contest in any period, (ii) a constant interim transfer is paid to agents in each
period while the contest is ongoing, and (iii) a final prize is paid once the principal
stops the contest, is optimal for the principal and implements the first-best.
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1 Introduction

Research contests have a long history as mechanisms for inducing innovation. From
navigation and food preservation to aviation, research contests have been used to find
solutions to some of society’s most pressing problems.1 Recently, the use of research
contests by both the private and public sector has been expanding rapidly. Some examples
of problems to which research contests have been applied include vaccine technology,
antibiotics overuse, space flight, robotics and AI, as well as environment and energy
efficiency.2 Given that the 2010 America Competes Reauthorization Act authorized US
Federal agencies to use prizes and contests, it can be expected that the importance of
research contests will only grow in the coming years.

The literature generally classifies research contests into fixed-prize contests and inno-
vation races.3 To win a fixed-prize contest, an agent needs to have the best innovation
at the end of the contest, whereas an agent needs to have a specific innovation as quickly
as possible to win an innovation race. The advantage of a race is that it proceeds until
an appropriate innovation has been developed (reducing the risk of ending the contest
prematurely) and that it minimizes wasteful duplication (since the contest stops as soon
as the winning criteria have been met). However, for an innovation race to be feasible,
verifiability of outcomes is necessary in order to determine when the race has been won.
Since the quality of an innovation is rarely verifiable, innovation races in practice com-
monly rely on some verifiable proxy of quality.4 This may result in innovations which
are not useful to the sponsor. The 2006 Netflix Prize contest, which aimed to improve
the algorithms behind movie recommendations, featured a $1,000,000 prize for the first
contestant who would improve upon Netflix’s own algorithm by at least 10%. The win-
ning algorithm, however, was never employed because the “the additional accuracy gains
[...] did not seem to justify the engineering effort needed to bring them into a production
environment.” Thus, having to rely on a proxy meant that Netflix did not fully benefit
from the innovation that won the final prize.5

When implementing a fixed-prize contest, the principal in general does not have to use
11714 Longitude Prize, 1795 Napoleon’s Food Preservation Prize and 1919 Orteig Prize, respectively.
22012 EU Vaccine Prize; 2015 Better Use of Antibiotics Prize; 1996 Ansari X Prize, 2006 Northrop

Grumman Lunar Lander XCHALLENGE and 2007 Google Lunar X-Prize; 2004 DARPA Grand Chal-
lenge, 2007 Urban Challenge, 2014 A.I. presented by TED XPRIZE; 1992 Super-Efficient Refrigerator
Program, Progressive Insurance Automotive X PRIZE and 2015 NRG Cosia Carbon XPRIZE.

3See the discussion in Taylor (1995).
4In the case of the 1996 Ansari X Prize, the objectively verifiable proxy was to have two manned space

flights in two weeks using the same spacecraft, while the larger objective of the organizer was to develop
private space travel. See http://ansari.xprize.org.

5Of course, it is entirely possible that Netflix implemented parts of the winning algorithm and also
made use of the ideas from algorithms that did not win the contest. See Netflix Recommendations:
Beyond the 5 stars (Part 1) by (at the time) Netflix’s Engineering Director Xavier Amatriain and Lead
Researcher Justin Basilico. http://tiny.uzh.ch/F0.
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a proxy and can instead evaluate the quality of the innovation directly. However, other
problems arise, since a fixed-prize contest requires a finite deadline, at which submissions
will be evaluated. If the agents are not given enough time, they may fail to produce a
good enough innovation.6 If the deadline is very late, the implementation of the innovation
will be delayed and, in addition, there is a risk of wasteful duplication, as agents invest
resources while an adequate innovation might already have been developed.

This paper deals with the optimal design of dynamic research contests. We identify
a novel design lever that the contest designer can use in order to increase the efficiency
of the contest: interim transfers to the agents while the contest is ongoing. The optimal
contest takes a remarkably simple form. The principal decides in each period whether to
stop the contest or not. If the contest is not stopped, the principal has to pay out an
interim transfer, the value of which was announced before the contest started, and which
is divided equally among the agents. If the contest is stopped, the principal has to pay
out the final prize, the value of which was also announced in advance. We call this type
of contest an interim-transfer contest. An interim-transfer contest offers a solution to
the trade-off between innovation races and fixed-prize contests. It induces an equilibrium
where all agents conduct research until they achieve an innovation quality (which does not
have to be verifiable) set out by the principal. The agent that discovers such an innovation
immediately reveals it to the principal, who in turn immediately stops the contest. An
interim-transfer contest thus combines the best of the two formats: it inherits the race-like
structure, thereby eliminating wasteful duplication and the risk of a premature ending,
without requiring a verifiable proxy for quality.

Our setting closely follows the seminal work by Taylor (1995). There is a principal
who would like to procure an innovation and multiple agents who can choose to conduct
research in each period. Research is costly and yields an innovation whose value is a
random draw from some distribution. The research decisions and the values of innovations
are private information to the agents. If an agent reveals the innovation to the principal,
the principal can costlessly and accurately determine its value. However, the value is not
verifiable by outside parties. In particular, a contract which conditions on the innovation
value is not enforceable by the courts.7 In order to incentivize the agents to conduct
research, the principal announces a contest. Taylor (1995) studies what we call a fixed-
prize contest, in which the principal commits to paying a final prize at the end of an
exogenously given deadline of T periods.8 We introduce the interim-transfer contest,

6The objective of the 2004 DARPA Grand Challenge was to “accelerate the development of autonomous
vehicle technologies that can be applied to military requirements” but none of the competitors managed
to fulfill the requirements of the tournament. Eventually, the requirements were matched in the 2005
DARPA Grand Challenge, suggesting that more time was needed to be successful. See the official website
on http://archive.darpa.mil/grandchallenge04/.

7These assumptions are standard in the literature. See Taylor (1995) or Che and Gale (2003).
8The principal only needs to commit to pay out the final prize to one of the agents. Once that
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where the principal commits to both the final prize (which is paid out once the contest
ends), and to the interim transfer (which is paid out in each period as long as the contest
continues). How the interim transfer is allocated among the agents is not important
for our result. Therefore, we focus on the simplest allocation rule, where the transfer
is divided equally among all agents.9 We endogenize the deadline T , which becomes a
design choice of the principal and allow for an infinite horizon. Furthermore, the principal
can end the interim-transfer contest before the deadline is reached, in which case the final
prize is paid out. Like in Taylor (1995), the principal determines the number of agents
invited to the contest and sets the entry fee or entry subsidy which the agents need to
pay in order to participate in the contest. Agents join the contest if their expected payoff
is at least zero.

Our first main result shows that we can implement any innovation value as the thresh-
old of a global stopping equilibrium with any number of agents using an appropriate
interim-transfer contest. In a global stopping equilibrium, all agents conduct research in
every period until some agent discovers an innovation with a value above the threshold, at
which point the research effort is stopped by all agents. This result is in sharp contrast to
the finding in Taylor (1995), who shows that a fixed-prize contest implements only indi-
vidual stopping equilibria. With an individual stopping equilibrium, each agent conducts
research in every period until she herself discovers an innovation with a value above the
threshold, irrespective of what the other agents find. Our result is remarkable for three
reasons. First, it eliminates the wasteful duplication of research efforts which occurs in
individual stopping equilibria. Second, it eliminates the possibility that the contest will
end before an appropriate innovation has been found. Third, the innovation is made
available to the principal as soon as it is discovered. In addition, if a natural restriction
is placed on the principal’s equilibrium strategies, then a global stopping equilibrium is
the unique outcome implemented by an appropriately designed interim-transfer contest.

There is a clear economic interpretation underlying our implementation result. On
the one hand, the final prize takes care of the agents’ incentives. Namely, it induces them
to conduct research in every period in order to obtain an innovation of value above the
threshold and win the final prize. The presence of the interim transfer complicates matters,
because an agent with a value above the threshold may wish to delay the submission of
the innovation in order to benefit from interim transfers. Such a delay is risky, though,
as another agent may also obtain an innovation above the threshold and win the contest.
A sufficiently high final prize ensures that delaying is not profitable and induces truthful
reporting of research outcomes in addition to research effort in all periods.10 On the other

commitment is made, the promise to award the prize to the agent with the best innovation is credible.
9More complex allocation rule could, for example, allocate the entire transfer to the agent with the

best innovation so far. We provide further discussion of this possibility in the conclusion.
10The danger of delaying submission is relevant in the real-world too. In the Netflix Prize contest
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hand, the interim transfer takes care of the principal’s incentives. In a fixed-prize contest,
the principal has no incentive to stop the contest once a value above the threshold has
been submitted, because she does not bear the marginal cost of research, but stands to
gain by obtaining an even higher value in the next period. The interim transfer is set in
such a way that it is weakly greater than the marginal benefit of continuing the contest for
one more period when the threshold value has been obtained. Thus, the marginal cost of
continuing the contest for one more period outweighs the marginal benefit. Consequently,
the principal wants to stop the contest if a value at or above the threshold is obtained,
thereby giving rise to a global stopping equilibrium.

While the ability to implement global stopping equilibria using interim-transfer con-
tests is of interest in itself, it does not answer the question whether the principal would
actually want to do so. Indeed, one can show that for a given threshold value and number
of agents, a global stopping equilibrium has lower expected research costs than an indi-
vidual stopping equilibrium, but that the latter has a higher expected value of innovation
than the former. Hence, it is unclear a priori which contest maximizes the principal’s
utility. Moreover, it is not clear if some other contest or some other mechanism performs
better than either an interim-transfer or a fixed-prize contest. Our second main result
addresses this issue by showing that the principal can implement the first-best outcome
with an interim-transfer contest. Then, the principal can extract the entire surplus with
appropriate entry fees. Thus, interim-transfer contests constitute optimal mechanisms
more generally.

Our optimality result relies crucially on the assumption that the principal can charge
entry fees. The ability of the principal to charge entry fees has been previously used in
the literature and it has also been used in practice.11 However, entry fees in the optimal
interim-transfer contest could potentially be very large. If the agents who are supposed to
participate in the contest have budget constraints, then implementing an optimal interim-
transfer contest may not be possible. This implies that the scope of applications of our
optimal contest might be limited and would need to be verified on a case by case basis.
Finally, even if the principal could not charge entry fees, our results would still imply that
an interim-transfer contest is a welfare-maximizing mechanism.

In the main model, we assume that the principal can choose an infinite deadline for
the contest. In an extension, we consider the case where there is an exogenous finite
deadline beyond which the contest cannot run or the innovation becomes worthless. With

the second-placed team had the same performance measure as the winners. They lost because they
submitted their bid 20 minutes after the eventual winners. See “A $1 Million Research Bargain for
Netflix, and Maybe a Model for Others” in The New York Times. https://nyti.ms/2InaHqN.

11Entry fees are assumed in Taylor (1995) and are central in papers on auctioning entry into contests,
such as Fullerton and McAfee (1999) and Giebe (2014). As an example of their use in practice, Taylor
(1995) mentions the $200,000 entry fee into the FCC’s contest aimed to develop the HD TV standard.
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a finite deadline, the first-best outcome does not have a structure as simple as with an
infinite deadline. Gal, Landsberger, and Levykson (1981) and Morgan (1983) have shown
that while a global stopping equilibrium is still optimal, the first-best search intensity
generally depends both on the number of periods until the deadline and on the current
highest innovation quality. For tractability, we impose assumptions on the research process
which guarantee that the first-best search intensity, as long as the contest is ongoing,
depends only on time and not on the highest innovation quality. In particular, we assume
breakthrough innovation structure, which implies that the principal only cares about
making a breakthrough, and that all innovations constituting a breakthrough are worth
approximately the same. Under the assumption of a breakthrough innovations structure,
the first-best search rule is a global stopping equilibrium where the number of participants
in the contest increases as the deadline draws near. Importantly, the optimal number of
contestants can be fixed ex ante. We generalize the notion of the interim-transfer contest
to allow for an increasing number of contestants over time and show that this generalized
interim transfer contest is an optimal mechanism and implements the first best.

The paper is structured as follows. The model is introduced in Section 2. We study the
infinite horizon case in Section 3, while finite horizon is considered in Section 4. Discussion
of the literature is in Section 5. We conclude in Section 6. All proofs are in the appendix.

2 Model

2.1 Setting

There is a risk-neutral principal who wants to procure an innovation, and a set of identical
risk-neutral agents N = N who can potentially discover the innovation by conducting
research. If the principal obtains the innovation in any period s ∈ {1, . . . , T} with T ≤ ∞,
her payoff is δs−1θ−

∑T
t=1 δ

t−1wt, where θ is the value of the innovation and wt =
∑

iwti is
the sum of transfers made to all agents in period t. Agent i’s payoff is

∑T
t=1 δ

t−1(wti−cti),
where wti is the transfers received and cti is the cost incurred through research activities
in period t. We assume that the innovations are of no intrinsic value to the agents and
allow for any discount factor δ ∈ (0, 1).

An agent can conduct research in any period t at per-period cost C > 0. In each
period in which the agent performs research, he obtains an innovation of value θ ∈ Θ. The
innovation value obtained is an independent draw from some distribution F with full and
finite support Θ = {θ1, θ2, . . . , θK}. Without loss, assume that θk+1 > θk and let θ1 = 0.
We interpret the outcome θ1 = 0 as a failure to develop an innovation which is more
valuable than the current technological level. Agents can repeatedly conduct research and
have perfect recall, that is, they can access all their own previously obtained innovations
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at any point in time. Initially, every agent is endowed with a worthless innovation and in
each period in which an agent does not conduct research he receives a worthless innovation
(i.e., a shirking agent does not advance beyond the current technological level).

The agents’ research activity (whether or not they conduct research in any given
period) and research outcomes (the value of an innovation obtained in any given period)
are private information. If an agent submits an innovation to the principal, the principal
can determine the value of the innovation at no cost. However, the value of an innovation
is not verifiable by a court. Thus, contracts conditioning on the value of an innovation
are not credible.12 The agents are not budget constrained. This has two implications.
The agents can always afford to conduct research and the principal can charge positive
entry fees. The outside option of the agents is normalized to zero.

2.2 Interim-Transfer Contests

Taylor (1995) considers what we will refer to as a fixed-prize contest (FPC). An FPC is
a tuple Γ = 〈E, p, n, T 〉, where E ∈ R is an entry fee, n ∈ N is the (invited) number of
participating agents, T ∈ N is the finite contest deadline and p ∈ R is the final prize,
which is awarded to an agent at the end of T periods. In contrast, we introduce an
interim-transfer contest (ITC) as a tuple Γ = 〈E, p,m, n, T 〉. An ITC differs from an
FPC in the three ways. First, there could also be an “infinite” deadline T = ∞, which
means that there is no deadline and the contest can run for as long as the principal wants
it to. Second, there is an interim transfer m ∈ R which the principal has to pay in every
period until the contest stops. Third, the principal can stop the contest in every period,
which cannot be done in an FPC. Figure 1 illustrates the timing of an ITC.13

In order for an ITC to be credible, courts need to be able to verify (i) that the
interim transfer was paid in every period but the last, and (ii) that the final prize was
awarded, which can happen no later than at the deadline T . Thus, courts only need to
be able to verify time-contingent payments. We view this assumption as uncontroversial,
as such contracts are common. For example, utility bills come with payment deadlines
and penalties for late payment.

The contest Γ = 〈E, p,m, n, T 〉 induces an extensive form game of incomplete infor-
mation. The set of players is I = {0, 1, . . . , n}, where player 0 is the principal and players
1 to n are the agents. The set H is the set of histories and the actions available after any
non-terminal history h is denoted A(h) = {a : (h, a) ∈ H}. The set of initial histories is

12Non-observability and non-verifiability is a typical feature of research activity. As Taylor (1995, p.
873) notes “research inputs are notoriously difficult to monitor” and “courts seldom possess the ability or
expertise necessary to evaluate technical research projects”.

13Of course, one can imagine different contest formats, for example where the allocation of transfers
among agents is dependent on interim performance or with time-contingent interim transfers mt. As it
turns out, the optimum can be achieved with a simple ITC.
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Period 0

Principal commits to a con-
test, agents pay the entry
fee.

Period 1

The contest begins.

· · ·

In any period t the agents decide whether to do re-
search, then privately learn the value of innovation and
decide whether to submit it. The principal observes
the submitted values and decides whether to stop the
contest. If the contest continues, each agent is paid
m/n. If the contest stops, the final prize p is paid.

Period t · · ·

Period T

The contest ends for sure
and the final prize p is paid.

Figure 1: Timeline of an ITC.

the set of the states of the world. The true initial history is θ ∈ ΘNT , where each element
θit ∈ Θ (where i ∈ {1, . . . , n} and t ∈ {1, . . . , T}) is drawn i.i.d. from the probability
distribution F . An agent i who conducts research in period t receives a value equal to θit.
For the agents the payoffs are determined by the research costs they have incurred, the
entry fee they pay if they enter the contest, and the transfers they receive. The principal’s
payoff is determined by the value of the innovation she gets, the entry fees of the partici-
pants, and the transfers she makes to the agents. In what follows, we will use the terms
doing research and investing (in research) interchangeably. The set of players, their payoff
functions, the research technology and the contest structure are common knowledge. The
timing of the game is as follows.

Period 0:

- The principal announces the contest Γ = 〈E, p,m, n, T 〉.

- Agents decide whether to enter or not. All agents who enter the contest pay the
entry fee E.

Period t < T :

- Stage 1: Each agent simultaneously decides whether to perform research at cost C.
Agents do not observe the actions taken by their competitors.

- Stage 2: Each agent i who conducted research receives value equal to θit. All other
agents receive value 0.

- Stage 3: Having privately observed the value of their innovation, agents simultane-
ously decide whether to privately submit their innovation.
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- Stage 4: The principal observes the set of submissions (if any) and decides whether
to stop the contest. If the contest is stopped, the principal obtains the highest
submitted innovation and the agent with the highest submitted quality receives the
prize p. If the highest quality is submitted by multiple agents, the winner is chosen
randomly among them. If the contest continues the principal pays the interim
transfer m, so that each agent receives m/n.

Period T (if T <∞):

- Stages 1-3: As above.

- Stage 4: The contest stops, the principal obtains the highest submitted innovation
and the agent with the highest submitted quality receives the prize p. If the highest
quality is submitted by multiple agents, the winner is chosen randomly among them.
If there have been no submissions, the winner is randomly chosen.

Throughout the paper, we focus on the following equilibrium candidate. Denote with
σi the strategy function and with µi the beliefs of player i. Denote with θmaxi the highest
value available to player i. For agents, this is the highest value they have so far discovered.
For the principal, this is the highest value currently submitted. Denote with θg ∈ Θ the
threshold of the global stopping equilibrium. For agents, the equilibrium strategy is:

• if A(h) = {Invest, Not Invest} = {I,NI} then

σi(θ
max
i ) =

I if θmaxi < θK

NI else
;

• if A(h) = {Submit, Not Submit} = {S,NS} then

σi(θ
max
i ) =

S if θmaxi ≥ θg

NS else
.

The equilibrium strategy of the principal is:

• if A(h) = {Continue, Not Continue} = {Cont,NCont} then

σ0(θmax0 ) =

NCont if θmax0 ≥ θg

Cont else
.

The equilibrium beliefs of agent i over the state θjt are given either by Bayesian
updating or by prior beliefs, i.e., the distribution F . For own elements (i = j), the agent
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learns the exact state if he invests. If he does not invest, or if the chance to invest has not
occurred yet, he holds initial beliefs given by distribution F . For the elements of other
agents (i 6= j), if no deviation has been observed, the agent concludes that everybody
has invested up to that point and that nobody has a value higher than θg. This implies
that each individual θjt is drawn from the distribution F truncated at θg. If the agent
observes that the principal deviated, he learns nothing about the realization of the state
in that period, and holds the initial beliefs. The principal believes that any agent who
has not submitted an innovation has conducted research in every period, yet the draws
were always below θg (i.e., the distribution is from the truncated F ). For an agent who
has submitted an innovation, the principal believes that research has been conducted in
every period and that the submission is the current highest value. For all states which
have not occurred yet, the agents and the principal hold initial beliefs.

3 Infinite Horizon

3.1 Implementation of Global Stopping Equilibria

Stopping behavior provides an easy and intuitive way to describe the agents’ equilibrium
play in the contest in terms of their research activity. Under an individual stopping
equilibrium, every agent does research in every period of the contest until an individual
threshold value of innovation is reached, irrespective of the innovations discovered by other
agents. Such an individual stopping equilibrium consequently entails a risk of duplication
of research effort across agents. In contrast, such wasteful duplication of research efforts
is avoided under a global stopping equilibrium, where every agent does research in every
period of the contest until a single agent reaches some global threshold at which point all
agents stop doing research.

An FPC uniquely implements individual stopping equilibria, as the chance of winning
the final prize provides the agents with an incentive to conduct research until a threshold is
reached (Taylor, 1995). However, an FPC cannot implement a global stopping equilibrium
because the principal cannot credibly commit to stop the contest after the threshold value
has been achieved. The reason is that she does not bear the marginal cost of continued
research, while she stands to benefit from any marginal increase in the value of innovation.
Our first result shows that an appropriately designed ITC can implement any value of
innovation as the threshold of a global stopping equilibrium, thereby eliminating the risk
of wasteful duplication of research effort present in an FPC.

Proposition 1 Any θg ∈ Θ can be implemented as the threshold of a global stopping
equilibrium with any n ≥ 2 and for any T ≤ ∞ by using an ITC with final prize p ≥ p̄
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and the interim transfer m = p(1− δ) + δ∆(θg, n)− θg + ε, where

∆(θg, n) = F n(θg)θg +
K∑

j=g+1

(
F n(θj)− F n(θj−1)

)
θj (1)

p̄ = max

{
δn∆(θg, n)− θg + ε

δ(n− 1)(1− F (θK−1))n−1
,

2nC

(1− F (θK−1))n

}
(2)

ε ∈ [0, (1− δF n(θg−1))(θg − θg−1)). (3)

The proposition shows that for any θg ∈ Θ, there exists an ITC with low enough E
so that in a perfect Bayesian equilibrium n agents enter the contest, conduct research
and submit any innovation of value at least θg to the principal. The principal stops the
contest as soon as an innovation of value at least θg has been submitted and so stops any
further research effort. The agent who submitted the highest value innovation wins the
final prize.14 Moreover, as long as the deadline is not reached and the principal does not
end the contest, the principal pays m/n to each agent.15

In order to implement a global stopping equilibrium, the agents need to conduct
research until the threshold is reached and then immediately report their innovation to
the principal. The principal needs to stop the contest once this happens. The final prize
and the interim transfer are the instruments which ensure this behavior, respectively.

The interim transfer m when ε = 0 corresponds exactly to the principal’s marginal
benefit of continuing the contest one more period when an innovation of value θg has been
submitted. Thus, through the interim transfer, the principal incurs a constant marginal
cost of one more round of research by the agents. Since the marginal benefit of research
to the principal is decreasing in θ, the principal strictly prefers to continue the contest
whenever the highest innovation value is below θg, strictly prefers to stop it whenever it
is above, and if ε = 0 she is indifferent at the threshold value. For positive values of ε, the
preference to stop is strict also for the threshold value. As a consequence, the principal
will credibly stop the contest if at least the threshold value θg was reached.

Conversely, the final prize gives the incentivizes the agents to perform research in
every period and to report their research outcomes truthfully. Intuitively, as in the FPC,
each agent pursues an individual stopping threshold which is determined by the expected
probability of winning the final prize. Increasing the final prize increases the individual
stopping threshold. If the individual stopping threshold is above the global stopping
threshold, the agents will conduct research as long as the contest is ongoing. Similarly,

14In case of multiple innovations of equal highest value being reported simultaneously, the winner is
randomly chosen.

15Instead of paying m/n to each agent, the principal could allocate m in different ways. For example,
entire m could be paid to the agent with the best intermediate value. We discuss this possibility further
in the conclusion.
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the final prize induces the agents to truthfully report their research outcomes. By not
reporting an innovation above the threshold, an agent could attempt to obtain the interim
transfer in the current period in addition to the final prize in the next period. However,
not reporting exposes the agent to the risk that another agent will win in the current
period and end the contest. As long as the size of the final prize is sufficiently large
relative to the interim transfer, the agent will report truthfully. Thus, incentives of the
agents can be satisfied by making the final prize large enough. Since the interim transfer
is a function of the final prize, the incentives of both the principal and the agents can
be satisfied simultaneously, so that the equilibrium exhibits global stopping. The final
prize p and the interim transfer m are set high enough so that the agents’ participation
constraints are satisfied and n agents want to enter the contest. The condition p ≥ p̄

is a sufficient condition needed to guarantee that any θg ∈ Θ can be implemented as
the threshold of a global stopping equilibrium. In particular instances, a global stopping
equilibrium could be implemented with final prizes which are lower than p̄.

The above intuition also serves as a sketch of the proof. The first step is to show that
the principal does not want to deviate from the equilibrium strategy given the interim
transfer, while the second step is to show that for a sufficiently high final prize, the agents
do not want to deviate either.

An ITC does not have a unique equilibrium. For example, an agent submitting an
innovation below the threshold is also an equilibrium of this contest. While a multiplicity
of equilibria can be an issue when the principal wants to implement some specific outcome,
this alternative equilibrium profile does not change the outcome of the game in any way.
The principal simply ignores any submissions below the threshold and the game results
in exactly the same payoffs in all states of the world. Our next result shows that this
observation holds for any equilibrium in which the principal plays a threshold strategy.
We say that a principal’s strategy σ0 is a threshold strategy if there is a θs ∈ Θ such that

σ0(θmax0 ) =

NCont if θmax0 ≥ θs

Cont else
.

Given this restriction on the equilibrium strategy of the principal (but not on her deviation
strategies), an ITC exists which uniquely implements any θg > 0 as the threshold of a
global stopping equilibrium.

Proposition 2 Fix any θg ∈ Θ such that θg > θ0 and consider any ITC satisfying the
conditions of Proposition 1 with the final prize p > ¯̄p and ε > 0, where

¯̄p = max

{
n2C + (δ∆(θg, n)− θg + ε)

(
1− F (θK−1)

)
(1− δ)(n− 1) (1− F (θK−1))

, p̄

}
.
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Then, any perfect Bayesian equilibrium in which the principal follows a threshold strategy
implements a global stopping with θg.

In order to guarantee uniqueness of outcomes, we further restrict the ITC from Propo-
sition 1 in two ways. First, we require that ε > 0, which provides strict incentives to the
principal to stop the contest at the threshold value. Second, the final prize needs to be
higher. The proof shows that if the principal follows a threshold strategy, then in any PBE
the agents will do research and submit all innovations which are at or above the threshold.
The principal, in turn, will use θg as the threshold of her strategy. Thus, any multiplicity
of equilibria is a result of either different submission strategies for innovations below the
threshold, or different strategies off equilibrium, neither of which is payoff relevant for the
principal or the agents.

3.2 Optimal Contests

Our first main result above shows that it is possible to implement global stopping equilib-
ria without relying on verifiability of research outcomes. While this is of interest in itself,
the fact that the principal can implement a global stopping equilibrium does not imply
that she actually wants to do so. One may suspect that a global stopping equilibrium
is preferable to an individual stopping equilibrium, but this need not be true in general.
Indeed, comparing an FPC and an ITC with the same threshold value and number of con-
testants, one can show that the individual stopping equilibrium yields a higher expected
value of innovation, but has higher expected costs than the global stopping equilibrium.
It is thus not obvious whether the ITC or the FPC performs better. Moreover, it is not
clear if there exists some other contest, or indeed some other mechanism, which performs
better than either the ITC or the FPC. To shed light on this, we turn to the question of
optimality in this section.

The first step is to characterize the first best, that is the outcome without the principal-
agent problem. If the principal could directly control the agents, then our framework
would correspond to classic search problems (Gal et al., 1981; Morgan, 1983). In these
models, the principal in every period decides whether to continue the search or not. If
the search is continued, the principal decides with which intensity to search and bears
the corresponding search costs. If the search stops, the principal obtains, in that period,
utility equal to the highest value found. In each period that the search continues, a value
is drawn as a function of the search intensity.

As Benkert, Letina, and Nöldeke (2018) argue, this model can be embedded into a
Markov decision process framework.16 This is done in the following way. Let s ∈ Θz be
a state variable with Θz = Θ ∪ {z}, where s ∈ Θ implies that the highest value found

16For an overview of Markov decision process framework, see DeGroot (1970, Chapter 14).
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so far is s and s = z implies that the search has been terminated. Let n ∈ N z be the
action variable, with N z = N ∪ z, where n ∈ N implies continued search with n agents
and n = z implies that the search is terminated. The reward function is given by

r(s, n) =


−δnC, if n 6= z and s 6= z

s, if n = z and s 6= z

0, if s = z.

Finally, the transition function φ(s′|s, n) defines the probability that the state transitions
from s to s′ given the action n. Once terminated, the search cannot leave the terminal
state, so that φ(z|z, n) = φ(z|s, z) = 1 for all s ∈ Θz and all n ∈ N z. Furthermore, the
search never enters the terminal state without being stopped, that is φ(z|s, n) = 0 for all
s, n 6= z. Since there is perfect recall, the state never decreases, that is φ(s′|s, n) = 0 for
all s′ < s and s, n 6= z. For all remaining cases, φ(s′|s, n) is derived from the probability
that s′ is drawn from F given n draws. Then the problem of the principal is to choose the
horizon T ≤ ∞ and a sequence of functions n0, n1, . . . , nT−1 where nt : Θz → N z which
will maximize the expected value of her discounted sum of rewards. Denoting with St the
random state variable in period t, this can be expressed as

max
T,n0,...,nT−1

r(0, n0)

δ
+ E

[
T−1∑
t=1

δt−1r(St, nt) + δT−1r(ST , z)

]
.

While nt(·) could potentially depend on time and state variables in complex ways,
Benkert et al. (2018) show that the solution to the principal’s maximization problem
takes a very simple form. The optimal horizon T is infinite, and there exist nFB ∈ N and
θFB ∈ Θ such that

n∗t (θ) =

nFB, if θ < θFB

z, if θ ≥ θFB,

for all t. That is, the principal optimally searches with a constant sample size nFB

across time until some threshold θFB has been reached.17 While we do not have explicit
expressions for nFB and θFB, it is simple to find both for any given parameters of our
model.18 Put differently, a global stopping equilibrium with constant search intensity is
an optimal search strategy. This leads to our next result.

17This result is related to the optimality of Gittins index policies in multi-armed bandit problems. See
Bergemann and Välimäki (2001).

18Since the per-period search costs are equal to −nC, increasing the sample size leads to higher costs.
The benefit is that an innovation above the threshold will be discovered sooner, which is desirable due to
discounting. The optimal sample size nFB balances the speed of discovery and the cost of research.
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Proposition 3 If nFB ≥ 2 the first-best outcome can be implemented using an ITC.

The result follows in three steps. First, by Proposition 1 in Benkert et al. (2018),
the first best is equivalent to a global stopping equilibrium with (i) θFB threshold, (ii)
infinite horizon, and (iii) nFB agents. Second, by Proposition 1 such an outcome can be
implemented by an interim-transfer contest. Third, choosing the entry fee E such that
the agents’ participation constraint is binding allows the principal to fully extract the
first-best surplus. Thus, the ITC not only outperforms the FPC, rather, it is the optimal
mechanism more generally.19

As noted in the previous section, we need nFB ≥ 2 in order to induce any effort in any
contest. However, a slight twist to the ITC allows us to implement the first-best outcome
when nFB = 1, too. More precisely, to implement a global stopping equilibrium with
only one agent doing research, the principal announces an ITC between a “real agent”
and a “fictitious agent”. The interim transfers are always paid to the fictitious agent,
while only the real agent can receive the final prize, which occurs only when he submits
an innovation value above the threshold. This way the interim transfer still ensures that
the principal will adhere to the global stopping equilibrium, the agent will exert effort in
every period in order to obtain the final prize by reaching at least the threshold value,
and the fictitious agent has no incentive to exert any research effort.

Another advantage of holding an ITC over an FPC is that the equilibrium of an
ITC is more robust to information disclosure by the agents. Suppose that each agent
could credibly disclose the quality of its innovation to its rivals, for example by holding a
public demonstration of his current technology. In an FPC, an agent with a high enough
innovation quality might have an incentive to disclose his innovation in order to discourage
the competitors from investing. This, in turn, could lower the expected quality that the
principal obtains from an FPC.20 The equilibrium of the ITC would not be affected by the
ability of agents to disclose their innovation quality. If an agent disclosed a quality below
the winning threshold, this would not affect the payoffs of his competitors in any way,
since winning requires an innovation above the threshold. Hence, no agent benefits from
disclosing such an innovation to his competitors. Any innovation above the threshold
immediately causes the principal to stop the contest, so that again the equilibrium is not
affected by the possibility of information disclosure.21

Taylor (1995) notes that the first best could be achieved if the principal, instead
of holding one multi-period contest, held a series of one-period contests. However, if

19Of course, this requires that the principal can charge entry fees and that the agents are not budget
constrained. As mentioned in the introduction, entry fees have been used both in the literature and in
practice. Nevertheless, the requirement may limit the scope of applications.

20See Rieck (2010). Disclosure of intermediate innovations is also studied in Gordon (2011) and Gill
(2008).

21We would like to thank an anonymous referee for pointing this out.
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inspecting the agents’ submissions is costly, running a sequence of one-period contests
and inspecting submissions after every period may be prohibitively costly. This points to
another advantage of the ITC. Namely, the principal only has to inspect submissions once
and only from those agents who have developed an innovation of high enough quality. This
argument relies on the implicit assumption that the agents can evaluate their innovations
at no cost. If it was costly for the agents to evaluate the innovations, they could submit
without evaluating, thereby shifting the evaluation costs to the principal. The principal
can address this concern in several ways. First, the principal can change how the interim
transfer m is allocated among agents to provide incentives to agents to actually evaluate
their innovations. This can be done by splitting the interim transfer m (in the case
the contest continues) only among those agents who have not submitted.22 Second, if the
principal can observe whether or not the agents have evaluated their submitted innovation,
she could refuse to consider submissions which have not been evaluated. For example,
while evaluating the value of pharmaceutical innovations is certainly costly, the principal
can easily observe whether or not the new drug went through the clinical trials. Finally,
even if the principal had to bear the cost of evaluating all innovations in each period, she
would not be worse off than in a series of one-period contests.23

4 Finite Horizon

As noted above, the first best takes a particularly simple form in the case of an infinite
horizon. With a finite horizon, the first best is more complicated. It is characterized by
a function nFB(θ, t), which specifies the number of agents which optimally do research in
period t when the current highest value is θ. Gal et al. (1981) and Morgan (1983) have
shown that there exists a global stopping value θg such that nFB(θ, t) = 0 for θ ≥ θg and
that the number nFB(θ, t) is decreasing in θ and increasing in t. Thus, a global stopping
threshold is optimal even with a finite horizon, but the optimal number of agents will
generally change non-monotonically over time.24 Without additional assumptions it is
difficult to say more about the optimal innovation contest. To make progress, we assume
that all innovations are of similar value, which we will call a breakthrough.

22Since m can be made arbitrarily large, there always exists an ITC where m/n is larger than the
agents’ evaluation cost. We discuss additional ways in which the principal can change the allocation rule
of the interim transfer in the conclusion.

23Since in Taylor (1995) the agents can observe the value of their innovation at no cost, it is not obvious
how the equilibrium of an FPC would change if evaluating innovations was costly for the agents.

24To understand this non-monotonicity, suppose that the current best innovation available to the
principal is θ1 = 0. As the deadline T approaches, the risk that the final innovation is worth nothing
increases. To mitigate this risk, the principal increases the number of firms investing in every period.
However, suppose that in the period T − 1 an innovation with relatively high value θk > 0 is discovered.
Since now the principal will obtain at least θk, she is less willing to risk costly duplication of effort, so in
the final period she reduces the number of firms investing.
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Assumption 1 The set of values of innovation is given by Θ = {0, θb, θb+1, . . . , θK}
where θK − θb < C.

This assumption fits well with environments where the goal of the principal is a scientific
discovery. For example, determining that tuberculosis is caused by bacteria, that DNA
has a double-helix structure, or that Fermat’s Last Theorem is true are examples of
breakthroughs where the main value comes from the insight. A clearer image of the double-
helix or a more elegant proof of Fermat’s Last Theorem would certainly be valuable, but
not nearly as much as the original insight. Environments which do not fit well tend to
be more applied innovations, where the values are significantly dispersed. For example, a
pharmaceutical innovation can be effective at treating a disease, but it can be costly to
produce or have significant side effects. Improvements along either of those dimensions
can significantly increase the value of that innovation to the principal.

Given Assumption 1, the first best takes a simple form. Once any breakthrough has
been achieved, further research is not worthwhile and the principal stops the contest. As
long as no breakthrough has been achieved, the principal will weakly increase the research
effort in every period. The ITC we introduced in Section 2 cannot implement the first best,
because the number of participants in an ITC is constant over time. However, we can easily
generalize the notion of an ITC to accommodate the increasing number of researchers over
time. Let a generalized interim-transfer contest (gITC) be a tuple Γ = 〈E, p,m,n, T 〉,
where n = [n1, n2, . . . , nT ] is a vector specifying the number of participants in each period,
E = [E1, . . . , ET ] is the vector of entry fees to be paid by participants entering in period
t, and m = [m1, . . . ,mT−1] is the vector of interim transfers, where transfer mt is paid in
period t if the contest continues to the next period.

The game induced by a gITC is analogous to the one induced by a regular ITC, but
with two differences. First, in any period t with nt > nt−1, nt−nt−1 additional agents are
randomly chosen from the set N and invited to participate in the contest and to pay the
entry fee Et.25 Agents may only enter the contest in the period in which they are invited.
Second, the interim transfer is not the same in each period, but can vary from period to
period. Together with Assumption 1, a gITC implements the first-best outcome.

Proposition 4 Given Assumption 1 and a finite deadline T , the first-best outcome can
be implemented using a generalized ITC with sufficiently high p and interim transfers

mt = p(1− δ) + δ(∆(θb, nFBt+1) + (nFBt+1 − nFBt )Et+1)− θb for t = 1, . . . , T − 1.
25Note that in each period at most a finite number of researchers is invited. Since the horizon is finite

and the contest terminates in period T , the highest possible number of participants in the contest is
nT . The assumption that the set of available agents N is infinite is made for simplicity, our results
would hold if N was finite but sufficiently large. An additional implicit assumption that we make is that
there are no recruiting costs. If recruiting agents was costly, the first best would remain qualitatively
unchanged (with a weakly increasing number of agents over time), even if the exact vector nFB would
change. Furthermore, gITC would still implement the first-best outcome for the principal.
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The proof mirrors that of Proposition 1 and the intuition is unchanged, that is, the in-
terim transfers ensure the principal’s adherence to the global stopping equilibrium and the
final prize incentivizes the agents to conduct research until they achieve a breakthrough.

5 Related Literature

The seminal paper on dynamic research contests is Taylor (1995) on which we build our
model.26 He shows that a T -period FPC with N agents uniquely implements an individual
stopping equilibrium among the agents. Further, Taylor shows that it is optimal to limit
the number of agents in the contest and that the principal can extract the entire ex-
ante surplus using appropriate entry fees. Rieck (2010) considers a variation of Taylor’s
framework, which enables him to study the role of information revelation. Depending on
the parameters, the principal may be better off with or without information revelation
and firms may voluntarily reveal information. As we mentioned before, an ITC is more
robust to information disclosure than an FPC.

Recently, a number of papers have used bandit models to study the problem of incen-
tive provision for dynamic research activity. In bandit models it is unclear ex ante if the
innovation in question can actually be successfully realized, so in contrast to our setting,
these models focus on learning over time. Halac, Kartik, and Liu (2017) consider the
optimal design of contests for innovation where the principal chooses the prize-sharing
scheme and a disclosure policy which determines what information is revealed to the
agents about their respective outcomes. Similarly to our setting, the first-best features a
global stopping equilibrium. However, they find that a contest which does not entail a
global stopping equilibrium can be optimal in the presence of learning. In particular, in
a broad class of contests it is optimal to stop the contest only once a certain number of
agents had a success and to share the prize between them.27 Along similar lines Green
and Taylor (2016) consider the role of breakthroughs in a single-agent contracting envi-
ronment. In contrast to our framework, the research outcome can be contracted upon and
the problem the principal faces is how to optimally induce effort over time using a first
deadline for the breakthrough, a second deadline for the final outcome and a monetary
transfer. In their paper, the monetary transfer is decreasing over time, which induces
the agent to aim for an early success. Thus, the slope of the prize schedule is used to
affect the agent’s incentives. In contrast, in our paper, the final prize aligns the agents’
incentives, while the interim transfers serve to align the principal’s incentives.

Also related is the literature on optimal design of research contests in the static setting,
26Konrad (2009) provides an excellent overview of the literature on contests. See also Siegel (2009) for

general results on all-pay auctions.
27For a related model featuring partial progress see Bimpikis, Ehsani, and Mostagir (2019).
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where the seminal contribution is Che and Gale (2003). They show that with symmetric
agents, the optimal contest is a scoring auction and the optimal number of agents is two.
When agents are asymmetric, the optimal contest is still an auction with two agents, but
the optimal auction handicaps the more efficient agents.28 The innovation in their setting
is deterministic, so there is no sampling benefit from having more than two agents.29

Several other directions have been explored in the static setting. Letina and Schmutzler
(2019) consider the optimal contest design when the agents can choose their approach to
innovation and the principal attempts to give them incentives to diversify their approaches
because of the resulting option value. They find that the optimal contest is a bonus
tournament, where a winner gets a fixed prize, plus a bonus if he outperforms the second
best agent with a high enough margin. Olszewski and Siegel (2019) provide a novel
approach to optimal contest design with many agents. In a very general setting, they
characterize the optimal prize structure and find that with convex costs and risk-averse
agents, multiple prizes are optimal.

Lang, Seel, and Strack (2014) is related to our result about the optimal contest length
T . They consider a two-player FPC where agents exert effort over time and breakthroughs
arrive according to a Poisson process. The agent with the most breakthroughs wins. They
find that the principal can be better off with a shorter deadline. Seel (2018) characterizes
the optimal deadline in a two-player FPC where the player with highest effort wins. He
finds that a short deadline is optimal. In our paper, if the principal was limited to a FPC,
shorter deadlines would also be optimal. However, since an ITC is stopped as soon as the
threshold is reached, infinite deadlines are optimal.

Related to our implementation result is Kruse and Strack (2015). They study a dy-
namic principal-agent problem, where the agent observes realizations of a stochastic pro-
cess over time. They show that for any threshold value, the principal can induce the
agent to stop the game as soon as the process is above the threshold by committing to
an appropriate schedule of transfers which depend only on the period when the game is
stopped. In our paper, the stochastic process comes from the research done by the agents
and the goal of the contest is to incentivize the agents to engage in research.

There is a growing empirical literature on dynamic research contests.30 Using data
on software contests Boudreau, Lacetera, and Lakhani (2011) find that increasing the
number of participants reduces average effort but increases the chance of getting a very
high quality innovation. Also using data on software contests Boudreau, Lakhani, and
Menietti (2016) find that the results derived in Moldovanu and Sela (2001) generally
perform quite well. In particular, they find that the response of participants to an increase

28Discrimination in contests is also studied in Pérez-Castrillo and Wettstein (2016).
29See for example Terwiesch and Xu (2008), Schöttner (2008) and Letina (2016).
30For a survey of experimental work on contests see Dechenaux, Kovenock, and Sheremeta (2015).
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in the number of competitors yields heterogeneous responses. Namely, low ability agents
respond weakly, medium ability agents decrease their efforts while high ability agents
increase their efforts. Bhattacharya (2018) estimates a multistage research contest based
on the U.S. Department of Defense SBIR program. Lemus and Marshall (2019) estimate
a dynamic contest model using data from Kaggle.com.31 Using their model, they can
evaluate counterfactual contest designs. One of their main findings is that having a
public leaderboard during the contest improves the outcomes.

6 Conclusion

The goal of the present paper is to improve our understanding of the optimal design of
research contests, which have recently seen a rapid expansion in practice. It does so by
constructing a theoretical benchmark which enables the principal to implement the first-
best outcome. However, our model relies on several strong assumptions which may limit
the extent to which our result can be applied in practice. We have already mentioned the
importance of entry fees and the assumption that the agents are not budget constrained.
In addition, we model research as an independent draw in each period. This simplifies
analysis, but in reality the research is likely to be cumulative, with researchers building
on their previous discoveries. Finally, to implement the optimal contest, the principal
needs detailed information about the environment, including the level of research costs
and the distribution from which innovations are drawn. In addition, this information is
not updated over time. Analyzing the effects of these assumptions is an exciting avenue
for future research.

The main result of this paper is that an interim-transfer contest constitutes the optimal
mechanism. As was already mentioned, the purpose of interim transfers is to provide
incentives to the principal for stopping the contest once an innovation of sufficient quality
has been discovered. This incentive is present whenever the principal commits to paying
m in every period of the contest. The exact rule for allocatingm in a particular innovation
contest can then be chosen in response to the specific setting of that innovation contest.
For example, if maintaining the competitive balance among contestants is an issue in a
given contest, then splitting the transfer m equally among all agents (as is done in our
ITC) alleviates that concern.32 Alternatively, the principal may want to learn about the
innovations as soon as they are discovered, even if the innovations are below the threshold
at which the contest is stopped. This could be either for marketing purposes or because
the principal can start benefiting from innovations while the contest is ongoing. In this
case, the principal needs to provide incentives to the agents to also report innovations

31They host online prediction competitions, which are closely related to innovation contests.
32For an example of this see Möller (2012).
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below the threshold. This can be done by awarding the entire transfer m to the agent
who currently has the best innovation as a progress prize.33

In a similar vein, an alternative contest which does not entail interim transfers but
instead features a dynamic prize schedule does almost as well as the interim-transfer
contest. In this alternative contest, the principal commits to a sequence of prizes p1, ..., pT .
If the principal ends the contest in period t, the prize pt has to be paid out. The difference
between two prizes pt and pt+1 plays a similar role to our interim transfer. This alternative
contest with a dynamic prize schedule can also implement global stopping equilibria, but
only with finite deadlines. Thus, the first-best outcome can be approximated arbitrarily
well, but not fully achieved.

In addition to innovation contests, interim-transfer contests can be used to study
promotion tournaments within firms. In a promotion tournament, firms commit to paying
a salary (i.e., an interim transfer) to a group of workers, until one worker is promoted
(which is the final prize). Our model suggests that the payment of salaries and the timing
of the promotion are linked. Of course, in a promotion tournament the firm may be
interested in the total effort provided by all workers or in selecting the best worker among
the contestants. As this example illustrates, the insights from our paper can potentially
extend to settings beyond innovation contests.

33Awarding the transfer m to the agent with the current highest innovation implies that the principal
would have to potentially inspect submissions in every period.
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Appendix

A Proofs

A.1 Proof of Proposition 1

The proof proceeds as follows. First, three lemmas show that no profitable one-shot
deviation exists after any history of the game. Then, we show that no one-shot deviation
implies that no profitable deviation exists.

Lemma 1 There exists no profitable one-shot deviation for the principal.

Proof. First, observe that the principal cannot profitably deviate when allocating the
prize. Thus, we only need to consider deviations in instances when the principal chooses
whether to stop or continue the contest. If T < ∞ there is a final period. In this final
period the contest has to end and thus the principal has no action to take. Next, consider
any period t < T . Suppose an innovation of value θk ≥ θg has been submitted to the
principal. Stopping yields θk − p, whereas continuing yields −m+ δ(∆(θk, n)− p). Thus,
stopping is optimal whenever

m ≥ p(1− δ) + δ∆(θk, n)− θk.

Recall that m = p(1− δ) + δ∆(θg, n)− θg + ε. Simple algebra shows that ∆(θ, n)− θ is
strictly decreasing in θ. Thus, the principal will stop the contest if a value θk ≥ θg has
been submitted.

Suppose now a value θk < θg has been submitted. We will show in three steps that
stopping is not optimal. Steps 1 and 2 cover the case when T is finite, while Step 3 deals
with the infinite horizon case.

Step 1. Denote with U0(σ|θk, t) the expected utility to the principal of having the highest
value θk in period t and given a strategy σ. We will prove by induction that U0(σ|θk, t) >
θk − p, which shows that no profitable one-shot deviation occurs. For the base step, we
show that U0(σ|θk, T − 1) > θk − p. We can write

U0(σ|θk, T − 1) = −m+ δ

(
F n(θk)θk +

K∑
j=k+1

(F n(θj)− F n(θj−1))θj

)
− δp

= θg − p− δ(∆(θg, n)−∆(θk, n))− ε. (4)
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Thus, U0(σ|θk, T − 1) > θk − p if and only if

θg − θk − ε− δ(∆(θg, n)−∆(θk, n)) > 0.

If g > k, then simple algebra gives

∆(θg, n)−∆(θk, n) =

g−1∑
j=k

F n(θj)(θj+1 − θj). (5)

Using this in the inequality above, U0(σ|θk, T − 1) > θk − p if and only if

θg − θk − δ
g−1∑
j=k

F n(θj)(θj+1 − θj)− ε > 0

g−1∑
j=k

(1− δF n(θj))(θj+1 − θj)− ε > 0,

which is satisfied whenever

(1− δF n(θg−1))(θg − θg−1) > ε.

Step 2. To prove the inductive step, we show that if U0(σ|θk, t + 1) > θk − p then also
U0(σ|θk, t) > θk − p. We can write

U0(σ|θk, t) = −m+ δ

(
F n(θk)U0(σ|θk, t+ 1) +

K∑
j=k+1

(F n(θj)− F n(θj−1))U0(σ|θj, t+ 1)

)
.

Since U0(σ|θj, t + 1) = θj − p for all j ≥ g, and by the previous step U0(σ|θj, t) > θj − p
for all k ≤ j < g, then we can write

U0(σ|θk, t) ≥ −m+ δ

(
F n(θk)(θk − p) +

K∑
j=k+1

(F n(θj)− F n(θj−1))(θj − p)

)
= −m− δp+ δ∆(θk, n)

= θg − p− δ(∆(θg, n)−∆(θk, n))− ε.

Observe that the last expression is identical as equation (4) and the proof that U0(σ|θk, t) >
θk − p proceeds analogously.

Step 3. In the infinite horizon case, the expected utility when the principal follows σ,
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given any θk < θg is equal to the value of search. Thus we can write

U0(σ|θk) = −m+ δ

(
F n(θg−1)U0(σ|θk) +

K∑
j=g

(F n(θj)− F n(θj−1))(θj − p)

)

(1− δF n(θg−1))U0(σ|θk) = −m− δ(1− F n(θg−1))p+ δ

K∑
j=g

(F n(θj)− F n(θj−1))θj

(1− δF n(θg−1))U0(σ|θk) = θg(1− δF n(θg−1))− p(1− δF n(θg−1))− ε

U0(σ|θk) = θg − p− ε

1− δF n(θg−1)

Thus, U0(σ|θk) > θk − p for all k < g.

Lemma 2 There is no profitable one-shot deviation at the submission stage for the agent.

Proof. Observe that submitting an innovation that has value below θg is never profitable.
Thus we only need to consider the decision of an agent who has an innovation of value
θk ≥ θg. Suppose the state of the world is such that another agent has a value θ ≥ θk.
Then, submitting yields a weakly higher payoff, as it could mean the agent wins the prize,
whereas not submitting yields zero as the contest ends for sure. Finally, suppose the state
of the world is such that no other agent has a value θ ≥ θk.

We need to consider two cases: when θk = θK and when θk < θK . Suppose first that
θk = θK . The payoff of following the equilibrium strategy and submitting is p. One-shot
deviation is to not submit, then not do research, and then submit. The payoff of this
deviation is

m

n
+ δPt+1(σ′|θK , t)p

where Pt+1(σ′|θK , t) is the probability that the agent wins the contest in period t + 1

given that he has the quality θK in period t and follows the deviation strategy σ′. The
deviation will not be profitable if p ≥ m/n+ δPt+1(σ′|θK , t)p. It is sufficient to show that
p ≥ m+ δPt+1(σ′|θK , t)p. Substituting m = (1− δ)p+ δ∆(θg, n)− θg + ε and rearranging,
this is equivalent to

p ≥ δ∆(θg, n)− θg + ε

δ(1− Pt+1(σ′|θK , t))
.

The probability of the event that all the opponents obtain θK and one of them wins is
given by (1−F (θK−1))n−1(n−1)/n. Since Pt+1(σ′|θK , t) < 1−(1−F (θK−1))n−1(n−1)/n,
it is sufficient to show that

p ≥ n(δ∆(θg, n)− θg + ε)

δ(n− 1)(1− F (θK−1))n−1
.
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which always holds since p ≥ p̄.
In the case θk < θK the one-shot deviation is to not submit, invest, and then submit.

However, observe that the quality in the next period cannot be greater than θK , which
implies that the deviation payoff is less than m/n+ δ(Pt+1(σ|θK , t+ 1)p−C). As this is
less than in the previous case, this deviation is also not profitable.

Lemma 3 There exists no profitable one-shot deviation at the research stage for the agent.

Proof. Suppose that the highest quality agent i has in period t is θk. In what follows,
we show that for p ≥ p̄ investing is optimal for all θk < θK and it is not optimal for
θk = θK . Let σ′ be a strategy profile that coincides with the equilibrium candidate σ
with the exception of the agent i’s action in the investment stage in period t. Thus, it
is a one-shot deviation. First note that a deviation in the case θk = θK would imply
investing when the agent has the highest feasible quality. This is trivially never optimal,
as the agent incurs research costs without an increase in quality. Thus, focus on the case
θk < θK where a deviation is to not invest.

Denote the expected utility of agent i following the strategy σ from period t in which
his highest quality is θk with Ui(σ|θk, t). A one-shot deviation is not profitable if

Ui(σ|θk, t)− Ui(σ′|θk, t) ≥ 0. (6)

As before, let Ps(σ|θk, t) be the probability that the agent i wins the contest in period
s ≥ t, following the strategy σ from period t in which the highest quality was θk.

First consider the case θg ≤ θk < θK . In this case, the game will end with certainty
in period t and the LHS of inequality (6) reads

Ui(σ|θk, t)− Ui(σ′|θk, t) = −C + p(Pt(σ|θk, t)− Pt(σ′|θk, t)).

Due to perfect recall, in any state of the world in which the agent i wins following the
strategy σ′, he also wins following the strategy σ. Following strategy σ′, agent i has a zero
probability of winning if all the opponents have θK , while that probability is positive if he
follows σ. The event that all the opponents draw θK and agent i following the strategy
σ wins, happens with probability of at least (1 − F (θK−1))n/n. Thus, to show that the
inequality (6) holds, it is sufficient to show that

−C + p
(1− F (θK−1))n

n
≥ 0 (7)

p ≥ nC

(1− F (θK−1))n

which always holds since p ≥ p̄.
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The only remaining case is θk < θg, which we now consider. In this case, the agent i
could not have observed a deviation by the principal, so he believes all of his opponents
have values below θg. First suppose that t = T so that the contest ends with certainty
in period t. Then the analysis above applies. Next, suppose that t < T . Since σ and σ′

coincide after t, that we can write the expected utilities in the following way:

Ui(σ
′|θk, t) = F n−1(θg−1)

[m
n

+ δUi(σ|θk, t+ 1)
]

Ui(σ|θk, t) = pPt(σ|θk, t) + F (θk)F n−1(θg−1)
[m
n

+ δUi(σ|θk, t+ 1)
]

+

g−1∑
j=k+1

(
F (θj)− F (θj−1)

)
F n−1(θg−1)

[m
n

+ δUi(σ|θj, t+ 1)
]
− C.

Since Ui(σ|θj, t+ 1) ≥ Ui(σ|θk, t+ 1) for all θj > θk, we can write

Ui(σ|θk, t) ≥ pPt(σ|θk, t) + F (θg−1)F n−1(θg−1)
[m
n

+ δUi(σ|θk, t+ 1)
]
− C.

Furthermore, since Pt(σ|θk, t) ≥ (1 − F (θg−1))F n−1(θg−1) + (1 − F (θK−1))n/n and p ≥
m/n+ δUi(σ|θk, t+ 1) by Lemma 2, we can write

Ui(σ|θk, t) ≥
(1− F (θK−1))n

n
p+ F n−1(θg−1)

[m
n

+ δUi(σ|θk, t+ 1)
]
− C.

Then,

Ui(σ|θk, t)− Ui(σ′|θk, t) ≥
(1− F (θK−1))n

n
p− C ≥ 0

which holds by the same argument as for Inequality (7).
We conclude the proof by showing that since no one-shot deviation exists, then no

profitable deviation exists at all. First, observe that if T is finite, then the result follows
by Theorem 1 of Hendon, Jacobsen, and Sloth (1996). If T is infinite, then the game is
continuous at infinity and the result follows by Corollary 2 of Hendon et al. (1996).

A.2 Proof of Proposition 2

The claim follows from the lemmas below. Throughout the proof, we will again use
P(σ|θmaxi , t) to denote the probability that the agent i wins the contest in period t, given
strategy σ and his current highest value θmaxi . Similarly, Pc(σ|θmaxi , t) will denote the
probability that the contest continues to the next period. We will use Ui(σ|θmaxi , t) to
denote the expected payoff of player i (agent or the principal).

Lemma 4 In any PBE, σ0(θK) = NCont.
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Proof. Suppose not. We show that NCont is a profitable one-shot deviation. We can
write

U0(NCont, σ|θK) = θK − p.

The principal’s expected utility after Cont, given a strategy that terminates the contest
in t̄ ≤ ∞ periods, is

U0(Cont, σ|θK) = δt̄(θK − p)−
t̄−1∑
t=0

δtm.

Then,

U0(NCont, σ|θK)− U0(Cont, σ|θK) =
(

1− δt̄
) (
θK − p

)
+

t̄−1∑
t=0

δtm

=
1− δt̄

1− δ
(
(1− δ)θK + δ∆(θg, n)− θg + ε

)
≥ 1− δt̄

1− δ
(
θK − θg + ε

)
> 0.

Lemma 5 At any submission stage and for any θmaxi ∈ Θ

P(S, σ|θmaxi , t) + Pc(S, σ|θmaxi , t) ≥ P(NS, σ|θmaxi , t) + Pc(NS, σ|θmaxi , t).

Proof. If t = T or θs = θ0, then the contest ends for sure in the current period. Since
the probability of winning in case the contest ends is minimized after NS, submitting can
only weakly increase the probability of winning. Next, consider t < T or θs > θ0. Then
P(NS, σ|θmaxi , t) = 0 and following NS by agent i, the contest continues only if all agents
either do not submit or submit a value below θs. If θmaxi < θs then the contest continues
in all the same states of the world as with NS. Hence Pc(S, σ|θmaxi , t) = Pc(NS, σ|θmaxi , t)

and P(S, σ|θmaxi , t) = P(NS, σ|θmaxi , t) = 0. If θmaxi ≥ θs then the agent wins the contest
in all the states of the world in which the contest would continue after NS. Hence,
P(S, σ|θmaxi , t) ≥ Pc(NS, σ|θmaxi , t) and since P(NS, σ|θmaxi , t) = 0 the conclusion follows.

Lemma 6 In any ITC, for any σ, θmaxi and t,

p− (m/n+ δUi(σ|θmaxi , t+ 1)) ≥ (n− 1)(1− δ)p− δ∆(θg, n) + θg − ε
n

> 0.
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Proof. If the contest terminates in t̄ periods, where 1 ≤ t̄ ≤ ∞, then

t̄−1∑
t=0

δt
m

n
+ δt̄p ≥ m

n
+ δUi(σ|θmaxi , t+ 1)

which implies

p− (m/n+ δUi(σ|θmaxi , t+ 1)) ≥ p−

(
t̄−1∑
t=0

δt
m

n
+ δt̄p

)

= (1− δt̄)
(

(1− δ)(n− 1)p− δ∆(θg, n) + θg − ε
(1− δ)n

)
≥ (1− δ)(n− 1)p− δ∆(θg, n) + θg − ε

n
.

Finally, note that

p > ¯̄p ≥ δ∆(θg, n)− θg + ε

(1− δ)(n− 1)
,

which implies
(1− δ)(n− 1)p− δ∆(θg, n) + θg − ε

n
> 0.

Lemma 7 If σ is a PBE and σ0 is a threshold strategy, then for each agent i who has
not observed a deviation by the principal σi(θmaxi ) = S for all θmaxi ≥ θs > θ0.

Proof. Suppose not. Then there exists some history, some agent i and some θmaxi ≥ θs >

θ0, such that σi(θmaxi ) = NS in a PBE. We will show that S is a profitable deviation. If
θmaxi ≥ θs then

Ui(S, σ|θmaxi , t) = P(S, σ|θmaxi , t)p

and

Ui(NS, σ|θmaxi , t) = P(NS, σ|θmaxi , t)p+ Pc(NS, σ|θmaxi , t)
(m
n

+ δUi(σ|θmaxi , t+ 1)
)
.

Since the agent has not observed a deviation by the principal, then his beliefs are formed
by Bayesian updating. Given that θmaxi > θ0, then P(S, σ|θmaxi , t) > P(NS, σ|θmaxi , t).
Next, by Lemma 5, P(S, σ|θmaxi , t) ≥ P(NS, σ|θmaxi , t)+Pc(NS, σ|θmaxi , t) and by Lemma
6, p > (m/n+ δUi(σ|θmaxi , t+ 1)). Thus Ui(S, σ|θmaxi , t) > Ui(NS, σ|θmaxi , t).

Lemma 8 If σ is a PBE and σ0 is a threshold strategy, then σi(θmaxi ) = I for all θmaxi < θs

and for each agent i.
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Proof. Suppose not. Then there exists some history, some agent i and some θmaxi < θs,
such that σi(θmaxi ) = NI in a PBE. We will show that I is a profitable one-shot deviation.
If t < T , we can write

Ui(I, σ|θmaxi , t) = −C + P(I, σ|θmaxi , t)p+ Pc(I, σ|θmaxi , t)
(m
n

+ δEθmax
i

Ui(σ|θmaxi , t+ 1)
)

and

Ui(NI, σ|θmaxi , t) = Pc(NI, σ|θmaxi , t)
(m
n

+ δUi(σ|θmaxi , t+ 1)
)
.

In every state of the world in which the agent i loses the contest in period t following the
action I, he also loses after the action NI. Thus

P(I, σ|θmaxi , t) + Pc(I, σ|θmaxi , t) ≥ Pc(NI, σ|θmaxi , t).

By Lemma 4, the principal stops the contest if θmax0 = θK . Thus,

P(I, σ|θmaxi , t) ≥ 1− F (θK−1)

n
.

Furthermore, since Ui is non-decreasing in θmaxi then

Ui(I, σ|θmaxi , t)−Ui(NI, σ|θmaxi , t) ≥ −C +
1− F (θK−1)

n

(
p− m

n
− δUi(σ|θmaxi , t+ 1)

)
≥ 1− F (θK−1)

n

(
(n− 1)(1− δ)p− δ∆(θg, n) + θg − ε

n

)
− C > 0

where the second inequality follows from Lemma 6 and the third inequality follows from

p > ¯̄p ≥
n2C + (δ∆(θg, n)− θg + ε)

(
1− F (θK−1)

)
(1− δ)(n− 1) (1− F (θK−1))

.

If t = T , then the contest ends for sure. The proof is analogous to the proof of Lemma 9
below, and is therefore omitted.

Lemma 9 If σ is a PBE and σ0 is a threshold strategy with θs < θK, then σi(θs) = I for
each agent i.

Proof. Suppose not. Then there exists some history and some agent i, such that σi(θs) =

NI in a PBE. We will show that I is a profitable one-shot deviation. Since θmaxi ≥ θs and
the principal follows a threshold strategy, the contest ends in period t for sure. Then, we
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can write

Ui(I, σ|θmaxi , t) = −C + P(I, σ|θmaxi , t)p

Ui(NI, σ|θmaxi , t) = P(NI, σ|θmaxi , t)p.

Observe that in every state of the world in which agent i wins following NI, he also wins
following I. We now show that, whatever the beliefs of agent i, and for any strategy
profile of his opponents and the principal which are compatible with PBE, his probability
of winning increases by at least (1− F (θK−1))n/(2n) after action I.

At any state of the world, one of the three following cases holds.

• Case 1: maxj 6=i θ
max
j > θmaxi . In this case, agent i loses the contest for sure after

NI, while his winning probability is at least (1− F (θK−1))/n after I.

• Case 2: maxj 6=i θ
max
j < θmaxi . In this case, all opponents have a value strictly below

θs, so by Lemma 8 they all invest in the current period. Thus, agent i’s increase in
the probability of winning is at least (1− F (θK−1))n/n.

• Case 3: maxj 6=i θ
max
j = θmaxi . In this case, agent i loses with probability at least

1/2. If he invested, his probability of winning would increase by at least (1 −
F (θK−1))/(2n).

Thus, in any of the three possible cases, agent i’s probability of winning increases by at
least (1− F (θK−1))n/(2n) after action I. Then we can write

Ui(I, σ|θmaxi , t)− Ui(NI, σ|θmaxi , t) ≥ −C + p
(1− F (θK−1))n

2n
> 0,

where the last inequality holds from

p > ¯̄p ≥ p̄ ≥ 2nc

(1− F (θK−1))n
.

Lemma 10 If σ is a PBE and σ0 is a threshold strategy, then θs = θg.

Proof. From Proposition 1, we know that θs = θg is an equilibrium. Here we show that
θs 6= θg is never an equilibrium. Suppose not. Then there exists a PBE, such that σ0 is a
threshold strategy and either θs > θg or θs < θg. The proof follows in three steps. Steps 1
and 2 show that there exists a profitable one-shot deviation when θs > θg. Step 3 shows
the same when θs < θg.

Step 1. Suppose that T is infinite and θs > θg. We will show that there exists a profitable
one-shot deviation.
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Suppose that θmax0 = θs−1. The payoff from deviating to NCont is θs−1 − p ≥ θg − p.
The principal’s expected utility from following σ0 is

U0(Cont, σ|θs−1) = −m+ δ

(
F n(θs−1)U0(Cont, σ|θs−1) +

K∑
j=s

(F n(θj)− F n(θj−1))(θj − p)

)

U0(Cont, σ|θs−1) =
−m− δ(1− F n(θs−1))p+ δ

(∑K
j=s(F

n(θj)− F n(θj−1))θj
)

1− δF n(θs−1)

The one-shot deviation to NCont is profitable if

θg − p >
−m− δ(1− F n(θs−1))p+ δ

(∑K
j=s(F

n(θj)− F n(θj−1))θj
)

1− δF n(θs−1)

which is equivalent to

0 > −δ∆(θg, n) + δF n(θs−1)θg − ε+ δ

(
K∑
j=s

(F n(θj)− F n(θj−1))θj

)

≥ (F n(θs−1)− F n(θg))θg −
s−1∑
j=g+1

(
F n(θj)− F n(θj−1)

)
θj

≥ (F n(θs−1)− F n(θg))θg −
(
F n(θs−1)− F n(θg)

)
θg

which is always satisfied.

Step 2. Suppose that T is finite and θs > θg. We will show that there exists a profitable
one-shot deviation when t = T − 1 and θmax0 = θg.

In this case, the payoff from deviating to NCont is θg − p. Now, the contest ends in
the next period, so that the principal’s expected utility from following σ0 is

U0(Cont, σ|θg, t) = −m− δp+ δ

(
F n(θg)θg +

K∑
j=g+1

(F n(θj)− F n(θj−1))θj

)
.

The one-shot deviation to NCont is profitable if

θg − p > −m− δp+ δ

(
F n(θg)θg +

K∑
j=g+1

(F n(θj)− F n(θj−1))θj

)

which is equivalent to

−δF n(θg)θg − δ
K∑

j=g+1

(F n(θj)− F n(θj−1))θj + δ∆(θg, n) + ε > 0
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−δ∆(θg, n) + δ∆(θg, n) + ε > 0.

Step 3. Suppose that θs < θg. We will show that there exists a profitable one-shot
deviation when θmax0 = θs.

Following the strategy σ0 yields θs − p. Consider a one-shot deviation to Cont. By
Lemma 9, all agents will do research, so the principal’s expected utility is

U0(Cont, σ|θs, t) = −m− δp+ δ

(
F n(θs)θs +

K∑
j=s+1

(F n(θj)− F n(θj−1))θj

)

The deviation is profitable if

−m− δp+ δ

(
F n(θs)θs +

K∑
j=s+1

(F n(θj)− F n(θj−1))θj

)
> θs − p

θg − θs − δ(∆(θg, n)−∆(θs, n))− ε > 0

Using equation (5), a sufficient condition for the above inequality to hold is

g−1∑
j=s

(θj+1 − θj)− δ
g−1∑
j=s

F n(θj)
(
θj+1 − θj

)
> ε

g−1∑
j=s

(1− δF n(θj))
(
θj+1 − θj

)
> ε

which is always satisfied.

A.3 Proof of Proposition 3

The first-best problem corresponds to the optimal search problem in Benkert et al. (2018).
By Proposition 1 of Benkert et al. (2018) the first-best is to draw nFB observations in each
period until the value of at least θFB has been discovered. By Proposition 1, we know
that there exists an ITC which can implement the global stopping threshold θgN with nFBN
and T =∞, thus generating the first-best surplus. Then, by setting E appropriately, the
principal can extract the entire expected surplus and achieve the first-best outcome.

A.4 Proof of Proposition 4

The game induced by a gITC and the equilibrium candidate are analogous to those de-
scribed above. The proof proceed in the similar fashion. We first characterize the optimal
sequence of agents nFB. Next, we show that no profitable one-shot deviation exists. Fi-
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nally, since the game is finite, Theorem 1 of Hendon et al. (1996) implies that no profitable
deviation exists at all.

Lemma 11 Given Assumption 1, nFB(0, t) ≤ nFB(0, t + 1) and nFB(θ, t) = 0 for all
θ ≥ θb and t ≤ T .

Proof. It is straightforward that for any quality level θj ≥ θb the principal will stop doing
research because θK − θb < C and thus the cost of doing more research strictly outweighs
the potential benefit. Thus, whenever the principal continues searching, she has a current
highest quality of innovation of 0. Hence, the problem is as if the principal had no recall.
Proposition 3 in Gal et al. (1981), which can be adapted to the current setting with
discounting and a discrete set of innovation levels, then implies that the principal will
want to employ an increasing number of agents as the deadline draws nearer.

Lemma 12 There exists no profitable one-shot deviation for the principal.

Proof. In this final period the principal has no decision to make. Thus we only need
to consider deviations in periods t < T . Suppose an innovation of value θk ≥ θb has
been submitted to the principal. Stopping yields θk−p, whereas continuing yields −mt +

δ(∆(θk, nt+1)− p + Et+1), where Et+1 = (nt+1 − nt)Et+1 is the sum of entry fees received
by the principal in period t+ 1. Thus, stopping is optimal whenever

mt ≥ p(1− δ) + δ(∆(θk, nt+1) + Et+1)− θk.

Recall that mt = p(1 − δ) + δ(∆(θb, nt+1) + Et+1) − θg. Since ∆(θ, nt+1) − θ is strictly
decreasing in θ, the principal will stop the contest whenever a value θk ≥ θb has been
submitted.

Suppose now a value θk < θb has been submitted. Assumption 1 then implies θk = 0.
The payoff of stopping is −p, and continuing (since it constitutes the first best) always
has a positive payoff. Hence, stopping is never optimal.

Lemma 13 There exists no profitable one-shot deviation at either the submission or the
research stage for the agent.

Proof. The proofs are analogous to the proofs of Lemma 2 and Lemma 3.

Lemma 14 There exists no profitable one-shot deviation at for agents who have not yet
entered the contest.

Proof. Whenever agents are invited to join the contest, they are chosen randomly from
the set N . Thus, each agent has a probability 0 of being invited to the contest and
therefore no incentive to conduct any research before being invited to participate.

Finally, since T is finite and no profitable one-shot deviation exist, Theorem 1 of
Hendon et al. (1996) implies that no profitable deviation exists at all.
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