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Abstract

We show that economic decisions in strategic settings are co-determined by mul-

tiple behavioral rules. A simple model of intra-individual behavioral heterogeneity

predicts testable differences depending on whether rules share a common prescrip-

tion (alignment) or not (conflict), a classification which is ex ante observable. The

predictions include non-trivial response time interactions reflecting the nature of

the underlying processes, hence the model is not an as if explanation. In a labora-

tory experiment and two replications on Cournot oligopolies, we find direct evidence

showing that decisions arise from the interaction between a deliberative myopic best

reply rule and a more intuitive imitative rule.
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1 Introduction

How are economic decisions made? This question becomes especially relevant once one

moves away from the assumption of full rationality, or the proximate assumption of

perfect maximization of stable preferences. Behavioral economics has documented a

large number of behavioral inconsistencies that cannot be accommodated by neoclassi-

cal models (e.g., Kahneman, 2003). The microeconomics literature contains extensive

and mature strands analyzing boundedly rational behavior in order to explain such in-

consistencies. For instance, models of learning and evolution have analyzed different

behavioral rules capturing specific deviations from rationality, as e.g. imitation, satisfic-

ing behavior, or reinforcement learning (e.g. Kandori et al., 1993; Vega-Redondo, 1997;

Erev and Roth, 1998). To date, however, these behavioral rules have been treated as

“black boxes” and mostly studied in isolation, while the neoclassical literature has kept

studying fully rational, maximizing agents.

Obviously, economic agents do try to maximize certain objectives. Even more obvi-

ously, they frequently fail to do so and follow different impulses instead. In other words,

the truth might be in the middle, and it might be worth to take both views into account

when studying human behavior. In particular, we suggest that economic decisions might

be often best viewed as the result of the interaction of multiple decision rules, painting

a picture of intra-individual heterogeneity.

In this work, we focus on one of the most prominent settings capturing strategic

interactions in markets, the Cournot oligopoly. Previous evidence, both theoretical

and experimental, suggests that two particular behavioral rules are important in this

context. On the one hand, myopic best reply captures one-step payoff maximization and

acts as a first-order proxy of deliberative thinking. On the other hand, imitation of

successful behavior is the natural candidate as an alternative rule governing behavior.

Vega-Redondo (1997) showed that if firms follow imitative behavioral rules and make

infrequent mistakes, the system converges to the Walrasian equilibrium (in the sense

of stochastic stability). The reason is that imitation in Cournot oligopolies mimics

maximization of relative payoffs (Schaffer, 1989), which can destabilize the Cournot-

Nash equilibrium but not the Walrasian one. Alós-Ferrer and Ania (2005) showed that

this result extends beyond Cournot oligopolies to a wide class of economic interactions

(aggregative games). These results have been shown to be empirically relevant in the

behavioral laboratory. A number of Cournot-oligopoly experiments (Huck et al., 1999;

Offerman et al., 2002; Apestegúıa et al., 2007, 2010) have found partial convergence

to Walrasian outcomes, which has then been interpreted as indirect evidence for the

presence of imitative behavior.

Our approach is more direct in that we study individual decisions in themselves, as

opposed to long-run convergence. Following the evidence mentioned above, we postulate

the existence of (at least) two decision rules, namely imitation of observed, successful

behavior and myopic best reply, that is, payoff maximization taking current information
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on other players’ behavior as given. In our context it is reasonable to assume that

imitation is a more heuristic rule, where individuals react to a more successful action

and respond by imitating this action, while myopic best reply is a more deliberative rule

which involves active maximization after considering available information.

To examine the multiple behavioral rules we rely on a simple formal model which

encompasses and extends a “dual-process diffusion model” previously used to study

process multiplicity in individual, non-strategic, binary decisions (Achtziger and Alós-

Ferrer, 2014; Alós-Ferrer, 2018). To derive testable predictions, the model borrows

ideas from dual-process theories, which postulate that the human mind is mainly influ-

enced by two kinds of processes, called automatic and controlled (see Kahneman, 2003;

Alós-Ferrer and Strack, 2014; see also Evans, 2008 and Weber and Johnson, 2009 for

detailed reviews). Automatic processes are fast, unconscious, and require few cognitive

resources. They capture impulsive reactions and behavior along the lines of stimulus-

response schemes. Controlled processes are slow, consume cognitive resources, and are

reflected upon (partly) consciously. Although there is a clear analogy between these

theories and the duality between full and bounded rationality in economics, the key dif-

ference is that dual-process models assume heterogeneity within the individual. For our

purposes, the key observation is that imitation, as a boundedly-rational behavioral rule,

can be expected to be more automatic than rules assuming explicit payoff maximization

as myopic best reply.1

Our predictions focus on one of the most basic measures of process data, response

times. Those are a standard tool in psychology and are now slowly being incorporated

into the economist’s toolbox (Moffatt, 2005; Rubinstein, 2007, 2016; Achtziger and Alós-

Ferrer, 2014; Alós-Ferrer et al., 2016; Alós-Ferrer and Ritschel, 2018; Spiliopoulos and

Ortmann, 2018). The key insight allowing for testable predictions is that automatic

processes are faster than controlled ones, and hence response times can be used as a

direct source of evidence for the involvement of different decision processes. This does

not, however, mean that one can simply classify decisions in fast and slow according to

some exogenous criterion and conclude that one kind of decisions is more automatic.

This would be an example of the “reverse inference” fallacy (Krajbich et al., 2015). The

problem is that processes, and behavioral rules, are not directly observable—only choices

are. Hence, when observing a choice and its associated response time, we cannot know

which process has generated them. Each process will result in a distribution of response

times (and choices!). However, by exploiting the concepts of conflict and alignment

among behavioral rules (i.e., whether they prescribe the same answer or different ones),

our model avoids reverse inference while still allowing for specific, non-trivial predictions

(on response times conditional on specific types of choices).

1The key differences with research in cognitive psychology are, first, that the paradigm we focus on
is far more complex than those typically encountered in that literature, and, second, that the behavioral
rules we are interested in all involve cognitive aspects (as opposed to purely automatic reactions).
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The model delivers four kinds of predictions. First, whenever best reply and imita-

tion are in conflict (make different prescriptions), choices where a best reply is selected

are slower than when both rules are aligned (make the same prescription). Intuitively,

this is because in case of conflict best replies come almost exclusively from the slower

best reply rule, while in case of alignment the faster imitation rule also contributes a

significant proportion of best replies. Second, in case of conflict, best replies are slower

than imitative decisions, essentially because many of the latter arise from the faster imi-

tation rule. Third, in contrast to the case of conflict (and somewhat counterintuitively),

in case of alignment best replies are faster than other responses. This is because, in

this case, the faster imitation rule contributes a large number of apparent best replies.

Fourth, there are less best replies in case of conflict than in case of alignment. Also,

there are less imitative choices in case of conflict than in case of alignment. This is

simply because in case of alignment both behavioral rules favor a common prescription.

We conduct one main laboratory experiment and further analyze data from two

replications. The main experiment finds clear evidence for the predictions explained

above. We also examine a related experiment using a similar design where each of two

treatments can be seen as a (smaller) replication; the treatments differed in a cognitive

load manipulation, whose effects are examined in Achtziger et al. (2019). For each of

the treatments in that experiment, all prior predictions apply, hence we replicate the

analysis and confirm the conclusions of our main experiment. In summary, our results

suggest that multiple behavioral rules codetermine behavior in a complex economic set-

ting (Cournot oligopoly), with imitation of past success and myopic payoff maximization

being the two main drivers of decisions. This multiplicity occurs at the individual level,

that is, behavioral heterogeneity starts within each single decision maker.

Although we have concentrated on myopic best reply and imitation as the two main

determinants of behavior, our design allows us to consider other behavioral rules. The

first is positive reinforcement, i.e. the tendency to repeat successful actions (closely linked

to the focus on past performance). The second is inertia, which simply means the

tendency to repeat the previous action regardless of the previous result. The results

suggest that the former (but not necessarily the latter) also plays a role, strengthening

the case for multiplicity of behavioral rules.

The remainder of the paper is structured as follows. Section 2 presents a simple

formal model and derives our predictions. Section 3 presents the design and the results

of our main experiment. Section 4 does the same for the replications. Section 5 discusses

the additional behavioral rules given by reinforcement and inertia. Section 6 concludes.

Proofs, experimental instructions, and screenshots are in the Appendix.
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2 Predictions for Multiple Behavioral Rules

2.1 A Simple Formal Model

Consider a given decision problem, where a decision maker has received some information

on the available alternatives. On the basis of possibly-different parts of that information,

different behavioral rules deliver prescriptions. Suppose further that only finitely many

options are available (as will be the case in the experiments). Denote by X the finite

set of options, with typical element x ∈ X.

In the context of our experiments, the information corresponds to the quantities

produced and profits earned by all involved firms. This, together with the structure of

the game, allows to compute both the action which maximizes payoffs given the actions

of other players (myopic best reply) and to observe the action which has led to the

largest payoffs in the last interaction (imitative choice). Let xB denote the myopic best

reply and xI the imitative choice. Assume for simplicity that there are no ties (as will

be the case in the experiments). We will assume below that the myopic best reply favors

xB above other options, and that the imitation rule favors xI above other options. We

speak of conflict if xB 6= xI , that is, imitating the best observed payoffs would not result

in a best reply, and we speak of alignment if xB = xI .

The following model generalizes the model of Achtziger and Alós-Ferrer (2014), which

was restricted to binary choice, to the multiple-alternative case, and further extends

the results there and in Alós-Ferrer (2018). The model assumes that two behavioral

rules codetermine behavior, a more deliberative one and a more intuitive/impulsive one.

For the purposes of the present manuscript, we concentrate on myopic best reply and

imitation, but the analysis in this section applies to any two given behavioral rules (see

Section 2.3 below).

Let BR and Im denote the myopic best reply and imitation rules, respectively.

Which of the two rules will actually determine behavior is a stochastic event. Let ∆ > 0

be the probability that the actual response is selected according to imitation, and 1−∆

the probability that it is selected according to myopic best reply. However, we assume

that all rules are stochastic in nature, i.e., they carry an amount of noise, resulting in

errors (deviations from the rule’s prescription). Note that, hence, myopic best reply can

select xI and imitation can select xB even in case of conflict, and any of them could

select actions x 6= xB, xI . That is, in case of alignment (xB = xI) both behavioral rules

tend to make the same prescription and in case of conflict (xB 6= xI) they would make

different prescriptions in the absence of noise, but due to behavioral noise they might

actually select either option in either case, or a third, different one.

Denote by PBR the probability with which the myopic best reply rule indeed selects

the best reply xB, and by P Im the probability with which the imitation rule selects the

alternative with the highest observed payoff, xI . That is, if PBR(x) and P Im(x) denote

the probabilities with which each rule selects x ∈ X, conditional on the rule being the
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one which actually determines the response, then PBR = PBR(xB) and P Im = P Im(xI).

Our first assumption is as follows.

(P1) For each decision situation,

PBR > PBR(x) ∀x ∈ X,x 6= xB and P Im > P Im(x) ∀x ∈ X,x 6= xI .

This is a minimal consistency condition which simply declares that the prescription of

a rule is indeed the rule’s most frequent selection, but it is a rather mild one, since for

the multi-alternative case it does not even imply that the prescription is selected more

than half of the time.

Response times are also assumed to be stochastic. Let RB = E[RT |BR] and RI =

E[RT |Im] denote the expected response times conditional on the response being selected

by the myopic best reply or the imitation rule, respectively. For simplicity, we assume

that expected response times do not depend on the actually-selected response. Naturally,

since imitation is thought to be more automatic, hence faster in expected terms, we

assume

(R) RB > RI .

For some of the results below, we will further assume that

(P2) P Im > PBR,

i.e. the deliberation process behind best reply (computing the myopically optimal behav-

ior) is noisier than the stimulus-response process behind imitation (copying the action

with the largest observed payoff), while the latter is more consistent. This is natural

since imitation is assumed to be more automatic (closer to a stimulus-response process).

A simple way to think of the model is to conceive of the imitation rule as a swift

cognitive shortcut, which selects the action with the largest observed payoff quickly and

very frequently, while the myopic best reply rule is a slow, deliberative process which

depends on actual computations and is hence less consistent.

For the binary-choice case, the model in Achtziger and Alós-Ferrer (2014) has been

given a micro-foundation in Alós-Ferrer (2018) as the dual-process diffusion model or

DPDM. In this model, the processes are instantiated as diffusion processes as in the

drift-diffusion model (DDM) of Ratcliff (1978) and Ratcliff and Rouder (1998), which

has been recently further analyzed by Fudenberg et al. (2018) and is standard in cognitive

psychology and neuroscience (e.g. Shadlen and Shohamy, 2016). In this model, evidence

accumulation (internal to the decision maker) is captured as a diffusion process with a

trend µ and two barriers. Whether the process chooses an option or the other corresponds

to whether the upper or the lower barrier is hit first. The response time is the time at

which the first barrier is hit. Alós-Ferrer (2018) shows that, in the DPDM, assumptions

(P1), (P2), and (R) are implied if one simply assumes that the drift rate of the more

automatic process is larger in absolute value than the drift rate of the more deliberative

process, capturing that the former is swifter than the latter.
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2.2 Predictions

Since all our formal results translate directly into experimental hypotheses, we label

them accordingly for convenience (H1, H2, etc). The first testable prediction of the

model concerns the comparison of conflict and alignment. Recall that, by committing ex

ante to which behavioral rules are of interest, we can identify situations of conflict and

alignment before data collection. The first prediction states that the response time of

best replies must be strictly larger in situations of conflict than in situations of alignment.

Since this prediction arises exclusively from process multiplicity, it essentially constitutes

a “smoking gun” test on the presence of multiple processes.

Theorem 1. Under (P1) and (R),

(H1) the expected response time of best replies in case of conflict is strictly longer than

the expected response time of best replies in case of alignment.

The intuition for Theorem 1 is as follows (all proofs are in the online appendix).

Independently of whether the decision problem corresponds to conflict or alignment, the

best reply rule delivers the same proportion of best replies, which are relatively slow. In

case of conflict, the imitation rule favors the imitative choice, which is not a best reply,

and hence typically contributes relatively fewer (fast) best replies. In case of alignment,

the imitation rule actually favors the best reply, and hence typically contributes relatively

many (fast) best replies. Hence, one obtains faster best replies under alignment than

under conflict.

The model also makes more nuanced predictions for the response times of best replies

and other responses. Those amount to a non-trivial interaction between responses (best

replies, imitative choices, or other alternatives) and cognitive situations (conflict or align-

ment). Specifically, best replies must be slower on average than imitative choices in case

of conflict, but in case of alignment (where best replies are also imitative choices), they

must be faster than other choices. This parallels the prediction of Achtziger and Alós-

Ferrer (2014) and Alós-Ferrer (2018) that in situations with normatively correct answers

errors are fast in case of conflict but slow in case of alignment. This asymmetry goes be-

yond simple informal statements that intuitive responses should be faster, which might

hide a reverse inference fallacy (Krajbich et al., 2015), and serves as a test of the basic

structure of the model. The next result gathers the predictions.

Theorem 2. Assume (R).

(H2) Under (P1), in case of conflict, the expected response time of best replies is larger

than the expected response time of imitative choices (choosing the alternative with

highest observed payoff).

(H3) Under (P2), in case of alignment, the expected response time of best replies is

shorter than the expected response time of other choices.
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The intuition behind Theorem 2 is as follows. The (slow) best reply rule favors the

best reply alternative and the (fast) imitation rule favors the imitative choice. Those

two alternatives are different in case of conflict, and hence best replies end up being on

average slower in this case. In case of alignment, the two alternatives coincide but by

(P2) the fast imitative process contributes more of them than the best reply rule, hence

in expected terms best replies end up being on average faster. In other words, in case

of alignment, the imitation rule acts as a quick and efficient shortcut to identify the

best reply while the more error-prone best reply rule contributes relatively more (slow)

non-best-reply answers. Hence, conditional on a best reply not being observed, it is more

likely that the response is generated by the slower best reply rule.

Last, the model also makes predictions for the proportion of best replies and imita-

tive choices comparing the cases of conflict and alignment, which we summarize in the

following result.

Theorem 3. Under (P1),

(H4a) the proportion of best replies is strictly smaller in case of conflict than in case of

alignment, and

(H4b) the proportion of imitative choices is strictly smaller in case of conflict than in

case of alignment (when they are also best replies).

The intuition for Theorem 3 is immediate. In case of alignment, both behavioral rules

favor the same option, in the sense of being the one selected most often. That option is

simultaneously a best reply and an imitative choice. In case of conflict, the myopic best

reply rule still favors best replies, but the imitation rule now favors a different option,

which is imitative but not a best reply. Even though each rule might still select the

option favored by the other rule in case of conflict, it does so less often. Hence, in case

of alignment the common prescription obtains more often than any of the individual

choices in case of conflict.

2.3 Beyond Best Reply and Imitation

The model applies to any situation where the researcher can reliably identify two behav-

ioral rules (or decision processes in the sense of psychology) as the main determinants of

decisions. It extends beyond the case of best reply and imitation, although we have for-

mulated it in those terms here for concreteness. For instance, the model encompasses the

analysis and experimental results in Achtziger and Alós-Ferrer (2014), which considered

Bayesian belief updating vs. “win-stay, lose-shift” reinforcement learning as in Charness

and Levin (2005), or the example in Alós-Ferrer (2018), which considered following ex-

ternal advice vs. the recognition heuristic. Another example is Spiliopoulos (2018), who

used the model in Alós-Ferrer (2018) to study win-stay, lose-shift vs. more sophisticated

(cognitive) heuristics in a repeated game played against computer algorithms.
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The key assumption to apply the model is that one of the postulated rules or processes

can be identified as more deliberative and the other as more intuitive, where the formal

meaning of these labels is as given by (R) and (P2). Assumption (P1) follows simply

from the interpretation of a behavioral rule as a stochastic mapping favoring a particular

type of prescription. However, we remark that, given (P1), predictions (H1) and (H2)

only depend on (R), that is, they hold even if (P2) does not. Likewise, predictions (H4a)

and (H4b) only depend on (P1). Prediction (H3) is the only one requiring (P2) (but,

interestingly, not (P1)).2

As an illustration, suppose one identifies the more deliberative rule (or more reflective

process) with more rational behavior, as would be the case, e.g., if this rule was stated

as a summary of the normative predictions in the decision problem at hand. We would

then be justified in calling the action prescribed by this rule “correct” and any other

action an “error.” In particular, correct responses would play the role of myopic best

replies above. Suppose the alternative behavioral rule reflects a heuristic or bias, which

the modeler hypothesizes to interact with normative behavior; in psychological terms,

due to (R) this rule should be viewed as a more automatic process. Then, in case of

conflict the imitative choices above correspond to a particular type of errors, namely to

those following the heuristic’s prescription: call them “heuristic errors.” There are other

errors, however, which are not of the heuristic type. In terms of the model, those are

due to behavioral noise. In this setting, the more automatic behavioral rule is actually

a quick, efficient shortcut to the correct response, but only in case of alignment. In case

of conflict, it captures a quick path to a particular type of error.

With this interpretation, the predictions above translate as follows. First (H1),

response times of correct responses should be longer (on average) in case of conflict

than in case of alignment. Second (H2), conditional on conflict situations, heuristic

errors should be faster (on average) than correct responses. Third (H3), conditional

on alignment situations, errors should be slower (on average) than correct responses.

Note that the two latter predictions are of different nature, since (H2) refers only to

errors of a particular type (the ones corresponding to the heuristic or automatic process’

predictions), while (H3) refers to all errors in case of alignment (where, actually, there

are no heuristic errors). Last (H4a), there should be more correct responses in case of

alignment than correct responses in case of conflict, and (H4b), there should be more

correct responses in case of alignment than heuristic errors in case of conflict (but not

necessarily more than errors of all types taken together).

2In particular, the results obtained here rest on weaker assumptions than those in Achtziger and
Alós-Ferrer (2014) or Alós-Ferrer (2018), in addition to the fact that the model at hand allows for more
than two alternatives.
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2.4 Model Extension: Non-Decision Time and Conflict-Dependent Pro-

cess Selection

Theorem 1 predicts a slow-down of certain responses under conflict compared to align-

ment. It is worth noticing that this prediction corresponds to the well-known “Stroop

Effect” discussed in psychology (Stroop, 1935; MacCleod, 1991), which describes a slow-

down of (correct) responses when one is asked to name the color that a word is printed

in but that word happens to name a different color (e.g., “Red” printed in blue) com-

pared to when the word names the color it is printed in (e.g., the word “Red” printed

in red). However, work in psychology typically assumes that this and similar response-

times effects are due to central executive functions of the brain related to the detection

and resolution of conflict among elementary responses, which tax cognitive resources

and require time (Bargh, 1989; Baddeley, 1992; Baddeley et al., 2001), but enable the

inhibition of automatic responses in case of conflict. These functions have been linked

to early activity in the Anterior Cingulate Cortex (see, e.g., Nieuwenhuis et al., 2003;

De Neys et al., 2008; Achtziger et al., 2014).

It is worth noticing that our model does not assume such a difference in response

times and Theorem 1 holds in its absence, providing an alternative (or complementary)

explanation for the Stroop effect in psychology. It is, however, easy to extend the

model to account for the additional insights described above. Let i ∈ {A,C} denote

alignment or conflict, respectively, and add a “non-decision time” ti to the response

time which depends on conflict vs. alignment and is such that tC ≥ tA. At the same

time, since conflict detection enables the inhibition of automatic responses, an extended

model should distinguish the probability of the latter depending on conflict or alignment,

i.e. replace ∆ with ∆i while assuming ∆C ≤ ∆A. It is easy to see that all our results

hold in the extended model.

Theorem 4. Consider the extended model and assume (P1), (P2), (R), tC ≥ tA, and

∆C ≤ ∆A. Then (H1), (H2), (H3), (H4a), and (H4b) hold.

The extension, however, disciplines the model in sensible ways. For instance, an

analogous proof to that of Theorem 1 shows that the expected response time of imitative

choices in case of conflict is strictly shorter than the expected response time of best replies

(which are also imitative choices) in case of alignment. However, this prediction does

not necessarily hold in the extended model, since non-decision times are longer in case

of conflict and hence the comparison of total response times would be undetermined.

3 Main Experiment

3.1 Experimental Design and Procedures

In our main experiment, participants interacted in 4-player Cournot oligopolies (tetrapolies).

We conducted four sessions with 32 participants each for a total of N = 128 (82 females;
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median age 22 years) at the Cologne Laboratory for Economic Research (CLER). The

experiment was programmed with z-Tree (Fischbacher, 2007) and participants were re-

cruited using ORSEE (Greiner, 2015). We excluded students majoring in economics,

psychology, and business, as they might have been taught game-theoretic concepts which

might influence their behavior. A session lasted around 90 minutes and average earnings

were 13.59 EUR, including a show-up fee of 2.50 EUR.

Each participant competed in three different Cournot oligopolies (parts), which lasted

for 17 periods each. Initially, players were matched in groups of four to play the first

tetrapoly (Part 1). After 17 periods, players were rematched in new groups of four and

the oligopoly payoffs (demand function) were changed (Part 2). After 17 further periods,

players were rematched again and played a third oligopoly with new payoffs (Part 3).

To increase the number of fully-independent observations, rematching was done within

16 pre-determined blocks of 8 participants each. Identities within a part were always

anonymous and could not be traced back to previous parts. In each new part, at least

two players in the group were different from the previous group. The sequence of the

different oligopolies was varied across sessions.

Each oligopoly was implemented through a payoff table derived from a linear inverse

demand function of the form P (Q) = a − Q, where P is the price, a the saturated

demand, Q the total quantity in the market, and linear costs are normalized to zero. A

neutral framing was used and neither firms nor quantities were mentioned. We reduced

the action space to four possible actions (A, B, C, and D). Hence, the game is given by

a 4×4×4×4 payoff table, which by symmetry can be reduced to a 4×20 table, with four

rows for the possible actions and 20 columns (labeled AAA to DDD) for the opponents’

actions (independently of their identity). Payoffs were expressed in points (rounded to

the nearest integer), with an exchange rate of 18 Eurocents per 1000 points. The points

achieved in all 51 rounds were accumulated and paid at the end of the experiment (all

decisions were paid). The payoff table was permanently visible in the upper part of

the screen during the corresponding part of the experiment. Example screenshots and

instructions are presented in the (Online) Appendix.

In order to focus on the interaction between myopic best reply and imitation, we

highlighted the information required to implement both rules. Myopic best reply im-

plements maximization within the column corresponding to the actual actions of the

opponents in the previous period. For all rounds except the first one within each part,

that column was highlighted. Thus, determining a myopic best reply required comparing

four numbers only. For each round except the first, participants were also given feedback

on the actions and profits of the group members in the previous period, making imitation

feasible. As a robustness control, to make sure that presentation effects were minimized,

we included two treatments which differed only on how that information was presented.

In Treatment FullInfo, the choice and points of all other group members were presented

in separate boxes, in addition to a box displaying the own choice and received points, and

the box with the highest point amount was highlighted. In Treatment BestOnly only the

11



own choice and points plus an additional (highlighted) box were shown, with the latter

displaying the choice with the largest amount of points in the previous round (and the

corresponding points). Note that in the FullInfo treatment both imitation and myopic

best reply involve comparing four numerical quantities, making the mechanical aspects

of the rules as comparable as possible. In contrast, the BestOnly treatment closely

reproduces the idea of “imitate the best” as described, e.g., by Vega-Redondo (1997),

i.e. choosing the action with the highest profit in the previous round. The treatments

were implemented between subjects, with half the subjects in each treatment in every

session. As we will see below, results are not affected by the differences in information

presentation.

The rationale for the experimental implementation is as follows. First, we discretized

the action space to make the postulated behavioral rules (myopic best reply and imi-

tation) both feasible and comparable. A continuous- or large-action space would have

turned myopic best reply into an abstract maximization problem, while imitation would

remain a discrete, intuitive rule. By choosing a discrete setup we go against our hy-

potheses and reduce the conceptual distance between the two behavioral rules.

Second, in contrast to previous experiments with Cournot oligopolies (e.g., Offerman

et al., 2002; Apestegúıa et al., 2007), we are interested in behavioral correlates of indi-

vidual actions, rather than on eventual convergence. If and when convergence occurs,

there is no further variance in the behavioral (choice) data, and response times become

meaningless as participants mechanically repeat a fixed action. Hence, we were inter-

ested in data before convergence occurred. To maximize usable data, we implemented

three parts (oligopolies) with rematching of participants, reassignment of identities, and

changed payoff tables (computed with different demand functions and different quan-

tities underlying the four actions). Further, the ordering of the quantities (A to D)

changed with each part, that is, in some parts the assignment of quantities to letters

was increasing and in some it was decreasing.3 The second and third parts always had

a different payoff table and a reversed ordering of the quantities with respect to the

previous part.

Third, by the same reasoning data would be meaningless if and when collusion oc-

curred. Rematching, working with shorter oligopolies, and changing payoff tables across

parts already diminish the likelihood of collusion and increase the variance in behavioral

data. Additionally, while previous experiments with Cournot oligopolies have typically

focused on triopolies to increase the number of independent observations for a given

number of participants, we chose to focus on tetrapolies because larger groups make

collusion less likely and ensure higher outcome volatility (see Huck et al., 2004).

3Payoff table 1: P (Q) = 150 − Q, A = 37.5, B = 33.25, C = 30, D = 18.75 (or reversed); Payoff
table 2: P (Q) = 175 − Q, A = 43.75, B = 38.875, C = 35, D = 21.875 (or reversed); Payoff table 3:
P (Q) = 200 −Q, A = 50, B = 44.5, C = 40, D = 25 (or reversed).
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Table 1: Overview of Prescribed Actions
AAA AAB AAC AAD ABB ABC ABD ACC ACD ADD

BR Im In BR Im In BR Im In BR Im In BR Im In BR Im In BR Im In BR Im In BR Im In BR Im In

A D A A D A A D A A C A A D A A C A A C A A C A A B A A A A A

B D A B D A B D A B C A B D A B C A B C A B C A B B A B A A B

C D A C D A C D A C C A C D A C C A C C A C C A C B A C A A C

D D A D D A D D A D C A D D A D C A D C A D C A D B A D A A D

BBB BBC BBD BCC BCD BDD CCC CCD CDD DDD

BR Im In BR Im In BR Im In BR Im In BR Im In BR Im In BR Im In BR Im In BR Im In BR Im In

A C A A C A A B A A C A A B A A A A A C A A A A A A A A A A A

B C B B C B B B B B C B B B B B A B B C B B A B B A B B A B B

C C B C C B C B B C C B C B B C A B C C C C A C C A C C A C C

D C B D C B D B B D C B D B B D A B D C C D A C D A C D A D D

Note: Overview of prescribed actions for each behavioral rule depending on last period’s
outcome. Cell entries describe the action prescribed by myopic best reply (BR), imitation
(Im), and inertia (In) when the player previously chose the action given in the row and the
opponents chose the actions given in the column. Shaded entries for BR and Im indicate
that the two rules are aligned. Shaded entries for In indicate positive reinforcement.

3.2 Classification of Decisions and Strategy of Analysis

The data set of our main experiment consists of 128×48 = 6, 144 observations. The first

decision within each part is always excluded since for that period there is no feedback

concerning previous actions and the behavioral rules considered make no prescriptions.

Given the previous actions of all four players, the identification of the prescriptions

of the different behavioral rules is straightforward. Table 1 displays the prescriptions of

myopic best reply and imitation in the experiment, for the case of decreasing assignment

of quantities to letters.4 Those prescriptions were identical for all three payoff tables.

That is, the table shows the prescription of each behavioral rule when a specific combi-

nation of one’s own choice (row) and the choice of the other players (column) occurred

in the previous round. Whenever myopic best reply is in alignment with imitation (that

is, both prescribe the same action), the corresponding cells are shaded in gray. Hence,

unshaded entries indicate conflict between myopic best reply and imitation.

For reference, Table 1 includes also the prescriptions of inertia, that is, simply repeat-

ing last period’s action independently of payoffs (e.g., Alós-Ferrer et al., 2016). Shaded

entries in the inertia column indicate when those prescriptions coincide with those of

imitation. This is of particular interest because in this case both rules are equivalent

to positive reinforcement (imitating yourself if you obtained the largest payoffs). This

information will be used in Section 5 below.

Given Table 1, for periods 2–17 within each part, we can classify each actual decision

of each participant depending on whether it is consistent with myopic best reply or

imitation (or inertia). The Venn diagram in Figure 1 gives a descriptive classification of

the actual decisions in the experiment. Actions can be classified as imitation, myopic

best reply, or inertia, as belonging to any of the intersections (alignments), or as being

inconsistent with all of them (unclassified). As was to be expected, the majority of the

4For the analysis of the data, the case of increasing assignment of quantities was simply recoded.
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Figure 1: Overview of observations and their classification, Main Experiment.

6,144 decisions were made in conflict situations (5,010; 81.54 percent). Of those, 26.57,

31.64, and 41.80 percent were myopic best replies, imitative decisions, or other choices,

respectively. However, there were enough decisions made in case of alignment (1,134;

18.46 percent) to enable a meaningful analysis. Of those, 34.13 percent were myopic

best replies (and hence also imitative).

In order to test our hypotheses, we will initially conduct non-parametric tests. For

instance, we can test whether decisions compatible with one behavioral rule are faster

than those compatible with another decision rule, conditional, e.g., on conflict among

the rules (Hypotheses H2, H3). To do so, we look at all situations where the two rules

conflict and build two sets of decisions for each individual, those where the prescription

of the first rule was followed, and those where the prescription of the second rule was

followed. Then we apply the appropriate test (in this case, a Wilcoxon Signed-Rank

test).

For the analysis we consider the matching block the appropriate unit of observation,

i.e. observations of all subjects who interacted anonymously with each other throughout

all 3 parts are pooled into one observation. Since participants were separated intoN = 16

different blocks (8 in each treatment) and were rematched only within those blocks, this

guarantees completely independent observations. For each block, we compute the relative

frequencies of choices and the average response times when following a given behavioral

rule, conditional on conflict or alignment of myopic best reply and imitation.5

5A case can be made for individual observations as the appropriate unit of analysis. Following the logic
of stochastic evolutionary models (Blume, 1993; Kandori et al., 1993; Vega-Redondo, 1997; Alós-Ferrer
and Ania, 2005), behavioral rules have a Markovian structure, i.e. they are mappings from information
(outputs and profits in last period) to actions. Under this assumption, how exactly the input of the
behavioral rule is generated is irrelevant. Hence, the fact that participants were part of tetrapolies which
themselves were subgroups of certain blocks plays no role, for we are testing relative frequencies and
response times which are generated after observation of the input, and tests condition on the relevant
categories of inputs. Our conclusions were unchanged when conducting tests at the individual level
(considering only those average response times with at least two observations per individual).
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Before proceeding to the main analysis, we comment on the informational treatments.

Those served as a robustness check to ensure that mere presentational effects, as salience

of the maximum observed payoffs, did not significantly affect response times or drive

behavior toward imitation. A block of 8 participants made on average 125.13 imitation

decisions in the BestOnly treatment and 121.38 in the FullInfo treatment, which was not

significantly different according to a Mann-Whitney-Wilcoxon (MWW) test (N = 16,

z = 0.735, p = .4622). The average response time of imitation decisions was 10.38 s

in the BestOnly treatment and 10.36 s in the FullInfo treatment (MWW, N = 16,

z = 0.210, p = .8336). There were also no differences for myopic best replies. Hence, for

the remainder of the analysis we will pool the data of both treatments.

3.3 Results

Figure 2 illustrates all our predictions for the main experiment. Average response times

are shown on the left-hand side, and choice frequencies on the right-hand side. We

now discuss all predictions as depicted in the figure, reporting the corresponding non-

parametric tests (a regression analysis is discussed below). Note that our hypotheses

yield specific directional predictions which would allow us to rely on one-sided p-values.

However, we will conservatively report two-sided p-values.

Prediction (H1) serves as a first test of the presence of several, distinct behavioral

rules. Myopic best replies, the prescription of the more deliberative behavioral rule,

should be slower in case of conflict with imitation than in case of alignment. This

corresponds to the comparison between the average response times of best replies in

conflict and in alignment in Figure 2. The prediction is confirmed by the data: myopic

best replies are slower in conflict (mean 12.38 s) than in alignment (mean 10.46 s), with

the differences being highly significant according to a Wilcoxon-Signed-Rank (WSR) test

(N = 16, z = 2.947, p = .0032).

Predictions (H2) and (H3) constitute a test of the nature of the involved processes

and of the dual-process structure of the interaction. Essentially, myopic best replies

should be relatively slow in case of conflict but relatively fast in case of alignment.

Specifically, (H2) states that myopic best replies are slower than imitation decisions in

conflict situations. As predicted, myopic best reply decisions are slower (average 12.38 s)

than imitative choices (average 10.36 s) when the processes make different prescriptions,

confirming the relatively more automatic nature of imitation decisions (compare the two

left-most bars in the left-hand side of Figure 2). The difference is highly significant

according to a WSR test (N = 16, z = 3.361, p = .0008). (H3) states that in case of

alignment, myopic best replies (which are also imitative in this case) should be faster

than other decisions. As predicted, myopic best replies (average 10.46 s) are significantly

faster than other decisions (average 13.63 s; WSR, N = 16, z = −3.258, p = .0011).

The remaining two hypotheses concern relative choice frequencies. (H4a) states that

myopic best replies should be less frequent under conflict than under alignment (when
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Figure 2: Average response times and choice frequencies, Main Experiment.

Note: Left-hand side: Average response times of imitation, myopic best reply, and other
choices conditional on conflict and alignment. Right-hand side: Relative frequency of
imitative choices (Im) and myopic best replies (BR) conditional on conflict and align-
ment. Stars indicate the significance of Wilcoxon Signed-Rank tests. ⋆ p < .1, ⋆⋆ p < .05,
⋆⋆⋆ p < .01.

they are also imitative choices). This is illustrated in the right-hand side of Figure 2. In

case of conflict, participants chose myopic best replies, on average, 26.57 percent of the

time (average of individual averages), compared to 34.27 percent in case of alignment.

The difference is highly significant (WSR test, N = 16, z = −2.947, p = .0032). (H4b)

states that, in contrast, imitative decisions should be less frequent under conflict than

under alignment (when they are also best replies). This is indeed the case, with an

average of 31.59 percent of imitative decisions in case of conflict and 34.27 percent in case

of alignment, although the difference is not significant with our two-tailed tests (WSR

test, N = 16, z = −1.344, p = .1788). We remark, however, that one group successfully

colluded during the last part of the experiment. When excluding the corresponding block

observation, we observe less imitative decisions in conflict (average 30.97 percent) than

in alignment (34.64 percent; two-tailed WSR test, N = 15, z = −1.874, p = .0609). All

previous conclusions regarding (H1-H4a) remain unchanged when excluding the block

containing the colluding group.

In summary, simple non-parametric tests already confirm our predictions. Hence,

our experimental evidence is compatible with the interpretation that multiple behavioral
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Table 2: Random Effects Panel Regressions on (log) Response Times, Main Experiment.
ln(ResponseTime) Model 1 Model 2 Model 3

Conflict 0.1154∗∗∗ 0.1418∗∗∗ 0.1431∗∗∗

(0.0360) (0.0327) (0.0329)
Imitation-Conflict −0.1809∗∗∗ −0.1510∗∗∗ −0.1517∗∗∗

(0.0307) (0.0255) (0.0255)
Other 0.1794∗∗∗ 0.1735∗∗∗ 0.1748∗∗∗

(0.0424) (0.0369) (0.0370)
Other×Conflict −0.1808∗∗∗ −0.1868∗∗∗ −0.1879∗∗∗

(0.0406) (0.0354) (0.0355)
FullInfo Treatment −0.0210 −0.0366 −0.0308

(0.0559) (0.0570) (0.0517)
Collusion −0.2405∗∗∗ −0.2005∗∗∗

(0.0525) (0.0513)
Constant 2.2418∗∗∗ 2.6385∗∗∗ 2.3426∗∗∗

(0.0646) (0.0579) (0.1495)

Controls No Yes Yes
Demographics No No Yes

R2 0.0313 0.1327 0.1587

Note: Standard errors, clustered by 16 matching blocks, in parentheses.

rules, i.e. myopic best reply and imitation, codetermine behavior in complex Cournot

oligopolies. We view this as a demonstration that complex economic decisions result

from the interaction of multiple behavioral rules within individual economic agents.

We now turn to a more detailed regression analysis. Our data forms a perfectly-

balanced panel with 48 decisions for each of the 128 participants (total N = 128× 48 =

6, 144). Table 2 reports random effects panel regressions on log-transformed response

times.6 We (conservatively) cluster standard errors at the block level. Since our hy-

potheses hinge on the distinction between conflict and alignment, it is important to

introduce the appropriate categories in the analysis. The Conflict dummy takes the

value 1 when the decision corresponds to a case of conflict between myopic best reply

and imitation. To avoid having to rely on post hoc tests, we further include the dummy

Imitation-Conflict which only considers cases where the imitative choice was selected in

conflict situations.7 Last, the dummy Other takes the value 1 for choices which are nei-

ther imitative nor best replies. Thus, the interaction Other×Conflict indicates choices

which are neither imitative nor myopic best replies in case of conflict. Note that the

reference group consists of decisions in case of alignment where the myopic best reply

(which is also an imitative choice in this case) was selected.

6Response times are naturally bounded below by zero and usually present a skewed, non-normal
distribution. To account for these features it is common practice to use a logarithmic transformation
(Fischbacher et al., 2013; Achtziger and Alós-Ferrer, 2014).

7That is, the dummy takes the value 1 for imitative choices in case of conflict, and zero otherwise.
Note that, since in case of alignment imitative choices are also best replies, this does not correspond to
an interaction in the usual sense of the word.
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With this choice of dummies, all our response-times hypotheses can be tested directly

in the regressions. Model 1 in Table 2 tests for the basic effects. Models 2 and 3 add

further Controls and Demographics8 to show that the results are robust. All models

include a treatment dummy for the presentation variants, which is never significant.

Models 2 and 3 also add a Collusion dummy, taking the value 1 when the subject

colluded with other subjects in a Cournot oligopoly. That coefficient is negative and

highly significant, showing that the individuals who colluded were, unsurprisingly, fast.

The inclusion of that dummy, however, does not affect other results.

(H1) states that best replies should be slower in case of conflict than in case of

alignment. The comparison corresponds to the coefficient for Conflict, which is indeed

positive and highly significant (p = .0013 in Model 1, p < .0001 in Models 2 and 3). (H2)

predicts that myopic best replies should be slower than imitative choices, a comparison

captured by the coefficient for the dummy Imitation-Conflict. The prediction is borne

by the data, with the coefficient being negative and highly significant (p < .0001 in all

models). (H3) predicts that, in case of alignment, best replies should be faster than

other responses. The comparison reduces to the coefficient for the Other dummy, which

is highly-significant and positive as expected (p < .0001 in all models).

The regressions also allow us to examine a number of exploratory questions. The

linear combination of the coefficients Other and Other×Conflict is not significantly dif-

ferent from zero, i.e. in case of conflict we find no differences in response times between

myopic best replies and other kinds of non-imitative decisions. In contrast, a linear

combination test reveals that imitative decisions are significantly faster than other kinds

of non-best-replies in conflict situations (p < .0001 in all models). This suggests that

this latter category might include choices reflecting higher-level deliberation processes

or more complex behavioral rules, as e.g. level-k considerations (best-replying to the

anticipated best reply of others, etc; see Alós-Ferrer and Buckenmaier, 2018).

Tables 3 and 4 provide probit panel regressions with myopic best replies and imitative

choices as dependent variables, respectively. Standard errors are again clustered at the

block level. The independent variables are the Conflict dummy, a treatment dummy, a

Collusion dummy, and further Controls and Demographics as in the previous regression

models.

Table 3 allows us to parametrically test for Hypothesis (H4a), i.e. the prediction that

myopic best replies are less likely under conflict than under alignment. This is confirmed

by the negative and highly significant Conflict dummy, which is robust to the addition

of Controls and Demographics (Model 1, p = .0001; Models 2 and 3, p = .0002). Analo-

gously, Table 4 allows us to test for Hypothesis (H4b), i.e. the prediction that imitative

choices are also less likely under conflict than under alignment. Although present in the

data, this trend is clearly less strong than other predictions. The Conflict dummy is not

8Controls consist of a measure for normalized rounds, part 2 and part 3 dummies, and two payoff table
dummies for possible medium or high payoffs. Demographics consist of age, gender, and an indicator
capturing whether the subjects reported attending a game theory class.
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Table 3: Probit Regression Models for Myopic Best Reply, Main Experiment.
Myopic Best Reply Model 1 Model 2 Model 3

Conflict −0.2183∗∗∗ −0.2163∗∗∗ −0.2158∗∗∗

(0.0567) (0.0573) (0.0574)
FullInfo Treatment −0.0159 −0.0258 −0.0294

(0.0413) (0.0409) (0.0461)
Collusion −0.1815∗∗∗ −0.1573∗∗∗

(0.0125) (0.0330)
Constant −0.4092∗∗∗ −0.3704∗∗∗ −0.4225∗∗

(0.0639) (0.0620) (0.1862)

Controls No Yes Yes
Demographics No No Yes

Log Pseudolikelihood −3612.3172 −3603.9443 −3603.3104

Note: Standard errors, clustered by 16 matching blocks, in parentheses.

Table 4: Probit Regression Models for Imitation, Main Experiment.
Imitation Model 1 Model 2 Model 3

Conflict −0.0542 −0.0754 −0.0749∗

(0.0543) (0.0470) (0.0449)
FullInfo Treatment −0.0159 0.0282 0.0120

(0.0752) (0.0802) (0.0739)
Collusion 0.6844∗∗∗ 0.8105∗∗∗

(0.2523) (0.1552)
Constant −0.4557∗∗∗ −0.7209∗∗∗ −1.2212∗∗∗

(0.0794) (0.1323) (0.1187)

Controls No Yes Yes
Demographics No No Yes

Log Pseudolikelihood −3622.6196 −3601.3666 −3596.3697

Note: Standard errors, clustered by 16 matching blocks, in parentheses.

significant in Model 1 (p = .3184), which does not control for collusion. The coefficient

still misses significance in Model 2 (p = .1087) and becomes only weakly significant in

Model 3 (p = .0951), after adding Controls, Demographics, and the Collusion dummy.

In summary, the regression models confirm our non-parametric analysis while con-

trolling for other features. Taken together, the analyses above provide strong evidence

for Hypotheses (H1), (H2), (H3), and (H4a), and weak evidence for Hypothesis (H4b).

Hence, we conclude that our main experiment strongly supports our model, suggest-

ing that interacting behavioral rules with qualitatively different properties codetermine

behavior in complex economic decisions.

4 Replications

We now present further evidence in the form of a separate experiment. The data is taken

from an experiment discussed in Achtziger et al. (2019), which used a closely-related

paradigm while manipulating cognitive load between subjects. That is, this experiment
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included two separate treatments, each of which can be considered as a replication of our

main experiment except for the added cognitive load in one of the two. While Achtziger

et al. (2019) discusses the effects of cognitive load across treatments in detail, here we

report the analysis of hypotheses (H1)-(H4b) within each treatment.

4.1 Experimental Design and Procedures

The two replications were implemented in the same way as the main experiment, with 3

sessions of 24 participants each yielding N = 72 per replication for a total of N = 144 (87

females; median age 23 years). The replications were two between-subject treatments,

NoLoad and Load, of an experiment discussed in Achtziger et al. (2019). The NoLoad

treatment was a replication of the FullInfo treatment of the main experiment. The Load

treatment included an additional cognitive load task but was otherwise identical to the

NoLoad one. For clarity, we will continue to refer to the first and second replications

using the NoLoad and Load labels, respectively. As in the main experiment participants

interacted in 4-player Cournot oligopolies, and there were 51 periods in three blocks of

17 periods each. The cognitive load task consisted of memorizing a seven-digit number

(as in Carpenter et al., 2013) before each decision in the Cournot oligopoly. Subjects

had 10 s to memorize the number and had to recall the number after the decision. A

correct recall was rewarded with 750 additional points.

Apart from the introduction of cognitive load in the Load replication, there were only

two changes with respect to the main experiment. First, the exchange rate was increased

to 20 Eurocents per 1000 points.9 Second, subjects were rematched within blocks of 12

participants after each part, which reduces the number of independent observations for

our conservative block-level tests.

A session lasted around 85 and 105 minutes in the NoLoad and Load replication,

respectively. Average earnings, including the show-up fee of 2.50 EUR, were 13.61 EUR

and 14.06 EUR (excluding the earnings from the cognitive load task).10 An MWW test

at the block level (N = 12) shows that average earnings were not significantly different

across the two replications (z = −1.121, p = .2623).

Analogously to the main experiment, Table 1 allows the classification of observations

in terms of the prescriptions (favored options) of the behavioral rules of myopic best

reply, imitation, and inertia. Figure 3 displays a descriptive overview of all observations

by replication and classification according to the behavioral rules. The replications data

sets contain 3,456 decisions each. In NoLoad, 2,864 (82.87 percent) were under conflict.

Of those, 24.02 percent were myopic best replies and 34.78 percent were imitative. The

remaining (17.13 percent) were under alignment, of which 43.41 percent were myopic

best replies (hence also imitative). In Load, 2,892 (83.68 percent) were under conflict.

9The exchange rate was increased because the average payoff in the main experiment was slightly
below the wage rate demanded by the experimental lab.

10The average earnings of participants in the Load sessions including the payoff from the cognitive
load task were 20.12 EUR.
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Figure 3: Overview of Observations and their Classification, Replications.

Note: Classification of decisions in NoLoad (left-hand side) and Load (right-hand side).

Of those, 23.65 percent were myopic best replies and 37.28 percent were imitative. The

remaining (16.32 percent) were under alignment, of which 43.79 percent were myopic

best replies (hence also imitative).

4.2 Results

We now proceed to examine all our previous hypotheses, (H1) to (H4b), separately for

both replications. Figure 4 depicts the averages of individual average response times

conditional on imitative choices, myopic best replies, and other choices for the NoLoad

and Load replications, hence illustrating the first three hypotheses. (H1) states that

decisions favored by the most deliberative rule, in our case myopic best reply, must

be slower in case of conflict with imitation than in case of alignment. Indeed, myopic

best replies are significantly slower under conflict than under alignment both in NoLoad

(p = .0277) and in Load (p = .0464). (H2) states that, in case of conflict, myopic best

replies must be slower than imitative decisions. This is the case both for NoLoad and for

Load (p < .03).11 (H3) predicts that, in case of alignment, myopic best replies (which

are also imitative in this case) should be faster than other decisions. Again, we find

significant differences in the predicted direction both in NoLoad and in Load (p < .03).

Figure 5 shows the relative frequencies of different types of decisions in conflict

and alignment for the NoLoad (left-hand side) and Load (right-hand side) replications,

illustrating (H4a) and (H4b). As predicted by (H4a), myopic best replies are significantly

11The replications had less participants and a larger block size which resulted in fewer number of
observations for this analysis. Most paired block-level tests yield the smallest possible p-value which is
.0277 for N = 6.
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Figure 4: Average Response Times, Replications.

Note: Average response times of imitative decisions, myopic best replies, and other
choices in the NoLoad (left-hand side) and Load (right-hand side) replications. Stars
indicate Wilcoxon Signed-Rank tests. ⋆⋆ p < .05. Note that p < .01 is not possible for
WSR tests with 6 block-level paired observations.

less frequent in conflict than in alignment, both in NoLoad and in Load (p < .03).

Hypothesis (H4b) is also clearly confirmed by the data in both treatments (we remark

that this was the only hypothesis not strongly supported in the main experiment). That

is, imitative decisions were significantly less frequent in conflict than in alignment both

in NoLoad (conflict, average 34.65 percent; alignment, 43.55; WSR, N = 6, z = −2.201,

p = .0277) and in Load replications (conflict, 37.17 percent; alignment, 44.02; N = 6,

z = −1.992, p = .0464).12

In summary, conservative, two-tailed nonparametric tests at the block level confirm

all of the model’s predictions for both replications, showing that the results obtained

in main experiment were robust. Analogously to Section 3.3, we now conduct panel

regressions making use of all 48× 72 = 3, 456 observations of each replication.

Table 5 presents random effects panel regressions of the log-transformed response

times. For conciseness, we present only the analogues of Models 1 and 3 from the main

experiment for each replication (recall Table 2).13

12In the Load replication, one group successfully colluded in the last part of the experiment. Excluding
the corresponding block yields comparable results.

13Model 2 does not qualitatively differ from the other models.
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Figure 5: Relative Frequency of Imitation and Myopic Best Reply, Replications.

Note: Relative frequencies of imitative decisions (Im) and myopic best replies (BR) in
the NoLoad (left-hand side) and Load replications (right-hand side).

Table 5: Random Effects Panel Regressions on (log) Response Times, Replications.

No Load Load
ln(ResponseTime) Model 1 Model 3 Model 1 Model 3

Conflict 0.1505∗∗∗ 0.1470∗∗∗ 0.1900∗∗∗ 0.1937∗∗∗

(0.0233) (0.0175) (0.0605) (0.0540)
Imitation-Conflict −0.2337∗∗∗ −0.2172∗∗∗ −0.2759∗∗∗ −0.2258∗∗∗

(0.0235) (0.0181) (0.0556) (0.0321)
Other 0.1619∗∗∗ 0.1255∗∗∗ 0.2559∗∗∗ 0.2261∗∗∗

(0.0345) (0.0347) (0.0607) (0.0468)
Other×Conflict −0.1688∗∗∗ −0.1310∗∗∗ −0.2772∗∗∗ −0.2497∗∗∗

(0.0479) (0.0457) (0.0658) (0.0550)
Collusion −0.0739

(0.0825)
Constant 2.3230∗∗∗ 3.0231∗∗∗ 1.9410∗∗∗ 1.7145∗∗∗

(0.0637) (0.1948) (0.0838) (0.1749)

Controls No Yes No Yes
Demographics No Yes No Yes

R2 0.0348 0.1216 0.0623 0.1559

Note: Standard errors, clustered by 12 matching blocks, in parentheses.

Model 1 in Table 5 tests for the basic effects. Model 3 adds a Collusion dummy

(only relevant for Load) and further Controls and Demographics, to show the robustness
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Table 6: Probit Regression Models for Myopic Best Reply, Replications.
No Load Load

Myopic Best Reply Model 1 Model 3 Model 1 Model 3

Conflict −0.5615∗∗∗ −0.5737∗∗∗ −0.5491∗∗∗ −0.5425∗∗∗

(0.0832) (0.0717) (0.0648) (0.0653)
Collusion −0.1059∗∗∗

(0.0379)
Constant −0.1583∗∗∗ −0.6876∗∗∗ −0.1796∗∗∗ 0.0299

(0.0488) (0.2356) (0.0517) (0.2267)

Controls No Yes No Yes
Demographics No Yes No Yes

Log Pseudolikelihood −1976.1410 −1964.1982 −1956.3004 −1952.2798

Note: Standard errors, clustered by 12 matching blocks, in parentheses.

of the results. The coefficient for Conflict is positive and highly significant (NoLoad,

p < .0001 in both models; Load, Model 1 p = .0017, Model 3 p = .0003), showing

that myopic best replies are slower under conflict than under alignment, as predicted by

(H1). As in Table 2, the coefficient for Imitation-Conflict captures the difference between

imitative decisions and myopic best replies in case of conflict. The coefficient is negative

and highly significant (p < .0001 in all models), confirming (H2). The coefficient for

Other decisions captures the difference, in case of alignment, between other decisions

and myopic best replies (which are also imitative). The coefficient is positive and highly

significant (NoLoad, Model 1 p < .0001, Model 3 p = .0003; Load, p < .0001 in both

models), confirming (H3).

As in the main experiment, we also examine a few exploratory questions. The linear

combination of the coefficients for Other and Other×Conflict is not significantly differ-

ent from zero, indicating that (as in the main experiment) in case of conflict myopic

best replies are not faster than other decisions. In contrast, and again as in the main

experiment, a linear combination test shows that imitation decisions are significantly

faster than other decisions in conflict (p < .0001 in all models), which might indicate

that part of the latter decisions reflect more complex behavioral rules. The Collusion

dummy, identifying subjects who colluded, was not significant (in contrast to the main

experiment).

Tables 6 and 7 present probit panel regressions with myopic best reply and imitation

as dependent variable, respectively. Both reveal a highly-significant and negative Conflict

dummy (Best Reply, Table 6, all p < .0001; Imitation, Table 7, No Load: Model 1

p = .0019, Model 3 p = .0009, Load: Model 1 p = .0157, Model 3 p = .0008). This

confirms that, in both replications, both best myopic best replies and imitative choices

were significantly less frequent under conflict than under alignment, as predicted in (H4a)

and (H4b), respectively.

In summary, the regression analysis confirms all our conclusions from the main ex-

periment in both replications and hence supports the interpretation that decisions arise
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Table 7: Probit Regression Models for Imitation, Replications.
No Load Load

Imitation Model 1 Model 3 Model 1 Model 3

Conflict −0.2190∗∗∗ −0.2330∗∗∗ −0.1423∗∗ −0.1800∗∗∗

(0.0707) (0.0700) (0.0589) (0.0535)
Collusion 0.4186

(0.3999)
Constant −0.1935∗∗∗ −0.0118 −0.2076∗∗∗ 0.1838

(0.0557) (0.3526) (0.0656) (0.5511)

Controls No Yes No Yes
Demographics No Yes No Yes

Log Pseudolikelihood −2121.5558 −2111.0881 −2054.3477 −2016.3972

Note: Standard errors, clustered by 12 matching blocks, in parentheses.

from the interaction of two clearly-differentiated behavioral rules along the lines of my-

opic best reply and imitation of best outcomes.

5 Other Behavioral Rules

Two further behavioral rules can be defined and analyzed with our data. The first is

a simple “win-stay” version of reinforcement learning, i.e. the tendency to repeat what

has worked in the past without paying attention to whether the conditions in which

past actions were successful have changed. Reinforcement is particularly important

for economics, as it captures the empirically-relevant focus on past performance, whose

consequences are well-documented (e.g., outcome bias; Baron and Hershey, 1988; Dillon

and Tinsley, 2008). Evidence from neuroscience has shown that reinforcement learning

is associated with extremely fast and unconscious brain responses (e.g., Schultz, 1998;

Holroyd and Coles, 2002). In an explicitly economic context, Achtziger and Alós-Ferrer

(2014) showed that a simple reinforcement heuristic corresponds to a highly automatic

process which competes with more deliberative rules when feedback comes in a win-loss

frame.

In a Cournot oligopoly, “win-stay” corresponds to positive reinforcement, which pre-

scribes to repeat the previous choice if the player has “won,” that is, obtained the max-

imum observed profits. This rule can be described as “imitating yourself” and coincides

with imitation in a subset of decision situations (recall Figures 1 and 3). The remaining

imitative decisions correspond to imitating others. Since reinforcement is considered to

be based on rather automatic processes, we hypothesize that it should lead to shorter

response times than “imitating others.”14

14Note that imitating yourself and imitating others are never simultaneously active processes, but
rather constitute a partition of imitative decisions and hence the prediction of faster response times is
straightforward: the process favoring imitation is faster in one case than in the other, while the competing
myopic best reply rule remains fixed.
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Figure 6: Average Response Times of Reinforcement and Imitating-others Decisions

Note: Left-hand side: Main Experiment. Right-hand side: Replications. Stars indicate
Wilcoxon Signed-Rank tests. ⋆⋆ p < .05 and ⋆⋆⋆ p < .01.

Figure 6 displays the response times of decisions where participants imitated them-

selves or others, both for the main experiment (left-hand side) and both replications

(right-hand side). For completeness, we disentangle the comparison according to whether

imitation (or positive reinforcement) was in conflict or in alignment with myopic best

reply. Reinforcement decisions in case of conflict were significantly faster than imitating-

others decisions in all cases (main experiment: average 9.48 s vs. 11.86 s, WSR, N = 16,

z = −3.258, p = .0011; Replications, NoLoad; 10.36 s vs. 12.84 s, N = 6, z = −2.201,

p = .0277; Replications, Load: 7.31 s vs. 8.74 s, N = 6, z = −1.992, p = .0464). In case

of alignment, reinforcement decisions were also significantly faster than imitating-others

decisions in the main experiment (average 9.62 s vs. 13.71 s; N = 16, z = −2.947,

p = .0032) and NoLoad replication (11.36 s vs. 15.01 s; N = 6, z = −1.992, p = .0464).

In the Load replication reinforcement decisions were also faster than imitating-others

decisions, but there were no significant differences (7.72 s vs. 9.87 s, N = 6, z = −1.153,

p = .2489).

In summary, we confirm that the imitation behavioral rule that we consider might be

supported by a composite process which, in some cases, reflects positive reinforcement.

This is of independent interest, but does not change our previous conclusions.

Decisions following positive reinforcement (or imitating yourself) imply upholding the

previously-selected action. Hence, they are aligned with a further, particularly simple
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Figure 7: Average Response Times of Stay and Shift Decisions

Note: Left-hand side: Main Experiment. Right-hand side: Replications. Each subset
shows stay and shift best reply decisions in case of conflict and other (non-best replies)
stay and shift decisions in case of alignment. Stars indicate Wilcoxon Signed-Rank tests.
⋆⋆ p < .05 and ⋆⋆⋆ p < .01.

behavioral rule: decision inertia, i.e. the tendency to repeat previous behavior indepen-

dently of any feedback. This raises the natural question of whether the driver of the

effects above is actually this simple but more general rule, i.e. whether inertia results in

clear effects beyond situations where the decision maker has obtained the largest profits.

Previous work (Alós-Ferrer et al., 2016) has compared decision inertia with reinforcement

in the belief-updating task of Charness and Levin (2005) and Achtziger and Alós-Ferrer

(2014), and found that inertia does cause asymmetries in error rates, but this behav-

ioral rule seems weaker than reinforcement and is typically washed away by it. To see

whether inertia is behaviorally relevant in our paradigm, we examined it in the cases

where it is not aligned with imitation, since in case of alignment of imitation we obtain

positive reinforcement. To avoid confusion, however, we reserve the words “alignment”

and “conflict” for the confluence or not of myopic best reply and imitation. In case of

conflict between myopic best reply and imitation, we will compare “stay” myopic best

replies (as prescribed with inertia) with “shift” myopic best replies. In case of alignment

between myopic best reply and imitation, we test within other kind of decisions not

following the common prescription of myopic best reply and imitation.
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Figure 7 depicts the response times of decisions in line with inertia (“stay” decisions)

and those opposed to it (“shift” decisions), both for the main experiment (left-hand

side) and for both replications (right-hand side). For conflict, the comparison is between

“stay” and “shift” best replies. There were, however, no differences in the response times

of these two kinds of decisions, neither in the main experiment (stay, average 12.19 s;

shift, 12.51 s; WSR, N = 16, z = −0.776, p = .4380) nor in any replication (NoLoad,

13.79 s vs. 14.44 s, N = 6, z = −1.153, p = .2489; Load, 9.83 s vs. 11.14 s, N = 6,

z = −0.943, p = .3454). Hence, whenever myopic best reply and imitation conflict, there

is no evidence of involvement of inertia (beyond the possible confluence with imitation),

and in particular the effects of reinforcement described in the previous subsection are

unlikely to be due to a more general process reflecting pure inertia.

For alignment (between imitation and myopic best reply), we compare all non-best

replies of the “stay” and “shift” forms. Such stay (inertia) decisions were significantly

faster than the comparable shift decisions in the main experiment (stay, average 12.13 s;

shift, 14.48 s; WSR, N = 16, z = −2.741, p = .0061) and in NoLoad replication (13.14 s

vs. 15.10 s, N = 6, z = −1.992, p = .0464). There were no significant differences in

the Load replication (10.99 s vs. 11.81 s, N = 6, z = −1.153, p = .2489). These results

are interesting. In this case, best replies coincide with imitative decisions, that is, the

“other” decisions we examine are not imitative, and in particular can not follow from

positive reinforcement. Although this is speculative, these results suggest that shift

decisions in this case might include choices derived from higher-order reasoning or more

complex behavioral rules. This would be consistent with the long response times of

“other” decisions under conflict discussed in the regression analyses in Sections 3.3 and

4.2.

6 Conclusion

Economics has long embraced the idea that human decision makers have limited ca-

pacity and hence will display bounded rationality (Simon, 1959). There is little doubt

that humans rely on cognitive shortcuts, often unconsciously (Kahneman, 2003). Mi-

croeconomic theory has captured such ideas through behavioral rules reflecting different

degrees of sophistication (e.g. Samuelson, 1997; Fudenberg and Levine, 1998), which can

often be usefully classified along the lines sketched in dual-process models from psy-

chology (Weber and Johnson, 2009). Other systematic attempts, as prospect theory

(Kahneman and Tversky, 1979) or quasi-hyperbolic discounting (Laibson, 1997), have

incorporated these ideas in the form of specific modifications of standard economic mod-

els as expected utility or exponential discounting. Although such models have clearly

shown its usefulness, they remain as if in the sense that they implicitly or explicitly

assume a multiplicity of behavioral rules at the individual level, but deliver no explicit

means to test for that multiplicity.
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We provide a simple formal model where economic agents decide following different

behavioral rules which differ along the cognitive dimension. The model makes a number

of non-trivial predictions which allow us to directly test for the multiplicity of behavioral

rules. This is possible because the predictions rely on explicit characteristics of the

behavioral rules which reach beyond the as if description needed to fit choices. First,

predictions rely on the ex ante classification of decisions in conflict or alignment according

to the pre-specified behavioral rules. Second, they concern both choices and response

times, the latter being a direct correlate of the postulated characteristics of the brain

decision processes underlying the behavioral rules.

In one main experiment and two replications, we find overwhelming evidence in fa-

vor of the presence of multiple behavioral rules. We focus on an economically-relevant

setting, a Cournot oligopoly where myopic best reply is the natural candidate for a more

deliberative behavioral rule, but previous research has identified imitation of best out-

comes as a relevant, more impulsive competing rule, both theoretically (Vega-Redondo,

1997; Alós-Ferrer and Ania, 2005) and experimentally (Huck et al., 1999, 2004; Offer-

man et al., 2002; Apestegúıa et al., 2007). We find a number of “smoking guns,” all

predicted by our model, which point to the multiplicity of behavioral rules: best replies

are slower under conflict with imitation than under alignment (generalizing the Stroop

effect from cognitive psychology), they are slower than imitative decisions under conflict

but slower than other decisions under alignment, and both best replies and imitative

decisions are less frequent under conflict than under alignment. The evidence is striking

and systematic, and speaks in favor of a literal multiplicity of competing behavioral rules

in economic decision making.

In conclusion, our model and empirical evidence strongly suggest that economic

decision making can often be better explained by integrating different views of behavior,

instead of either assuming fully-rational optimization or boundedly-rational impulse-

response behavior only. Multiple behavioral rules are more than a convenient metaphor

or an as if model, and economic modeling can be greatly improved by viewing decisions

as the result of the interaction of different behavioral rules and decision processes in the

human brain.
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Alós-Ferrer, C., S. Hügelschäfer, and J. Li (2016). Inertia and Decision Making. Frontiers
in Psychology 7 (169), 1–9.

Alós-Ferrer, C. and A. Ritschel (2018). The Reinforcement Heuristic in Normal Form
Games. Journal of Economic Behavior and Organization 152, 224–234.

Alós-Ferrer, C. and F. Strack (2014). From Dual Processes to Multiple Selves: Implica-
tions for Economic Behavior. Journal of Economic Psychology 41, 1–11.
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Appendix

A.1 Proofs

Proof of Theorem 1. The expected response time of best replies in case of alignment
(xB = xI) is

E(RT |xB ,Alignment) =
(1−∆)PBRRB +∆P ImRI

(1−∆)PBR +∆P Im

and the expected response time of best replies in case of conflict (xB 6= xI) is

E(RT |xB ,Conflict) =
(1−∆)PBRRB +∆P Im

B
RI

(1−∆)PBR +∆P Im
B

.

Then, E(RT |xB ,Conflict) > E(RT |xB ,Alignment) holds if and only if

(

P Im − P Im
B

)

RB >
(

P Im − P Im
B

)

RI

which holds by (P1) and (R).

Proof of Theorem 2. (H2) The expected response time of best replies in case of conflict
(xB 6= xI) is as given in the proof of Theorem 1, and the expected response time of
imitative answers is

E(RT |xI ,Conflict) =
(1−∆)PBR

I
RB +∆P ImRI

(1−∆)PBR
I

+∆P Im
.

where PBR
I

denotes the probability with which the best reply rule selects an imitative
answer when it does not coincide with the prescription of imitation, i.e. PBR

I
= PBR(xI)

when xB 6= xI . Then, E(RT |xB ,Conflict) > E(RT |xI ,Conflict) if and only if

(

PBRP Im − PBR
I P Im

B

)

(RB −RI) > 0

which holds by (R) (RB > RI) and (P1) (which implies PBRP Im > PBR
I

P Im
B

).
(H3) The expected response time of best replies in case of alignment (xB = xI) is as

given in the proof of Theorem 1, and the expected response time of other answers is

E(RT |x 6= xB ,Alignment) =
(1−∆)(1− PBR)RB +∆(1− P Im)RI

(1−∆)(1− PBR) + ∆(1− P Im)
.

Then, E(RT |xB ,Alignment) < E(RT |x 6= xB ,Alignment) if and only if

(

(1− PBR)P Im − PBR(1− P Im)
)

(RB −RI) > 0.

Since RB > RI holds by (R), the result holds if

(1− PBR)P Im > PBR(1− P Im)

which is equivalent to P Im > PBR. The latter holds by (P2).
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Proof of Theorem 3. (H4a) The proportion of best replies in case of alignment (xB = xI)
is

P (BR|Alignment) = (1−∆)PBR +∆P Im

and the proportion of best replies in case of conflict (xB 6= xI) is

P (BR|Conflict) = (1−∆)PBR +∆P Im
B

where P Im
B

denotes the probability with which the imitation rule selects a best reply
when it does not coincide with the prescription of imitation, i.e. P Im

B
= P Im(xB) when

xB 6= xI . Then, P (BR|Alignment) > P (BR|Conflict) if and only if P Im > P Im
B

, which
holds by (P1).

(H4b) is analogous to (H4a).

Proof of Theorem 4. A straightforward computation analogous to the proof of Theorem
1 shows that (H1) reduces to

(tC − tA) +
[

(1−∆C)∆AP
Im − (1−∆A)∆CP

Im
B

]

(RB −RI) > 0.

Since tC ≥ tA and RB > RI by (R), this follows if the left-hand bracket is positive, or,
equivalently,

∆A

1−∆A

P Im >
∆C

1−∆C

P Im
B

which follows from (P1) and ∆A ≥ ∆C .
(H2) and (H3) are unaffected by the extension, since they refer either to the case

of conflict or the case of alignment, and not to comparisons across them. The proof of
Theorem 2 goes through replacing ∆ with the corresponding ∆i.

(H4a) and (H4b) do not refer to response times, hence they are unaffected by non-
decision times. The assumption that ∆A ≥ ∆C , however, does influence the proportion of
choices of each type. A straightforward computation analogous to the proof of Theorem
3 shows that (H4a) is equivalent to

∆AP
Im −∆CP

Im
B > (∆A −∆C)P

BR.

By (P1), ∆AP
Im − ∆CP

Im
B

> (∆A − ∆C)P
Im. The latter is larger than (∆A −

∆C)P
BR by (P2) and ∆A ≥ ∆C .

A similar computation shows that (H4b) is equivalent to

(∆A −∆C)P
Im +

[

(1−∆A)P
BR − (1−∆C)P

BR
I

]

> 0

Since P Im > PBR by (P2) and ∆A ≥ ∆C , the left-hand side is larger than (1 −
∆C)

(

PBR − PBR
I

)

, which is strictly larger than zero by (P1). This completes the
proof.

34



A.2 Translated Instructions

General Instructions

The experiment consists of three parts with 17 rounds each in which you and
three other participants make decisions. After the completion of these three parts,
a questionnaire will follow. In each of the three parts you will earn points. How many
points you earn depends on your decisions and the decisions of the players in your group.
All points you earned each round will be added up at the end of the experiment and
exchanged into Euros. The exchange rate is:

Main Experiment: 1000 points= 18 Eurocents.

Replications: 1000 points= 20 Eurocents.

Independently of your decisions, you will receive 2.50 EUR for your participation.
The total amount will be paid in cash and anonymously at the end of the experiment.

On the following pages you will receive all further information which you need for
the experiment. Among other things the sequence of the experiment will be explained
in detail. Once you have finished reading the instructions, please proceed to answer the
control questions on the screen.

Instructions of the Experiment

General Sequence: The experiment is divided into three parts. The procedure is
the same for each part. Only the payoff table (which will be discussed later in more
detail) and the composition of the groups change with each part. One part consists of
17 rounds. At the beginning of each part, participants will be divided into groups.
One group consists of 4 players (you included) and stays the same for the duration of
a part. That means, that you always interact with the same players during one part. In
every new part two of players will be replaced and therefore the composition of the group
changes. That means that in a new part you do not interact with the same players as
in the previous part. In every round you have to decide among four options, A, B, C,
or D. How many points you earn in one round depends both on your choice and on the
choices of the other three group members. [Load Replication:] In addition you can earn
additional points in every round.

Payoff Tables: The payoff tables are an important component of the experiment.
They show you all possible payoffs depending on your choice and the choice of the other
three group members. The rows represent your choice and the columns represent the
joint choice of the other group members. The appropriate cell entry is the amount of
points you would receive if this combination of choices occurs. Please note that for your
payoff it is irrelevant which of the other group members made which choice. That means
that if the other group members choose C, A, and B, respectively, this has the same
effect on your payoff than if they choose A, B, and C. For a better overview, columns
are ordered alphabetically.

Figures A.1-A.3/[Load Replication:]A.1-A.5 depict examples of such payoff tables.
Please note that in the experiment other payoff tables will be used. Important note:
The payoff table will not change during a part. The same payoff table applies to all
group members.

Your Decision: In each round you have to choose one of the four options, A, B,
C, or D. You have 30 seconds to make your choice. You make a choice by clicking on
the appropriate button on the screen. During your choice the payoff table of the current
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part will be shown. The next round begins as soon as all participants made their choice.
In every round the result of the previous round is shown (except for the first round of
every part).

Sequence of Decisions in a Round in Detail: The payoff table will be shown
at the beginning of each part so you can familiarize yourself with it (see Figure A.1).
The table will be kept on the screen during the experiment at all times – you do not
have to memorize or copy the table. After you have familiarized yourself with the table
click “continue”. The decision phase will start as soon as all participants are ready.

Figure A.1: Beginning of a part.

Now you can choose among four options, A, B, C, and D. To make a choice click on
the appropriate button of your choice (see Figure A.2).

Figure A.2: Decision in the first round of a part.
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Starting in round two of a part, the results from the previous round will be
shown (see Figure A.3). In the first column, “Result,” you see the choices of all four
players in the group. In the example figure it was “B, D, B, C.” The first letter
(“B”) always represents your own choice whereas the following three letters (“D, B,
C”) represent the choice of the other three members of your group. The position of a
letter (choice of a group member) is always assigned to a specific group member and stays
the same during a given part. In the example the “left” player chose D, the “middle”
player chose B, and the “right” player chose C.

Figure A.3: BestOnly treatment: New choice and the result of the previous round starting
from the second round.

Figure A.3: FullInfo treatment: New choice and the result of the previous round starting
from the second round.
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In the second column, “Your Choice and Points,” you will see your own choice and
the points you earned in the previous round. In the example in Figure A.3 you can see
in the payoff table that you earned 663 points because you chose B (row “B” in the
table) and the other group members chose D, B, C (column “B C D”). In the table,
the column representing the choice combination of the group members is highlighted in
yellow. The columns are ordered alphabetically for a better overview.

[Main Experiment BestOnly treatment:] The last column, “Choice with the most
Points,” shows the choice which earned the most points in the previous round and the
points earned with that choice. This information is always highlighted in yellow.

[Main Experiment FullInfo treatment, Replications:] The last column, “Choice and
Points of the Other Group Members,” shows the choices and how many points the other
group members earned in the previous round. The ordering of the group members is
the same as in the first column, “Result” (“left” player – D, “middle” player – B, and
“right” player – C). The choice and points of the player who earned the most points in
the previous round is highlighted in yellow. The column “Your Choice and Points” is
also highlighted in yellow if you earned the most points in the previous round. In case
of a tie the choice and points of multiple players will be highlighted.

[Load replication:]Additional Points: In every round you have the opportunity
to earn additional points. To earn these points you have to memorize a number you
see before you enter the decision phase. The number consists of 7 digits and will be
displayed for 10 seconds on the screen (see Figure A.4). Then the decision phase in
which you have to choose among A, B, C, or D starts.

Figure A.4: Example for a number consisting of 7 digits for the additional points.

After the decision phase you have to enter the whole number in the correct order (see
Figure A.5). If you correctly enter the number your earn additionally to the points
earned from the decision phase 750 points. You have to enter the number (without
spaces) and click “OK” within 10 seconds otherwise it will be counted as false automat-
ically. For a false input you will not receive any points. The additional points will be
added to your points from the decision phase at the end of the experiment.

Do you have any questions? If so, please raise your hand and wait.
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Figure A.5: Input of the number.

On your screen you will find some control questions for the experiment. Please answer
these questions. If you have trouble answering the questions, please raise your hand. The
experiment will start as soon as all participants answered the questions correctly.
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