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Abstract

It is well known that random parameters specifications can generate upward sloping
demands for a subset of products in the data.  Nevo (2001), for example, found 0.7 percent of
demands to be upward sloping.  Possibly less well known is that demand system estimates can
imply margins outside of the theoretical bounds for profit maximization.  If such violations are
numerous enough, they can confound merger simulation exercises.  Using Lerner indices for
multiproduct firms playing static Bertrand games, we find that up to 35 percent of implied
margins for beer are outside the bounds.  We characterize downward sloping demand and the
theoretical bounds for profit maximization as prior information and extend the GMM objective
function, incorporating inequality moments for product-level own-elasticities and brand-level or
product-level Lerner indices.  These moments impose a cost when the inequality is violated, and
equal zero otherwise.  Very few violations remain when an inequality constrained estimator is
used.  Importantly, the unconstrained GMM objective has multiple minima, while the
constrained objective has only one minimum when the product-level constraints are used in our
illustration.  This is valuable for policy purposes as it enables one to limit attention to a single
theoretically consistent model.  Inputs to merger simulations are likewise consistent with
economic theory, and, as a result, confidence in the output is increased.

In a second innovation, this paper introduces merger simulation for static Stackelberg price
competition games.  Our illustration uses beer data, a perfect vehicle for introducing Stackelberg
games as the economics literature and industry trade press have long considered Anheuser-Busch
to be the industry price leader.  We find evidence of positive pre-merger price conjectures
consistent with beer brands being strategic complements.  Allowing the leader to update their
conjectures in response to a merger provides dramatically different post-merger price and share
changes relative to Bertrand.  The Stackelberg conjectures are used as a strategic tool that allows
post-merger product repositioning unavailable under Bertrand.

Keywords: Random Coefficients Logit; Inequality Constrained Optimization; Merger
Simulation; Stackelberg Pricing



I. Introduction.

We introduce mixed logit estimation under inequality constraints in order to place a cost

on parameters falling outside of the region that is consistent with economic theory.  The

inequalities we propose appending to the GMM objective function are functions of interest at the

level of individual data records or at the level of brands.  Two sets of inequalities are the focus of

this paper: own-elasticities and margins implied by the demand system and pricing game.  

The idea of using implicit or explicit constraints in demand estimation is not new. 

Continuous choice demand systems have long been tested for, or had imposed in estimation,

agreement with adding up, homogeneity and symmetry,1 and a small theoretical coherency

literature has developed to incorporate inequality constraints for monotonicity, concavity and

other properties implied by theory on estimated systems (see e.g., Chua, Griffiths and O’Donnell

(2001), van Soest, Kapteyn and Kooreman (1993), and Kooremen (1990)).

What I offer brings inequality constraints to the mixed logit demand systems while

expanding both the scale and the scope of approaches applied to continuous demand systems. 

To provide a sense of scale, consider that in continuous choice models (AIDS, translog, etc.),

where such testing and restrictions have previously been applied, economic theory constraints

generally take the form of equality restrictions on functions of the parameters.  These restrictions

reduce the dimensionality of the parameter space.  By contrast, I propose to place inequality

restrictions on functions of interest at the level of individual records, or individual brands.  These

restrictions do not reduce parameter dimensionality, but rather place a cost on parameters lying

in regions of the parameter space where the constraints are violated.  For example, a mixed logit

demand system produces a different JxJ elasticity matrix for each market-time period, yielding

as many own-elasticities as there are data records: datasets with 136,000 observations (as in our

illustration), yield 136,000 own-elasticities.  These models are complex enough that they

sometimes produce a small percentage of positive own-elasticities.  Nevo (2000) reported 0.7

percent positive own elasticities.  I suggest appending all the own-elasticities onto the GMM

objective function to place a cost on violations of demand theory.  In this way of thinking, that

1Chapter 3 of Deaton and Muellbauer (1980) provides a discussion and further references
on equality constrained estimation for the AIDS and other models.  Jorgenson, Lau and Stoker
(1982) develop the equality constrained translog model.



demand curves slope downward is prior information.  By making it costly for the model to

violate this prior we tighten the region where parameters may lie and make it more likely to

produce results that are consistent with theory.

To provide a sense of scope, consider the matrix form of the Lerner index for multi-

product firms.  The key empirical content of the Lerner index is that as long as price $ marginal

cost $ 0, the inverse own-elasticity is bounded between 0 and 1.  The Lerner index for multi-

product firms also provides 0-1 bounds on a function of inverse own- and cross-elasticities for

each product.  We can estimate a demand model and evaluate how well the margins derived from

it conform with Bertrand profit maximization by checking whether the multi-product Lerner

index satisfies the 0-1 bounds for all, or a subset, of brands or products in the data.  Alternatively

we can append the bounds on the GMM objective function to raise the cost of violating Bertrand

profit maximization.

Appending the Lerner index bounds on the objective function broadens the scope of

previous approaches in that it brings margins directly into the demand objective.2  This approach

imposes both less and more targeted supply information on demand model estimates than does

jointly estimating demand and supply.  Appending 0-1 bounds imposes less supply information

in that the only component of the supply side that enters are the bounds, and these bounds equal

zero unless they are violated.  Again, the bounds are evaluated relative to our prior information:

a counterfactual Bertrand merger simulation implies a Bertrand prior.  If the estimates are

consistent with our prior, the bounds shadow price will be zero.  In a typical unconstrained

optimization with the beer data used in this paper I found that as many as 35 percent of more

than 136,000 multiproduct Lerner bounds for beer products are violated with no prior

information imposed, while only on the order of one hundred violations remained once the

bounds were in place. 

Moreover, using bounds targets supply information to the purpose of producing

2Continuous demand approaches incorporated inequality monotonicity constraints on
demand that came from a cost function.  The cost function, however, was not a structural supply
function, but the expenditure form of demand (see e.g., Ryan and Wales (1998) and Moschini
(1999)).
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consistency with economic theory, and in this sense they may perform better than jointly

modeling demand and supply. We include one joint demand-supply model in our illustration.  It

produces violations of the multiproduct Lerner bounds at about a 15 percent rate.  This is much

better than when modeling demand alone, but not as good as produced by focusing the supply

structure into the bounds.

Introducing constraints is conceptually similar to the micro moments introduced by

Berry, Levinsohn, and Pakes (2004) and Petrin (2002), both of which used micro moments on

consumers second choices to provide more information on substitutes considered by car buyers. 

Both concepts bring more information to bear on the demand model to improve the ability of the

model to fit moments of interest.  A handful of other papers have followed that mix micro and

aggregate moments (Hendel and Nevo (2006a,b) and Chintagunta and Dube (2005)), but a lack

of readily available micro data has limited the breadth of these applications.  By contrast, the

prior information we use is available for all applications.  

Not surprisingly, improving the theoretical cohesion of demand model estimates to the

proposed supply side structure improves the theoretical consistency of counterfactual exercises. 

We assess Compensating Marginal Cost Reductions (CMCRs), Werden (1996), and simulate

mergers for both Miller-Coors and Anheuser Busch-InBev and find that the constraints yield

improvements in the margins that we estimate and hence the marginal costs that we back out of

the demand model: virtually all margins are in [0,1] and marginal costs are in the range [0,price]. 

This improves our confidence in the CMCRs and merger simulations.

Other consistency evaluations and constraints are possible.  Checking for negative cross-

elasticities is straightforward, and imposing that all products be substitutes is possible if the

estimation is producing complements among products where it is difficult to formulate a

reasonable argument in support of complements.   If collusive pricing is a consideration for a

particular industry, demand consistency can be evaluated relative to this pricing game. 

Evaluating consistency with and imposing Stackelberg pricing is possible in principle, but in

practice the cost of evaluating the leaders reaction to followers pricing is infeasible for large

product level datasets.  Given this limitation, we conduct Stackelberg merger simulations using

demand estimates obtained under Bertrand margin constraints.
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(1)

We introduce Stackelberg merger simulation and find that allowing Anheuser-Busch to

be the Stackelberg price leader produces different post-merger predictions relative to Bertrand. 

This is true whether Anheuser-Busch leads with its flagship Budweiser and Bud Light brands, or

with its entire family of brands.  Pre-merger, that Anheuser-Busch recognizes beer brands to be

strategic complements shows up as positive Stackelberg conjectures.  Many conjectures shift in

response to the merger; some decrease, reducing some prices and increasing shares of at least

some Anheuser-Busch products.  It is reasonable to characterize Stackelberg conjectures as a

tool that enables Anheuser-Busch to reposition brands post-mergers to a degree unavailable to

Bertrand competitors.

This paper proceeds by developing the demand model and the constraints in Section 2. 

Merger simulation for Stackelberg pricing and implementation issues are discussed in Section 3. 

In Section 4 we develop the inequality constrained GMM objective function.  Section 5

introduces our dataset and issued faced in estimation.  Results are in Section 6; conclusions are

in Section 7.

2. Demand model and constraints

We represent the indirect utility of a consumer i in market m and time period t with

preferences (aim,νim,gijmt) from the purchase of one unit of the jth product as

where we decompose the vector of product characteristics xjmt = { x1jmt,x2jmt} into those with fixed

coefficients, x1jmt, and those with random coefficients, x2jmt.  Decomposing xjmt emphasizes the

fact that we are not likely to associate random coefficients with each product characteristic in

part because of our inability to identify that many random coefficients, and in part because some
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(2)

product characteristics are not good candidates for random coefficients.3 

ψ is the vector of utility function parameters. ξjmt represents product characteristics that

are observed by market participants, but unobserved by the econometrician.  Assuming prices

are set strategically, each pjmt will be correlated with all J+1 ξjmt in each market-time period m,t. 

The gijmt are i.i.d. type 1 extreme value errors.

Setting the dimension of αim at K x 1, the second equation in (1) is a K x 1 vector of

hierarchical regressions of αim on D x 1 vector of demographic draws aim, and νim a vector of 

standard normal draws.  Γ and Υ are matrices of unknown parameters: Γ is K x D with r # K*D

nonzero elements and Υ is diagonal K x K.  

Normalize u0jmt to zero and assume that each consumer maximizes utility by purchasing

one unit of product j at time t if and only if uijmt $ uirmt, r = 0,...,J.  Then the set of consumers

choosing product j in market-time period m,t is represented by 

Assuming that there are no ties, that a, ν, and g are mutually independent, and given that we have

endowed g with an i.i.d. type 1 extreme value distribution, yields an expression for market shares

of the form

where δjmt = x1jmtθ + [x2jmt, pjmt]αG + ξ, and μijmt = [x2jmt, pjmt](Γaim + Υυim) Below we specify a as a

discrete distribution of market level demographics from the American Community Survey.  

3For example, firms might price discriminate by offering lower per unit prices for larger
package sizes, but since there is little variation in available package sizes across markets and
time periods the econometrician will not likely be able to explain heterogeneous responses to
package size. 
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(3)

(4)

(5)

a. Constraints on demand

The Lerner index for a Bertrand-Nash equilibrium is straightforward to generalize to the

multi-product multi-brand case.  Dropping the m and t subscripts, let P = diag{p1,...,pJ}, S =

diag{s1,...,sJ}, and let O be a J x J matrix of 0s and 1s such that O(j,r) equals one when products j

and r are owned by the same firm, and zero otherwise.  Letting p, s and mc be J x 1 vectors of

prices, shares and marginal costs respectively we represent the first order conditions from profit

maximization in terms of optimized margins as 

where “*” represents element by element matrix multiplication, and E = [ejr] is the J x J matrix

of mixed logit elasticities where,

Assuming that pj $ mcj $ 0 for each product j, (3) yields J margin conditions of the form

where E-1 = [ejr], and where we represent by ö the set of products sold by the firm that sells

product j.  For firms that sell a single product, the right hand side of (5) simplifies to that of the

familiar Lerner index, 0 # -ejj # 1.   In (5) there are as many margin conditions as there are

products in the dataset.  In some product markets, it may be reasonable to expect that firms focus

more on margins at the brand level, possibly using loss leaders, pricing single sizes of a brand
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(6)

below marginal cost during some sales to build market share.  Hence, the above conditions may

be too strong.  To reset them to the brand level, take the share weighted average of (5) for the set

of products within the brand that includes product j, say B, where B 0 ö

where .  

To form elasticity constraints, we use (4), bounding ejj # 0 for all j.  For margin

constraints, we bound the right hand sum in either (5) or (6) by [0,1].  Both sets of conditions can

be stacked as additional moment conditions on the GMM objective.  The elasticity condition

imposes a cost on upward sloping demand curves, while the margin condition imposes a cost on

violations of Bertrand-Nash equilibrium.  

There are two further points worth noting about the margin conditions.  First, imposing

these margin conditions on the objective function is weaker and more targeted than jointly

estimating demand and supply.  It imposes the supply structure only when profit maximization

bounds are violated, and it targets the supply structure on producing theoretical consistency.  As

we show below, in results obtained without the constraints imposed, on the order of 35 percent

of margins violate the bounds.  Second, in principle, one is not limited to Bertrand competition

when specifying margin constraints.  A Stackelberg price leadership profit model is also

bounded in [0,1].  Likewise, constraints can be imposed assuming a multilevel supply structure

as in Villas-Boas (2007) or Yang, Chen, and Allenby (2003).  In both the Stackelberg and

multilevel case, however, the computational cost of evaluating the reaction functions is quite

high, making estimation under either of these constraints infeasible except in small datasets.  

3. Merger simulation

Two topics are discussed in this section.  Merger simulation for a Stackelberg

equilibrium, and some technical details of  our application.

a. Stackelberg merger simulation
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The economics literature on beer has identified Anheuser-Busch as a price leader.  Greer

(1998) and Tremblay and Tremblay (2005) provide histories of Anheuser-Busch’s price

leadership and competitor acquiescence as reported in the industry trade press.  Rojas (2008)

uses the doubling of beer excise taxes in 1991 as a natural experiment to try and identify whether

Stackelberg, Bertrand, or other collusive pricing games better fit brewers’ responses to this cost

shock.

Limited, as we are, to data that precedes both the Miller/Coors and AB/InBev mergers,

we cannot compare predictions of the Bertrand and Stackelberg pricing games to post-merger

price increases, but we can present predictions on how Anheuser-Busch’s strategic response

differs pre- and post-simulated merger for both pricing games.

In the Stackelberg pricing game, the first order conditions for profit maximization for

followers have a standard Bertrand form, while the leaders first order conditions contain its

conjecture as to the followers response.  Leaders and followers first order conditions can be

written,

where superscript L and F are used to identify the leader and followers prices and shares

respectively, with öL and öF identifying leading and following firms.  We assume that the

leader leads with JL products.  Though we do not extend our notation to allow for the possibility

that the JL is a subset of the lead firm’s products, we allow for this in our analysis.

The two sets of first order conditions can be stacked, written in matrix form as 

where 

(7)

(8)
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R is a JxJ matrix with the leaders strategic response in the first JLxJL block and zeros everywhere

else.  Equation (8) is similar to the familiar Bertrand solution, however, the R term introduces

substantial additional computational complexity.  MSL/MpF $ 0, while MpF/MpL 0, determines

whether leaders and followers prices are strategic complements, MpF/MpL > 0, or strategic

substitutes, MpF/MpL < 0.  MpF/MpL is formulated by totally differentiating the followers first order

conditions

Equation (9) is then solved for MpF/MpL.4 As (9) indicates, evaluating MpF/MpL is

computationally costly and it introduces a complication into merger simulation in that MpF/MpL is

an implicit function of marginal cost.  Hence, marginal cost estimates can no longer be backed

out from observed prices and estimated markups as they can when pricing is Bertrand.

We estimate marginal costs by iterating through a fixed point algorithm.  Beginning at

mc(0) equal to a vector of Bertrand marginal costs, we update it using

(9)

4The Appendix in Rojas (2008), provides solution details.
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where markup is the current value of the right hand side in (8).  In our experience, setting ω =

0.25 produces a steadily converging sequence of marginal cost estimates.5 

b. implementation details

We follow the basic approach to merger simulation outlined in Nevo (2000), Peters

(2006) and Werden and Froeb (2008); for Bertrand games, we use (3) to back out marginal costs,

for Stackelberg games, we solve for marginal costs using (8) and (10).  In both games, we then

update ownership matrix, O, to its post-merger structure and solve for post-merger equilibrium

prices.  Beyond this basic approach we discuss two implementation details.  First, we discuss our

preparation of price and share data for input into merger simulation.  Second, we discuss

additional structure that we found it necessary to impose on the merger simulation given the

large number of products in our product set.

Beer prices and sales, and grocery prices and sales more generally, vary from week-to-

week, which raises the question, what are the appropriate vectors of input prices and shares for a

merger simulation?  We answer this question by forming prices that are 6-month weighted

averages, p&j, for each product j, using weekly quantities as weights.  p&j, as such, reflects what

the typical beer consumer has paid for a given beer product over the most recent 6-month period. 

 For market shares, we use simple 6-month averages, s&j.  Given pairs of Jx1 vectors ( p&, s&) we

employ the Berry (1994)/Berry, Levinsohn and Pakes (1995) (henceforth BLP) contraction

mapping, solving for δ by equating model shares to s&.  

We found that merger simulations which allowed the entire vector of prices,  p&, to update

in response to an ownership change were poorly determined.  Different starting points to merger

simulation often produced wildly different results, and the simulations had a tendency to crash. 

While theory does not constrain Bertrand optimization with random coefficients logit demand to

(10)

5We have tested larger values of ω and found that the algorithm diverged in some tests. 
Using ω = 0.25 typically produces convergence in less than 20 iterations under the criteria
max{|mc(k+1) - mc(k)|} # 0.001.
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have a single optimum,6 the wild behavior of the merger simulations suggested the need for

additional structure.  We imposed a restriction that required price changes for all products within

a brand to be the same.  We defined p&B = Σ{j0B} s&jp&j, and conducted merger simulation on brand

level prices, p&B, thereby dramatically reducing the dimensionality of the problem to be solved.  

More specifically, we defined prices pre-merger to be equal to brand level prices plus a

difference, η,

The simulator updates  p&B and yields post-merger prices,

η remains fixed at its pre-merger values restricting post-merger prices for individual products,

, to retain the same absolute relationship to each other that they had pre-merger.  These

restrictions reduced the number of prices to be solved for from more than150 to 30 and greatly

improved merger simulation performance.

4. Estimation and Inference

We estimate demand using the Nested Fixed Point (NFP) algorithm developed in Berry

(1994) and BLP.7  Without the constraints in place, the objective function is the standard BLP

concentrated GMM function of the nonlinear parameters λ = (Γ,Υ), with λ 0 Λ = Ur×U+
K.

where W is any symmetric positive definite weighting matrix. We formulate the constraints to

(11)

6See Caplin and Nalebuff (1991).

7The MPEC algorithm of Dube, Fox, and Su (2011) is an alternative approach. 
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have smooth first derivatives so as to satisfy standard regularity conditions for optimization and

asymptotic normality in Hansen (1982).  The elasticity and margin constraints are specified as

and

respectively, where   With η large enough, I(A;η,λ) resembles a

smoothed indicator function; together I(A;η,λ) and 1 - I(A;η,λ) give A(m;η,λ) a bathtub shape

which turns off the constraint for values of values of m 0 [0,1] while E(g;η,λ) is turned off for g

# 0.8  We add one to the elasticity and margin values, e.g., ε(λ)2 + 1, to increase the value of the

constraints, giving them more weight in the optimization.  When the margin constraint is applied

at the brand-level, #(kεB) captures the cardinality of the number of products within a brand. 

This varies across brands, markets and time periods.  When used at the product-level, #(kεB) is a

vector of ones.  Satisfying the constraints restricts λ to a subset of Λ: λ 0 Λ*, where Λ* = {λ:

E(g;η,λ) = 0 and A(m;η,λ) = 0}.

The constrained GMM optimization problem takes the form

We formulate the constraints as squared Euclidean norms as they are a natural formulation for

constructing the variance estimator for the constrained model.9   In both the unconstrained and

constrained formulations, for the first stage GMM estimates we set W = (ZNZ) and use Newey

and (1987) West’s heteroscedastic and autocorrelation consistent estimates for our second stage

(12)

8We set η = 50 in all estimation work.  At this setting, I(-0.1;η,A)2 = 0.007, while
I(0.1;η,A)2 = 0.993.  As such, it is a slight abuse of language to say that the constraint gets turned
off for m ε [0,1] and g #0.  More accurately, the cost of the constraint is rapidly diminishing in
these ranges.

9The variance function is formulated in the Appendix.
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W. 

5. The Data

Development of the outside share and discussion of instrumental variables are contained

in Appendix B in associate file Romeo (2012).

We use 26 weeks of Nielsen grocery store scanner data, covering the first half of 2008,

on beer pricing and sales from 37 Nielsen markets.  For product characteristics we include

variables for promotions (feature, display, feature and display, and discount), and dummy

variables for package size (6, 12, 18, 24, and 30 packs), container type (bottles, longnecks, and

cans), beer type (light, regular, and ice), package type (freezer packs, non-freezer packs), and

brand (Busch, Busch Light, Bud Select, Budweiser, Bud Light, Coors, Coors Light, Corona,

Heineken, Keystone, Keystone Light, Labatt’s, Labatt’s Light, Michelob, Michelob Light,

Michelob Ultra, Miller Genuine Draft, Miller Genuine Draft Light, Miller High Life, Miller

High Life Light, Miller Lite, Milwaukee’s Best, Milwaukee’s Best Light, Natural, Natural

Light).  The preceding list contains all the major beer brands in terms of sales in our 37 markets. 

In the time period of these data, all of these brands were owned by one of five major brewers:

Anheuser-Busch, Coors, Gruopo-Modelo, Heineken, and Miller.  Together they accounted for

more than 83 percent of the total reported quantity sales.  The data also includes hundreds of

smaller brands in each market-week.  We define five aggregate “brands” (Craft, Import,

Premium, Sub-Premium, Super Premium) and create share weighted aggregates of the product

characteristics for these brands.  With these aggregations in place, the data contain an average of

136 products in each of 37*26 = 962 market-time periods for a total of 130,634 observations.

The promotional variables–discount, feature, display, and feature and display–record for

each brand the percentage of stores, weighted by All Commodity Volume (%ACV),10 in which

these brands are on sale.  All of these promotional variables are likely to be endogenous.  There

are two possible sources of endogeneity.  First, ξ likely includes unobserved advertising that is

correlated with observed promotions. Second, since these variables are only observed at the

10All Commodity Volume is total sales of all products in each store.

13



brand level they are really only proxies for the product level promotion variables.  Any

measurement error in these proxies gets absorbed into the ξ. 

These four promotional variables together with price give us a total of five endogenous

variables.   We assume that product characteristics are exogenous, and employ these as

instruments in addition to the following four sets of variables: own-firm other product

instruments of the type described by BLP, lagged share differences, lagged discount

effectiveness, and the means of included demographics.

5. Results

To begin, we estimate the unconstrained model 25 times, from random standard normal

starting points, in order to assess the likely number of minima of the unconstrained objective. 

This exercise produced four minima.11  The joint demand-supply and the constrained

optimizations are then started at these four unconstrained minima.  With the product-level

constraints applied, the four minima collapsed to a single constrained minimum.  This result, in

and of itself, is valuable as it enables us, in this instance, to limit attention to a single model with

few remaining bounds violations.  Beyond that, the parameter estimates and random coefficient

functions for the product-level constrained model all agree with economic intuition, something

that cannot be said of the unconstrained demand results.  The joint demand-supply and brand-

level constraint results ended up somewhere in between.  They are more economically defensible

than the unconstrained minima, the brand-level constrained model more so than the joint model,

but there are still four of them in both cases. 

Parameter estimates for our “global” unconstrained, joint demand-supply and brand-level

constrained minima and the unique product-level minima are in Table 1.  We limit attention to

estimates of parameters with random coefficients (price, discount, light beer and Corona) and

parameters for other endogenous variables ( feature, display, and feature and display).  Results

11We identify unique minima using an eyeball comparison to group outputs from each
optimization, and then verify that our groupings each identify a single minimum by evaluating
the within group standard deviation of each parameter.  In general standard deviations for each
parameter are on the order of 0.001 for estimates classified as having the same minimum.
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for the three local unconstrained minima, the three local joint demand-supply and the three local

brand-level constrained minima are in Appendix Tables C1 - C3 respectively, for your perusal.12  

The constraints have a dramatic affect on the estimates.  The price coefficients, for

example, increase in magnitude as we move from unconstrained demand system to the

unconstrained demand-supply system, to the brand-level constrained system, and finally to the

product-level constrained system.  For the product-level constrained system, the price coefficient

has roughly doubled in magnitude relative to either unconstrained system, thereby making

demand more elastic in the constrained models.  The parameters, not surprisingly, are more

precisely determined in the jointly estimated system and in the constrained models; all the

parameters in Table 1 are significant at least at the five percent level with the product-level

constraints in place.  In addition, the coefficients in the model with product-level constraints, in

particular, are more consistent with expectations.  For example, the mean coefficients for light

beer and discount are both positive and significant indicating that marginal effects on utility of

light beer and larger discounts are positive.  Discounts are a vertical characteristic with more

always preferred to less, and light beer is the only domestic beer category exhibiting positive

year-to-year growth since the early 1990s suggesting light beer to be utility enhancing.13  The

brand-level constrained results also shows a positive, though not statistically significant response

to discounts, but finds light beer to be utility decreasing.  Both unconstrained results indicate that

mean utility decreases for both discounts and light beer.  

The demographic coefficients are also substantially affected by the constraints.  Focusing

on the product-level constrained results, the light beer-age interactions show a larger positive

affect for both younger age categories indicating both higher levels of utility and heterogeneity

from light beer consumption for these age groups.  Similarly, the price-age interactions are both

negative and significant for this model indicating that demand for beer is more elastic among

younger consumers.  Price interactions with income show that demand becomes less elastic with

12All Appendix Tables are in the associated file, Romeo (2012).

13Light beer trends are not presented here, but are found in Section 5 of The U.S. Beer
Market: Impact Databank Review and Forecast, 2008 Edition.
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income while the discount-income interactions indicate that demand for discounts becomes more

elastic with income.  The brand-level constrained results, though not as strong statistically, all

have the same signs and are similarly intuitive economically.  We point to two key differences

between the constrained and the unconstrained results.  First, that unconstrained results show

much weaker price-income heterogeneity.  The income2 coefficient in the joint model is much

smaller than either constrained model, while the demand only model shows demand becoming

more elastic with income, though this effect is not statistically significant.  Second, the large

negative discount-income2 coefficient indicates the value to discounts to decline precipitously

with income.  The following figures make clear how stark these differences are between the

different specifications.

Comparisons of the price-income, discount-income and Corona-%Hispanic functions are

graphed in Figure 1.  Estimated price-income functions are compared in Figure 1a.  The function

for the unconstrained demand model trends in the wrong direction, though there is no

statistically significant price-income heterogeneity.  This result is not an outlier, both Nevo

(2000,2001) and Villas-Boas (2007) report negative and significant income2 coefficients in their

random coefficients specifications. In the joint demand-supply model and with either set of

constraints in place, demand becomes less elastic with income as one would expect, though this

effect is the strongest for the product-level constrained model.

The discount-income comparisons in Figure 1b show that the constraints moderated the

heterogeneity in this relationship.  All four models show positive utility for low income levels

with the affects trailing off at higher levels, and unreasonably the effects of discounts turn

negative at higher income levels.  For both constrained models the negative downturn is small,

while the unconstrained models predicts substantial decreases in utility with discounting at

higher income levels.  For this large utility decrease to be economically sound, we would have to

postulate the existence of something like a “snob effect:” higher income individuals who turn up

their noses at a sale.

The Corona-%Hispanic interaction is consistent across all four models: utility of

consuming Corona decreases as the percentage of Hispanics in the population increases, and

turns negative between about 18 and 22 percent Hispanics in all four models.  I cannot offer any
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clear insights as to why this occurs.  I can only postulate that it may have to do with increased

competition from other Latin American beers in markets with a large proportion of Hispanics.

Table 2 contains statistics for each model in Table 1, while Appendix Table C4 contains

the statistics for the remaining local minima for all models.  Two things are immediately

apparent when examining the table: demand becomes more elastic and the number of Lerner

violations decrease as we move from left to right across the table: from the unconstrained

demand only model, to the joint demand-supply model, and then to the two constrained models.

Lerner bound violations decrease from more than 30 percent and 15 percent for the two

unconstrained models to 5.5 and then 0.09 percent with the brand- and product-level constraints

in place respectively.  Under either set of constraints, more than 99 percent of individual product

demands are in the elastic range, and the aggregate elasticity is likewise in the elastic range.14

Given the mean outside share of 61.5 percent used in estimation, all our aggregate inside

elasticity estimates are in the midst of market elasticities for beer reported in the literature. 

Table 2 shows aggregate elasticities ranging from -0.908 for the unconstrained model to -1.135

with the product-level constraints in place.  The range of estimated market elasticities spans from

-0.1 estimated by Clements and Johnson (1983),  to -1.36 in Hausman, Zona, and Leonard

(1994).  In between are Johnson, et. al. (1992) at -0.31, Pinske and Slade (2004) at -0.5, Lee and

Tremblay (1992) at -0.6, and Hogarty and Elzinga (1972) at -0.9.  This wide range of results may

be attributable to the different modeling approaches and data sources.  All of these authors use

continuous choice representative consumer demand systems, Hausman, et. al., and Pinske and

Slade use multi-stage budgeting, Clements and Johnson, and Johnson et. al. limit attention to

pure time-series. As a result either of data limitations or model specification, or both, all of these

papers are conducting inference with data that are more highly aggregated than the data we use.

Turning next to merger simulation, Table 3 contains aggregate results for Bertrand and

Stackelberg merger simulations for Cincinnati and Buffalo-Rochester.  For Cincinnati, we

14We formulate the aggregate elasticity as follows.  Let Emt be the JmtxJmt elasticity matrix
for inside goods in market-time period m, t, let ιmt be a Jmt vector of ones, and let s~mt be the
associated vector of renormalized inside shares: s~mtNιmt = 1.  The aggregate elasticity, e, is
formulated as, e = (MT)-1Σm,t s

~
mtNEmt ιmt.
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simulate the Miller/Coors merger, while for Buffalo-Rochester we simulate the Anheuser-

Busch/InBev merger.15  The Miller/Coors merger occurred in June 2008, while the Anheuser-

Busch/InBev merger was consummated in September 2009. For the Bertrand pricing game we

simulate mergers for our global minima using parameters from both unconstrained models and

both constrained models.  For Stackelberg, we limit attention to the product-level constrained

model, but we follow Rojas (2008) and evaluate merger effects under two leadership scenarios:

Anheuser-Busch leads with its flagship Budweiser and Bud Light brands; Anheuser-Busch leads

with all of its products. 

Focusing on the Bertrand merger simulations in the first four columns, the first two rows

for both Cincinnati and Buffalo-Rochester provide city specific aggregate elasticity and marginal

cost range violation statistics (these are equivalent to Lerner bound violations) similar to those in

Table 2.  These tell the same story of increasing demand elasticity and decreasing bounds

violations for the joint model and with brand-level and then product-level constraints imposed. 

The percent pre-merger margins in row three are related to the pattern of aggregate elasticities:

as demand become more elastic margins shrink in both markets.  The percent CMCR16 and price

change results are less consistent across models.  Cincinnati shows the smallest competitive

affects with product-level constraints imposed, while Buffalo-Rochester shows the largest

CMCR and second largest price change in this case.  The details of why this is are buried in the

elasticity matrices, key points of which will be discussed below.

Turning to the Stackelberg results, we note that, at the aggregate level, these do not differ

substantially from the product-level Bertrand results.  The pre- and post-merger leadership

strategy results, however, are specific to Stackelberg.  All four of these results show that pre-

15InBev owns Labatts, a Canadian beer that has roughly a 10 percent share in Buffalo-
Rochester.  We chose Cincinnati because both Miller and Coors have large shares there, and we
chose Buffalo-Rochester because that is the US market where Labatt’s has its largest share.

16Mergers are often driven by the potential for merger specific efficiencies. Marginal cost
efficiencies reduce upward pressure on prices that results from the merger.  Compensating
Marginal Cost Reductions, CMCRs, indicate the size of marginal costs efficiencies that would be
consistent with zero upward pricing pressure post-merger.  Following Werden (1996), we
calculate %CMCR = 100*(mcpost - mcpre)/ppre.
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merger Anheuser-Busch’s prices are strategic complements to follower prices.  In three of four

cases, strategic complementarity gets stronger post merger.  One case, in Buffalo-Rochester,

where Anheuser-Busch leads with Budweiser and Bud Light, shows the leader’s prices becoming

strategic substitutes for the followers prices post merger.  Underlying this seemingly odd result is

Anheuser-Busch adjusting its strategy post-merger.  Explicitly accounting for the leader’s

conjecture of follower price changes gives the leader more ability to adjust its pricing strategy to

the post-merger environment than Bertrand allows.  To expand upon this and other points, we

turn to brand-level elasticity and Bertrand and Stackelberg merger simulation tables for Buffalo-

Rochester in Tables 4-7.  Appendix Tables C5-C8 contain a matching set for Cincinnati with

discussion.

Table 4 contains a brand-level elasticity matrix for Buffalo-Rochester for the model

estimated under product-level constraints.17  One highlight of this table is simply the extent of

cross-elasticity variations within each column.  Variations of an order of magnitude or more are

typical indicating that the Independence from Irrelevant Alternatives (IIA) property has been

substantially weakened by the combination of random coefficients and constraints.  Furthermore,

many of the largest cross-elasticity pairings are intuitive. Examples are, Bud Light’s share

responds most strongly to the price of Labatt’s Light and vice-versa, while Labatt’s share

responds most strongly to the prices of Busch and Budweiser.  In addition, Labatt’s Light’s share

also responds most strongly to Busch Light, Michelob Light and Coors Light.  This mix of

strong responses including Anheuser-Busch and Labatt’s brands are behind the shift to

Budweiser and Bud Light’s prices becoming strategic substitutes for follower prices reported

above; what we observe as a shift to strategic substitution is the merged firm shifting share to its

highest margin products post-merger.

Tables 5-7 contain the Bertrand and two Stackelberg merger simulations for Buffalo-

Rochester aggregated to the brand-level.  All three merger simulations predict price increases for

17Brands with share of < 0.50 percent are excluded, where share measures include an
outside share = 61.5 percent in Buffalo-Rochester.
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most products.18  In the Bertrand simulation we list the percent CMCRs while in the Stackelberg

simulations we list Anheuser-Busch’s optimal response to follower price increases pre- and post-

merger.  The presence of these conjectures produces very different simulation predictions.  They

predict that Anheuser-Busch will limit price increases on it’s higher margin products, while

increasing the price of lower margin Labatt’s products more than they would under Bertrand. 

This is especially true when Anheuser-Busch leads with all of its products as in Table 7.  In this

case, we predict that Anheuser-Busch will reduce the price of Busch Light and Bud Light post-

merger, each of these having margins in excess of 60 percent, while raising the price of low

margin Labatt’s Light by 13.87 percent.  In total, Anheuser-Busch’s share changes indicate that

it actually increases its share post-merger from 11.97 percent to 15.71 percent.  When Anheuser-

Busch leads with only Budweiser and Bud Light, it increases the prices of these two products

less than it would under Bertrand, and it does gain some share in four of its brands, but its tools

to produce markedly different results are limited.  Moreover, casting the conjectures as tools

provides an explanation for the strategic complements finding in Table 3.  

As shown in Table 3, the overall Anheuser-Busch price increase in Buffalo-Rochester is

muted under Stackelberg relative to Bertrand.  Having this additional strategic component

available in price setting allows them to better optimize their product repositioning post-merger

without raising the prices of their highest margin products.  The post-merger finding of strategic

substitutes in Table 3 can be explained in this context.  Decreasing Bud Light’s response to

followers prices post-merger was a case of effectively using the conjecture on Bud Light as a

tool to limit its price increase, so as to limit its share loss.19

6. Conclusions

We extend the GMM objective function for mixed logit demand systems to include prior

18Marginal cost efficiencies were not taken into account in conducting these merger
simulations.

19The discussion associated with the matched set of table for Cincinnati, Tables C5-C8,
tells a very different story.  In this case, Anheuser-Busch’s strategic response to the Miller-Coors
merger causes its Stackelberg price increases to be above the Bertrand level.
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information.  Formally, we impose a cost on violations of downward sloping demand curves and

on violating brand-level or product-level Lerner bounds for firms playing a static Bertrand pricing

game.  Incorporating these priors into the objective raises the cost of the objective producing

parameter estimates outside the region that is consistent with economic theory.  We show that the

resulting estimates accord better with economic intuition than either estimating a demand system

alone, or jointly estimating demand and structural supply.  Moreover, when product-level Lerner

bounds are used, the number of minima for the GMM objective shrinks from four to one in our

illustration.

We conduit counterfactual merger simulation exercises using Bertrand and Stackelberg

pricing games; for Cincinnati we predict effects from the merger of Miller and Coors, and for

Buffalo-Rochester we predict effects from InBev’s merger with Anheuser-Busch.  We find that

Bertrand and Stackelberg models predict similar overall price effects.  Both sets of merger

simulations produced relatively small overall price increases, though in Buffalo-Rochester the

Stackelberg estimates were substantially smaller than the Bertrand predictions.  Digging into the

elasticity matrices and merger simulation results showed why this occurred.  The strategy term in

the Stackelberg simulation gives Anheuser-Busch additional flexibility to respond to a merger

that Bertrand pricing does not allow. 

Imposing constraints makes the mixed logit demand system a better policy tool.  Limiting

attention to the theoretically consistent subset of the parameter space has a long history in demand

estimation for continuous choice models for good reason.  Working with theoretically consistent

results eliminates caveats regarding economically inconsistent results and provides confidence in

a policy setting.
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Appendix A

A.1. Formulating the Constrained Variance Estimator.

Assume E[ξjmt|zmt] = 0 and E[ξ jNmtξjmt|zmt] = Ω(zjmt).  Stack the moment conditions that

contribute to the constrained objective function and use a delta method expansion in the

parameter vector ψ.

where = arg min C(λ) / C(λ(α,β)) = C(ψ).  Multiplying both side by their transpose and

rearranging yields

where  and W = block diag{Var(ZNξ(ψ)),

Var(1E(ε,A;ψ)1), Var(1A(m,A;ψ)1)}.  
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Table 1. Unconstrained and constrained mixed logit estimates for beer demand

variables
unconstrained global minima constrained global minima

demand only joint demand and supply brand-level product-level

means
   (α&,θ)

std devs
Υ

means
   (α&,θ)

std devs
Υ

means
   (α&,θ)

std devs
Υ

means
   (α&,θ)

std devs
Υ

price -5.502
(0.417)†

0.0008 
(0.0006)

-6.986
(0.325)†

0.029
(0.007)†

-7.663
(0.325)†

0.012 
(0.005)**

-11.407
(0.147)†

0.0007 
(8.7e-5)†

light -0.252
(0.064)†

0.0002
(0.0001)**

-0.208
(0.022)†

0.375
(0.098)†

-0.235
(0.138)*

0.002
(0.001)†

0.297
(0.097)†

0.0006
(0.0001)†

Corona 0.533
(0.128)†

0.0002
(0.0001)

0.683
(0.014)†

0.0004
(0.0002)†

0.813
(0.116)†

0.014
(0.013)†

0.705
(0.096)†

0.007
(0.003)†

discount -0.655
(0.226)†

0.0003
(0.0002)

-1.362
(0.041)†

0.075
(0.029)†

0.114
(0.162)

0.0001
(0.0001)*

0.340
(0.093)†

0.0002
(3.5e-5)†

feature 0.410
(0.091)†

0.942
(0.067)†

0.554
(0.112)†

0.550
(0.133)†

display 0.644
(0.076)†

0.319
(0.033)†

0.636
(0.084)†

0.501
(0.082)†

feature and display 0.829
(0.080)†

1.034
(0.049)†

0.833
(0.087)†

0.995
(0.117)†

demographic interactions

price:                 income  0.036 (0.920)  -0.780 (0.179)†  -0.323 (0.419)  -1.222 (0.110)†

income2 -0.348 (2.329) 0.994 (0.383)† 1.368 (1.339) 2.749 (0.419)†

age 21 - 34 0.291 (0.869) -1.094 (0.077)† -2.932 (0.298)† -0.651 (0.106)†

age 35 - 54 0.330 (0.697) 3.497 (0.197)† 0.121 (0.205) -4.702 (0.145)†

light:           age 21 - 34 0.782 (0.355)** 1.034 (0.085)† 3.359 (0.388)† 5.983 (0.236)†

age 35 - 54 0.989 (0.501)* -1.337 (0.197)† 5.364 (0.557)† 5.601 (0.217)†

Corona:       %Hispanic -2.420 (0.316)† -2.405 (0.320)† -2.720 (0.305)† -4.065 (0.263)†

discount:           income 0.852 (0.546)* 1.138 (0.223)† 0.253 (0.415) 0.168 (0.098)*

income2 -3.410 (1.246)† -3.256 (0.689)† -1.094 (1.051) -0.806 (0.285)†

(Standard deviations in parentheses)
*Significant at the 10% level; **significant at the 5% level; †significant at the 1% level.
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Table 2. Model statistics

statistic unconstrained global minima constrained global minima

demand only joint demand and
supply

brand-level product-level

own-elasticities: # (%) > 0
# (%) # -1

0 (0)
100,384 (76.8)

0 (0)
128,534 (98.4)

0 (0)
130,424 (99.8)

0 (0)
130,622 (99.99)

cross-elasticities: # (%) < 0 0 (0) 0 (0) 0 (0) 0 (0)

aggregate elasticity -0.908 -0.990 -1.049 -1.135

Lerner bound violations: # (%) < 0
# (%) > 1

0 (0)
42,863 (32.8)

0 (0)
19,815 (15.2)

0 (0)
2,467 (1.9)

0 (0)
121 (0.09)
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Table 3. Aggregate merger simulation results for unconstrained and constrained demand models: Bertrand and Stackelberg games

statistics
Bertrand Stackelberg: AB leads with

unconstrained global minima constrained global minima Bud and Bud
Light

all products

demand only joint demand-
supply

brand-level product-level product-level constraints

Miller/Coors merger                        Cincinnati: pre-merger outside share = 57.57%

aggregate elasticity -0.89 -0.990 -1.09 -1.14 -1.14 -1.14

# (%) marginal cost ó [0,p] 56 (32.6) 29 (16.9) 15 (8.7) 0 (0) 0 (0) 0 (0)

%pre-merger margin 72.66 72.37 58.10 49.66 49.82 50.06

%CMCR 3.64 4.04 3.62 1.55 1.55 1.55

%Miller/Coors price change 1.29 1.52 1.20 0.46 0.47 0.51

100*leader strategy:
                             pre-merger
                             post-merger

–
– 

– 
– 

–
–

– 
– 

0.13
0.28

0.12
0.34

Anheuser-Busch/InBev merger                   Buffalo-Rochester: pre merger outside share = 62.06%

aggregate elasticity -1.03 -0.99 -1.11 -1.21 -1.21 -1.21

# (%) marginal cost ó [0,p] 42 (25.8) 10 (6.1) 1 (0.6) 0 (0) 0 (0) 0 (0)

%pre-merger margin 61.17 62.58 50.95 43.27 42.74 45.74

%CMCR 5.30 6.78 5.70 7.45 7.45 7.45

%AB/InBev price change 1.73 1.81 1.56 1.67 1.14 0.18

100*leader strategy:
                             pre-merger
                             post-merger

–
– 

– 
– 

–
–

– 
– 

0.006
-1.15

0.44
0.76

The Cincinnati merger simulations contained 172 products, the Buffalo-Rochester ones contained 163 products.
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Table 4. Buffalo-Rochester brand-level elasticity matrix for model with product-level constraints

              price change
                 xv

share                          
change                      

Anheuser-Busch InBev Coors Miller Grpo -
Modlo

Heinkn

Busch Busch
Light

Bud Bud
Light

Mich
Light

Mich
Ultra

Natural Labatt Labatt
Light

 Light Keystn Keystn
Light

High
Life

Lite
Milwk
Best Corona Heinkn

Busch -2.312 0.004 0.194 0.008 0.002 0.008 0.028 0.243 0.007 0.011 0.025 0.004 0.036 0.074 0.052 0.062 0.037

Busch Light 0.005 -2.671 0.005 0.316 0.033 0.080 0.006 0.002 0.304 0.370 0.002 0.118 0.003 0.001 0.014 0.031 0.026

Budweiser 0.114 0.003 -2.388 0.006 0.002 0.006 0.027 0.310 0.005 0.008 0.025 0.003 0.036 0.095 0.048 0.067 0.037

Bud Light 0.003 0.096 0.003 -2.751 0.034 0.077 0.004 0.001 0.360 0.441 0.002 0.116 0.002 0.000 0.010 0.032 0.025

Michelob Light 0.007 0.081 0.006 0.269 -3.092 0.083 0.008 0.003 0.258 0.324 0.003 0.096 0.004 0.001 0.018 0.026 0.021

Michelob Ultra 0.009 0.072 0.009 0.222 0.031 -3.076 0.011 0.004 0.211 0.270 0.004 0.085 0.005 0.001 0.026 0.022 0.019

Natural 0.088 0.014 0.140 0.031 0.009 0.032 -2.337 0.167 0.028 0.042 0.021 0.014 0.030 0.052 0.057 0.046 0.029

Labatt’s 0.119 0.001 0.261 0.002 0.001 0.002 0.027 -2.356 0.002 0.003 0.025 0.001 0.037 0.104 0.047 0.070 0.038

Labatt’s Light 0.003 0.098 0.003 0.385 0.035 0.078 0.004 0.001 -2.839 0.465 0.002 0.116 0.002 0.000 0.009 0.033 0.025

Coors Light 0.004 0.093 0.004 0.362 0.034 0.077 0.005 0.002 0.356 -2.651 0.002 0.112 0.002 0.000 0.010 0.032 0.024

Keystone 0.105 0.007 0.179 0.016 0.004 0.016 0.028 0.216 0.014 0.021 -2.459 0.007 0.034 0.066 0.054 0.057 0.035

Keystone Light 0.004 0.099 0.004 0.316 0.033 0.078 0.005 0.002 0.299 0.366 0.002 -2.622 0.002 0.001 0.013 0.031 0.026

Miller High Life 0.106 0.005 0.171 0.012 0.003 0.012 0.028 0.210 0.011 0.016 0.023 0.005 -2.272 0.066 0.056 0.056 0.035

Miller Light 0.118 0.001 0.256 0.002 0.001 0.002 0.027 0.336 0.002 0.002 0.025 0.001 0.037 -2.544 0.047 0.069 0.038

Milwaukee’s :Best 0.083 0.015 0.123 0.036 0.010 0.037 0.028 0.144 0.033 0.047 0.020 0.016 0.029 0.045 -2.381 0.043 0.028

Corona 0.085 0.027 0.158 0.094 0.009 0.021 0.020 0.200 0.092 0.113 0.018 0.031 0.026 0.060 0.037 -2.695 0.035

Heineken 0.079 0.036 0.132 0.112 0.012 0.028 0.020 0.165 0.108 0.131 0.017 0.043 0.025 0.050 0.038 0.054 -2.731

Outside 0.030 0.030 0.039 0.075 0.014 0.044 0.013 0.041 0.067 0.093 0.008 0.035 0.011 0.013 0.028 0.023 0.016

Outside share = 61.547 percent.  Aggregate brands (Craft, Import, Sub-Premium, Premium, and Super-Premium) and brands with share < 0.50 percent are excluded from table.
In each column: largest cross-elasticity is in bold; smallest is underlined.
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Table 5. Buffalo-Rochester Bertrand merger simulation results for Anheuser-Busch/InBev (Labbatt’s) merger.   Estimated under product-level constraints.

Brewer
brand %price change %CMCR pre-merger

share
share change %pre-merger

margin
change in
%margin

Anheuser-Busch

Busch 1.74 6.24 1.84 -0.40 47.66 1.867

Busch Light 1.44 7.40 1.21 -0.24 46.22 1.644

Bud Select 1.00 6.91 0.16 -0.02 45.70 1.160

Budweiser 1.36 7.15 2.67 -0.46 44.49 1.686

Bud Light 1.24 7.62 3.29 -0.59 41.10 1.752

Michelob 1.02 5.64 0.14 -0.01 51.46 0.952

Michelob Light 0.73 5.46 0.46 -0.04 40.11 1.097

Michelob Ultra 0.37 4.23 1.27 -0.01 38.53 0.597

Natural 0.37 4.78 0.63 0.01 48.19 0.394

Natural Light 0.48 5.38 0.25 0.00 45.35 0.595

InBev
Labatt’s 3.48 9.65 3.09 -1.49 41.76 4.693

Labatt’s Light 3.46 11.71 2.99 -1.62 36.27 5.873

Coors

Coors -0.12 – 0.26 0.05 37.78 -0.212

Coors Light 0.23 – 4.03 0.30 41.01 0.317

Keystone -0.05 – 0.43 0.05 40.71 -0.074

Keystone Light 0.56 – 1.44 -0.02 45.26 0.685

Miller

Miller Genuine Draft -0.17 – 0.17 0.03 41.76 -0.239

Miller High Life -0.02 – 0.67 0.07 45.31 -0.022

Miller Lite 0.01 – 0.98 0.13 40.25 0.000

Milwaukee’s Best -0.03 – 1.25 0.13 42.85 -0.023

Milwaukee’s Best Light -0.14 – 0.34 0.04 37.74 -0.212

Groupo-Modelo Corona -0.09 – 1.21 0.18 37.01 -0.162

Heineken Heineken -0.04 – 0.79 0.11 36.77 -0.082

Outside good: initial share = 62.06; share change = 3.56.
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Table 6. Buffalo-Rochester Stackelberg merger simulation results for Anheuser-Busch/InBev (Labbatt’s) merger.   Estimated under product-level constraints: Anheuser-Busch
leads with Budweiser and Bud Light.

Brewer %price change
100*Stackelberg conjecture pre-merger

share share change
%pre-merger

margin
change in
%margin

brand pre-merger post-merger

Anheuser-Busch

Busch 1.53 – – 1.84 -0.39 47.82 1.65

Busch Light 0.13 – – 1.21 0.00 46.37 0.15

Bud Select 0.45 – – 0.16 -0.01 45.87 0.52

Budweiser 1.08 0.00 0.03 2.67 -0.39 44.69 1.32

Bud Light 0.66 0.01 -2.09 3.29 -0.45 41.29 0.94

Michelob 1.04 – – 0.14 -0.02 51.63 0.97

Michelob Light -0.30 – – 0.46 0.05 40.24 -0.45

Michelob Ultra -0.16 – – 1.27 0.09 38.64 -0.23

Natural 0.02 – – 0.63 0.03 48.33 0.02

Natural Light -0.08 – – 0.25 0.01 45.49 -0.09

InBev
Labatt’s 3.57 – – 3.09 -1.57 41.92 4.77

Labatt’s Light 2.56 – – 2.99 -1.44 36.40 4.37

Coors

Coors -0.42 – – 0.26 0.06 37.93 -0.69

Coors Light -0.81 – – 4.03 1.27 41.15 -1.17

Keystone -0.98 – – 0.43 0.14 40.84 -1.44

Keystone Light 0.09 – – 1.44 0.01 45.41 0.11

Miller

Miller Genuine Draft -0.35 – – 0.17 0.03 41.92 -0.48

Miller High Life -0.22 – – 0.67 0.08 45.45 -0.24

Miller Lite -0.47 – – 0.98 0.22 40.40 -0.69

Milwaukee’s Best -0.32 – – 1.25 0.16 42.97 -0.42

Milwaukee’s Best Light -0.17 – – 0.34 0.02 37.84 -0.26

Groupo-Modelo Corona -0.69 – – 1.21 0.32 37.14 -1.18

Heineken Heineken -0.67 – – 0.79 0.20 36.89 -1.14

Outside good: initial share = 62.06; share change = 1.16.

31



Table 7. Buffalo-Rochester Stackelberg merger simulation results for Anheuser-Busch/InBev (Labbatt’s) merger.   Estimated under product-level constraints: Anheuser-Busch
leads with all products.

Brewer brand %price change
100*Stackelberg conjecture pre-merger

share share change
%pre-merger

margin
change in
%margin

pre-merger post-merger

Anheuser-Busch

Busch 2.67 0.06 0.05 1.84 -0.44 48.54 2.76

Busch Light -4.15 0.61 1.06 1.21 3.08 65.36 -2.29

Bud Select 2.43 0.01 0.00 0.16 -0.04 46.61 2.72

Budweiser 2.75 0.10 0.08 2.67 -0.74 45.39 3.22

Bud Light -0.10 1.89 1.68 3.29 0.71 60.02 -0.07

Michelob 2.20 0.00 0.00 0.14 -0.02 52.31 1.95

Michelob Light 0.82 0.19 0.13 0.46 -0.05 54.82 0.67

Michelob Ultra 1.28 0.40 0.25 1.27 -0.29 50.40 1.25

Natural 1.61 0.02 0.02 0.63 -0.08 49.12 1.65

Natural Light 1.10 0.09 0.06 0.25 -0.04 60.77 0.71

InBev
Labatt’s 4.49 – 0.06 3.09 -1.55 41.92 5.94

Labatt’s Light 13.87 – 0.08 2.99 -2.86 36.40 21.29

Coors

Coors 2.37 – – 0.26 -0.05 37.93 3.80

Coors Light 1.77 – – 4.03 -1.03 41.15 2.48

Keystone 1.50 – – 0.43 -0.03 40.84 2.13

Keystone Light 1.33 – – 1.44 -0.24 45.41 1.59

Miller

Miller Genuine Draft 2.16 – – 0.17 -0.03 41.92 2.93

Miller High Life 1.61 – – 0.67 -0.05 45.45 1.91

Miller Lite 2.19 – – 0.98 -0.17 40.40 3.17

Milwaukee’s Best 1.51 – – 1.25 -0.17 42.97 1.98

Milwaukee’s Best Light 1.61 – – 0.34 -0.09 37.84 2.62

Groupo-Modelo Corona 1.93 – – 1.21 -0.22 37.14 3.20

Heineken Heineken 1.85 – – 0.79 -0.14 36.89 3.12

Outside good: initial share = 62.06; share change = 5.47.  Aggregate brands (Craft, Import, Sub-Premium, Premium, and Super-Premium) and brands with pre-merger share < 0.10
percent excluded from table.
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