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Abstract

Overwhelming evidence from the cognitive sciences shows that, in simple discrim-

ination tasks (determining what is louder, longer, brighter, or even which number

is larger) humans make more mistakes and decide more slowly when the stimuli are

closer along the relevant scale. We investigate to what extent these effects are rele-

vant for economic decisions. Strikingly, we find that even when there is an objectively

correct answer independently of attitudes toward risk, the same effects obtain as ex-

pected values become closer. Contrary to pure discrimination tasks, however, differ-

ences in payoff-independent numerical magnitudes play a minor role. When correct

answers depend on subjective attitudes toward risk, differences in expected values

fail to explain error rates. The gradual effects on error rates and response times

subsist but are instead explained by cardinal differences in independently-estimated

subjective utilities (“strength of preference”). This is in agreement with assump-

tions typically made (but seldom validated) in random utility models. We conclude

that the gradual effects on choice found in cognitive discrimination paradigms are

very much present in economic choices, but depend on purely economic variables.

An implication is that even if correct economic choices can be seen as ordinal, actual

economic choices carry a cardinal component.
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1 Introduction

Errors are everywhere. Economics has by now embraced the view that economic choices

are subject to noise (e.g., McFadden, 2001). Research in stochastic choice has provided

extensive evidence that human beings often make different choices even when repeat-

edly confronted with the same set of options1 (e.g., Tversky, 1969; Camerer, 1989; Hey

and Orme, 1994; Ballinger and Wilcox, 1997; Agranov and Ortoleva, 2017). There is,

however, no universally-accepted view on the origins and determinants of noise or er-

rors in economic decision making. How often do economic agents make mistakes, and

what does the number of mistakes depend on? These questions are important both for

positive and normative reasons. On the one hand, forecasting economic choices requires

accurate models of decision errors, beyond the simple assertion that people indeed do

make mistakes. On the other hand, predicting the effects of economic policies and evalu-

ating their consequences is only possible if the consequences of human errors in response

to them are understood. Indeed, large individual error rates are reflected in significant

behavioral heterogeneity and can cause potentially large welfare losses at the aggregate

level (e.g., Choi et al., 2014; Harrison and Ng, 2016; Alekseev et al., 2019).2

The key question is whether error rates are associated with directly or indirectly

measurable economic variables. To understand the sources of mistakes (or stochastic

choice) in economic decisions, however, it is useful to briefly step back and examine

evidence from the cognitive sciences (chiefly cognitive psychology and neuroscience) on

tasks which are significantly simpler than the ones proper of economics. In the domain

of psychophysics, decades of research have concentrated on perceptual discrimination

tasks, where two stimuli are presented and human participants are asked to estimate

which one scores higher along an objective scale, for instance which of two sounds is

louder, which of two lights is brighter, or which of two lines is longer. In such simple

tasks, there is an objective, direct measure of choice difficulty: choices become gradually

harder as the difference between the stimuli becomes smaller (along the objective scale).

There are two firmly-established stylized facts in this literature. The first is that the

percentage of correct choices is strictly decreasing with choice difficulty, that is, error

rates are larger when stimuli are more similar (Laming, 1985; Klein, 2001; Wichmann

and Hill, 2001). The second is that choices are slower as choice difficulty increases, that

is, response times are larger when the stimuli are more similar (Dashiell, 1937; Moyer

and Landauer, 1967). This second fact is commonly taken as evidence that the effect on

error rates derives from basic (gradual) neural mechanisms in the human brain. That is,

1“Common experience suggests, and experiment confirms, that a person does not always make the
same choice when faced with the same options, even when the circumstances of choice seem in all relevant
aspects to be the same.” (Davidson and Marschak, 1959).

2If a normative view is adopted where (except for knife-edge indifference cases) only one choice is
considered correct (or consistent with underlying preferences), the statement that choice is stochastic is
equivalent to the empirically-ubiquitous observation of positive error rates. It is in this sense that we
speak of “errors” in this work. This is also in line with a positive-economics view, where one aims to
understand the extent to which economic decision makers will deviate from choices deemed “rational.”
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decisions might derive from gradual, noisy processes of internal evidence accumulation,

which are more error-prone and time-consuming if the quantities that need to be teased

apart are closer (Shadlen and Kiani, 2013; Shadlen and Shohamy, 2016).

In this work, we ask the question of whether these gradual effects are relevant for

economic choices and, if so, which economic variables do determine them. This question

is obviously important for conceptual reasons, as the phenomena we discuss imply a

cardinal effect of economic variables on choices, as opposed to the classical, purely-

ordinal view of preferences. Providing an empirical demonstration of the postulated

effects, however, is also important in view of the recent literature. Such effects would

be an implication of any model assuming that choice frequencies reflect an efficient

use of limited representational resources in the human mind, as for instance recent

models of rational inattention (Caplin and Dean, 2015; Matějka and McKay, 2015) or

optimal sparsity (Gabaix et al., 2006; Gabaix, 2014). Also, if certain differences among

alternatives are more salient than others (Bordalo, Gennaioli and Shleifer, 2012, 2013),

they will naturally attract more attention, resulting in reduced error rates.

However, studying the dependence of error rates on underlying economic variables

is far from straightforward, for two reasons which we will elaborate on below. The first

is that it is by no means clear what the gradual effects predicted by psychology and

neuroscience should depend on for economic choices, where a natural scale as weight,

brightness, or length is usually not part of the problem’s formulation, and utilities are

neither directly observable nor objective. The second is that, even if one glosses over the

former point, and although gradual effects transforming utility differences in economic

choices are often assumed in applied economics (Anderson, Thisse and De Palma, 1992;

McFadden, 2001; Moffatt, 2015), the estimation method might often create apparent

regularities where none exists, hence obscuring the actual origin of the key regularities.

The first problem is an obvious one. In a sense, and with apologies to those fields,

psychophysicists and perceptual psychologists face easier problems than economists. It

is a priori not clear whether objectively-given scales might play the role of weight or

length for economic decisions, or even for some of them. For instance, on the basis of the

available evidence, a good case could be made for numerical magnitudes, independently

of whether they are payoff-relevant or not. Results by Moyer and Landauer (1967) and

Dehaene, Dupoux and Mehler (1990) (see also Dehaene, 1992; Dehaene et al., 2008)

show that the gradual effects on error rates and response times exist even when humans

are asked to discriminate among single-digit numbers. That is (astonishingly), people

make more mistakes (and take longer to decide) when asked whether 6 is larger than

5 than when asked whether 9 is larger than 2. This is compatible with evidence from

electroencephalography (EEG), which suggests that the neural representations of num-

bers vary in a continuous, gradual way with numerical distance (Spitzer, Waschke and

Summerfield, 2017). Recently, Khaw, Li and Woodford (2018) have suggested that the

mere imprecise representation of numerical magnitudes along these lines may explain the

large estimates of risk aversion which are typically observed in laboratory experiments
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in economics. Given that many economic tasks come with a numerical framing, it is

necessary to tackle the question of which is the (most) relevant dimension underlying

possible gradual effects on economic choices.

Although error rates might indeed be affected by the imprecise representation of

observational variables as e.g. numerical magnitudes, this is unlikely to be the only de-

terminant of errors. More natural candidates, painting a less bleak picture of human

rationality, are related to economic gains, as is the case of expected value or (estimated)

expected utility. Inspired by models from psychology (Thurstone, 1927), random util-

ity models, as pioneered by Marschak (1960) and McFadden (2001), assume that errors

depend on underlying (unobservable) utility differences. However, very few studies have

actually empirically demonstrated a monotonic relation between error rates and differ-

ences in underlying utilities. A notable exception is the early study of Mosteller and

Nogee (1951), which used utilities estimated through an interpolation procedure. An

added difficulty is that both in the empirical work of Mosteller and Nogee (1951) (and

other experiments), as well as in theoretical random utility models an error is defined as

a choice which does not maximize utility, that is, there is no ex ante definition of error

independent of the (estimated or assumed) utility.

This leads us straight to the second problem. At least since McFadden (2001),

most applied work in discrete choice microeconomics assumes a gradual relation between

underlying utility differences and choice probabilities, often with a specific logit or probit

form, in order to parametrically estimate the utilities themselves. While this approach is

invaluable to compare the fit of different utility-based models of choice and has delivered

important insights, it is not appropriate to test the basic hypothesis that gradual effects

exist, or to pin down measurable determinants thereof. To drive this point home, we

constructed a dataset by simulating fictitious subjects who made completely random

decisions among alternative risky choices. We then treated the dataset as if it would

come from actual decision makers and used a standard fitting approach estimating an

alleged risk propensity, assuming that errors depend on utility differences. Specifically,

we assumed a CARA utility function and heteroskedastic errors with a logit form, as

commonly done in the literature (e.g., Moffatt, 2015); for more details on the estimation

procedures, see Section 4.2 below. Plotting choice frequencies against the estimated

utility differences yields a regular sigmoidal curve (as in any logit or probit model), which

creates the appearance of order (and gradual effects arising from utility differences) for

the nonsensical dataset. This is shown on the left-hand panel of Figure 1. Actually, this

appearance is a mere artifice of the method, as can be shown by estimating utility out

of sample, i.e., using part of the choices for estimation purposes and plotting the rest of

the choices against the resulting estimated utility differences. Specifically, we estimated

individual risk attitudes using a random parameter model (Loomes and Sugden, 1995,

1998), which in particular does not assume a logit form for error terms (again, see section

4 for details on the estimation). We used even-number choices to estimate a utility which

we used to plot data from odd-numbered choices, and vice versa. This approach shows
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Figure 1: Analysis of a dataset of random, simulated choices. Left-hand panel: Choices
as function of expected utility difference using a standard, within procedure. An appear-
ance of order and gradual effects of expected utility differences on error rates emerges,
even though no regularity is present in the data. Right-hand panel: The same choices as
function of expected utility difference using an out-of-sample procedure. No regularity
can be identified. Gray areas indicate 95% binomial proportion confidence intervals.

that there is no actual regularity in the dataset, as depicted on the right-hand panel of

Figure 1. We conclude that structural models where utility is estimated can mistakenly

create an appearance of gradual effects, and hence direct tests are needed.

In this work, we aim to test and clarify the dependence of error rates (the variable

of interest) in decisions under risk on economic variables. We attack the problem on

three fronts. First, we conduct an experiment (Experiment 1) with normatively-correct

answers (but high error rates) where the explanatory variable can be determined in

advance. This is made possible by employing a binary-choice gambling task where

the winning probability or, equivalently, expected value, is an unequivocal, objectively

measurable indicator of choice difficulty. In this study, the definition of error can be made

ex ante, independently of any estimation of utility, simply because correct responses are

independent of attitudes toward risk. In this way, we commit to the explanatory variable

before collecting the data, and utility estimation plays no role. The task is simple in the

sense that rational decision makers could “figure it out” with relative ease, as is the

case of many problems in judgment and decision making, where an optimal decision

under risk has to be made on the basis of individual beliefs. We find a significant

fraction of errors (above 25%), and we demonstrate that far from being pure noise,

error rates stand in a clear monotonic relation with differences in expected value. That

is, we demonstrate the existence of gradual effects of an objective economic distance

among alternatives and error rates. The design also allows us to test for dependence on

payoff-irrelevant numerical effects as in Moyer and Landauer (1967), and we find that

there is indeed some relation, but it is a second-order phenomenon compared with the

dependence on expected-value differences. This delivers a first, objective confirmation

of psychophysical, gradual effects in decision making under risk arising from economic

variables.
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Second, we conduct a different experiment (Experiment 2) using a betting paradigm

where whether a decision is correct or not depends on individual attitudes toward risk,

as is the case for most lottery-choice tasks. Rather than fitting the data to an estimated

utility, we employ an out-of-sample estimation procedure excluding any artifices arising

from the estimation method. Again, we find a monotonic relation, with larger error rates

arising when the differences in the expected utility of the options are smaller. In con-

trast, the dependence on expected value differences is considerably weaker. That is, we

demonstrate that the gradual effects on choice observed in psychophysics can be readily

found in standard economic tasks, but they will in general arise from a subjective eco-

nomic distance which arises from integrated, unobservable variables (“utility”). Further,

economic distance (subjective or objective) can then be considered a cardinal measure

of “strength of preference,” because its cardinal magnitude determines a measurable,

continuous variable (error rates).

Third, we conduct an additional, confirmatory test. In both experiments, we col-

lect data from response times as an independent variable, which in particular plays no

role for the estimation of underlying utilities. Psychophysics predicts a robust relation,

with decisions where stimuli are closer being slower. We find this relation in both ex-

periments. In Experiment 1, response times increase as differences in expected value

decrease, but they are relatively unaffected by payoff-irrelevant numerical magnitudes.

In Experiment 2, the analysis of response times confirms that differences in underlying

utilities are a better candidate for economic distance (which replaces the choice diffi-

culty of psychophysics) than differences in expected value (or numerical magnitudes).

In both cases, the relation with response times (again a measurable, continuous variable)

confirms the cardinal content of economic distance.

Taken together, our evidence demonstrates that the psychophysical effects found

in the cognitive sciences are indeed very relevant for economic decisions under risk, but

they depend more on economic variables than on perceptual or numerical ones. Decision-

irrelevant factors (numerical magnitudes) influence error rates, but they play a secondary

role in comparison with purely-economic variables. In settings where objectively-optimal

answers can be derived from (correct) beliefs, it is possible to give an exogenous definition

of errors, which in turn allows for a straightforward observation of the link between eco-

nomic distance and error rates (in particular, one which is free of estimation problems).

When risk attitudes play a role, the explanatory variable is a subjective, integrated one

capturing “strength of preference,” which needs to be estimated. This result validates

the ideas and assumptions behind random utility models. Further, the relation to re-

sponse times shows that the effects are more than “as if” accounts of decision making

and have their origin in brain processes of a gradual nature, as assumed e.g. by evidence

accumulation models (Ratcliff, 1978; Fudenberg, Strack and Strzalecki, 2018).

The paper is structured as follows. Section 2 briefly reviews the related literature.

Sections 3 and 4 discuss Experiments 1 and 2, respectively. The analysis of response

times is conducted in the last subsections within those sections. Section 5 concludes.
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2 Related Literature

Our work is related to long-standing problems in economics and to several strands of

the recent literature in economics. The study of stochastic choice and random utility

models, going back to classic contributions as those of Debreu (1958) and Luce (1959),

has endorsed the view that utilities should be understood as reflecting choice probabil-

ities, in direct opposition with the neoclassical view that they reflect preferences of an

exclusively ordinal nature (Hicks and Allen, 1934). The proliferation of experimental

data showing the stochastic nature of economic choice has led to increased attention on

theoretical models of stochastic choice in the recent years (e.g. Manzini and Mariotti,

2014; Matějka and McKay, 2015; Fudenberg and Strzalecki, 2015; Apestegúıa, Ballester

and Lu, 2017; Apestegúıa and Ballester, 2018). In game theory, models of stochastic

(logit) choice based on observable payoffs and unobservable idiosyncratic shocks have

given rise to new equilibrium concepts as quantal response equilibria (McKelvey and

Palfrey, 1995; Goeree, Holt and Palfrey, 2005). In microeconometrics, models of discrete

choice (Anderson, Thisse and De Palma, 1992) have become standard for fitting experi-

mental data and recovering underlying utility functions, frequently under “Fechnerian”

assumptions (Fechner, 1860) which postulate a logit or probit form for error terms (see

Moffatt, 2015, for a detailed overview). Those models assume exact functional forms

mapping differences in utilities to error terms, which are highly valuable as structural

assumptions but are in general not directly tested. In stark contrast, Alós-Ferrer, Fehr

and Netzer (2018) have recently shown that certain properties of the empirical distri-

bution of response times allow to recover the underlying preferences in random utility

models without imposing any substantive assumptions on the distribution of random

terms.

To the best of our knowledge, the first study to point at a connection between utility

differences and choice frequencies was the inspiring experiment of Mosteller and Nogee

(1951) on poker dice gaming, which aimed to “test the validity of the construct” rep-

resented by (expected) utility. Their analysis included illustrations which suggested a

sigmoidal relation between utility differences and choice frequencies, although, as the

authors admitted, those were at the individual level and cherry-picked among all experi-

mental participants. While suggestive, their illustrations were not a test for the presence

of gradual effects (and were actually not meant to be), because their utility functions

were constructed exclusively out of observed indifferences. For instance, although their

illustrations map zero utility difference to 50 percent choice frequency, “this finding

was built into the expected utilities by the construction leading to the utility curves”

(Mosteller and Nogee, 1951, p. 202).

Conceptually, our work is also related to the study of Khaw, Li and Woodford (2018),

who carried out an experiment on risky choice where participants chose between a sure

amount and lotteries with a single non-zero outcome and a fixed probability of winning

varying amounts (that is, the winning probability was identical for all choices). By vary-
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ing the sure amount and the lottery outcome, Khaw, Li and Woodford (2018) explored

the reaction of choice frequencies to changes in payoffs and argued that the data could

be explained assuming an imprecise internal representation of numerical magnitudes, in

line with Moyer and Landauer (1967) and Dehaene (1992). Hence, their work speaks

in favor of a direct effect of numerical magnitudes in error rates. However, by design,

their numerical magnitudes stand in a monotonic relation to payoffs, and hence in their

data it is not possible to disentangle the effects of numerical magnitudes and the effects

of expected values (or utilities). In our experiments, different numerical magnitudes are

associated with the same expected payoffs and vice versa, allowing us to study the effects

separately.

The cardinal effects derived from a strength-of-preference account might also be

helpful to improve our understanding of standard behavioral phenomena. One example

is the asymmetric dominance or “decoy” effect, where the addition of a dominated option

shifts the choice frequencies in a previous pair in favor of the option dominating the added

one. Sürücü, Djawadi and Recker (2019) point out that this effect might decrease with

the strength of preference among the two original options, i.e. might be strong enough

to overturn a weak preference but not a relatively strong one. Soltani, De Martino

and Camerer (2012) find within-subject decoy effects to be increasing with the distance

between the decoy and the original options, derived as a difference in estimated utilities.

While these contributions focus on the decoy effect and do not provide a direct test of

the gradual effects we are interest in, they do show that these effects are both plausible

and consequential in economic contexts.

Although our main variable of interest are decision errors, we also examine response

times for two reasons. First, well-established effects in psychophysics encompass both

error rates and response times, hence the analogy would not be complete without the

latter. Second, while an explanation of error rates alone might be challenged as a pure

“as if” story, response times allow reasonable inferences on the actual decision processes

generating the errors. In this sense, our work is related to the small but growing literature

examining response times in economics (see Spiliopoulos and Ortmann, 2018, for a recent

review). Chabris et al. (2009) studied intertemporal decisions and found a monotonic

relationship between response times and estimated utility differences (discount factors).

Alós-Ferrer et al. (2016) postulated a model of lottery choice and evaluation including a

relation between choice difficulty and response times to investigate the determinants of

the preference reversal phenomenon (Lichtenstein and Slovic, 1971; Grether and Plott,

1979; Tversky, Slovic and Kahneman, 1990). Other response-time studies in economics

include Wilcox (1993, 1994) and the web-based studies of Rubinstein (2007, 2013). On a

different front, Achtziger and Alós-Ferrer (2014) relied on response times to differentiate

different decision processes in a framework where intuitive reinforcement might conflict

with optimal decisions based on Bayesian updating of beliefs (see also Alós-Ferrer and

Ritschel, 2018).
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3 Experiment 1: Objective Domain

We first aim to demonstrate the gradual effects of “strength of preference” on error rates

in a domain where the variable influencing those effects is objectively given, and, as a

consequence, utility estimation plays no role. The task we employ is representative of

studies in the judgment and decision-making domain, where economic agents make de-

cisions under risk or uncertainty but there is an objectively-correct answer, for example

due to stochastic dominance. A prominent example is given by tasks involving updating

of previously-held beliefs (e.g. Grether, 1980, 1992; Charness and Levin, 2005; Achtziger

and Alós-Ferrer, 2014). We will rely on a simple gambling task with given probabili-

ties, which is designed with two objectives in mind. The first is that objectively-correct

decisions exist, independently of attitudes toward risk, and thus an exogenously-given

measure of the strength of preference is available. The second is that numerical differ-

ences (in a perceptual sense) can be disentangled from economic incentives, allowing us

to investigate both possible dimensions of choice difficulty.

3.1 Design and Procedures

The experiment was computerized and programmed in Psychopy (Peirce, 2007), a soft-

ware which ensures high precision in the measurement of response times. We recruited

N = 96 participants (54 females, age range 19 − 47, mean 24) using ORSEE (Greiner,

2015) at the Cologne Laboratory for Economic Research. Participants were university

students enrolled in fields other than psychology and economics. They were provided

with written instructions and answered five control questions before starting the task, to

ensure correct comprehension of the procedures and payment mechanism. Three partici-

pants were unable to understand the task and were excluded from the analysis. Subjects

were paid according to their performance in the experiment. Total earnings were the

sum of the earnings in the 160 trials plus a show-up fee of EUR 4. Sessions lasted around

60 minutes and the average payoff was EUR 16.45 (around USD 17.60 at the time of the

experiment).

The experimental task is as follows. Participants are confronted with three decks

of cards, a red one (Diamonds) and two black ones (Clubs and Spades), containing ten

cards each (numbered 1 to 10, see Figure 2). The participants’ task is to choose twice

from which of the two black decks a card should be randomly extracted from, and the

game’s objective is to beat a card extracted from the red deck with the black one. Each

trial starts with a participant choosing between the two (complete) black decks, but this

first choice is irrelevant for our purposes since at this point both decks are identical. It

is also unpaid (to avoid possible reinforcement or valence effects). The choice, however,

creates an asymmetry which is the essence of the task. After the first choice is made and

the first black card is extracted, that card remains on the table (there is no replacement).

A card is extracted from the red deck, and the participant is asked to choose between

the black decks a second time. This is the choice we are interested in. A (black) card

9



Figure 2: Experiment 1. A trial starts with participants choosing between the black
decks. Consequently a black card is extracted from that deck and a red card is displayed.
No replacement happens after the first choice. Participants then choose again between
the black decks, and a card is extracted from the chosen deck. If the second extracted
black card is strictly larger than the red card, the participant wins, otherwise she loses.

is extracted from the chosen deck, and the participant received EUR 0.15 if and only if

that black card has a number strictly bigger than the red card, otherwise she receives

nothing. Subsequently, the trial ends, all cards are placed back in their decks, and

decks are reshuffled before a new repetition starts. Participants knew that trials were

independent, so the outcome as well as the cards displayed in one trial were unrelated

to those of subsequent trials. Each participant completed 160 of such trials.

After the first choice, one black deck has either one winning card less or one losing

card less. Hence, by design, there is an optimal decision pattern for the second choice,

which is to bet on the deck with a higher proportion of winning cards. That is, if the

first black card was smaller or equal than the red card, the participant should choose

the same deck, and if the first black card was strictly larger than the red card, the

participant should choose the other deck. In the example depicted in Figure 2, the red

card is a 5 and the first black card is a 4 (of spades), so the spades deck contains only

9 cards, 4 losing and 5 winning ones. The clubs deck still contains 10 cards, 5 losing

and 5 winning cards. Therefore the deck of spades contains 1 losing card less than the

untouched deck of clubs and the optimal choice is to choose it again. On the contrary,

if the first extracted black card had been strictly larger than the red card, the chosen
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deck contains 1 winning card less than the other one, and the optimal decision would be

to choose the untouched deck. Hence, independently of risk aversion, there is always a

normatively-correct decision for the second choice.

In spite of the fact that all choices are either objectively correct or objectively wrong,

some choices are “more correct” than others, because opportunity costs are different.

Let r, b1 ∈ {1, . . . , 10} be the red card and the first extracted black card, respectively.

Let π0(r, b1) and π1(r, b1) be the probability of winning by choosing the same deck

or by shifting to the other deck, respectively. Then V (r, b1) =
∣

∣π0(r, b1)− π1(r, b1)
∣

∣

is the cardinal difference (distance) between the probability of winning by making the

correct choice and the probability of winning while making an error. Since participants

are paid only in case they win, up to a rescaling of monetary units this is also the

difference in expected values between a correct decision and an error. If r ≥ b1, one

obtains π0(r, b1) = (10 − r)/9 and π1(r, b1) = (10 − r)/10. If r < b1, one obtains

π0(r, b1) = (10− r − 1)/9 and π1(r, b1) = (10 − r)/10. Hence,

V (r, b1) =







(10 − r)/90 if r ≥ b1,

r/90 if r < b1.

By design, V (r, b1) assumes values in the set {1/90, 2/90, ..., 9/90}. These differences

in expected value indicate the opportunity cost of (not) choosing the right answer and

reflect how far away from “indifference” the participants were in every decision, and are

hence a natural measure for the “strength of preference.” Thus, we take V (r, b1) as the

potential driver for stochastic choice and refer to this magnitude as (objective) economic

distance.

The probabilities of winning by staying or switching, and the economic distance, are

monotonic functions of the numerical value of the red card. However, for computing

the optimal choice the only necessary information is the sign of the relation between

the first black card and the red card. That is, the actual magnitude of the difference

between the values of these two cards is economically inconsequential. However, Moyer

and Landauer (1967), Dehaene, Dupoux and Mehler (1990), and others have shown that,

in simple comparisons, errors do depend on the numerical differences between stimuli.

Therefore, we also contemplate the possibility that the distance between the numerical

values of the first black card and the red one influences choice frequencies (and response

times). There are ten possible distances between the two cards, ranging from 0 to 9. We

refer to this magnitude as the numerical distance.

To ensure enough variability in the stimuli, the set of initial stimuli (first black card

and red card) was predetermined and pseudorandomized. Furthermore, the red card was

never a 10, since in this case winning would be impossible, hence the choice would be

inconsequential (the instructions did not claim that the red card was randomly selected,

since the procedure by which it was selected was payoff-irrelevant once the actual choice
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was faced). The key second black card was randomly selected among the remaining

cards.

3.2 Choices and Errors

In spite of the simplicity of the task, the mean error rate across participants was 28.93%,

with a median of 31.25% (SD = 18.21, min 0.63%, max 60.00%). We start by examining

the dependence of error rates on both economic and numerical distance. Figure 3 plots

the frequency of “stay” decisions (choosing the same deck as in the first decision) for

each possible value of each variable. The left-hand side panel plots the dependence on

economic distance, i.e. differences in expected values. The red shaded areas correspond

to errors, as a rational decision maker should stay for a positive expected value difference

and switch for a negative one. To facilitate the comparison, in all figures and regressions

the economic and numerical distances are both normalized to be between 0 and 1.3

Clearly, the probability to stay with the same deck stands in a clear positive relation

with the difference in expected values. The frequency of errors becomes smaller as the

difference becomes larger (no matter the sign), and it is largest (essentially 1/2) when

the difference approaches zero. This pattern is radically different from that predicted by

neoclassical economic theory. Even accounting for noise, neoclassical predictions would

prescribe choice frequencies with a flat slope somewhere above zero for negative values

of the expected value difference (where stay is an error), and a flat slope somewhere

below one for positive values (for which stay is the correct option). This is clearly not

the case. Subjects gradually make less errors as the objective economic distance between

the options becomes larger.

In contrast, the right-hand panel depicts the relation between choice frequency and

the numerical difference between the values of the (first) black card and the red card.

Again, shaded areas correspond to errors, since the correct decision is to stay when

the first black card was strictly smaller than the red one, and switch otherwise. The

gradual relation is essentially absent in this case (with slopes being relatively flat), and

there is a clear discontinuity at zero (the normative switching point). That is, subjects

on average understood the task, but the numerical distance between card values does

not appear to play a large role. The comparison between the panels suggests that the

variability in responses arises mainly from differences in expected values, and not from

purely numerical differences.

Figure 4 further investigates the relative contribution of the two dimensions of choice

difficulty by letting one variable vary while keeping the other fixed (which is made pos-

sible by our design). In the left-hand panel, we plot choice frequencies as a function

of expected value differences, separately for trials where the numerical distances corre-

3For all figures, unless otherwise specified, each point represents each distinct value of the variable in
the x-axis and the corresponding average value of the variable in the y-axis (choice frequencies or average
response times). Therefore each point is an average across potentially different subjects and trials. The
depicted curves are estimated using a fractional regression with a polynomial of second degree.
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Figure 3: Experiment 1. Stay choices as function of expected value difference between
staying and switching the deck (left-hand panel), and as function of the numerical dis-
tance (black minus red; right-hand panel). Gray areas indicate 95% binomial proportion
confidence intervals.

spond to three particular, fixed values (1, 2, or 3, corresponding to 0.1, 0.4, and 0.7

after normalization). The positive relation between the proportion of stay choices and

expected value difference is essentially unchanged, with the depicted curves essentially

overlapping. In contrast, the right-hand panel plots choice frequencies as a function of

numerical distances, separately for trials where the expected value differences correspond

to three particular, fixed values (1/90, 2/90, or 3/90, again corresponding to 0.1, 0.4, and

0.7 after normalization). The relation changes drastically for different expected value

differences, uncovering a negative, monotonic, and gradual relation between the pro-

portion of stay choices and the numerical difference between the stimuli which becomes

stronger for larger expected value differences. The figure suggests again that expected

value differences are the determinant factor (gradually) influencing error rates, but also

that, when keeping the economic dimension of choice difficulty fixed, second-order effects

appear which are compatible with common findings from the perceptual literature.

We now turn to a regression analysis. The data form a strongly balanced panel with

160 trials for each of the 93 participants. Table 1 shows random-effects Probit regressions

where the dependent variable is 1 in case of a correct answer.4 Model 1 establishes the

basic effect, namely that larger (objective) economic distances lead to less errors. Model

2 introduces the numerical distance and shows that this variable also leads to lower error

rates, revealing perceptual effects on top of value-induced ones.5 Since both distances are

normalized, we can compare the magnitude of the two effects. The regression coefficients

for economic distance range from 1.2 to 1.6, and the regression coefficients for numerical

distance range from 0.36 to 0.58. We can also calculate the relative elasticity of the two

variables. A percentage variation in the economic distance predicts an average increase

4Using a fixed effects regression instead does not affect the main results, showing that these results
are not determined by heterogeneity among subjects. The same comment applies to all other panel
regressions below.

5The results are unchanged if we define the numerical distance through the log of the numerical values
of the cards, as suggested by Moyer and Landauer (1967).
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Figure 4: Experiment 1. Left-hand panel: Stay choices as a function of expected value
differences for various, fixed numerical distances. Right-hand panel: Stay choices as a
function of numerical distance for various, fixed expected value differences. The 95%
binomial proportion confidence intervals are plotted.

of 21.84% in the probability of a correct answer, while a percentage variation in the

numerical distance predicts an average increase of only 5.40% in the probability of a

correct answer. This provides further evidence for the predominant role of the economic

dimension of choice difficulty over the perceptual.

As Figure 4 illustrates, our design allows to examine trials with identical expected

value differences but different numerical distances, and vice versa. However, a purely me-

chanical effect prevents both variables from being fully orthogonal, as a larger numerical

distance between the cards allows a larger number of feasible values of economic distance

(the Spearman correlation between numerical and economic distances across the set of

decisions is ρ = −0.6491, N = 160, p < 0.001). Hence, in Model 3, we introduce the

interaction between the two dimensions of choice difficulty as a control. The coefficient

is significant and negative, reflecting the mechanical relation in the dimensions across

the entire dataset. However, the main effects are unaffected by this control.

Last, Model 4 adds a number of other controls: gender, native language, left-

handedness, and cumulated earnings (Sum Won). The regression shows that the main

effects are robust. Females (54) make more errors than males, as can be confirmed by

a direct, non-parametric test (females 33.08%, males 23.19%; Mann-Whitney-Wilcoxon

test, N = 93, z = 2.764, p = 0.0068). Native speakers (72) make less errors than other

participants (natives 25.89%, others 39.35; MWW test, N = 93, z = 3.116, p = 0.0018).

Also, participants who earned more in previous trials are more likely to make a correct

choice, which is merely an indication of heterogeneous skills among participants. In all

regression models, we control also for learning effects (round, 1 to 160) and find that the

probability of making an error decreases over time.
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Table 1: Experiment 1. Random-effects Probit regressions on correct answers.

Correct Model 1 Model 2 Model 3 Model 4

Econ. Dist. 1.229∗∗∗ 1.447∗∗∗ 1.622∗∗∗ 1.620∗∗∗

(0.099) (0.107) (0.140) (0.141)
Num. Dist. 0.362∗∗∗ 0.584∗∗∗ 0.582∗∗∗

(0.087) (0.094) (0.093)
Econ. Dist. × Num. Dist. −0.010∗∗∗ −0.010∗∗∗

(0.004) (0.004)
Sum Won 0.011∗

(0.006)
Female −0.438∗∗∗

(0.141)
Native 0.462∗∗∗

(0.169)
Age −0.045∗∗∗

(0.010)
Left handed 0.378∗∗

(0.194)
Round −0.001∗∗∗ −0.001∗∗ −0.001∗∗ −0.007∗∗

(0.000) (0.000) (0.000) (0.003)
Constant 0.233∗∗ 0.003 −0.061 0.886∗∗∗

(0.095) (0.096) (0.103) (0.284)

Log L. −7358.011 −7337.550 −7329.264 −7265.955
Wald test 163.304∗∗∗ 191.995∗∗∗ 188.653∗∗∗ 251.391∗∗∗

Obs. 14880 14880 14880 14880

Robust standard errors in brackets, ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

3.3 Response Times and the Underlying Processes

As an additional, independent test of the cardinal effects of economic distance, we mea-

sured response times for all decisions. The key response time for our purposes is the one

of the second decision within each trial. Other response times, however, can be used

to control for individual differences in (mechanical) swiftness, e.g. as arising from the

relative ease of interface use. For the second decision, we computed individual average

response times. The average of those across individuals was 1.612 seconds (SD = 0.648,

median 1.560, min = 0.272, max = 3.797).

The left-hand panel of Figure 5 plots average response times as a function of the

expected value difference between stay and switch. There is clear evidence of gradual

effects as postulated in psychophysics. An inverted U-shape is apparent, indicating a

negative relation between response times and the distance in expected values between

stay and switch.6 Choices closer to indifference (zero expected value difference) are as-

6A random-effects regression verifies the significance of the curvature. The coefficient of the squared
expected value difference is significantly negative (Coef. −0.169, z = −7.97, p < 0.001).
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Figure 5: Average response times as a function of expected value difference (left-hand
panel) and as a function of numerical distance (right-hand panel).

sociated with the longest response times. In contrast, the right-hand panel of Figure 5,

which depicts the relation between response times and numerical differences, shows an

essentially flat trend. That is, unlike in the case of expected value differences, there is

no discernible pattern. In summary, response times suggest a gradual effect of (objec-

tive) economic distance (but not of numerical distance), confirming that the postulated

relationship goes beyond a simple as if story and reflects actual decision processes.

We now turn to a regression analysis. Response times are a noisy variable, usually

presenting a skewed, non-normal distribution and rare extreme observations. To account

for these features it is common practice to take the logarithm of response times as

the variable of interest in regression analyses (Fischbacher, Hertwig and Bruhin, 2013;

Achtziger and Alós-Ferrer, 2014). Table 2 reports random-effects regressions of log-

transformed response times, taking advantage of the panel structure of the data. To

control for individual differences in mechanical swiftness, we use the log-transformed

response time for the non-rewarded, first black card (RT1) and the log-transformed

response time for pressing a space bar, which was required before the start of each trial

(RT0). Model 1 establishes the basic effect, namely that responses are faster for larger

(objective) economic distances, confirming that the phenomena we study reflect basic

properties of actual decision processes. Model 2 adds numerical distance. The coefficient

is also significantly negative, although of a smaller magnitude (recall that both variables

are normalized to have the same range). This shows that, in spite of the relatively

flat shape of the aggregate relation as depicted in Figure 5, response times are also

influenced by numerical differences, at least as a second-order determinant. As in the

case of choice frequencies, Model 3 shows that the effects are robust to controlling for

the interaction between the two distances. Finally, Model 4 shows that the results are

robust to additional controls. Gender and cumulated earnings did not affect response

times, but native speakers took longer to respond than other participants.
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Table 2: Experiment 1. Random-effects regressions on log response times.

Log RT Model 1 Model 2 Model 3 Model 4

Econ. Dist. −0.174∗∗∗ −0.237∗∗∗ −0.321∗∗∗ −0.316∗∗∗

(0.020) (0.031) (0.035) (0.035)
Num. Dist. −0.106∗∗∗ −0.224∗∗∗ −0.209∗∗∗

(0.029) (0.038) (0.039)
Econ. Dist. × Num. Dist. 0.005∗∗∗ 0.005∗∗∗

(0.001) (0.001)
Sum Won 0.008

(0.006)
Female −0.056

(0.078)
Native 0.281∗∗∗

(0.119)
Age −0.014

(0.009)
Left handed −0.014

(0.191)
Round −0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗ −0.005∗∗∗

(0.000) (0.000) (0.000) (0.003)
RT0 0.167∗∗∗ 0.167∗∗∗ 0.169∗∗∗ 0.117∗∗∗

(0.027) (0.027) (0.027) (0.037)
RT1 0.126∗∗∗ 0.127∗∗∗ 0.127∗∗∗ 0.145∗∗∗

(0.034) (0.034) (0.034) (0.032)
Constant 0.644∗∗∗ 0.712∗∗∗ 0.746∗∗∗ 0.853∗∗∗

(0.048) (0.055) (0.057) (0.253)

R2 overall 0.108 0.109 0.110 0.130
Wald test 219.477∗∗∗ 220.200∗∗∗ 257.260∗∗∗ 259.572∗∗∗

Obs. 14880 14880 14880 14880

Robust standard errors in brackets, ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

3.4 Discussion of Experiment 1

The first experiment is probably as close as one can get to pure psychophysics in the

economics domain. By using a gambling task with objectively correct answers, we can

commit to the exact values of the explanatory variable before running the experiment;

that is, we can rely on expected value differences and no utility estimation is needed.

Still, the task is representative of the judgment and decision-making domain and remains

intrinsically interesting for economic decision making. We find a robust gradual relation

between cardinal, objective economic distance, as captured by expected value differences,

and error rates. Error rates gradually decrease as the distance between alternatives

becomes larger (decisions become easier). We also find that purely numerical effects

(by how much a number is larger than another one, even if the comparison is payoff-
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irrelevant) do influence error rates as predicted by psychophysical studies, but this is a

second-order effect and the main explanatory variable remains economic distance.

Response times confirm the gradual relationship. As predicted by psychophysics,

easier decisions (in the sense reflected by objective economic distance) are faster. This

is important, because response times are a direct reflection of the underlying decision

processes. Hence the relationship further confirms that the gradual effects of choice

difficulty do reflect actual decision processes and not just a characteristic of how the

statistical model of errors fits the data.

4 Experiment 2: Subjective Domain

Experiment 1 can be seen as a streamlined proof of concept which does away with the

problems inherent in utility estimation. In Experiment 2, we parsimoniously go one

step further by reproducing the analysis for more complex decisions under risk where

what is “correct” depends on the individual risk attitude, and hence utility estimation

is unavoidable. In this sense, Experiment 2 studies choices in the subjective domain,

while Experiment 1 belonged to the objective domain. Crucially, to avoid the problems

pointed out in the Introduction, we will strictly adhere to an out-of-sample approach

where the utility used to test the gradual dependencies in the data is always estimated

from a different part of the dataset. This ensures that the estimation allows us to test

for the presence of gradual effects, instead of artificially creating them.

As in Experiment 1, we focus on error rates. We will have three (explanatory)

variables of interest in sight. Of course, we will focus on expected utility as just described.

Additionally, in this experiment we can examine the differences between expected value

and expected utility differences as determinants of gradual effects on error rates. For

completeness, we will also examine the potential effects of (payoff-irrelevant) numerical

distance. Last, and again as a confirmatory exercise, we will examine the effects of those

variables on response times.

4.1 Design and Procedures

Implementation, procedures, and data collection were as in Experiment 1. Participants

were N = 96 (different) university students (66 females, age range 18 − 36, mean 24).

Sessions lasted around 60 minutes and the average payoff was EUR 13.45 (around USD

14.40 at the time of the experiment). Three participants were unable to understand the

task and were excluded from the analysis.

The experimental task is as follows. Participants are confronted with two decks

of cards, a red one (Diamonds) and a black one (Clubs), containing ten cards each

(numbered 1 to 10). At the beginning of each of the 170 trials, two cards are extracted

from the black deck and displayed, one red card is extracted from the red deck, and a

monetary prize is displayed (see Figure 6). The participants’ task is to decide whether
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Figure 6: Experiment 2. Each trial starts by extracting two black cards, a red card, and
displaying a prize. Participants then decide whether to bet or not, knowing that betting
is costly. If the participant bets, a black card is extracted, and the participant wins if
and only if the extracted black card is strictly larger than the red card.

to bet or to pass. After this decision, a further black card will be extracted from

the remaining eight cards in the black deck, and the objective is to beat the red card

with that new card. Betting is costly: placing a bet costs EUR 0.10 (fixed for all

trials), independently of the outcome of the trial. If the participant bets and if the

newly-extracted black card is strictly larger than the displayed red card, the participant

receives the displayed monetary prize (minus the cost). Otherwise, the payment is zero

(resulting in a net loss equal to the cost of betting). If the participant does not bet, there

is neither a payment nor a cost, and the experiment moves to the next trial. Before a

new trial starts, all cards are returned to their respective decks and those are reshuffled.

Hence, each trial reflects an independent decision situation.

The set of initial stimuli (red card, first two black cards, and prize) was predetermined

and pseudorandomized across trials to achieve adequate stimuli variance. The crucial

third black card was randomly selected among the cards remaining in the deck. Red
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cards were extracted in such a way that there was always some probability of winning,

so as to avoid trivial decisions. Hence, there were eight possible distinct probabilities

of winning, ranging from 12.5% to a sure win. Prizes ranged from 10 to 120 cents, and

were determined trial-by-trial as deviations from the actuarially-fair prize, the amount

that leaves a risk-neutral agent indifferent between betting and passing. Eleven different

distortions from the fair prize were implemented, ranging from 50% below to 50% above,

in 10% steps.

In each trial, at the moment of the decision, the black deck contains eight cards,

and the two already-extracted cards are displayed. The probability to win when betting

depends on the magnitude of the red card and on whether the displayed black cards

are winning or losing cards. In the example depicted in Figure 6, the red card is an 8

and the two extracted black cards are a 2 and a 4, hence both are losing cards. That

is, the black deck contains two winning cards and six losing ones, yielding a probability

of winning of 1/4. Since the cost of betting is 10 cents, the actuarially-fair prize is 40

cents, but the offered prize is 24 cents. Hence, a risk-averse or risk-neutral agent should

decline to bet, while a risk-loving one might rationally decide to bet. That is, there are

no objectively-correct decisions in this task; rather, what is “correct” depends on the

individual risk attitude. Therefore, we hypothesized that the natural measure of choice

difficulty or subjective economic distance would be the difference between the expected

utilities of betting and passing, referred to as EU distance for clarity, which requires us

to estimate the underlying individual utilities of money.

By design, however, the expected value of betting depends on the distortion of the

fair prize. For risk neutral individuals, the difference in expected value between passing

and betting reflects how far away from “indifference” the participants were, and are

hence a natural, alternative measure for “strength of preference.” Therefore, another

candidate determinant of gradual effects is simply the absolute value of the expected

value differences between betting and passing, which we refer to as EV distance. In

contrast to Experiment 1, the comparison between these two measures of economic

distance is informative of which is the relevant measure of strength of preference in this

context.

We remark also that the probability of winning does not depend on the numerical

distances between the black cards and the red one, but only on whether the former are

larger or smaller than the latter. Hence, numerical distances in themselves are payoff-

irrelevant (but the sign of the numerical differences is not). Analogously to Experiment

1, this allows us to disentangle the numerical closeness of stimuli as a further possible

dimension of choice difficulty, which is the closest one to standard measures of perceptual

similarity used in psychophysics. Since there are two black cards, we have different pos-

sible candidates for numerical distance. We present here the analysis using the distance

between the red card and the second, most recent black card, since a large literature

has advocated the prominence of the recency effect (Deese and Kaufman, 1957; Mur-

dock Jr., 1962). We also carried out analyses with other definitions of numerical distance;

20



the main results described below are unaffected.7 There are ten possible perceived dis-

tances between the red card and the second black card, ranging from 0 to 9. We refer

to this magnitude as Numerical distance.

4.2 Utility Estimation

We estimate out-of-sample risk attitudes for each subject. Specifically, we use the choices

made in odd trials to estimate risk attitudes and use this estimation to predict the ex-

pected utility in the even trials, and vice versa.8 To derive individual risk attitudes we

rely on the estimation of random parameters (Loomes and Sugden, 1995, 1998) using

Maximum Simulated Likelihood (MSL) (see, e.g., Loomes, Moffatt and Sugden, 2002;

Moffatt, 2005; Bellemare, Kröger and van Soest, 2008). Specifically, we adapt the esti-

mation procedure described by Harrison (2008) and Moffatt (2015). The MSL technique

is frequently used in the context of decision-making under risk (e.g., Von Gaudecker,

Van Soest and Wengström, 2011; Conte, Hey and Moffatt, 2011; Wilcox, 2011; Moffatt,

Sitzia and Zizzo, 2015). This approach allows us to estimate risk aversion (r) as a deter-

ministic coefficient, but allowing for sampling error. An alternative interpretation of the

procedure is that there is heterogeneity in preferences of subjects, hence r is better char-

acterized as a distribution instead of a point estimate. For computational tractability,

we assume that r follows a normal distribution in our dataset.9

As the functional form of the utility, we adopt a normalized CARA function as in

Conte, Hey and Moffatt (2011), i.e.

U(x) =







1−exp(−rx)
1−exp(−rxmax)

, if r 6= 0

x

xmax
, if r = 0

where xmax is the upper limit of the outcome variable x. Using a CARA utility function

offers the advantage to fully accommodate zero outcomes, while at the same time it

assumes away the impact of initial wealth. However, the results are robust to the use of

CRRA functions.

The estimated risk propensities in our dataset have an average µ̂r = 0.054 (SD

= 0.025, median = 0.046, min = 0.024, max = 0.163). The risk propensity estimated on

7The considered alternatives were the distance between the highest black card and the red one, the
distance between the average of the two black cards and the red card, and the distance between the
highest or lowest black card and the red one, as well as controlling for the log transformation of the
numbers.

8Our results do not change if we use different out-of-sample approaches, as e.g. using an initial block
of observations for the estimation and predict the expected utility out of sample for the remaining trials.

9Classical methods based on an individual estimation of individual risk attitudes via maximum like-
lihood procedures avoid the distributional assumptions made by random parameter methods. However,
Monte Carlo analysis shows that, with finite samples, the out-of-sample predictive performance of ran-
dom utility models can be misleading when individual estimation is employed (Wilcox, 2011). Moreover,
Apestegúıa, Ballester and Lu (2017) have pointed out that random utility models, in the context of risk
and time preferences, can violate choice monotonicity compared to natural parameterizations. Further,
these works indicate that alternatives such as the random parameters methods we use, where utilities
are parametric but the parameters are random, are immune to these difficulties.
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odd trials (µ̂r = 0.054) is not significantly different from the one estimated on even trials

(µ̂r = 0.053; Wilcoxon Signed-Rank test, N = 93, z = −0.404, p = 0.6860). The absence

of negative values in both estimations shows that no subject is classified as risk-loving,

while some subjects display values of r close to 0, indicating risk neutrality. However,

the majority of subjects are estimated to be risk averse.

For the simulation reported in Figure 1, we generated a dataset where each of 93

fictitious subjects randomly chose 170 times between accepting certain bets or not (the

dataset mimics the basic features of Experiment 2). Bets involved a certain probability

of a positive prize, and led to the loss of a small amount of money with the remaining

probability. The outside option always yielded zero payoffs. Prizes and probabilities

changed across trials, but the amount potentially lost was fixed. The set of bets was

such that a risk-neutral subject would accept half of the times. “Decisions” were fully

random and unrelated to the options. The right-hand panel of Figure 1 corresponds to

an estimation performed exactly as described above for Experiment 2. The left-hand

panel depicts the results of an estimation using the same CARA functional form, but

with a standard within-sample approach as common in the literature. Specifically, we

implemented MSL assuming heteroskedastic Fechner errors (Fechner, 1860; Hey and

Orme, 1994). We used the estimated risk attitudes to compute, within sample, the

expected utility difference between the two options (betting minus passing), and then

plotted this difference against the proportion of times one option was chosen over the

other. As argued in the introduction, the difference between both approaches shows that

the estimation procedure might create apparent gradual effects simply because they are

assumed in the underlying random utility model. Our out-of-sample procedure ensures

that the regularities we uncover correspond to actual features of the data.

4.3 Choices and Errors

We define an error as a choice which gives a negative expected utility, e.g. deciding to bet

when the expected utility (as estimated out of sample) of betting is strictly smaller than

the expected utility of passing. The mean error rate across participants was 22.71%,

with a median of 20.00% (SD = 10.77, max 51.76%, min 5.29%). Figure 7 plots the

frequency of betting decisions for each possible value of each variable. As in previous

pictures, to facilitate the comparison, in all figures and regressions the various distances

are normalized to be between 0 and 1. The upper panel plots the dependence on expected

utility differences. The shaded areas correspond to errors with the definition above. We

observe that the relation between betting frequency and expected utility differences

has a sigmoidal shape resembling a cumulative normal distribution or a logistic curve.

This shape indicates that error rates decrease gradually as the difference in expected

utilities between the options becomes larger. For very large differences, error rates are

close to zero. For differences close to zero, choice is essentially random (error rates

close to 50%). Of course, this stands in sharp contrast to deterministic, neoclassical
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Figure 7: Experiment 2. Proportion of betting decisions as a function of expected utility
differences (upper panel), expected value differences (lower left-hand panel), and numer-
ical differences (lower right-hand panel). Gray areas indicate 95% binomial proportion
confidence intervals. Shaded areas indicate the proportion of errors.

models, which would predict that subjects always bet when expected utility differences

are positive and always pass when they are negative.

The lower left-hand panel plots the proportion of betting choices as a function of

the differences in expected value (betting minus passing). We observe a positive but

non-monotonic trend with greater expected values corresponding roughly to a higher
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frequency of betting.10 This is not surprising, since as long as utility is increasing

on monetary amounts, there will be some positive correlation between expected utility

and expected values in a dataset. However, the figure strongly suggests that expected

utility differences better explain gradual effects on error rates that differences in expected

values.

Last, the lower right-hand panel plots the proportion of betting decisions as a function

of numerical distances as defined above. We do not include a depiction of errors as those

cannot be derived from numerical distance alone in this experiment. The picture suggests

a weak, noisy monotonic relation which might hint to second-order effects but offers no

strong evidence of an impact of purely numerical, payoff-irrelevant perceptions on choice

frequencies. In summary, our data shows that, as in Experiment 1, there is a gradual

relation between economic distance and error rates, but the former now corresponds to

differences in expected utilities.

We now turn to a regression analysis. The data form a strongly balanced panel with

170 trials for each of the 93 participants. We ran random-effects panel Probit regressions

where the dependent variable is 1 in case of a correct answer. For completeness, we

provide separate analyses for expected utility (Table 3) and expected value differences

(Table 4), while controlling for numerical distance in both. Recall that Expected Utility

distance (EU distance), Expected Value distance (EV distance), and numerical distance

are all normalized to range from 0 to 1. The various regression models are built in

a completely analogous way, and hence we discuss them simultaneously. Note that the

definitions of errors is the natural one in each table, i.e. choices which go against expected

utility differences in Table 3 and choices which go against expected value differences in

Table 4.

In Model 1 of both tables we see that larger economic distances lead to less errors,

confirming the basic prediction. However, there is a considerable difference in the mag-

nitude of the estimated coefficients, with EU distance having a coefficient almost 20

times bigger than EV distance. To conduct a proper comparison, we calculated the

relative elasticities. A percentage variation in EU distance increases the probability of a

correct answer by an average of 20.73%, while the analogous percentage for EV distance

increases is only 11.98%. This confirms the message from Figure 7 that differences in

expected utility, and not in expected value, are the relevant dimension of strength of

preference in this context.

Model 2 in both tables introduces numerical distance as an additional control (recall

the lower right-hand panel of Figure 7). In the presence of EU distance, numerical simi-

larity between stimuli decreases the probability of a correct answer. The effect becomes

marginally significant when controlling for the interaction between numerical distance

and EU distance (Model 3), and loses significance when adding further controls (Model

10Errors in this panel are defined as decisions which contradict expected value differences. According
to this risk-neutral definition, the mean error rate across participants was 36.29%, with a median of
36.47% (SD = 6.60, min 19.41%, max 54.12%).
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Table 3: Experiment 2. Random-effects Probit regressions on correct answers for EU
distance. Correct answer is defined as passing when EU ≤ 0 and betting when EU ≥ 0.

Correct Model 1 Model 2 Model 3 Model 4

EU Dist. 8.538∗∗∗ 8.836∗∗∗ 10.146∗∗∗ 10.146∗∗∗

(0.526) (0.544) (0.841) (0.838)
Num. Dist. −0.391∗∗∗ −0.154∗ −0.154

(0.049) (0.088) (0.088)
Num. Dist. × EU Dist. −3.244∗∗∗ −3.251∗∗∗

(1.065) (1.065)
Sum Won −0.000

(0.000)
Female −0.015

(0.072)
Native 0.031

(0.086)
Age 0.027∗∗∗

(0.009)
Left handed −0.109

(0.133)
Round 0.001 0.000 0.000 0.001

(0.000) (0.000) (0.000) (0.000)
Constant 0.105∗∗ 0.249∗∗∗ 0.160∗∗∗ −0.326

(0.045) (0.050) (0.058) (0.378)

Log L. -7414 -7382 -7376 -7372
Wald test 281.961∗∗∗ 321.685∗∗∗ 310.504∗∗∗ 385.590∗∗∗

Obs. 15810 15810 15810 15810

Robust standard errors in brackets,
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

4). In the presence of EV distance, numerical effects are not statistically significant.

They only become significant when we further control for the interaction between nu-

merical distance and EV distance (Model 3) as well as other controls (Model 4). The

results for numerical distance should be attributed to the fact that there is a correlation

between the expected value and numerical distance across all decisions in the dataset

(Spearman’s ρ = 0.1453; N = 170, p = 0.0587), but there is no correlation between

numerical distance and expected utility (Spearman’s ρ = 0.098, N = 170, p = 0.2050).

In all models we further control for learning effects. Participants appear to improve

with repetition when errors are defined according to expected values, but not when they

are defined according to expected utilities. There are no gender differences in errors

defined according to EU distance, as confirmed by a non-parametric test (females 22.41%,

males 23.46%; MWW test, N = 93, z = 0.432, p = 0.6654). Likewise, native speakers

(77) did not perform significantly differently from other participants (natives 22.29%,

others 19.41%; MWW test, N = 93, z = 0.647, p = 0.5179). When defining errors
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Table 4: Experiment 2. Random-effects Probit regressions on correct answers for EV
distance. Correct answer is defined as passing when EV ≤ 0 and betting when EV ≥ 0.

Correct Model 1 Model 2 Model 3 Model 4

EV Dist. 0.463∗∗∗ 0.464∗∗∗ 1.100∗∗∗ 1.113∗∗∗

(0.053) (0.053) (0.069) (0.070)
Num. Dist. −0.013 0.628∗∗∗ 0.639∗∗∗

(0.030) (0.061) (0.062)
Num. Dist × EV Dist. −1.552∗∗∗ −1.600∗∗∗

(0.116) (0.124)
Sum Won −0.000

(0.000)
Female −0.086∗∗

(0.041)
Native 0.096∗

(0.054)
Age −0.003

(0.005)
Left handed −0.001

(0.070)
Round 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗

(0.000) (0.000) (0.000) (0.000)
Constant −0.011 −0.006 −0.285∗∗∗ −0.159

(0.021) (0.025) (0.035) (0.258)

Log L. -10170 -10170 -10102 -10037
Wald test 223.538∗∗∗ 223.868∗∗∗ 453.437∗∗∗ 466.95∗∗∗

Obs. 15810 15810 15810 15810

Robust standard errors in brackets,
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

according to expected values, females did behave differently (males 37.22%, females

33.91%; MWW test, N = 93, z = 2.399, p = 0.0164), as did native speakers (natives

35.68%, others 39.26%; MWW test, N = 93, z = −1.874, p = 0.0609).

4.4 Response Times and the Underlying Processes

The previous section shows that differences in expected utilities are the best candidate as

an explanatory determinant of gradual effects on errors. Expected value differences and

numerical differences also display significant effects, but those are of a smaller magnitude

and appear less robust. In this section, we further compare the gradual effects of all three

variables by focusing on response times. The main objective is to show that, while there

appears to be a strong, clear correspondence between expected utility differences and

actual human decision processes as reflected by response times, that relation is far from

clear when it comes to other alternative variables.
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The variable of interest is the time participants took to decide whether to bet or

to pass. The average across individual average response times for this decision was

2.918 seconds (SD = 1.140, median = 2.687, min = 1.140, max = 7.527). Figure 8

plots average response times as a function of expected utility differences (upper panel),

of expected value differences (lower left-hand panel), and numerical distances (lower

right-hand panel). Response times and EU distance clearly show an inverted U-shaped

relation. Harder decisions, resulting in longer response times, are those corresponding

to smaller expected utility differences. However, the figure shows no systematic relation

with EV differences11 or with numerical distance. This provides an independent confir-

mation that a larger strength of preference, in the sense of larger subjective economic

distance, can be linked to easier decisions.

As for Experiment 1, we conducted a panel regression analysis for log-transformed

response times. Tables 5 and 6 report the corresponding regressions using expected

utility distances and expected value distances as a measure of strength of preference,

respectively. To control for individual differences in mechanical swiftness, the variable

RT0 measures the log of the response time for pressing the space bar to move to the

next trial.

Response times are significantly shorter for larger EU distances across all models in

Table 5. This fundamental effect is robust to controlling for numerical distance, accu-

mulated earnings, gender, native language, and other controls. Additionally, numerical

distance does have an effect on response times, validating the view from psychophysics

(Moyer and Landauer, 1967; Dehaene, Dupoux and Mehler, 1990) that even payoff-

irrelevant perceptual differences might influence actual choice difficulty. That is, in

addition to the effects of subjective economic distance, response times are shorter for

more perceptually distinguishable stimuli (larger numerical distance).

In contrast, the effect of expected value differences is less clear. In Model 1 of

Table 6, we observe larger response times for higher values of EV distance, contrary

to expectations if EV distance was taken to explain the gradual effects of strength of

preference. However, the effect becomes non-significant when we control for the relation

between EV distance and numerical distance as well as other controls (Models 3 and 4).

Again, the analysis is consistent with the view that expected utility differences are the

key variable explaining the gradual effects that we investigate.

In all models we control for time trends, reproducing the standard observation that

subjects become slightly faster over time. Other controls deliver no additional insights,

except that left-handed subjects took longer than right-handed ones.

11The coefficient of the squared expected utility difference is significantly negative in a random-effects
regression, coef. = −0.090, z = −2.27, p = 0.023. The corresponding coefficient for expected value
differences is not significantly different from zero, coef. = 0.012, z = 0.85, p = 0.393.
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Figure 8: Experiment 2. Average response times on EU Difference (top panel), EV
difference (lower left-hand panel), and numerical distance (lower right-hand panel). Gray
areas indicate 95% confidence intervals.

4.5 Discussion of Experiment 2

The second experiment considers standard economic decisions under risk (betting), which

are an example of preferential choice where there is no objectively correct alternative.

Contrary to the first experiment, the appropriate dimension explaining gradual effects

on error rates needs to be estimated from the data. Our evidence shows that expected

utility, and not expected value, is the appropriate integrated variable capturing strength

of preference. Choices with a larger expected utility difference between the alternatives

result in lower error rates and shorter response times. The effects are robust and obtain

28



Table 5: Experiment 2. Random-effects regressions on log response times, EU distance.

Log RT Model 1 Model 2 Model 3 Model 4

EU Dist. −1.082∗∗∗ −1.046∗∗∗ −1.255∗∗∗ −1.256∗∗∗

(0.186) (0.182) (0.219) (0.219)
Num. Dist. −0.106∗∗∗ −0.158∗∗∗ −0.158∗∗∗

(0.018) (0.024) (0.024)
Num. Dist × EU Dist. 0.500∗∗∗ 0.499∗∗∗

(0.165) (0.024)
Sum Won 0.000

(0.000)
Female 0.024

(0.081)
Native 0.083

(0.114)
Age −0.011

(0.011)
Left handed 0.226∗∗∗

(0.082)
Round −0.002∗∗∗ −0.002∗∗∗ −0.002∗∗∗ −0.003∗∗∗

(0.000) (0.000) (0.000) (0.000)
RT0 0.199∗∗∗ 0.201∗∗∗ 0.201∗∗∗ 0.201∗∗∗

(0.017) (0.017) (0.017) (0.018)
Constant 1.351∗∗∗ 1.393∗∗∗ 1.414∗∗∗ 1.402∗∗∗

(0.039) (0.041) (0.042) (0.310)

R2 overall 0.149 0.151 0.152 0.170
Wald test 562.099∗∗∗ 686.636∗∗∗ 708.797∗∗∗ 735.330∗∗∗

Obs. 15810 15810 15810 15810

Robust standard errors in brackets,
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

even though we use a strictly out-of-sample approach, that is, they are not an artifice of

the estimation method. Further, the link to response times shows that the relationship

between expected utility differences and choice difficulty reflects the characteristics of

actual decision processes, rather than being just “as if” modeling.

Numerical distance, seen as a more perceptual dimension of choice difficulty, plays a

minor role. The effects on error rates are small and not robust to the addition of controls.

Response times suggest that a second-order effect is actually present, but expected utility

differences are the major determinant of the effects we study.

5 Discussion

Homo oeconomicus does not play dice (but homo sapiens might). A fully rational eco-

nomic agent would be consistent, choosing an option 100% of the time if it delivered

a slightly larger payoff than the alternative, and 0% if a minute payoff reduction left

it worse than the alternative. However, considerable evidence suggests that the imple-
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Table 6: Experiment 2. Random-effects regressions on log response times, EV distance.

Log RT Model 1 Model 2 Model 3 Model 4

EV Dist. 0.054∗∗∗ 0.068∗∗∗ 0.009 0.009
(0.015) (0.015) (0.023) (0.023)

Num. Dist −0.149∗∗∗ −0.211∗∗∗ −0.211∗∗∗

(0.018) (0.024) (0.024)
Num. Dist. × EV Dist. 0.145∗∗∗ 0.145

(0.044) (0.043)
Sum Won 0.000

(0.000)
Female 0.011

(0.083)
Native 0.073

(0.116)
Age −0.009

(0.010)
Left handed 0.221∗∗

(0.091)
Round −0.003∗∗∗ −0.003∗∗∗ −0.003∗∗∗ −0.003∗∗∗

(0.000) (0.000) (0.000) (0.000)
RT0 0.194∗∗∗ 0.197∗∗∗ 0.196∗∗∗ 0.196∗∗∗

(0.018) (0.018) (0.018) (0.018)
Constant 1.231∗∗∗ 1.288∗∗∗ 1.315∗∗∗ 1.290∗∗∗

(0.037) (0.039) (0.040) (0.310)

R2 overall 0.132 0.136 0.136 0.154
Wald test 472.772∗∗∗ 607.972∗∗∗ 665.532∗∗∗ 687.710∗∗∗

Obs. 15810 15810 15810 15810

Robust standard errors in brackets,
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

mentation of decision processes in the human brain follows processes of a more gradual

nature (e.g., Shadlen and Kiani, 2013). We have demonstrated the existence of a stable,

gradual relation between error rates and an underlying, cardinal “strength of preference,”

and shown that the latter is best represented by integrated variables of an exclusively

economic nature. That is, decisions become more error-prone as the economic distance

between the alternatives becomes smaller.

Our research strategy has followed three complementary approaches. First, we

have shown that, in decisions in the domain of judgment and decision making where

objectively-correct options can be identified, expected value differences are enough to

explain error rates. This is important, because such an explanatory variable is indepen-

dent of any estimation of subjective values and hence constitutes the direct parallel to

psychophysical studies which have identified gradual effects as a function of objective

differences in weight, length, brightness, etc. The typical candidate explanatory variable

derived from purely psychophysical approaches for economic tasks, (payoff-irrelevant)
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numerical differences (Moyer and Landauer, 1967; Dehaene, Dupoux and Mehler, 1990),

does play a role but can be safely considered a second-order variable.

Second, we have shown that, in decisions under risk in the subjective domain, where

what is correct depends on individual risk attitudes, strength of preference can be charac-

terized by an integrated variable reflecting differences in expected utility, while expected

value differences do a considerably worse job. Again, numerical differences do play a

role, but appear to be relatively less important than pure economic distance. Crucially,

our approach has followed a strictly out-of-sample procedure where utility functions are

estimated on one part of the dataset and the test of gradual effects between utility dif-

ferences and error rates is conducted using the choices in a different part of the dataset.

This is important, because fitting a dataset with, say, a random utility model merely

assumes that errors follow a smooth distribution; that is, gradual effects are assumed

and would appear to be present after the fact even if they did not exist at all.

Third, we have shown that the relation between strength of preference, as captured

by notions of economic distance, and error rates reflects more than an ex post and as

if model. The same gradual effects are obtained when examining response times, with

easier decisions (those where economic distance is large) being made faster than harder

ones (those where economic distance is small). Response times are a straightforward,

easily-measurable reflection of the actual functioning of human decision processes. Most

importantly, they are unrelated to estimation and fitting procedures and hence serve as

an independent confirmation of the postulated effects.

Our results provide empirical support and explicit foundation for the literature on

stochastic choice, which has been long advocated as a realistic building block for theories

of microeconomic decision making (Debreu, 1958; Davidson and Marschak, 1959; Luce,

1959; Machina, 1985). It is in line with modern empirical contributions pointing out the

ubiquitousness of stochastic choice and decision inconsistencies (Camerer, 1989; Hey and

Orme, 1994; Agranov and Ortoleva, 2017), but goes beyond those by precisely examining

the content of elusive concepts as “strength of preference” and “choice difficulty” and

isolating them from possibly-artificial phenomena derived, e.g., from the underlying

assumptions of models used to estimate noisy utility.

The analysis is broadly in line with the psychophysics and neuroscience literature,

where the presence of gradual effects on decision making is regarded as an elementary,

firmly-established fact (e.g., Weber’s Law), but goes beyond it by showing that economic

distance is not as simple as objectively-measurable weight or length. Economic decisions

are decisions, and hence it is unsurprising that the same (neural) mechanisms that

determine perception-based judgments also play a role in them. However, economic

decisions are complex decisions, and it is equally unsurprising that simple applications

of psychophysics (as, say, taking only numerical magnitudes into account) fall short of

the task of accounting for economic errors.

Conceptually, our results agree with earlier studies as Mosteller and Nogee (1951)

and with recent contributions as Khaw, Li and Woodford (2018). Both report grad-
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ual increases in the proportion of risky choices in lottery experiments as the reward

increases. Khaw, Li and Woodford (2018) argue in terms of an imprecise perception of

stimuli (Green and Swets, 1966; Ma et al., 2006). Those are payoff-relevant numerical

magnitudes and hence aligned with economic distance as we consider it.

It is also important to remark that the sigmoidal relation between economic distance

and choice frequencies arises spontaneously from the data, hence providing empirical

support for random utility models as typically used in applied microeconomics, which

often employ logit or probit error distributions. By taking a step back from fitting

approaches, our analysis highlights the presence of a systematic structure of noise terms

reflecting the gradual effects of choice difficulty. This observation builds upon earlier

arguments by Hey and Orme (1994) and Harless and Camerer (1994), which attempted to

shift the focus in microeconomics away from deterministic choice models as alternatives

to expected utility theory.12

We view the relation we study here as the basic building block underlying errors

in economic decision making. A very large literature has studied heuristics and biases

in decision making (Kahneman, Slovic and Tversky, 1982; Kahneman, 2003; Grether,

1980, and many others), which are conceived of as systematic, directional deviations

from normatively rational or consistent behavior. An equally large literature has ar-

gued that such phenomena can be explained in terms of dual-process theories including

alternative decision processes of intuitive, impulsive, or heuristic nature (Thaler and

Shefrin, 1981; Weber and Johnson, 2009; Alós-Ferrer and Strack, 2014, to mention just

a few), and in particular their presence has consequences for both choices and response

times. We believe that the gradual effects we describe here and dual-process theories are

complementary. Building upon the research presented here, closely-related work shows

that intuitive decision processes can be identified even when controlling for the gradual

effects described in this work. Specifically, Alós-Ferrer and Farolfi (2019) considers a

belief-updating task as in Grether (1980, 1992), which falls into the objective domain,

and identifies gradual effects as those seen in Experiment 1, where the explanatory

variable is exogenously given. Those effects coexist with additional decision processes

reflecting well known probability-judgment biases, namely conservatism and the rep-

resentativeness heuristic (Kahneman and Tversky, 1972; Gennaioli and Shleifer, 2010).

Analogously, Alós-Ferrer, Buckenmaier and Garagnani (2019) considers a lottery-choice

task, typical of decision making under risk in the subjective domain, and identifies grad-

ual effects reflecting expected utility differences following an out-of-sample approach as

in Experiment 2. Again, those effects can be seen to coexist with an additional de-

cision process reflecting the well-known certainty heuristic (Kahneman and Tversky,

1979; Bordalo, Gennaioli and Shleifer, 2012). In both cases, gradual effects both on

choice frequencies and response times can be identified when controlling for the can-

didate heuristics, and vice versa, demonstrating the complementarity of the approach.

12“Perhaps we should now spend some time on thinking about the noise, rather than about even more
alternatives to expected utility?” (Hey and Orme, 1994).
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Even more important, it needs to be remarked that accounting for the gradual effects

arising from economic distance is actually a precondition to be able to properly identify

heuristics and alternative decision processes in choice data. The reason is that failing to

account for such effects may bias the analysis, leading e.g. to a reverse inference fallacy

or to the attribution of patterns in error rates and response times to heuristics when

strength of preference might suffice to explain them (Krajbich et al., 2015).

The implications of our results are of broad significance for economic modeling. First,

the demonstration of the gradual relation between economic integrated variables and er-

rors provides a foundation for theories of stochastic choice and empirical approaches to

preference revelation alike. Second, the fact that these effects are a natural extension

of those observed in psychophysics provides a tangible bridge to other disciplines, most

notably neuroscience, through which new techniques and ideas can travel. Third, the

results pose a significant challenge to traditional, neoclassic modeling. For the latter is

based on deterministic and, more importantly, purely ordinal preferences. As if models

can be justified as fitting and prediction exercises, hence compatible with ordinal ap-

proaches. Our results on gradual mappings from economic variables to error rates and

response times, though, go beyond any as if interpretation, and, in our opinion, are best

viewed in the context of an inherently cardinal view of preferences.
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