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Abstract

The theoretical literature of industrial organization shows that the distances be-
tween consumers and firms have first-order implications for competitive outcomes
whenever transportation costs are large. To assess these effects empirically, we de-
velop a structural model of competition among spatially differentiated firms and in-
troduce a GMM estimator that recovers the structural parameters with only regional-
level data. We apply the model and estimator to the portland cement industry. The
estimation fits, both in-sample and out-of-sample, demonstrate that the framework
explains well the salient features of competition. We estimate transportation costs to
be $0.30 per tonne-mile, given diesel prices at the 2000 level, and show that these
costs constrain shipping distances and provide firms with localized market power. To
demonstrate policy-relevance, we conduct counter-factual simulations that quantify
competitive harm from a hypothetical merger. We are able to map the distribution of
harm over geographic space and identify the divestiture that best mitigates harm.



1 Introduction

Geography is understudied in the empirical literature of industrial organization. Although

the theoretical literature has established that the physical distances between firms and con-

sumers have first-order implications for competitive outcomes whenever transportation costs

are large (e.g., Hotelling (1929), d’Aspremont, Gabszewicz, and Thisse (1979), Salop (1979),

Thisse and Vives (1988), Economides (1989), Vogel (2008)), the complexities associated with

modeling spatial differentiation have made it difficult to translate theoretical insights into

workable empirical models.1

Standard empirical methodologies simply sidestep spatial differentiation through the

delineation of distinct geographic markets. This simplifies estimation but requires the dual

assumptions that (1) transportation costs are sufficiently large to preclude substantive com-

petition across market boundaries, and (2) transportation costs are sufficiently small that

spatial differentiation is negligible within markets. It can be difficult to meet both condi-

tions.2 In practice, markets are often based on political borders of questionable economic

significance (e.g., state or county lines). Nonetheless, market delineation is employed rou-

tinely in studies of industries characterized by high transportation costs, including ready-mix

concrete (e.g., Syverson (2004), Syverson and Hortaçsu (2007), Collard-Wexler (2009)), port-

land cement (e.g., Salvo (2008), Ryan (2009)), and paper (e.g., Pesendorfer (2003)).3

Our purpose is to introduce an alternative empirical framework. To that end, we

develop and estimate a structural model of competition among spatially differentiated firms

that accounts for transportation costs in a realistic and tractable manner. We focus on

production and consumption within a two dimensional Euclidean space, which we refer to

informally as a geographic space. Competition involves a discrete number of plants, each

endowed with a physical location, and a continuum of consumers that spans the space. Each

plant sets a distinct price to each consumer, taking into consideration its proximity to the

consumer and the proximities of its competitors. Thus, plants discriminate between elastic

and inelastic consumers based on the pre-determined plant and consumer locations, and the

model resembles the theoretical work of Thisse and Vives (1988). Competitive outcomes

depend on the magnitude of transportation costs and the degree of spatial differentiation

1Surely it would be too strong to claim that, in empirical industrial organization, space is the final frontier.
2Syverson (2004) discusses how this tension can compel researchers to seek compromise between markets

that are “too small” and markets that are “too large”. It is sometimes argued that markets that are too large
may overstate the intensity of competition while markets that are too small may understate competition.

3These valuable contributions focus on wide range of topics, including the competitive impacts of hor-
izontal and vertical mergers, heterogeneity in plant productivity and its implications for competition, the
inference of market power, and dynamic investment decisions.



within the geographic space.

We discretize the geographic space into small “consumer areas” to operationalize the

model. Since each plant may ship to each consumer area, the model diverges starkly from

more conventional approaches in which plants do not compete across market boundaries.

We employ standard differentiated-product methods to model competition within consumer

areas. On the supply side, domestic plants compete in prices given capacity constraints and

the existence of a competitive fringe of foreign importers. On the demand side, consumers

select the plant that maximizes utility, taking into consideration their proximity to the plants,

the plant prices, and a nested logit error term. To be clear, the plants are differentiated

primarily by price and location – we assume that the product itself is homogeneous. We

derive an equation that characterizes the equilibrium price and market share for each plant-

area pair as a function of data and parameters.4

The central challenge for estimation is that prices and market shares are unobserved

in the data, at least at the plant-area level. We develop a generalized method of moments

(GMM) estimator that exploits variation in data that are more often observed: regional

level consumption, production, and prices. The key insight is that each candidate parameter

vector corresponds to an equilibrium set of plant-area prices and market shares. We compute

numerical equilibrium for each candidate parameter vector using a large-scale nonlinear

equation solver developed in La Cruz, Mart́ınez, and Raydan (2006). We then aggregate the

predictions of the model to the regional level and evaluate the distance between the data

and the predictions. The estimator can be interpreted as having inner and outer loops: the

outer loop minimizes an objective function over the parameter space while the inner loop

computes numerical equilibrium for each candidate parameter vector. We show that the

estimator consistently recovers the structural parameters of the data generating process in

an artificial data experiment.

We apply the model and the estimator to the portland cement industry in the U.S.

Southwest over the period 1983-2003. The choice of industry conveys at least three sub-

stantive advantages to the analysis. First, transportation costs contribute substantially to

overall consumer costs because portland cement is inexpensive relative to its weight. Second,

it may be reasonable to treat portland cement as a homogenous product because strict in-

dustry standards govern the production process.5 This conformity matches the simplicity of

4We refer to the fraction of potential demand in a consumer area that is captured by a given plant as the
“market share” of the plant. We select the term purely for expositional convenience. We do not argue that
consumer areas reflect antitrust markets in any sense; indeed, a defining characteristic of the model is that
it avoids market delineation entirely.

5Many plants produce a number of different types of portland cement, each with slightly different spec-
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the demand system, in which spatial considerations (e.g., plant and consumer locations) are

the main source of plant heterogeneity. Third, high quality data on the industry are publicly

available. We obtain information on regional consumption, production, and average prices,

as well as limited information on cross-region shipments, from annual publications of the

United States Geological Survey. We pair these regional-level metrics with information on

the location and characteristics of portland cement plants from publications of the Portland

Cement Association. We exploit variation in these data to estimate the model.

The results of estimation suggest that consumers pay roughly $0.30 per tonne-mile,

given diesel prices at the 2000 level.6 Given the shipping distances that arise in numerical

equilibrium, this translates into an average transportation cost of $24.61 per metric tonne

over the sample period – sufficient to account for 22 percent of total consumer expenditure.

Costs of this magnitude have real effects on competition in the industry. We focus on two

such effects: First, transportation costs constrain the distance that cement can be shipped

economically. The results indicate that cement is shipped only 92 miles on average between

the plant and the consumer; by contrast, a counter-factual simulation suggests that the

average shipment would be 276 miles absent transportation costs. Second, transportation

costs insulate firms from competition and provide localized market power. For instance,

the prices that characterize numerical equilibrium decrease systematically in the distance

between the plant and the consumer, as do the corresponding market shares.7

The estimation procedure produces impressive in-sample and out-of-sample fits despite

parsimonious demand and marginal cost specifications. The model predictions explain 93

percent of the variation in regional consumption, 94 percent of the variation in regional

production, and 82 percent of the variation in regional prices. The model predictions also

explain 98 percent of the variation in cross-region shipments, even though we withhold the

bulk of these data from estimation. As we detail in an appendix, the quality of these fits

is underscored by the rich time-series variation in these data. Together, the regression fits

suggest that a small quantity of exogenous data, properly utilized, may be sufficient to

explain some of the most salient features of competition in the portland cement industry.

We interpret this as substantial support for the power of the analytical framework.

ifications and characteristics (e.g., superior early strength or higher sulfate resistance). These products are
close substitutes for most construction projects.

6Strictly speaking, the model identifies consumer willingness-to-pay for proximity to the plant, which in-
corporates transportation costs as well as any other distance-related costs (e.g., reduced reliability). We refer
to this willingness-to-pay as the transportation cost, although the concepts may not be precisely equivalent.

7These patterns are precisely what economic theory would predict given that consumers pay the costs of
transportation in the portland cement industry.
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We suspect that our method may prove useful for future research and policy endeavors

relating to international trade, environmental economics, and industrial organization. One

such application is merger simulation, an important tool for competition policy. We use

counter-factual simulations to evaluate the effects of a hypothetical merger between two

multi-plant cement firms in 1986. We find that the merger reduces consumer surplus by $1.4

million if no divestitures are made, and we are able to map the distribution of this harm over

the U.S. Southwest. The overall magnitude of the effect is modest relative to the amount

of commerce – by way of comparison, we calculate total pre-merger consumer surplus to be

more than $239 million. We then consider the six possible single-plant divestitures, and find

that the most powerful reduces consumer harm by 56 percent.8

At least two caveats are important. First, the estimation procedure rests on the unique-

ness of equilibrium at each candidate parameter vector, but there is no theoretical reason to

expect this condition to hold generally. To assess the issue, we conduct a Monte Carlo exper-

iment that computes numerical equilibrium using several different starting points for each of

6,300 randomly drawn candidate parameter vectors. The results are strongly supportive of

uniqueness, at least in our application (see the appendices for details). Second, the promise

of spatial differentiation creates incentives for firms to locate optimally in order to secure a

base of profitable customers, provide separation from an efficient competitor, and/or deter

nearby entry. We abstract from these considerations entirely and instead assume that firm

location is pre-determined and exogenous. Nonetheless, our framework could help define

stage-game payoffs in more dynamic models that endogenize firm location choices (e.g., as

in Seim (2006) and Aguirregabiria and Vicentini (2006)).

Our work builds on recent contributions to the industrial organization literature that

model competition among spatially differentiated retail firms (e.g., Thomadsen (2005), Davis

(2006), McManus (2009)). These papers employ a framework in which each firm sets a

single price to all consumers, consistent with practice in most retail settings, and recover the

structural parameters with firm-level data and more standard estimation techniques (e.g.,

Berry, Levinsohn, and Pakes (1995)).9 We make two distinct contributions to this literature.

First, our model extends the existing framework to incorporate firms that price discriminate

8We refer to the divesture plan that offsets the greatest amount of consumer harm among the set of single-
plant divestitures as the most powerful. We do not attempt to characterize, in any way, the appropriate
course of action for an antitrust authority.

9Thomadsen (2005) may be the closest antecedent to our work. Thomadsen shows that a supply-side
equilibrium condition can be substituted for firm-level market shares in estimation. We develop the potency
of equilibrium conditions more fully: given an equilibrium condition and aggregate data, estimation is feasible
with neither firm-level prices nor firm-level market shares. Aguirregabiria and Vicentini (2006) develop a
sophisticated model of spatial differentiation but do not take the model to data.
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among consumers. In such a setting, firm-level data are no longer sufficient to support

standard estimation techniques. Thus, our second contribution is the demonstration that

estimation is feasible with relatively aggregated data. Of course, the regional-level data we

use in our application would also support estimation in simpler retail settings.

More generally, our results indicate that firm-level heterogeneity can affect competi-

tive outcomes even when the product is relatively homogenous. Refinements to the stan-

dard toolbox available for structural research in these settings have been outstripped in

empirical industrial organization by models of observed and (especially) unobserved product

heterogeneity. We suspect that models of competition for homogenous-product industries

are currently of heightened value, not only because of the imbalance in the literature, but

also because these industries provide fertile testing grounds for methodological innovations

regarding industry dynamics (e.g., as in Ryan (2009)). We hope that the framework we

introduce helps, incrementally, to redirect the attention of researchers to these settings.

The paper proceeds as follows. In Section 2, we sketch the relevant institutional details

of the portland cement industry, focusing on transportation costs, production technology,

and trends in production and consumption. We develop the empirical model of Bertrand-

Nash competition in Section 3 and discuss our data sources in Section 4. Then, in Section 5,

we develop the estimator and provide identification arguments. We present the estimation

results in Section 6, discuss the merger simulations in Section 7, and then conclude.

2 The Portland Cement Industry

Portland cement is a finely ground dust that forms concrete when mixed with water and

coarse aggregates such as sand and stone. Concrete is an essential input to many construction

and transportation projects, either as pourable fill material or as pre-formed concrete blocks,

because its local availability and lower maintenance costs make it more economical than

substitutes such as steel, asphalt, and lumber (e.g., Van Oss and Padovani (2002)).10

Most portland cement is shipped by truck to ready-mix concrete plants or construction

sites, in accordance with contracts negotiated between individual purchasers and plants.11

Transportation costs contribute substantially to overall consumer expenditures because port-

10We draw heavily from the publicly available documents and publications of the United States Geological
Survey and the Portland Cement Association to support the analysis in this section. We defer detailed
discussion of these sources for expositional convenience.

11A smaller portion is shipped by train or barge to terminals, and only then distributed to consumers by
truck. Shipment via terminals reduces transportation costs for more distant consumers. Roughly 23 percent
of portland cement produced in the United States was shipped through terminals in 2003.
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land cement is inexpensive relative to its weight, a fact that is well understood in the aca-

demic literature. For example, Scherer et al (1975) estimates that transportation would have

accounted for roughly one-third of total consumer expenditures on a hypothetical 350-mile

route between Chicago and Cleveland, and a 1977 Census Bureau study determines that

most portland cement is consumed locally – for example, more than 80 percent is trans-

ported within 200 miles.12 More recently, Salvo (2010) presents evidence consistent with the

importance of transportation costs in the Brazilian portland cement industry.

A recent report prepared for the Environmental Protection Agency identifies five main

variable input costs of production: raw materials, coal, electricity, labor, and kiln mainte-

nance (EPA (2009)). In the production process itself, a feed mix composed of limestone and

supplementary materials is fed into large rotary kilns that reach temperatures of 1400-1450◦

Celsius. The combustion of coal is the most efficient way to generate this extreme heat.

Kilns generally operate at peak capacity with the exception of an annual shutdown period

for maintenance. It is possible to adjust output by extending or shortening the maintenance

period – for example, plants may simply forego maintenance at the risk of kiln damage

and/or breakdowns. The feed mix exits the kiln as semi-fused clinker modules. Once cooled,

the clinker is mixed with a small amount of gypsum, placed into a grinding mill, and ground

into tiny particles averaging ten micrometers in diameter. This product – portland cement

– is shipped to purchasers either in bulk or packaged in smaller bags.

We focus on the production and consumption of portland cement in the U.S. Southwest

– by which we mean California, Arizona and Nevada – over the period 1983-2003. This region

accounts for roughly 15 percent of domestic portland cement production and consumption

during the sample period. Figure 1 provides a map of the region based on the plant locations

in the final year of the sample. As shown, most plants are located along an interstate

highway and nearby one or more population centers. Although some firms own more than

one plant, production capacity in the area is not particularly concentrated – the capacity-

based Herfindahl-Hirschman Index (HHI) of 1260 is well below the threshold level that

defines highly concentrated markets in the 1992 Merger Guidelines. The plants also face

competition from foreign importers that ship portland cement through the customs offices of

San Francisco, Los Angeles, San Diego, and Nogales. Still, transportation costs may insulate

some plants from both foreign and domestic competition.13

12Scherer et al (1975) examined more than 100 commodities and determined that the transportation costs
of portland cement were second only to those of industrial gases. Other commodities identified as having
particularly high transportation costs include concrete, petroleum refining, alkalies/chlorine, and gypsum.

13We observe little entry and exit over the sample period. The sole entrant (Royal Cement) began opera-
tions in 1994 and the only two exits occurred in 1988. This stability is consistent with substantial sunk costs
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Figure 1: Portland Cement Production Capacity in the U.S. Southwest circa 2003.

In Figure 2, we plot total consumption and production in the U.S. Southwest over the

sample period, together with two measures of foreign imports. Several patterns are appar-

ent. Both consumption and production increase over 1983-2003, and both metrics are highly

cyclical. However, consumption is more cyclical than production, so that the gap between

consumption and production increases in overall activity; foreign importers provide addi-

tional supply whenever domestic demand outstrips domestic capacity. Strikingly, observed

foreign imports are nearly identical to “apparent imports,” which we define as consumption

minus production, consistent with negligible net trade between the U.S. Southwest and other

domestic areas. Finally, we note that the average free-on-board price charged by domestic

plants in the region (not shown) falls over the sample period from $107 per metric tonne to

$74 per metric tonne, primarily due to lower coal and electricity costs.14

of plant construction, as documented in Ryan (2009). Plant ownership is somewhat more fluid; we observe
fourteen changes in plant ownership, spread among nine of the sixteen plants.

14Prices are in real 2000 dollars.
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Figure 2: Consumption, Production, and Imports of Portland Cement. Apparent imports are defined as
consumption minus production. Observed imports are total foreign imports shipped into San Francisco, Los
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3 Empirical Model

3.1 Overview

We develop a structural model of competition that accounts for transportation costs in a

realistic and tractable manner. We focus on production and consumption within a single

geographic space. Competition involves a discrete number of plants, each endowed with a

physical location, and a continuum of consumers that spans the space. Each plant sets a

distinct price to each consumer, taking into consideration its proximity to the consumer and

the proximities of its competitors. To operationalize the model, we discretize the geographic

space into small consumer areas. We employ standard techniques to model competition

within consumer areas: plants charge area-specific prices subject to exogenous capacity

constraints, and consumer demand is nested logit. We derive an equation that characterizes

the equilibrium price and market share for each plant-area pair.

3.2 Supply

We take as given that there are F firms, each of which operates some subset ℑf of the

J plants. Each plant is endowed with a set of attributes, including a physical location.

Consumers exist in N different areas that span the geographic space. Every plant can ship

8



into every area. Firms set prices at the plant-area level to maximize variable profits:

πf =
∑
j∈ℑf

∑
n

PjnQjn(θd)︸ ︷︷ ︸
variable revenues

−
∑
j∈ℑf

∫ Qj(θd)

0

MCj(Q;θc)dQ︸ ︷︷ ︸
variable costs

, (1)

where Qjn and Pjn are the quantity and price, respectively, of plant j in area n, MCj is

the marginal cost of production, and Qj is total plant production (i.e., Qj =
∑

nQjn). The

vectors θc and θd include the supply and demand parameters, respectively, and together

form the joint parameter vector θ = (θc,θd).

The marginal cost function can accommodate most forms of scale economies or disec-

onomies. We choose a functional form that captures the plant-level capacity constraints that

are important for portland cement production. In particular, we let marginal costs increase

flexibly in production whenever production exceeds some threshold level. The marginal cost

function is:

MC(wj, Qj(θd);θc) = w′
jα+ γ 1

{
Qj(θd)

CAPj

> ν

}(
Qj(θd)

CAPj

− ν

)ϕ

, (2)

where wj is a vector that includes the relevant marginal cost shifters and CAPj is the

maximum quantity that plant j can produce. The parameter ν is the utilization threshold

above which marginal costs increase in production, the parameter ϕ determines the curvature

of the marginal cost function when utilization exceeds ν, and the combination γ(1 − ν)ϕ

represents the marginal cost penalty associated with production at capacity. The marginal

cost function is continuously differentiable in production for ϕ > 1. The vector of cost

parameters is θc = (α, γ, ν, ϕ).

We let the domestic firms compete against a competitive fringe of foreign importers,

which we denote as plant J +1. We assume that the fringe is a non-strategic actor and that

import prices are exogenously set based on some marginal cost common to all importers. The

fringe is endowed with one or more geographic locations and ships into every consumer area.

It sets a single price across all consumer areas (i.e., the fringe does not price discriminate),

consistent with perfect competition among importers.

3.3 Demand

We specify a nested logit demand system that captures the two most important character-

istics that differentiate portland cement plants: price and location. To that end, we assume

9



that each area features many potential consumers. Each consumer either purchases cement

from one of the domestic plants or the importer, or foregoes a purchase of portland cement

altogether. We refer to the domestic plants and the importer as the inside goods, and refer to

the option to forego a purchase as the outside good. We place the inside goods in a separate

nest from the outside good.

We express the indirect utility that consumer i receives from plant j as a function of

the relevant plant and location observables:

uij = β0 + x′
jnβ + ζi + λϵij, (3)

where the vector xjn includes the price of cement and the distance between the plant and

the area, as well as other plant-specific demand shifters. The idiosyncratic portion of the

indirect utility function is composed of consumer-specific shocks to the desirability of the

inside good (ζi) and the desirability of each plant (ϵit). We assume that the combination

ζi+λϵij has an extreme value distribution in which the parameter λ characterizes the extent

to which valuations of the inside good are correlated across consumers.15 We normalize the

mean utility of the outside good to zero, so that the indirect utility associated with foregoing

cement purchase is ui0 = ϵi0, with ϵi0 also having the extreme value distribution. The vector

of demand parameters is θd = (β0,β, λ).
16

The nested logit structure yields an analytical expression for the market shares captured

by each plant. The market shares are specific to each plant-area pair because the relative

desirability of each plant varies across areas:

Sjn(P n;θd) =
exp(β0 + λIn)

1 + exp(β0 + λIn)
∗

exp(x′
jnβ)∑J+1

k=1 exp(x
′
knβ)

, (4)

where P n is a vector of area-specific prices and In = ln
(∑J+1

k=1 exp(x
′
knβ)

)
is the inclusive

value of the inside goods. The first factor in this expression is the marginal probability

that a consumer in area n selects an inside good, and the second factor is the conditional

probability that the consumer purchases from plant j given selection of an inside good. Both

15Cardell (1997) derives the conditions under which the specified taste shocks produce the extreme value
distribution. Tastes are perfectly correlated if λ = 0 and tastes are uncorrelated if λ = 1. In the latter case
the model collapses to a standard logit.

16We exclude product characteristics from the specification because portland cement is a homogenous good,
at least to a first approximation. It may be desirable to control for observed product characteristics in other
applications. (Though the presence of unobserved characteristics would pose a challenge to the estimation
procedure.) Also, we assume that consumers pay the cost of transportation, consistent with practice in the
cement industry. One could alternatively incorporate distance into the marginal cost function.

10



take familiar logit forms due to the distributional assumptions on idiosyncratic consumer

tastes. The demand system maps cleanly into supply: the quantity sold by plant j to area

n is Qjn = SjnMn, where Mn is the potential demand of area n.17

3.4 Equilibrium

The profit function yields the first-order conditions that characterize equilibrium prices for

each plant-area pair:

Qjn +
∑
n

∑
k∈ℑf

(Pkn −MCkn)
∂Qkn

∂Pjn

= 0. (5)

Since each plant competes in every consumer area and may price differently across areas,

there are J × N first-order conditions. For notational convenience, we define the block-

diagonal matrix Ω(P ) as the combination of n = 1, . . . , N sub-matrices, each of dimension

J × J . The elements of the sub-matrices are defined as follows:

Ωn
jk(P ) =

{
∂Qjn

∂Pkn
if j and k have the same owner

0 otherwise,
(6)

where the demand derivatives take the nested logit forms. Thus, the elements of each sub-

matrix Ωn
jk(P ) characterize substitution patterns within area n, and the matrix Ω(P ) has

a block diagonal structure because prices in one area do not affect demand in other areas.

We can now stack the first-order conditions:

P = MC(P )−Ω(P )−1Q(P ), (7)

where P , MC(P ), and Q(P ) are vectors of prices, marginal costs and quantities, re-

spectively. Provided that marginal cost parameter ϕ exceeds one, the mappings MC(P ),

Ω(P ), and Q(P ) are each continuously differentiable. Further, the price vector belongs

to a compact set in which each price is (1) greater or equal to the corresponding marginal

cost, and (2) smaller than or equal to the price a monopolist would charge to the relevant

17The substitution patterns between cement plants are characterized by the independence of irrelevant
alternatives (IIA) within the inside good nest. We argue that IIA is a reasonable approximation for our
application. Portland cement is purchased nearly exclusively by ready-mix concrete plants and other con-
struction companies. These firms employ similar production technologies and compete under comparable
demand conditions. We are therefore skeptical that meaningful heterogeneity exists in consumer preferences
for plant observables (e.g., price and distance). Without such heterogeneity, the IIA property arises quite
naturally – for example, the random coefficient logit demand model collapses to standard logit when the
distribution of consumer preferences is degenerate.
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area. Therefore, by Brower’s fixed-point theorem, Bertrand-Nash equilibrium exists and is

characterized by the price vector P ∗ that solves Equation 7.18

Spatial price discrimination is at the core of the firm’s pricing problem: firms maxi-

mize profits by charging higher prices to nearby consumers and consumers without a close

alternative. Aside from price discrimination, the firm’s pricing problem follows standard

intuition. For example, a firm that contemplates a higher price for cement from plant j to

area n must evaluate a number of effects: (1) the tradeoff between lost sales to marginal

consumers and greater revenue from inframarginal consumers; (2) whether the firm would

recapture lost sales with its other plants; and (3) whether the lost sales would ease capacity

constraints and make the plant more competitive in other consumer areas.

4 Data Sources and Summary Statistics

4.1 Data sources

We cull the bulk of our data from the Minerals Yearbook, an annual publication of the U.S.

Geological Survey (USGS). The Minerals Yearbook is based on an annual census of portland

cement plant and contains regional-level information on portland cement consumption, pro-

duction, and free-on-board prices.19 The four relevant regions include Northern California,

Southern California, Arizona, and Nevada. We observe annual consumption in each region

over the period 1983-2003. The USGS combines the Arizona and Nevada regions when re-

porting production and prices over 1983-1991, and no usable production or price information

is available for Nevada over 1992-2003.20 The Minerals Yearbook also includes information

on the price and quantity of portland cement that is imported into the U.S. Southwest via

the customs offices in San Francisco, Los Angeles, San Diego, and Nogales.

We also make use of more limited data on cross-region shipments from the California

18The existence proof follows Aguirregabiria and Vicentini (2006). Multiple equilibria may exist.
19The census response rate is typically well over 90 percent (e.g., 95 percent in 2003), and USGS staff

imputes missing values for the few non-respondents based on historical and cross-sectional information.
Other academic studies that feature these data include McBride (1983), Rosenbaum and Reading (1988),
Rosenbaum (1994), Jans and Rosenbaum (1997), Ryan (2009), and Syverson and Hortaçsu (2007). The
Minerals Yearbook provides the average free-on-board price charged the plants located in each region, rather
than the price paid by the consumers in each region.

20The USGS combines Nevada with Idaho, Montana and Utah starting in 1992. We adjust the Arizona
data to remove the influence of a single plant located in New Mexico whose production is aggregated into the
region. We detail this adjustment in an appendix. Also, it is worth noting that the USGS does not intend
for its regions to approximate geographic markets. Rather, the regions are delineated such that plant-level
information cannot be backward-engineered from the Minerals Yearbook.
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Letter, a second annual publication of the USGS. The California Letter provides information

on the quantity of portland cement that is shipped from plants in California to consumers in

Northern California, Southern California, Arizona, and Nevada. However, the level of aggre-

gation varies over the sample period, some data are redacted to protect sensitive information,

and no information is available before 1990. In total, we observe 96 data points:

• CA to N. CA over 1990-2003

• CA to S. CA over 2000-2003

• CA to AZ over 1990-2003

• CA to NV over 2000-2003

• N. CA to N. CA over 1990-1999

• S. CA to N. CA over 1990-1999

• S. CA to S. CA over 1990-1999

• S. CA to AZ over 1990-1999

• S. CA to NV over 1990-1999

• N. CA to AZ over 1990-1999.

We withhold the bulk of these data from the estimation procedure and instead use the data

to conduct out-of-sample checks on the model predictions.21

We supplement the USGS data with basic plant-level information from the Plant In-

formation Survey (PIS), an annual publication of the Portland Cement Association. The

PIS provides the location of each portland cement plant in the United States, together with

its owner, the annual kiln capacity, and various other kiln characteristics.22 We approximate

consumer areas using counties, which meet the criterion of being small relative to the overall

geographic space – there are 90 counties in the U.S. Southwest. We collect county-level data

from the Census Bureau on construction employment and residential construction permits

to account for county-level heterogeneity in potential demand. Finally, we collect data on

diesel, coal, and electricity prices from the Energy Information Agency, data on average

wages of durable good manufacturing employees from the BEA, and data on crushed stone

prices from the USGS; we exploit state-level variation for all but the diesel data.

21The California Letter is based on a monthly survey rather than on the annual USGS census. As a result,
the data are not always consistent with the Minerals Yearbook. We normalize the data prior to estimation
so that total shipments equal total production in each year.

22We multiply kiln capacity by 1.05 to approximate cement capacity, consistent with the industry practice
of mixing clinker with a small amount of gypsum (typically 3 to 7 percent) in the grinding mills.

13



4.2 Summary statistics

We provide summary statistics on consumption, production, and prices for each of the regions

in Table 1. Some patterns stand out: First, substantial variation in each metric is available,

both inter-temporally and across regions, to support estimation. Second, Southern Califor-

nia is larger than the other regions, whether measured by consumption or production. Third,

consumption exceeds production in Northern California, Arizona, and Nevada; these short-

falls must be countered by cross-region shipments and/or imports. The observation that

plants in these regions charge higher prices is consistent with transportation costs providing

some degree of local market power.23 Finally, imports are less expensive than domestically

produced portland cement. This discrepancy may exist in part because the reported prices

exclude duties; more speculatively, domestic producers may be more reliable or may maintain

relationships with consumers that support higher prices.

In Table 2, we explore the spatial characteristics of the regions in more depth, based on

the plant locations of 2003. First, the average county in Northern California is 65 miles from

the nearest domestic cement plant. Since the comparable statistics for Southern California,

Arizona, and Nevada are 72 miles, 92 miles, and 100 miles, respectively, one may infer that

average transportation costs may differ substantively across the four regions. Second, the

average additional distance to the second closest domestic plant is 44 miles in Northern

California, 11 miles in Southern California, 82 miles in Arizona, and 77 miles in Nevada,

suggestive that plants in Arizona and Nevada may hold more local market power than plants

elsewhere. Finally, the average distance to the nearest customs office is 123 miles in Northern

California, 110 miles in Southern California, 181 miles in Arizona, and 281 miles in Nevada,

suggestive that imports may constrain domestic prices less severely in Arizona and Nevada.

The latter two empirical patterns are consistent with the higher cement prices observed in

Arizona and Nevada.

5 Estimation

5.1 Overview

The challenge for estimation is that prices and market shares are unobserved in the data, at

least at the plant-area level. We develop a GMM estimator that exploits variation in data

23The data on cross-region shipments are also suggestive of large transportation costs. For example, more
than 90 percent of portland cement produced in Northern California was shipped to consumers in Northern
California over 1990-1999.
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Table 1: Consumption, Production, and Prices

Description Mean Std Min Max

Consumption
Northern California 3,513 718 2,366 4,706
Southern California 6,464 1,324 4,016 8,574
Arizona 2,353 650 1,492 3,608
Nevada 1,289 563 416 2,206

Production
Northern California 2,548 230 1,927 2,894
Southern California 6,316 860 4,886 8,437
Arizona-Nevada 1,669 287 1050 2,337

Domestic Prices
Northern California 85.81 11.71 67.43 108.68
Southern California 82.81 16.39 62.21 114.64
Arizona-Nevada 92.92 14.24 75.06 124.60

Import Prices
U.S. Southwest 50.78 9.30 39.39 79.32

Statistics are based on observations at the region-year level over
the period 1983-2003. Production and consumption are in thou-
sands of metric tonnes. Prices are per metric tonne, in real
2000 dollars. Import prices exclude duties. The region labeled
“Arizona-Nevada” incorporates information from Nevada plants
only over 1983-1991.
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Table 2: Distances between Counties and Plants

Description Mean Std Min Max

Miles to the closest plant
Northern California 64.65 30.00 7.36 115.39
Southern California 72.28 39.74 18.58 127.46
Arizona 91.62 40.01 29.13 163.99
Nevada 100.04 61.97 17.38 232.03

Additional miles to the second closest plant
Northern California 43.95 49.84 0.49 176.07
Southern California 11.22 8.83 0.49 31.08
Arizona 81.96 55.65 0.69 172.38
Nevada 77.38 43.28 12.82 177.20

Miles to the closest import point
Northern California 122.65 67.42 4.33 283.00
Southern California 110.17 67.43 30.29 221.28
Arizona 180.80 90.26 14.07 314.91
Nevada 281.45 81.93 170.09 442.02

Distances are calculated based on plant locations in 2003. There
are 46 counties in Northern California, 12 counties in Southern
California, 15 counties in Arizona, and 17 counties in Nevada.
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that are more often observed: regional level consumption, production, and prices. The key

insight is that each candidate parameter vector corresponds to an equilibrium set of plant-

area prices and market shares. We compute equilibrium numerically for each candidate

parameter vector, aggregate predictions of the model to the regional-level, and then evaluate

the “distance” between the data and the aggregate predictions. The estimation routine is

an iterative procedure defined by the following steps:

1. Select a candidate parameter vector θ̃.

2. Compute the equilibrium price and market share vectors.

3. Calculate regional-level metrics based on the equilibrium vectors.

4. Evaluate the regional-level metrics against the data.

5. Update θ̃ and repeat steps 1-5 to convergence.

The estimation procedure can be interpreted as having both an inner loop and an outer loop:

the inner loop computes equilibrium for each candidate parameter vector and the outer loop

minimizes an objective function over the parameter space. We discuss the inner loop and

the outer loop in turn, and then address some additional details.

5.2 Computation of numerical equilibrium

We use a large-scale nonlinear equation solver developed in La Cruz, Mart́ınez, and Ray-

dan (2006) to compute equilibrium. The equation solver employs a quasi-Newton method

and exploits simple derivative-free approximations to the Jacobian matrix; it converges

more quickly than other algorithms and does not sacrifice precision. We define a numer-

ical Bertrand-Nash equilibrium as a price vector for which ∥ ι(P ) ∥ / dim(ι(P )) < δ, where

∥ · ∥ denotes the Euclidean norm operator and

ι(P ) = Ω(P )(P −MC(P ))−Q(P ). (8)

We denote the equilibrium prices that correspond to the candidate parameter vector θ̃ as

P̃jnt(θ̃,χ), where χ includes the exogenous data. We denote the corresponding equilibrium

market shares as S̃jnt(θ̃,χ). From a computational standpoint, our construction of ι(P )

avoids the burden of inverting Ω(P ) that would be required by the straight application

of Equation 7. Further, the structure of the problem permits us to compute equilibrium
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separately for each period. The price vector that characterizes the equilibrium of a given

period has length Jt × N so that, for example, the equilibrium price vector for 2003 has

14× 90 = 1, 260 elements.24

The empirical analogs to the computed plant-area prices and market shares are not

observed in the data, so we aggregate the prices and market shares to construct more useful

regional metrics. For notational precision, we define the sets ℵr and ȷr as the counties and

plants, respectively, located in region r. The aggregated region-period metrics take the form:

C̃rt(θ̃,χ) =
∑
n∈ℵr

(
1− S̃0nt(θ̃,χ)

)
Mnt

Q̃rt(θ̃,χ) =
∑
j∈ȷr

S̃jnt(θ̃,χ)Mnt (9)

P̃rt(θ̃,χ) =
∑
j∈ȷr

∑
n

S̃jnt(θ̃,χ)Mnt∑
j∈ȷr

∑
n S̃jnt(θ̃,χ)Mnt

P̃jnt(θ̃,χ),

where C̃rt(θ̃,χ), Q̃rt(θ̃,χ), and P̃rt(θ̃,χ) are total consumption, total production, and

weighted-average price, respectively. We calculate regional consumption for each of the four

regions in the data – Northern California, Southern California, Arizona, and Nevada. We

calculate production and prices for Northern California, Southern California, and a combined

Arizona-Nevada region. We denote the empirical analogs Crt, Qrt, and Prt.

We find that, in practice, we can better identify some of the model parameters by

exploiting information on aggregated cross-region shipments. We denote the quantity of

shipments from region r to region s as Q̃s
rt(θ̃,χ). The shipments take the form:

Q̃s
rt(θ̃,χ) =

∑
j∈ȷr

∑
n∈ℵs

S̃jnt(θ̃,χ)Mnt, (10)

We calculate the quantity of portland cement produced by plants in California (both North-

ern and Southern) that is shipped to consumers in Northern California. The empirical

analog, which we denote Qs
rt, is available over the period 1990-2003. We withhold data on

other cross-region shipments from estimation because the number of parameters that we es-

timate exceeds the lengths of the available time-series. The withheld data, however, provide

24We set δ =1e-13. Numerical error can propagate into the outer loop when the inner loop tolerance is
substantially looser (e.g., 1e-7), which slows overall estimation time and can produce poor estimates. The
inner loop tolerance is not unit free and must be evaluated relative to the price level. We also note that,
in settings characterized by constant marginal costs, one could ease the computational burden of the inner
loop by solving for equilibrium prices in each consumer area separately.
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natural out-of-sample tests on the model predictions.

5.3 Objective function

We estimate the parameters using the standard GMM framework for systems of nonlinear

regression equations (e.g., Greene (2003), page 369). The equations we use compare the

metrics computed in the inner loop to their empirical analogs:

Cr = C̃r(θ,χ) + e1
r

Qr = Q̃r(θ,χ) + e2
r (11)

P r = P̃ r(θ,χ) + e3
r

Qs
r = Q̃

s

r(θ,χ) + e4
rs.

We write the equations in vector form with one element per period. There are four con-

sumption moments, three production moments, three price moments, and one cross-region

shipments moment. We have 21 observations on each of the consumption, production and

price moments, and 14 observations on the cross-region shipments moment. We interpret

the disturbances as measurement error, and assume the disturbances to have expectation

zero and contemporaneous covariance matrix Σ.

The GMM estimator is:

θ̂ = argmin
Θ

e(θ̃,χ)′A−1e(θ̃,χ), (12)

where e(θ̃,χ) is a vector of empirical disturbances obtained by stacking the nonlinear regres-

sion equations and A is a positive definite weighting matrix. We employ the usual two-step

procedure to obtain consistent and efficient estimates (Hansen (1982)). We first minimize the

objective function using A = I. We then estimate the contemporaneous covariance matrix

and minimize the objective function a second time using the weighting matrix A = Σ̂⊗ I.

We compute standard errors that are robust to both heteroscedasticity and arbitrary cor-

relations among the error terms of each period, using the methods of Hansen (1982) and

Newey and McFadden (1994).25

25Measurement error that is zero in expectation is sufficient for consistency. Estimation of the contem-
poraneous covariance matrix Σ is complicated by the fact that we observe consumption, production, and
prices over 1983-2003 but cross-region shipments over 1990-2003. We use methods developed in Srivastava
and Zaatar (1973) and Hwang (1990) to account for the unequal numbers of observations.
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5.4 Potential demand

We normalize the potential demand of each county using two exogenous demand predictors

that we observe at the county level: the number of construction employees and the number

of new residential building permits. We regress regional portland cement consumption on

the demand predictors (aggregated to the regional level), impute predicted consumption at

the county level based on the estimated relationships, and then scale predicted consumption

by a constant of proportionality to obtain potential demand.26 The results indicate that

potential demand is concentrated in a small number of counties. In 2003, the largest 20

counties account for 90 percent of potential demand, the largest 10 counties account for

65 percent of potential demand, and the largest two counties – Maricopa County and Los

Angeles County – together account for nearly 25 percent of potential demand.27 In the

time-series, potential demand more than doubles over 1983-2003, due to greater activity in

the construction sector and the onset of the housing bubble.

5.5 The geographic space

Our restricted geographic focus eases the computational burden of the estimation routine.

For instance, a national sample would require the computation of more than 300 thousand

equilibrium plant-county prices in each time period, for every outer loop iteration. The geo-

graphical restriction is valid provided that gross domestic inflows/outflows are insubstantial.

The data provide some support. Most directly, the California Letter indicates that more

than 98 percent of cement produced in Southern California was shipped within the U.S.

Southwest over the period 1990-1999, and more than 99 percent of cement produced in Cali-

fornia (both Northern and Southern) was shipped within the U.S. Southwest over the period

2000-2003.28 We consider outflows from Arizona unlikely because the Minerals Yearbook

indicates that consumption routinely exceeds production in that state, and we consider out-

flows from Nevada unlikely because production capacity is low relative to potential demand.

Since net domestic inflows/outflows are insubstantial (see Figure 2), these data patterns

26The regression of regional portland cement consumption on the demand predictors yields an R2 of
0.9786, which foreshadows an inelastic estimate of aggregate demand. Additional predictors, such as land
area, population, and percent change in gross domestic product, contribute little additional explanatory
power. We use a constant of proportionality of 1.4, which is sufficient to ensure that potential demand
exceeds observed consumption in each region-year observation.

27The largest five counties are Maricopa County (3,259 thousand metric tonnes), Los Angeles County
(3,128 thousand metric tonnes), Clark County (1,962 thousand metric tonnes), Riverside County (1,803
thousand metric tonnes) and San Diego County (1,733 thousand metric tonnes).

28Analogous statistics for Northern California over 1990-1999 are unavailable due to data redaction.
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suggest that gross inflows are also insubstantial.

5.6 Identification

We use an artificial data experiment to test identification. We draw 40 data sets, each with

21 time periods, using our model and a vector of “true” parameters as the data generating

process. We then seek to recover the parameter values with the GMM estimation procedure.

The exogenous data includes the plant capacities, the potential demand of counties, the diesel

price, the import price, and two cost shifters. We randomly draw capacity and potential

demand from the data (with replacement), and we draw the remaining data from normal

distributions.29 We hold plant and county locations fixed to maintain tractability, and rely

on the random draws on capacity, potential demand, and diesel prices to create variation in

the distances between production capacity and consumers.

Table 3 shows the results of the experiment. Interpretation is complicated somewhat

because we use non-linear transformations to constrain the price and distance coefficients

below zero, constrain the coefficients on the cost shifters and the over-utilization cost above

zero, and constrain the inclusive value and utilization threshold coefficients between zero

and one. We defer details on these transformations to Appendix C. As shown, the means

of the estimated coefficients are close to (transformed) true parameters. The means of the

price and distance coefficients, which are of particular interest, are within 6 percent and 11

percent of the truth, respectively. The root mean-squared errors tend to be between 0.45 and

0.66 – the two exceptions that generate higher mean-squared errors are the import dummy

and the over-utilization cost, which appear to be less cleanly identified.

To further build intuition, we explore some of the empirical relationships (graphed in

Figure 3) that drive parameter estimates in our application. On the demand side, the price

coefficient is primarily identified by the relationship between the consumption and price mo-

ments. In panel A, we plot cement prices and the ratio of consumption to potential demand

(“market coverage”) over the sample period. The two metrics have a weak negative cor-

relation, consistent with downward-sloping but inelastic aggregate demand. The distance

coefficient is primarily identified by (1) the cross-region shipments moment, and (2) the rela-

tionship between the consumption and production moments. To explore the second source of

identification, we plot the gap between production and consumption (“excess production”)

for each region over the sample period. In many years, excess production is positive in

29Specifically, we use the following distributions: diesel price ∼ N(1, 0.28), import price ∼ N(50, 9), cost
shifter 1 ∼ N(60, 15), and cost shifter 2 ∼ N(9, 2). We redraw data that are below zero. We also redraw
data that lead the estimator to nonsensical areas of parameter space.
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Table 3: Artificial Data Test for Identification

Variable Parameter Truth (θ) Transformed (θ̃) Mean Est RMSE

Demand
Cement Price β1 -0.07 -2.66 -2.51 0.66
Miles×Diesel Price β2 -25.00 3.22 2.86 0.59
Import Dummy β3 -4.00 -4.00 -6.07 1.23
Intercept β0 2.00 2.00 1.11 0.51
Inclusive Value λ 0.09 -2.31 -1.73 0.54

Marginal Costs
Cost Shifter 1 α1 0.70 -0.36 -0.88 0.51
Cost Shifter 2 α2 3.00 1.10 0.54 0.45
Utilization Threshold ν 0.90 2.19 1.71 0.59
Over-Utilization Cost γ 300.00 5.70 6.14 1.05

Results of GMM estimation on 40 data sets that are randomly drawn based on the “true” parame-
ters listed. The parameters are transformed prior to estimation to place constraints on the parameter
signs/magnitudes (see Appendix C). Mean Est and RMSE are the mean of the estimated (transformed)
parameters and the root mean-squared error, respectively.

Southern California and negative elsewhere, consistent with inter-regional trade flows. The

magnitude of these implied trade flows helps drive the distance coefficient. Interestingly, the

implied trade flows are higher later in the sample, when the diesel fuel is less expensive.

On the supply side, the parameters on the marginal cost shifters are primarily identified

by the price moments. In panel C, we plot the coal price, the electricity price, the durable-

goods manufacturing wage, and the crushed stone price for California. Coal and electricity

prices are highly correlated with the cement price (e.g., see panel A), consistent with a

strong influence on marginal costs; inter-regional variation in input prices helps disentangle

the two effects. It is less clear that wages and crushed stone prices are positively correlated

with cement prices. The utilization parameters are primarily identified by the relationship

between the production moments (which determine utilization) and the price moments. In

panel D, we plot cement prices and industry-wide utilization over the sample period. The two

metrics are negatively correlated over 1983-1987 and positively correlated over 1988-2003.
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Figure 3: Empirical Relationships in the U.S. Southwest. Panel A plots average cement prices and market
coverage. Prices are in dollars per metric tonne and market coverage is defined as the ratio of consumption
to potential demand (times 100). Panel B plots excess production in each region, which we define as the gap
between between production and consumption. Excess production is in millions of metric tonnes. Panel C
plots average coal prices, electricity prices, durable-goods manufacturing wages, and crushed stone prices in
California. For comparability, each time-series is converted to an index that equals one in 2000. Panel D
plots the average cement price and industry-wide utilization (times 100).

6 Estimation Results

6.1 Specification and fits

We estimate the model with parsimonious specifications of the utility and marginal cost

functions. Specifically, the utility specification includes the plant-county price, the “distance”

between the plant and county, a dummy for the import option, and an intercept. We proxy

distance using a diesel price index interacted with the miles between the plant and the center

of the county (in thousands). The marginal cost specification incorporates the five variable

inputs identified by EPA (2009). The constant portion of marginal costs includes shifters for

the price of coal, the price of electricity, the average wages of durable-goods manufacturing

employees, and the price of crushed stone. We let marginal costs increase in production

once utilization exceeds some (estimated) threshold value, as written in Equation 2, and we
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Figure 4: GMM Estimation Fits for Regional Metrics. Consumption, production, and cross-region ship-
ments are in millions of metric tonnes. Prices are constructed as a weighted-average of plants in the region,
and are reported as dollars per metric tonne. The lines of best fit and the reported R2 values are based on
univariate OLS regressions.

normalize ϕ = 1.5 to ensure the theoretical existence of equilibrium.

Before turning to the parameter estimates, we note that this specification produces im-

pressive in-sample and out-of-sample fits. In Figure 4, we plot observed consumption against

predicted consumption (panel A), observed production against predicted production (panel

B), and observed prices against predicted prices (panel C). The model explains 93 percent

of the variation in regional consumption, 94 percent of the variation in regional production,

and 82 percent of the variation in regional prices. The model also generates accurate out-

of-sample predictions. In panel D, we plot observations on cross-region shipments against

the corresponding model predictions. We use only 14 of these observations in the estimation

routine – the remaining 82 data points are withheld from the estimation procedure and do

not directly influence the estimated parameters. Even so, the model explains 98 percent of

the variation in these data.30

30We provide additional information on the estimation fits in Appendix A.
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Table 4: Estimation Results

Variable Parameter Estimate St. Error

Demand
Cement Price β1 -0.087 0.002
Miles×Diesel Price β2 -26.42 1.78
Import Dummy β3 -3.80 0.06
Intercept β0 1.88 0.08
Inclusive Value λ 0.10 0.004

Marginal Costs
Coal Price α1 0.64 0.05
Electricity Price α2 2.28 0.47
Hourly Wages α3 0.01 0.04
Crushed Stone Price α4 0.29 0.31
Utilization Threshold ν 0.86 0.01
Over-Utilization Cost γ 233.91 38.16

GMM estimation results. Estimation exploits variation in regional con-
sumption, production, and average prices over the period 1983-2003,
as well as variation in shipments from California to Northern California
over the period 1990-2003. The prices of cement, coal, and crushed stone
are in dollars per metric tonne. Miles are in thousands. The diesel price
is an index that equals one in 2000. The price of electricity is in cents per
kilowatt-hour, and hourly wages are in dollars per hour. The marginal
cost parameter ϕ is normalized to 1.5, which ensures the theoretical ex-
istence of equilibrium. Standard errors are robust to heteroscedasticity
and contemporaneous correlations between moments.

6.2 Demand estimates and transportation costs

Table 4 presents the parameter estimates of the GMM procedure. The price and distance

coefficients are the two primary objects of interest on the demand side; both are negative and

precisely estimated.31 The ratio of these coefficients identifies consumers’ willingness-to-pay

for proximity, incorporating transportation costs and any other distance-related costs (e.g.,

reduced reliability). In the following discussion, we refer to the willingness-to-pay as the

transportation cost, although the two concepts may not be strictly equivalent.

First, however, we briefly summarize the implied price elasticities. We estimate that

31The other demand parameters take reasonable values and are precisely identified. The negative coefficient
on the import dummy may be due to consumer preferences for domestic plants or to the fact that observed
import prices do not reflect the full price of imported cement (e.g., the data exclude duties). The inclusive
value coefficient suggests that consumer tastes for the different cement providers are highly correlated,
inconsistent with the standard (non-nested) logit model.
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the aggregate elasticity is -0.16 in the median year. This inelasticity is precisely what one

should expect based on economic theory and the fact that portland cement composes only

a small fraction of total construction expenses. Indeed, Syverson (2004) makes a similar

argument for ready-mix concrete, which accounts for only two percent of total construction

expenses according to the 1987 Benchmark Input-Output Tables. The cost share of portland

cement (an input to ready-mix concrete) is surely even lower. By contrast, we estimate that

the median firm-level elasticity is -5.70, consistent with substantive competition between

firms. Finally, we estimate that the domestic elasticity – which captures the responsiveness

of domestic demand to domestic prices, holding import prices constant – is -1.11 in the

median year. The discrepancy between the aggregate and domestic elasticities is suggestive

that imports have a disciplining effect on domestic prices.

Returning to transportation costs, we estimate that consumers pay roughly $0.30 per

tonne mile, given diesel prices at the 2000 level.32 Given the shipping distances that arise

in numerical equilibrium, this translates into an average transportation cost of $24.61 per

metric tonne over the sample period – sufficient to account for 22 percent of total consumer

expenditure. Transportation costs of this magnitude have real effects on the industry. We

develop two such effects here: (1) transportation costs constrain the distance that cement

can be shipped economically; and (2) transportation costs insulate firms from competition

and provide some degree of localized market power.

In Figure 5, we plot the estimated distribution of the shipping distances over 1983-

2003. We calculate that portland cement is shipped an average of 92 miles, that 75 percent

of portland cement is shipped under 110 miles, and that 90 percent is shipped under 175

miles.33 To better place these numbers in context, we ask the question: “How far would

portland cement be shipped if transportation costs were negligible?” We perform a counter-

factual simulation in which we normalize the distance coefficient to zero, keeping the other

coefficients at their estimated values. The results suggest that, in an average year, port-

land cement would have been shipped on average 276 miles absent transportation costs.

Intriguingly, the ratio of actual miles shipped to this simulated measure provides a unit-free

measure that could enable cross-industry comparisons. The ratio in our application is 0.33.

We now develop the empirical evidence regarding localized market power. We start

with an illustrative example. Figure 6 shows the prices (Map A) and market shares (Map

B) that characterize numerical equilibrium for the Clarksdale plant in 2003, evaluated the

32The calculation is simply 26.42
0.087

index
1000 = 0.3037, where index = 1 in 2000.

33The average shipping distance fluctuates between a minimum of 72 miles in 1983 and a maximum of 114
miles in 1998, and is highly correlated with the diesel price index.
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Figure 5: The Estimated Distribution of Miles Shipped over 1983-2003.

optimized coefficient vector. We mark the location of the Clarksdale plant with a star, and

mark other plants with circles. The Clarksdale plant captures more than 40 percent of the

market in the central and northeastern counties of Arizona. It charges consumers in these

counties its highest prices, typically $80 per metric tonne or more. Both market shares and

prices are lower in more distant counties, and in many counties the plant captures less than

one percent of demand despite substantial discounts. The locations of competitors may also

influence market share and prices, though these effects are difficult to discern on the map.

We explore these relationships more rigorously with regression analysis, based on the

prices and market shares that characterize equilibrium at the optimized coefficient vector.

We regress price and market share on three independent variables: the distance between

the plant and the county, the distance between the county and the nearest other domestic

plant, and the estimated marginal cost of the plant. We define distance as miles times the

diesel index, and use a log-log specification to ease interpretation. We focus on three data

samples, composed of the plant-county pairs with distances of 0-100, 100-200, and 200-300,

respectively. Our objective is purely descriptive and the regression coefficients should not

be interpreted as consistent estimates of any underlying structural parameters.

Table 5 presents the results, which are consistent with the illustrative example and

demonstrate that (1) plants have higher prices and market shares in counties that are closer;

and (2) plants have lower prices and market shares in counties that have nearby alternatives.

For the closest plants and counties, a 10 percent reduction in distance is associated with prices
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Figure 6: Equilibrium Prices and Market Shares for the Clarksdale Plant in 2003. The Clarksdale plant is
marked with a star, and other plants are marked with circles.

and market shares that are 0.9 percent and 14 percent higher, respectively. For the same

sample, a 10 percent reduction in the distance separating the county from its the closest

alternative is associated with prices and market shares that are 0.7 percent and 11 percent

lower, respectively. Interestingly, these price effects attenuate for plants and counties that

are somewhat more distant, whereas the market share effects amplify.

6.3 Marginal cost estimates

The marginal costs estimates shown in Table 4 correspond to a marginal cost of $69.40 in the

mean plant-year (weighted by production). Of these marginal costs, $60.50 is attributable

to costs related to coal, electricity, labor and raw materials, and the remaining $8.90 is

attributable to high utilization rates. In Figure 7, we plot the three metrics over 1983-

2003, together with the average prices that arise in numerical equilibrium at the optimized

parameter vector. The constant portion of marginal costs declines through the sample period,

due primarily to cheaper coal and electricity, whereas the utilization portion increases. We

estimate that utilization-related expenses account for roughly 25 percent of overall marginal

28



Table 5: Plant Prices and Market Shares

Dependent Variable: ln(Price) ln(Price) ln(Price) ln(Share) ln(Share) ln(Share)

Distance from Plant: 0-100 100-200 200-300 0-100 100-200 200-300

ln(Distance from Plant) -0.098* -0.038* -0.003 -1.369* -2.655* -5.902*

(0.026) (0.009) (0.009) (0.102) (0.186) (0.195)

ln(Distance to Nearest 0.071* 0.018* 0.007* 1.073* 0.813* 1.279*

Alternative) (0.019) (0.004) (0.002) (0.117) (0.081) (0.098)

ln(Marginal Cost) 0.723* 0.835* 0.841* -1.126* -2.057* -3.212*

(0.054) (0.014) (0.013) (0.304) (0.645) (0.874)

R2 0.7186 0.9209 0.9499 0.5278 0.4735 0.5407

# of Obs. 2,840 5,460 6,088 2,840 5,460 6,088

Results of OLS regression. The units of observation are at the plant-county-year level. The
dependent variables are the natural logs of the plant-county specific prices and market shares
that characterize numerical equilibrium at the GMM estimates. Distance from Plant is the miles
between the plant and county, times a diesel price index that equals one in 2000. Distance to
Nearest Alternative is the miles between the county and the nearest other domestic plant, times
the diesel price index. Marginal Cost is the marginal cost of the plant implied by the GMM
estimates. All regressions include an intercept. Standard errors are robust to heteroscedasticity
and correlations among observations from the same plant. Statistical significance at the one
percent level is denoted by *.
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Figure 7: Estimated Marginal Costs and Average Prices.

costs over 1997-2003, during the onset of the housing bubble. Finally, we note that the

average markup (i.e., price minus marginal cost) is quite stable through the sample period

around its mean of $17.20.

We calculate that the average plant-year observation has variable costs of $51 million

by integrating the marginal cost function over the production levels that arise in numerical

equilibrium. Virtually all of these variable costs – 98.5 percent – are due to coal, electric-

ity, labor and raw materials, rather than due to high utilization. Thus, although capacity

constraints may have substantial affects on marginal costs, the results suggest that their

cumulative contribution to plant costs can be minimal. Taking the accounting statistics

further, we calculate that the average plant-year has variable revenues of $73 million and

that the average gross margin (variable profits over variable revenues) is 0.32. As argued in

Ryan (2009), margins of this magnitude may be needed to rationalize entry given the sunk

costs associated with plant construction.34,35

34These gross margins are consistent with publicly-available accounting data. For instance, Lafarge North
America – one of the largest domestic producers – reports an average gross margin of 0.33 over 2002-2004.

35Fixed costs are well understood to be important for production, as well. The trade journal Rock Prod-
ucts reports that high capacity portland cement plants incurred averaged $6.96 in maintenance costs per
production tonne in 1993 (Rock-Products (1994)). Evaluated at the production levels that correspond to
numerical equilibrium in 1993, this number implies that the average plant would have incurred $5.7 million
in maintenance costs relative to variable profits of $17.7 million. The GMM estimation results suggest that
the bulk of these maintenance costs are best considered fixed rather than due to high utilization rates. Of
course, the static nature of the model precludes more direct inferences about fixed costs.
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Finally, we discuss the individual parameter estimates shown in Table 4, each of which

deviates somewhat from production data available from the Minerals Yearbooks and EPA

(2009). To start, the coal parameter implies that plants burn 0.64 tonnes of coal to produce

one tonne of cement, whereas in fact plants burn roughly 0.09 tonnes of coal to produce each

tonne of cement. The electricity parameter implies that plants use 228 kilowatt-hours per

tonne of cement, whereas the true number is closer to 150. Each tonne of cement requires

approximately 0.34 employee-hours yet the parameter on wages is essentially zero. Lastly, the

crushed stone coefficient of 0.29 is too small, given that roughly 1.67 tonnes of raw materials

(mostly limestone) are used per tonne of cement. We suspect that these discrepancies are

due to measurement error in the data.36

6.4 A comparison to standard methods

The standard method of structural analysis for homogenous product industries assumes

independent markets and Cournot competition. In this section, we contrast some of our

results to those generated by the standard method in Ryan (2009), a recent paper that

estimates a structural model of the portland cement industry based on data from the Minerals

Yearbook and the Plant Information Summary. We focus on two economic concepts – the

aggregate elasticity of demand and the consequences of high utilization – for which our model

generates distinctly different estimates than the standard method. These discrepancies do

not diminish the substantial contribution of Ryan (2009), which embeds the standard method

within an innovative dynamic discrete choice game and focuses primarily on the dynamic

parameters. Rather, the discrepancies suggest two reasons that our model may sometimes

provide more reasonable results than conventional approaches.

First, we estimate the aggregate elasticity of demand to be -0.16 in the median sample

year whereas Ryan works with an aggregate elasticity of -2.96, obtained from a constant

elasticity demand system. The difference is due to specific specification choices – the constant

elasticity demand system produces an aggregate elasticity of -0.15 once housing permits are

included as a control.37 Ryan cannot use the inelastic estimate because, within the context

of Cournot competition, it implies firm elasticities that are small and inconsistent with profit

36In particular, the coal prices in the data are free-on-board and do not reflect any transportation costs
paid by cement plants; cement plants may negotiate individual contracts with electrical utilities that are
not reflected in the data; the wages of cement workers need not track the average wages of durable-goods
manufacturing employees; and cement plants typically use limestone from a quarry adjacent to the plant, so
the crushed stone price may not proxy the cost of limestone acquisition (i.e., the quarry production costs).

37See Table 3 in Ryan (2009). We consider the inelastic estimate more plausible because portland cement
is a minor cost for most construction projects (see Section 6.2).
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maximization. This occurs because the Cournot model restricts each firm elasticity to be

linearly related to the aggregate elasticity according the relationship ej = e/sj, where ej,

e, and sj denote the firm elasticity, the aggregate elasticity, and the firm market shares,

respectively. This critique is fundamental: the standard method can be inappropriate for

intermediate goods, such as portland cement, that account for only a fraction for the total

production costs of the final good. By contrast, the nested logit demand system divorces the

firm elasticities from the aggregate elasticity and, in our case, produces inelastic aggregate

demand and elastic firm demand.

Second, the two methods produce vastly different estimates of the marginal cost curve

once utilization reaches the threshold level (which both methods place just above 0.85). We

estimate that marginal costs increase gradually so that full utilization increases marginal

costs by a total of $12.25 relative to utilization below the threshold. By contrast, Ryan

estimates that the slope of the marginal cost curve past the threshold is nearly infinite.38

We suspect that the difference is data driven. The standard method requires data on firm-

level utilization. However, firm production is not available from the publicly-available data,

and Ryan imputes utilization as annual capacity divided by annualized daily capacity.

In Figure 8, we plot total production, total annual capacity, and total annualized daily

capacity in the U.S. Southwest over 1983-2003, together with total consumption. Both

production and consumption are pro-cyclical, and actual utilization (i.e., production over

annual capacity) varies substantively and predictably with demand conditions. By contrast,

annual capacity simply tracks annualized daily capacity so that Ryan’s utilization proxy is

uncorrelated with demand conditions. The strength of the relationship between utilization

and demand is precisely what identifies the magnitude of utilization costs. Thus, we suspect

that the lower data requirements of our model – estimation is feasible when some variables

of interest (e.g., firm-level production) are unobserved – may improve economic estimates.

7 An application to competition policy

The model and estimator may prove useful for a variety of policy endeavors. One potential

application is merger simulation, an important tool for competition policy. In this subsection,

we use counter-factual simulations to evaluate a hypothetical merger between Calmat and

Gifford-Hill in 1986. During that year, Calmat and Gifford-Hill operated six plants and

accounted for 43 percent of industry capacity in the U.S. Southwest. We calculate the loss

38Our coefficient γ is roughly analogous to Ryan’s δ2 coefficient. We estimate γ to be 233.91, while Ryan
estimates δ2 to be 1157× 107. See Table 4 in Ryan (2009).
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Figure 8: Consumption, Production, and Two Capacity Measures.

of consumer surplus due to the unilateral effects of the merger, map the distribution of harm

over the U.S. Southwest, and evaluate six alternative divestiture plans.39

Table 6 shows that the merger reduces consumer surplus by $1.40 million in 1986, absent

a divestiture. The magnitude of the effect is modest relative to the amount of commerce; by

way of comparison, we calculate total pre-merger consumer surplus to be more than $239

million. We refer to the six plants available for divestiture as Calmat1, Calmat2, Calmat3,

Gifford-Hill1, Gifford-Hill2, and Gifford-Hill3, respectively. The single-plant divestitures

mitigate between 31 percent and 56 percent of the harm. The “optimal” divestiture – that

of Gifford-Hill2 – results in consumer harm of only $614 thousand.

We map the distribution of consumer harm over the U.S. Southwest in Figure 9, both

for the merger without divestiture (panel A) and under the optimal divestiture plan (panel

B). As shown in panel A, the unilateral effects of the merger are concentrated in Southern

California and Arizona. Together, Maricopa County and Los Angeles County account for

39We follow standard practice to perform the counterfactuals. For each merger simulation, we define a
matrix Ωpost(P ) using Equation 6 and the post-merger structure of the industry. We compute the equi-
librium post-merger price vector as the solution to Equation 7, substituting Ωpost(P ) for Ω(P ). Following
McFadden (1981) and Small and Rosen (1981), the change in consumer surplus due to the merger is:

∆CS =
N∑

n=1

ln(1 + exp(β0 + λIprent ))− ln(1 + exp(β0 + λIpostnt ))

β1
Mn,

where Ipren is the inclusive value of the inside goods calculated using equilibrium pre-merger prices, Ipostn is
the inclusive value calculated using equilibrium post-merger prices, and β1 is the price coefficient.
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Table 6: Divestitures and Consumer Surplus

Required Divestiture

None Calmat1 Calmat2 Calmat3 Gifford-Hill1 Gifford-Hill2 Gifford-Hill3

∆ Surplus -1,397 -964 -618 -797 -827 -614 -891

% Mitigated · 31% 56% 43% 41% 56% 36%
Results of counterfactual simulations. ∆ Surplus is the change in consumer surplus due to a hypo-
thetical merger between Calmat and Gifford-Hill in 1986, and is reported in thousands of 2000 dollars.
% Mitigated is calculated relative to the change in consumer surplus that occurs when no plant is
divested. We consider six single-plant divestiture plans, and refer to the different plants as Calmat1,
Calmat2, Calmat3, Gifford-Hill1, Gifford-Hill2, and Gifford-Hill3.

!(

Gifford-Hill 3

Centex

Kaiser 

Kaiser 

Monolith

Calmat 2

Calmat 1

La Farge

Calmat 3

Calaveras

Calaveras

Lone Star

Southwest
Gifford-Hill 1

Gifford-Hill 2

Loss of Consumer 
Surplus

<2

2-20

20-50

50-250

>250

Map A: No Divestiture Map B: Optimal Divestiture

!(

Gifford-Hill 3

Centex

Kaiser 

Kaiser 

Monolith

Calmat 2

Calmat 1

La Farge

Calmat 3

Calaveras

Calaveras

Lone Star

Southwest
Gifford-Hill 1

Gifford-Hill 2

Loss of Consumer 
Surplus

<2

2-20

20-50

50-250

>250

Figure 9: Loss of Consumer Surplus Due to a Hypothetical Merger between Calmat and Gifford-Hill

60 percent of consumer harm, and more than 90 percent of consumer harm occurs only 10

counties. The best single-plant divestiture mitigates consumer harm in Southern California

but does little to reduce harm in Maricopa County (see panel B). The results of an additional

counterfactual exercises, in which we also divest one of the Arizona plants, suggest that a

two-plant divestiture can mitigate this harm as well (results not shown).
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8 Conclusion

We develop a structural model of competition among spatially differentiated firms. The

model accounts for transportation costs in a realistic and tractable manner. We estimate the

model with relatively disaggregated data and recover the underlying structural parameters.

We argue that the model and estimator together provide an appealing framework with which

to evaluate competition in industries characterized by transportation costs and relatively

homogenous products. We apply the model and estimator to the portland cement industry

and demonstrate that (1) the framework explains the salient features of competition, (2) the

framework provides novel insights regarding transportation costs and spatial differentiation,

and (3) the framework could inform merger analysis and other competition policy endeavors.

Although the model is static, it could be utilized to define payoffs in more dynamic settings.

Such extensions could examine a number of research topics – such as entry deterrence and

product differentiation – that have been emphasized in the theoretical literature of industrial

organization since at least Hotelling (1929).
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A Regression fits

In this appendix, we develop further the quality of the estimation fits. We focus on the

ability of the model to predict the inter-temporal variation that exist in the data.

Figure 10 aggregates the data and the model predictions across regions, and plots

the resulting time-series. Panel A shows consumption, panel B shows production, panel

C shows imports, and panel D shows average prices (imports are defined as production

minus consumption). In each case, the model predictions mimic the inter-temporal patterns

observed in the data. Univariate regressions of the data on the prediction explain 96 percent

of the variation total consumption, 75 percent of the variation in total production, 76 percent

of the variation in imports, and 91 percent of the variation in average prices.40

Figure 11 provides analogous time-series fits for eight of the time-series for cross-region

shipments. The data in panel A pertain to shipments from California (both Northern and

Southern) to Northern California, and are used in estimation. The data in the remaining

panels are excluded from the estimation procedure, so the corresponding fits are out-of-

sample. As shown, the model predictions are close to the data in each panel and tend to

track the variation well (when variation exists).

B The uniqueness of equilibrium

The estimation procedure rests on uniqueness of equilibrium at each candidate parameter

vector. The results of a Monte Carlo experiment suggest the assumption holds, at least in

our application. We consider 300 parameter vectors for each of the 21 years in the sample, for

a total of 6,300 candidate parameter vectors. For each θi ∈ θ, we draw from the distribution

N(µ̂i, σ̂
2
i ), where µ̂i and σ̂i are the coefficient and standard error, respectively, reported in

Table 4. We then compute the numerical equilibrium for each parameter vector, using eleven

different starting vectors. We define the elements of the starting vectors to be Pjnt = ϕPt,

where Pt is the average price of portland cement and ϕ = 0.5, 0.6, . . . , 1.4, 1.5. Thus, we start

the equation solver at initial prices that sometimes understate and sometimes overstate the

average prices in the data. The experiment produces eleven equilibrium price vectors for

each parameter vector. We calculate the standard deviation of each price element across

the eleven observations. Thus, we would calculate 1,260 standard deviations for a typical

40The model does not fully capture the fall in average prices over the 1980s and early 1990s. One possible
explanation is that the model, as specified, does not incorporate potential changes to total factor productivity.
Dunne, Klimek, and Schmitz (2009) review the evidence regarding productivity and argue that the gradual
elimination of onerous clauses from labor contracts improved productivity in the 1980s.
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Figure 10: GMM Estimation Fits for Aggregate Metrics. The solid lines plot data and the dashed lines plot
predictions. Consumption, production, and imports are in millions of metric tonnes. Imports are defined
as production minus consumption. Prices are constructed as a weighted-average of the plant-county prices
and are reported in dollars per metric tonne. The R2 values are calculated from univariate regressions of
the observed metric on the predicted metric.

equilibrium price vector with 1,260 plant-county elements. The experiment provides support

for the uniqueness condition if these standard deviations are small.41 This proves to be the

case. In fact, the maximum maximum standard deviation is zero, considering all prices and

draws, so the experiment finds no evidence of multiple equilibria.

C Estimation details

We minimize the objective function using the Levenberg-Marquardt algorithm (Levenberg

(1944), Marquardt (1963)), which interpolates between the Gauss-Newton algorithm and the

method of gradient descent. We find that the Levenberg-Marquardt algorithm outperforms

simplex methods such as simulated annealing and the Nelder-Mead algorithm, as well as

41The equal-solver computes numerical equilibria for 90.3 percent of the candidate vectors. See Appendix
C for a discussion of non-convergence in the inner-loop.
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Figure 11: GMM Estimation Fits for Cross-Region Shipments. The solid lines plot data and the dashed
lines plot predictions. Shipments are expressed as a percentage of production in California (panels A-D) or
Southern California (panels E-H).

quasi-Newton methods such as BFGS. We implement the minimization procedure using the

nls.lm function in R, which is downloadable as part of the minpack.lm package.

We compute numerical equilibrium using Fortran code that builds on the source code

of the dfsane function in R. The dfsane function implements the nonlinear equation solver

developed in La Cruz, Mart́ınez, and Raydan (2006) and is downloadable as part of the

BB package. We find that Fortran reduces the computational time of the inner loop by a

factor of 30 or more, relative to the dfsane function in R. The computation of equilibrium for

each time period can be parallelized, which further speeds the inner loop calculations. The

numerical computation of equilibrium takes between 2 and 12 seconds for most candidate

parameter vectors when run on a 2.40GHz dual core processor with 4.00GB of RAM.

We use observed prices to form the basis of the initial vector in the inner loop compu-

tations, which limits the distance that the nonlinear equation solver must “walk” to compute

numerical equilibrium. In practice, the equation solver occasionally fails to compute a nu-

merical equilibrium at the specified tolerance level (1e-13) within the specified maximum

number of iterations (600). The candidate parameter vectors that generate non-convergence
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in the inner loop tend to be less economically reasonable, and may be consistent with equi-

libria that are simply too distant from observed prices. When this occurs, we construct

regional-level metrics based on the price vector that comes closest to satisfying our defini-

tion of numerical equilibrium.

We constrain the signs and/or magnitudes of some parameters, based on our under-

standing of economic theory and the economics of the portland cement industry, because

some parameter vectors hinder the computation of numerical equilibrium in the inner loop.

For instance, a positive price coefficient would preclude the existence of Bertrand-Nash equi-

librium. We use the following constraints: the price and distance coefficients (β1 and β2)

must be negative; the coefficients on the marginal cost shifters (α) and the over-utilization

cost (γ) must be positive; and the coefficients on the inclusive value (λ) and the utilization

threshold (ν) must be between zero and one. We use nonlinear transformations to implement

the constraints. As examples, we estimate the price coefficient using β̃1 = log(−β1) in the

GMM procedure, and we estimate the inclusive value coefficient using λ̃ = log
(

λ
1−λ

)
. We

calculate standard errors with the delta method.

D Data details

We make various adjustments to the data in order to improve consistency over time and

across different sources. We discuss some of these adjustments here, in an attempt to build

transparency and aid replication.

The Minerals Yearbook reports the total production and average price of plants in the

“Nevada-Arizona-New Mexico” region over 1983-1991, and in the “Arizona-New Mexico”

region over 1992-2003. We scale the USGS production data downward, proportional to

plant capacity, to remove for the influence of the single New Mexico plant. Since the two

plants in Arizona account for 89 percent of kiln capacity in Arizona and New Mexico in

2003, we scale production by 0.89.

The portland cement plant in Riverside closed its kiln permanently in 1988 but contin-

ued operating its grinding mill with purchased clinker. We include the plant in the analysis

over 1983-1987, and we adjust the USGS production data to remove the influence of the

plant over 1988-2003 by scaling the data downward, proportional to plant grinding capac-

ities. Since the Riverside plant accounts for 7 percent of grinding capacity in Southern

California in 1988, so we scale the production data for that region by 0.93.

We exclude one plant in Riverside that produces white portland cement. White cement
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takes the color of dyes and is used for decorative structures. Production requires kiln temper-

atures that are roughly 50◦C hotter than would be needed for the production of grey cement.

The resulting cost differential makes white cement a poor substitute for grey cement.

The PCA reports that the California Cement Company idled one of two kilns at its

Colton plant over 1992-1993 and three of four kilns at its Rillito plant over 1992-1995, and

that the Calaveras Cement Company idled all kilns at the San Andreas plant following the

plant’s acquisition from Genstar Cement in 1986. We adjust plant capacity accordingly.

The data on coal and electricity prices from the Energy Information Agency are avail-

able at the state level starting in 1990. Only national-level data are available in earlier

years. We impute state-level data over 1983-1989 by (1) calculating the average discrep-

ancy between each state’s price and the national price over 1990-2000, and (2) adjusting the

national-level data upward or downward, in line with the relevant average discrepancy.

43


