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Non-technical summary

Research Question

Point forecasts are often supplemented with information concerning the uncertainty sur-

rounding these forecasts. Sometimes, a probability distribution for the target variable is

provided instead, where its mean and its dispersion correspond to the point forecast and

the associated uncertainty, respectively. If several of such probability forecasts for the

same variable are available, a weighted sum of these forecasts often serves as a device to

pool the information from all individual forecasts, yielding a single, aggregated proba-

bility distribution. This so-called linear pool is the concept underlying, for instance, the

probability forecasts of the ECB’s Survey of Professional Forecasts, as these forecasts are

calculated as an (equally) weighted sum of the individual probability forecasts.

Contribution

Although the linear pool is used in many empirical applications, there are several open

questions concerning the properties of this pool with respect to forecast uncertainty. How-

ever, it is well-known that the dispersion of the aggregated probability distribution is

determined by the dispersions of the individual forecasts and the differences between the

means of the individual forecasts. The latter component is often referred to as disagree-

ment. We investigate the role of disagreement with respect to the forecast uncertainty of

the linear pool.

Results

If the dispersions of the individual forecasts are unbiased, i.e. if the dispersion of each

forecast (ex-ante uncertainty of the individual forecast) is equal to the dispersion of the

forecast errors of the corresponding mean forecast (ex-post uncertainty of the individual

forecast) on average, then the ex-ante uncertainty of the linear pool turns out to be bi-

ased. To be more precise, in this case the linear pool’s dispersion exceeds the linear pool’s

ex-post uncertainty, i.e. the dispersion of the forecast errors of the linear pool’s mean

forecast, on average. The size of this bias is at least as large as the average disagreement.

It also turns out that, under empirical relevant conditions, disagreement does not contain

any useful information concerning the linear pool’s ex-post uncertainty beyond the infor-

mation already contained in the ex-ante uncertainties of the individual forecasts. Since

disagreement then does not help to predict ex-post uncertainty and contributes to the bias



of the linear pool, we propose a simple alternative for pooling the information from all

individual forecasts which does not include a disagreement component. This alternative

pool yields better forecasts than the linear pool in simulations and empirical applications.



Nichttechnische Zusammenfassung

Fragestellung

Punktprognosen werden häufig mit Angaben darüber versehen, von wieviel Unsicherheit

diese Prognosen umgeben sind. Manchmal wird stattdessen auch direkt eine Wahrschein-

lichkeitsverteilung für die prognostizierte Variable angeführt, deren Mittelwert und Streu-

ung dann der Punktprognose und der sie umgebenden Unsicherheit entsprechen. Wenn

verschiedene dieser Wahrscheinlichkeitsprognosen für dieselbe Variable verfügbar sind,

wird oft die gewichtete Summe dieser Prognosen betrachtet, um die Informationen aus

allen Einzelprognosen in einer einzigen, aggregierten Wahrscheinlichkeitsprognose zusam-

menzufassen. Auf diesem Prinzip beruhen zum Beispiel die Wahrscheinlichkeitsprognosen

des Survey of Professional Forecasters der EZB, die sich als (gleich)gewichtete Summe der

Wahrscheinlichkeitsprognosen aller Umfrageteilnehmer ergeben.

Beitrag

Obwohl in vielen empirischen Studien die gewichtete Summe von einzelnen Wahrschein-

lichkeitsprognosen verwendet wird, sind die theoretischen Eigenschaften dieser linearen

Aggregation in Bezug auf die Prognoseunsicherheit kaum erforscht worden. Allerdings

ist bekannt, dass sich die Streuung der aggregierten Wahrscheinlichkeitsprognose aus den

Streuungen der Einzelprognosen und den Unterschieden zwischen den Mittelwerten der

Einzelprognosen, der sogenannten Uneinigkeit, ergibt. Wir untersuchen, welche Rolle die

Uneinigkeit in Bezug auf die Prognoseunsicherheit der aggregierten Wahrscheinlichkeits-

prognose spielt.

Ergebnisse

Wenn die Streuung der Einzelprognosen unverzerrt ist, wenn also die Streuung der jewei-

ligen einzelnen Wahrscheinlichkeitsprognosen (ex-ante Unsicherheit der Einzelprognosen)

im Mittel der Streuung der Fehler ihrer Punktprognosen entspricht (ex-post Unsicherheit

der Einzelprognosen), dann ist die ex-ante Unsicherheit der aggregierten Prognose ver-

zerrt. Die Streuung der aggregierten Wahrscheinlichkeitsprognose übersteigt dann nämlich

im Mittel die ex-post Unsicherheit der aggregierten Prognose, also die Streuung der Feh-

ler jener Punktprognose, die sich aus der aggregierten Wahrscheinlichkeitsprognose ergibt.

Die Höhe der Verzerrung entspricht dabei mindestens dem Betrag der durchschnittlichen

Uneinigkeit. Zudem sagt eine Veränderung der Uneinigkeit unter empirisch relevanten



Bedingungen nichts über die zukünftige Veränderung der ex-post Unsicherheit der aggre-

gierten Prognose aus, was nicht schon aus der Veränderung der ex-ante Unsicherheit der

Einzelprognosen ersichtlich ist. Da die Uneinigkeit im Rahmen der aggregierten Wahr-

scheinlichkeitsprognose dann also keinen prognostischen Wert besitzt und außerdem zu

Verzerrungen führt, schlagen wir eine einfache, alternative Kombination von einzelnen

Wahrscheinlichkeitsprognosen vor, in der die Uneinigkeit keine Rolle spielt. Diese alter-

native Kombination liefert in Simulationen und verschiedenen empirischen Anwendungen

teils deutlich bessere Prognosen als die übliche gewichtete Summe.
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has been funded by the European Union Seventh Framework Programme under grant agreement 290976.
FK also thanks the Klaus Tschira Foundation for infrastructural support at the Heidelberg Institute for
Theoretical Studies (HITS), where he was employed during the initial stage of this project.



1 Introduction

There is a growing recognition that measuring forecast uncertainty matters for economic
policy. For example, many central banks have followed the Bank of England’s lead in
publishing probabilistic forecasts of inflation and related variables; see Franta, Baruńık,
Horváth, and Šmı́dková (2014, Table 1). Similarly, Manski (2015) calls for systematic
measurement and communication of uncertainty in official statistics. In statistical terms,
confronting uncertainty about future developments means to issue density forecasts, rather
than traditional point forecasts. An immediate question is how to make ‘good’ density
forecasts. In light of many available forecasting methods and data sources, it is often a
combination of several individual forecasts, rather than a single forecast, that is considered
for this purpose.

While various combination methods have been proposed, in a recent comprehensive
survey Aastveit, Mitchell, Ravazzolo, and van Dijk (2018, p. 20) argue that “[..] most
applications still focus on the linear opinion pool [..]”. Given a set of n individual density
forecasts f1, . . . , fn, the linear opinion pool, or simply linear pool (LP), is calculated as
flp =

∑n
i=1 ωifi, where {ωi}ni=1 are the combination weights (Stone, 1961). The concept

of the LP is, for instance, employed to produce aggregate probability distributions in the
Surveys of Professional Forecasters (SPF) conducted by the European Central Bank and
the Federal Reserve Bank of Philadelphia.

In the present paper, we analyze the LP’s implications concerning forecast uncertainty.
For this purpose, we develop a novel mean-variance prediction space framework for the
joint distribution of mean forecasts, variance forecasts, and the target variable in terms of
their first two moments. This setup allows us to derive several new results. We focus on the
LP’s ‘disagreement’ component which quantifies differences between the mean forecasts
of the individual densities. While disagreement has received considerable attention as a
potential proxy for economic uncertainty (e.g. Dovern, Fritsche, and Slacalek, 2012), its
role turns out to be problematic in the context of the LP.

First, we show that if the individual density forecasts are variance-unbiased, the LP’s
forecast is underconfident (i.e. the LP’s variance is too large), and the expected disagree-
ment is one component of this upward bias. This result sharpens the findings by Gneiting
and Ranjan (2013) who characterize the LP’s underconfidence in terms of its Probability
Integral Transform (PIT). Second, under a set of conditions including joint normality, we
show that, within the LP, disagreement has no predictive content for squared forecast
errors, thereby starkly violating a desideratum of good uncertainty forecasts. Third, we
show that choosing combination weights for the LP entails a trade-off since the weights af-
fect both the mean forecast and the variance forecast of the LP. Weights that are optimal
for the mean are usually not optimal for the corresponding variance.

The first two results indicate that disagreement harms the LP’s variance forecasts,
which suggests that a variance specification without disagreement should be considered.
We therefore propose the centered linear pool (CLP), a trivial modification of the LP
which achieves this goal and alleviates the trade-off between mean-optimal and variance-
optimal weights. We illustrate our results and investigate the performance of the CLP
in simulations and empirical examples of inflation and stock return forecasts. In both
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empirical examples, the CLP outperforms the LP. We conjecture that the CLP may be
a better starting point than the LP for considering sophisticated specifications of the
combination weights as proposed, e.g. by Billio, Casarin, Ravazzolo, and van Dijk (2013)
and Del Negro, Hasegawa, and Schorfheide (2016).

The remainder of this paper is structured as follows: Section 2 derives simple yet
important properties of an optimal variance forecast. These properties form a benchmark
for evaluating any variance forecast, including that of the LP. Section 3 presents a baseline
example which motivates our analysis of the LP and previews our main results. Section
4 presents a general result on bias in the LP’s variance forecast, which is based on the
sole assumption that the individual variance forecasts are unbiased. Section 5 turns to a
prediction space framework which prescribes a joint model for mean forecasts, variance
forecasts, and the variable to be predicted. We introduce this more specific setup in order
to derive more specific results, and to identify determinants of the LP’s performance.
Sections 6 and 7 contain results of Monte Carlo simulations and empirical applications,
and Section 8 concludes.

2 Properties of an optimal variance forecast

As a first step in our analysis, we derive two simple yet crucial properties of an optimal
variance forecast. As a measure of forecast accuracy, we consider the Dawid and Sebastiani
(1999) scoring rule which depends only on the mean and variance of a forecast distribution,
in line with the focus of our analyses. Specifically, the Dawid-Sebastiani score (DSS)
equals the negative logarithmic score of a Gaussian forecast density fN with mean m and
variance v, i.e.

DSS(m, v, y) = − log(fN (y))

= 0.5 log(2π) + 0.5 log(v) +
(y −m)2

2 v
, (1)

where y denotes the realization of the target variable.1 Note that a smaller score corre-
sponds to a better forecast. Consider forecasting the parameters m and v of a random
variable Y , conditional on some information set I. Then E [DSS(m, v, Y )|I] is minimized
by setting

m = E [Y |I] , (2)

v = E [S|I] , (3)

where S = (Y − m)2 denotes the squared forecast error. Hence the Dawid-Sebastiani
score rewards forecast densities f (that need not be Gaussian) with a correctly specified
conditional mean forecast m and conditional variance forecast v, where the latter depends
on the former. Note that the Dawid-Sebastiani score focuses on the first two moments of f
exclusively. As a consequence, a density forecast with misspecified higher order moments

1In the literature, the equivalent score log(v)+ (y−m)2

v is usually used. However, we stick to the variant
in Equation (1) for better comparability with the logarithmic score in our Monte Carlo simulations.
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may perform equally well as the correct density forecast, but not strictly better. In the
terminology of Gneiting and Raftery (2007), the Dawid-Sebastiani score is a proper but
not a strictly proper scoring rule.

In a multi-observation setup, we treat the mean and variance forecasts as random
variables M and V . Variation in M and V may be informative (resulting from variation
in the conditioning information set I) or not. The optimality condition in Equation (3)
has two important implications in this context: First, V and S should be equal on average,
i.e. E[S] = E[V ]. Throughout the paper, we refer to the unconditional expectation E[S]
as the mean squared forecast error (MSFE). Second, from the law of total covariance, the
requirement that V = E[S|I] implies that Cov[V, S] = V [E[S|I]] ≥ 0. The inequality is
strict only in the presence of predictable heteroskedasticity, because in this case E[S|I]
varies with I.

3 The linear pool’s variance forecast: Baseline exam-

ple

We next provide a simple example which shows that the LP is likely to violate at least one
of the above-mentioned desiderata of an optimal variance forecast, and can easily violate
both. Consider a variable Y determined by

Y = X1 +X2 + U,

where X1, X2 and U are distributed asX1

X2

U

 ∼ N
0

0
0

 ,
 σ2

X ρσ2
X 0

ρσ2
X σ2

X 0
0 0 σ2

U

 .

Forecaster 1 only observes X1, and forecaster 2 only observes X2. Both forecasters aim
to predict the distribution of Y and state the correct forecast distribution given their
information sets. Each forecaster i ∈ {1, 2} thus issues a Gaussian forecast density with
mean Mi and variance Vi. Table 1 lists the formulas for Mi and Vi, as well as all other
relevant formulas for this example. The LP of the two forecasts is given by flp = ω1f1 +
(1− ω1)f2, where flp is the density of the combined forecast, f1 and f2 are the individual
densities, and 0 < ω1 < 1 is the weight on the first forecast. Here and throughout the
paper, we take the combination weights to be fixed, non-stochastic quantities. We denote
the mean and variance of this combined density by Mlp and Vlp, respectively.

As shown in Table 1, both forecasters fulfill the requirements mentioned in Section
2. First, their variance forecasts and squared forecast errors are identical in expectation.
Second, the covariance between each variance forecast and the corresponding squared
error is equal to the variance of the expected (conditional) squared forecast error. Due
to the homoskedasticity in this simple example, the latter two terms are in fact equal to
zero.

The LP’s variance forecast is of the form Vlp = a + D, where a is a constant and
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Object Formula

Individual forecasters

Mean forecasts Mi = (1 + ρ)Xi

Variance forecasts Vi = V = (1− ρ2)σ2
X + σ2

U

Squared error of Mi Si = (−ρXi +Xj + U)2, i 6= j

MSFE of Mi E[Si] = (1− ρ2)σ2
X + σ2

U

Linear pool

Mean forecast Mlp = ω1M1 + (1− ω1)M2

Disagreement D = ω1(Mlp −M1)
2 + (1− ω1) (Mlp −M2)

2

Variance forecast Vlp = ω1 (V1 + (Mlp −M1)
2) + (1− ω1) (V2 + (Mlp −M2)

2)

= V +D

Squared error of Mlp S =
(

(1− ω1 (1 + ρ))X1 + (ω1 (1 + ρ)− ρ)X2 + U
)2

Expected disagreement E[D] = 2ω1(1− ω1)(1− ρ2)(1 + ρ)σ2
X

Expected variance forecast E[Vlp] = (1− ρ2)σ2
X + σ2

U + 2ω1(1− ω1)(1− ρ2)(1 + ρ)σ2
X

= V + E[D]

MSFE of Mlp E[S] = (1− ρ2)σ2
X + σ2

U − 2ω1(1− ω1)(1− ρ2)(1 + ρ)σ2
X

= V − E[D]

Covariance of D and S Cov[D,S]= 2ω1 (1− ω1) (2ω1 − 1)2 (1− ρ)2 (1 + ρ)4 σ4
X

Table 1: Formulas for the baseline example. Moments of linear pool follow from aggrega-
tion of individual forecast densities according to flp = ω1f1 + (1− ω1)f2. MSFE denotes
the mean squared forecast error.

D = ω1 (M1 −Mlp)
2 + (1− ω1) (M2 −Mlp)

2 is the well-known measure of disagreement
between the two point forecasts.2 Strikingly, the LP’s variance Vlp fails at least one of the
requirements mentioned in Section 2, and it fails both in a special but important case.
First, the LP’s expected variance, E[Vlp] exceeds its MSFE, E[S], for all admissible values
of ω1. The LP can therefore be labeled underconfident. The disagreement term D, which
is positive-valued, contributes to the LP’s underconfidence. Second, the LP’s variance Vlp
has no predictive content for its squared forecast error in the important case ω1 = 0.5.
With this value of ω1, the covariance between both quantities equals zero, and it can also
be shown that D is independent of S (see Appendix A). Note that ω1 = 0.5 is a popular
default choice in practice, and minimizes the MSFE of the combined mean forecast in the
present example. For other choices of ω1, the relation between D and S depends on ρ,
σ2
X and σ2

U , but often implies weak correlation between D and S. In the case ω1 = 0.5,
disagreement can thus be regarded as a noise term which deteriorates the LP’s variance
forecast.

2See, for instance, Wallis (2005) for the decomposition of the LP’s variance into the weighted average
variance component and the disagreement component.
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4 Bias in the linear pool’s variance forecast: General

case

We now consider the more general situation where n density forecasts fi with correspond-
ing mean and variance forecasts {mi, vi}ni=1 are available, where the index i denotes an
individual forecast. The LP determines the combined density as flp =

∑n
i=1 ωifi, implying

the mean and the variance forecast

mlp =
n∑
i=1

ωimi (4)

vlp =
n∑
i=1

ωivi + d (5)

with

d =
n∑
i=1

ωi(mi −mlp)
2

such that
∑n

i=1 ωivi is the weighted average variance component and d is the disagreement
component of the LP’s variance forecast. In what follows, we will mostly take the mean
specification in (4) as given, and investigate the properties of the variance specification
in (5) conditional on (4). Moreover, we will consider a simple modification, the centered
linear pool (CLP), with mclp = mlp and

vclp =
n∑
i=1

ωivi (6)

= vlp − d.

Hence, the CLP has the same mean forecast as the LP, but its variance forecast does
not contain the disagreement term. Denoting a density fi with mean mi and variance vi
by fi(mi, vi), the CLP is constructed as fclp =

∑n
i=1 ωifi(mclp, vi). Thus, each individual

density is simply relocated such that its mean equals mclp = mlp instead of mi before
being combined.

Equations (4) to (6) are formulated in terms of given mean and variance forecasts
{mi, vi}ni=1. From an ex-ante perspective, these objects are random variables which we
denote by {Mi, Vi}ni=1. Randomness in the forecasts may reflect both conditioning infor-
mation and noise. To evaluate the performance of a combination method, it is necessary
to make assumptions about the joint distribution of the underlying individual forecasts
and the target variable Y . We first consider a situation in which the individual fore-
casts imply a correct assessment of their own uncertainty, as formulated in the following
assumption.

A1 The individual variance forecasts {Vi}ni=1 are unconditionally unbiased, i.e. they
satisfy E[Vi] = E [(Y −Mi)

2] , i = 1, . . . , n.

As mentioned earlier, assumption A1 is implied by the optimality condition of the
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Dawid-Sebastiani scoring rule in Equation (3). However, A1 imposes only an uncondi-
tional notion of unbiasedness, and is hence much weaker than Equation (3). Denoting the
squared error of the combined mean forecast

∑n
i=1 ωiMi by S, we have the following first

result.

Proposition 4.1. Consider any joint distribution of M , V and Y . Under A1 and as-
suming that the combination weights ωi are positive and sum to one, it holds that

E[Vlp] > E[Vclp] > E[S],

i.e. the variance of both the LP and the CLP is upward biased, with the bias being larger
for the LP.

Proof. Denote by Mlp = ω′M and Vlp = ω′V + D the mean and variance of the LP,
where D =

∑n
i=1 ωi(Mi−Mlp)

2 is the disagreement term and ω is a vector containing the
combination weights ωi for i = 1, . . . , n. Similarly, let Mclp = Mlp and Vclp = ω′V denote
the mean and variance of the CLP, and define S = (Y −Mlp)

2 = (Y −Mclp)
2. We have

that

E
[
(Y − ω′M)2

]
< E

[
n∑
i=1

ωi(Y −Mi)
2

]

=
n∑
i=1

ωi E
[
(Y −Mi)

2
]

=
n∑
i=1

ωi E[Vi],

= E[Vclp],

< E[Vlp] = E[Vclp] + E[D],

where the key inequality in the first line follows from the convexity of the square function.

The result shows that the variance forecasts of the LP and the CLP are upward
biased, even though the individual variance forecasts are unbiased. This finding is similar
in spirit to Gneiting and Ranjan (2013, Theorem 3.1(c)) who show that an LP of ‘neutrally
dispersed’ forecast densities is underconfident. In contrast to our focus on the mean and
variance, Gneiting and Ranjan (2013) define ‘neutral dispersion’ and underconfidence in
terms of the PIT which depends on the entire forecast density. Of course, considering the
entire density is appealing in principle. Without further restrictions, however, it can be
hard to identify what drives a density’s dispersion as measured by the PIT. Our approach
of defining a density’s uncertainty in terms of its variance allows us to sharpen the result
of Gneiting and Ranjan (2013) by identifying disagreement as a variance-bias augmenting
term.3

3Focusing only on the first two moments can be justified empirically at least in macroeconomic appli-
cations. For example, Clark and Ravazzolo (2015) find that using non-Gaussian error term distributions
does not improve the density forecasting performance of autoregressive models with time-varying volatil-
ity.
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Finally, note that the statement of Proposition 4.1 remains true if A1 is replaced by
the following, weaker assumption:

A1’ The individual variance forecasts {Vi}ni=1 satisfy E[Vi] ≥ E [(Y −Mi)
2] , i = 1, . . . , n.

Hence if the individual densities are underconfident, the LP is underconfident as well.

5 Properties of the linear pool in a prediction space

model

We next impose more structure on the joint distribution of the forecasts and realizations in
order to derive more specific results and identify drivers of the LP’s forecast performance.

5.1 Prediction space model for forecasts and realizations

The joint distribution of forecasts and realizations has already been considered as an
important analytical tool in the contributions by Bates and Granger (1969) and Murphy
and Winkler (1987). Gneiting and Ranjan (2013) provide a formalization as a ‘prediction
space’ for full density forecasts. Here we consider a simplified variant where each forecast
is characterized by a mean and variance only; see Ehm, Gneiting, Jordan, and Krüger
(2016, Section 3.1) for further discussion.

Consider a vector of mean forecasts M ∈ Rn, a vector of variance forecasts V ∈ Rn
+,

an error term U ∈ R (see below) and a positive-valued common factor η ∈ R+ such that

η−1/2

 M
U

η−1/2V

 ∼
 µM

0
µV

 ,
 ΣM 0 0

0 σ2
U 0

0 0 ΣV

 , (7)

where the column on the right-hand side denotes the expectations of the variables, and the
matrix denotes the variance-covariance matrix. The random variable η is assumed to be
independent of the variables on the left-hand side, i.e. of η−1/2M, η−1/2U, η−1V .4 Without
loss of generality, we assume that the expectation of the target variable Y conditional
on η is zero. The error term U is defined as the residual of the projection of the target
variable Y on the bias-corrected forecasts M −√ηµM , i.e. by

Y = (M −√ηµM)′ γ + U, (8)

where γ is the vector of coefficients resulting from this projection. The conditional distri-

4This assumption could equivalently be expressed by writing Mi and U as products of η and a random
variable that is independent of η, and by writing Vi as a product of η2 and an independent random variable.
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bution of the original variables thus is given by
Y
M
U
V

η

 =




0√
ηµM
0
ηµV

 ,


ησ2
Y ηγ′ΣM ησ2

U 0
ηΣMγ ηΣM 0 0
ησ2

U 0 ησ2
U 0

0 0 0 η2ΣV


 . (9)

Note that η acts as a common factor which scales the mean vectors of M and V , as
well as the model’s covariance and variance terms (except the ones that are restricted
to zero). Albeit simple, such a common factor specification of time-varying uncertainty
is in line with the empirical results of Carriero, Clark, and Marcellino (2016) for many
macroeconomic and financial variables. Without loss of generality, we assume that E[η] =
1. Note that we impose few restrictions on the process that generates η. For example,
η could be a discrete variable that takes values of 0.5 and 1.5 with probability one half
each. As another example, η could follow an autocorrelated time series process. The only
requirement we impose is that E[η] = 1 and V[η] ≡ σ2

η exist; hence, the process generating
η must be stationary. That said, none of our subsequent results depends on any properties
of this process other than σ2

η.

By varying the biases in µM , the weight vector γ and the variance of U , the framework
can accommodate a wide range of scenarios, with mean forecasts M ranging from poor to
precise. Finally, we assume that the variance forecasts V are conditionally uncorrelated
with M and U . Hence, our setup does not cover situations where changes in uncertainty
affect the mean of the target variable, like, for instance, in GARCH-in-mean models.

5.2 Bias in the linear pool’s variance forecast

The following result uses the prediction space framework to derive a specific characteri-
zation of the bias in the LP’s variance forecast.

Proposition 5.1. Under A1, it holds that E[S] = E[ω′V ]−E[D]. Hence the LP and CLP
systematically deviate from S according to

E[S] = E[ω′V ] + E[D]︸ ︷︷ ︸
E[Vlp]

−2 E[D],

= E[ω′V ]︸ ︷︷ ︸
E[Vclp]

− E[D].

Proof. See Appendix C.

Proposition 5.1 quantifies the relationship between the LP’s expected squared forecast
error, E[S], and the LP’s variance forecast, E[Vlp]. As shown in Section 2, both quantities
should be equal in optimum. The proposition thus provides a precise assessment of the
LP’s underconfidence.5

5Proposition 5.1 is related to a result by Lahiri and Sheng (2010) who, however, work under a different
set of assumptions. Their Equation (8) yields the same statement as our Proposition 5.1 if the number of
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Propositions 4.1 and 5.1 have the same qualitative interpretation: If the individual vari-
ance forecasts are unbiased, then both the LP and the CLP are underconfident. However,
Proposition 5.1 exploits the prediction space framework to make a precise quantitative
statement on the pools’ underconfidence.

5.3 Disagreement encompassed by weighted average variance
forecasts

We next derive a result that speaks to the desideratum that a variance forecast should be
highly correlated with the squared errors of the mean forecast (see Section 2). Specifically,
consider the following linear regressions:

S = a0 + a1D + a2 ω
′V + error (10)

and
S = b1D + b2 ω

′V + error (11)

where (11) is aimed at the case of constant variance forecasts ω′V , such that (10) cannot be
employed. The LP entails the assumptions that a0 = 0, a1 = a2 = 1 or, alternatively, that
b1 = b2 = 1. We are particularly interested in the coefficients a1 and b1 which quantify
the contribution of disagreement to the forecast of the squared error. The population
coefficient of a1 equals

a1 =
Cov[S,D − α̃− β̃ ω′V ]

V[D − α̃− β̃ ω′V ]

=
Cov[S,D]− β̃ Cov[S, ω′V ]

V[D] + β̃2ω′V[V ]ω − 2β̃ Cov[D,ω′V ]
,

where α̃ and β̃ are the population coefficients from a linear regression of D on a constant
and ω′V . A similar expression holds for b1.

6

The following result states conditions under which a1 = b1 = 0 holds, corresponding
to a particularly stark violation of the LP’s implicit assumption.

Proposition 5.2. Assume that

A2 The forecast biases are all identical, i.e. µM =
[
κ, . . . , κ

]′
for some κ ∈ R.

A3 The combination weights minimize E[S] subject to the constraint of adding up to
one (Bates and Granger, 1969).

A4 The joint distribution of M and U conditional on η is normal.

A5 It holds that ΣV = 0.

forecasters (N in their notation) diverges to infinity; in that case, their expression σ2
λ|th corresponds to

our E[S]. However, their statement is different from ours for any fixed value of N . Furthermore, Lahiri
and Sheng (2010) do not consider implications for the combination of density forecasts.

6The formula remains the same, except that Cov[A,B] is replaced by E[AB] and V[A] is replaced by
E[A2]).
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Then, a1 = b1 = 0, i.e. ω′V encompasses disagreement in the prediction of S.

Proof. See Appendix C.

Assumption A2 restricts the biases in the mean forecasts M to be equal, with unbiased
mean forecasts (κ = 0 in A2) being an important special case. From an empirical per-
spective, A2 can be motivated by the fact that different model-based forecasting methods
often rely on a similar sample of data for parameter estimation. Assumption A3 restricts
the way in which a researcher derives the combination weights ω. In the context of den-
sity forecasting, the restriction of adding up to one is necessary to guarantee that the
combined object is a density.7 Since these weights minimize the MSFE, we refer to them
as the MSFE-optimal weights ω∗. Note that ω∗ can have negative elements which could,
in principle, lead to a negative variance prediction by the LP. We disregard the latter case
which seems of minor applied relevance. We also note that ω∗ is optimal in terms of the
Dawid-Sebastiani score (given the prior adding-up-constraint), and is hence consistent
with our setup.8 Assumptions A4 and A5 impose restrictions on the prediction space,
conditional on the common factor η. However, the prediction space retains considerable
flexibility by specifying alternative distributions of η.9

While the assumptions underlying Proposition 5.2 are restrictive, they do not appear
implausible from an empirical point of view. Furthermore, note that the case covered
by the proposition is a fairly drastic one, in that disagreement plays no role whatsoever,
which is a particularly stark contrast to the LP’s assumption. Below we present nu-
merical results which show that similar results (disagreement having limited but nonzero
predictive content) hold under a broader set of conditions.

5.4 Choice of combination weights

The magnitude of the LP’s variance bias (discussed in Propositions 4.1 and 5.1) and
the correlation between D and S (discussed in Proposition 5.2) depend on ω, the vector
of combination weights. Hence it seems tempting to choose ω in a way that limits the
drawbacks of the LP mentioned above. Unfortunately, this approach is not feasible in
general: ω also affects the LP’s mean forecast, and a given choice of ω can generate good
mean forecasts but poor variance forecasts or vice versa. The following result describes
such a situation.

Proposition 5.3. Assume that A1 holds, and assume that

A6 All individual mean forecasts have the same MSFE, i.e. E[(Y −Mi)
2] = c for some

c > 0 and all i = 1, . . . , n.

7In combinations of point forecasts, the same restriction is also commonly employed.
8As noted in Section 2, minimizing the expected Dawid-Sebastiani score requires the researcher to

first select an MSFE-optimal point forecast, and then select the corresponding variance. The Bates and
Granger (1969) minimization problem solves the first step, given the prior constraint that the weights
add up to one.

9Moreover, A4 could be relaxed slightly at the cost of a more demanding exposition. In fact, U can
be non-normal if certain moments of U are uncorrelated with certain moments of M conditional on η.
Normality of M conditional on η continues to be required.
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Then the MSFE-optimal combination weights ω∗ maximize the upward bias of the LP’s
variance.

Proof. See Appendix C.

Proposition 5.3 presents a simple but empirically relevant scenario in which the weights
that minimize the MSFE of the LP’s mean forecast also maximize the upward bias of the
LP’s variance forecast. Assumption A6 requires that the mean forecasts to be combined
have the same MSFE, which holds approximately in many applications. An interesting
special case of A6 arises when all forecasts are unbiased and all pairwise correlations
between the forecast errors are identical, i.e. Cor(Y −Mi, Y −Mj) = ρ for all pairs of
forecasts i, j with i 6= j. In this case, equal weights are optimal in terms of MSFE (Tim-
mermann, 2006, Section 2.4). Motivated by the good performance of equal combination
weights in applications, the latter case has received much attention in the literature (e.g.
Smith and Wallis, 2009; Elliott, 2011; Claeskens, Magnus, Vasnev, and Wang, 2016).

If the assumptions of Propositions 5.1 and 5.2 apply, it is clear that the MSFE-optimal
weights ω∗ are not optimal for the LP’s variance because the disagreement component is
a bias-augmenting noise term. Since disagreement and, consequently, the bias equals zero
if one forecast receives a weight of one, the LP faces a trade-off between accurate mean
forecasts achieved by using ω∗ and accurate variance forecasts achieved by using a weight
vector ι[i] that places a weight of one on a single forecast i ∈ {1, . . . , n}, and a weight
of zero on all other forecasts. The DSS-optimal weights for the LP will differ from ω∗ if
the gain in variance forecast accuracy obtained by moving from ω∗ towards ι[i] exceeds
the corresponding loss in mean forecast accuracy for any forecast i. The variance forecast
will become more accurate in this case because its bias is reduced and its disagreement
component becomes correlated with the squared forecast error. The CLP faces a similar
trade-off. However, moving from ω∗ towards ι[i] will yield smaller gains in variance forecast
accuracy for the CLP, because the initial bias is smaller and, hence, the bias reduction will
be smaller. Moreover, there is no disagreement component which becomes correlated with
the squared forecast error. Therefore, the DSS-optimal weights of the LP can be expected
to differ more strongly from the MSFE-optimal weights ω∗ than the DSS-optimal weights
of the CLP.

5.5 Disagreement as a proxy for weighted average variance

Our results up to this point present conditions under which disagreement is detrimental
to the LP’s performance. These results refer to the situation where both disagreement
D and the weighted average variance ω′V are available, as is clearly the case when com-
bining various density forecasts. In the distinct situation where only mean forecasts are
available, however, disagreement is sometimes considered as a simple proxy for predictive
uncertainty. The economic policy uncertainty index provided by Baker, Bloom, and Davis
(2019), which considers disagreement among participants of the Federal Reserve Bank of
Philadelphia’s SPF, is a prominent example. The following result states conditions under
which disagreement is a viable proxy of the weighted average variance in our theoretical
framework.

Proposition 5.4. Assume that A5 holds, and that
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Correlation between disagreement and weighted average variance
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Figure 1: Correlations of disagreement D and weighted average variance ω′V for different
values of σ2

η and n. Combination weights and parameters of prediction space are given by
ω = n−1ι, γ = ι, ΣM = In, where ι is an n× 1 vector of ones and In is the identity matrix
of size n. η follows a gamma distribution with E[η] = 1 and V[η] = σ2

η.

A2’ All mean forecasts are unbiased, i.e. µM = 0 ι.

A7 ω = n−1ι and γ = γ̃ ι, where ι is an n× 1 vector of ones and γ̃ is a scalar.

A8 ΣM is such that its diagonal elements are all equal to σ2, and its off-diagonal ele-
ments are all equal to θ.

Then if the number of forecasters n goes to infinity, it holds that Cor(D,S)/Cor(ω′V, S)→
1 and that Cor(D,ω′V )→ 1.

Proof. See Appendix C.

The result shows that under certain conditions, disagreement and weighted average
variance are equivalent for large n, in the sense that their correlation converges to one
and they become equally correlated with S, the squared forecast error of the combination.
From a practical perspective, the proposition thus provides a justification for using D
as a proxy for ω′V when the latter is not available and the number of forecasters is
large enough. Figure 1 illustrates the proposition by plotting the correlation between D
and ω′V . The correlation increases in n and σ2

η, the variance of the common factor η.
Conversely, the figure shows that the correlation of D and ω′V tends to be low if only few
forecasts are available and if σ2

η is small, such that fluctuations in disagreement reflect
noise rather than fluctuations in η. The result that σ2

η needs to be large enough in order to
render disagreement a good proxy for uncertainty is supported by the empirical findings
of Boero, Smith, and Wallis (2015, p. 1044) who state that “[..] the joint results from the
US and UK surveys suggest the encompassing conclusion that disagreement is a useful
proxy for uncertainty when it exhibits large fluctuations [..]”.

While certainly restrictive, A2’, A7 and A8 may be useful assumptions to make when
using a survey of forecasters like the SPF. In such a survey, n may be relatively large,
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and making simplifying assumptions along the lines of A2’, A7 and A8 is often a sensible
strategy in order to reduce estimation noise. In particular, Capistrán and Timmermann
(2009) show that entry and exit of forecasters makes it challenging to identify more refined
correlation structures among the individual point forecasts.

6 Monte Carlo simulations

Here we illustrate our results via simulation examples. For simplicity, we fix the factor η
in Equation (9) at a value of one, which corresponds to the limiting case that V[η]→ 0.10

Specifically, we simulate variants of the baseline example in Section 3, where the target
variable is given by

Y = X1 +X2 + U,

with  X1

X2

U

 ∼
 0

0
0

 ,
 1 0 0

0 σ2
X2

0
0 0 1

 .

In all simulations, U is normally distributed. Using the notation of Section 5, the mean
forecast of forecaster i is given by

Mi = Xi

such that equation (8) holds with γ =
[
1, 1

]′
and µM =

[
0, 0

]′
. Moreover, ΣM equals

ΣM =

[
1 0
0 σ2

X2

]
.

The corresponding variance forecasts equal

V1 = σ2
X2

+ σ2
U = σ2

X2
+ 1

V2 = σ2
X1

+ σ2
U = 2.

Thus, the conditional moments of V are described by (9) with µV =
[
V1, V2

]′
, ΣV =

0, and η = 1. Hence, each forecaster produces mean and variance forecasts that are
ideal conditional on her information set, thereby fulfilling assumption A1 of unconditional
unbiasedness. The combined mean forecast of each combination scheme to be considered
equals

Mc = ω′M = ω1M1 + (1− ω1)M2,

where ω1 is the weight for the first forecast.

In the Monte Carlo simulations, we employ three combination schemes, the linear pool
(LP), the centered linear pool (CLP) and, additionally, a variance-unbiased linear pool
(VULP). The latter is difficult to apply in practice, but it is useful to illustrate some of

10We also experimented with more general scenarios, using various data generating processes for η.
However, these scenarios offer little additional insight in the present context, motivating our simple
choice.
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the theoretical results. We denote the ith density forecast by

fi (Mi, Vi)

where Mi denotes the mean and Vi the variance of fi. The density fi does not need to be
normally distributed, but we suppress the potential dependence on additional parameters
in our notation. The density of the LP is given by

flp = ω1f1 (M1, V1) + (1− ω1) f2 (M2, V2)

whereas the density of the CLP equals

fclp = ω1f1 (Mc, V1) + (1− ω1) f2 (Mc, V2) .

Thus, the CLP relocates both individual density forecasts at Mc, and then combines the
relocated densities linearly. Finally, the density of the VULP is

fvulp = ω1f1 (Mc, V1 − E [D]) + (1− ω1) f2 (Mc, V2 − E [D]) .

Hence, in addition to relocating, the VULP rescales both densities such that the individual
variance forecasts are reduced by E [D] . Each of these pools implies a mean and a variance
forecast. While all three combined densities have the same mean forecast (i.e. Mlp =
Mclp = Mvulp = Mc), the respective variance forecasts differ. The LP produces the
variance forecast

Vlp = ω′V +D

= ω1

(
σ2
X2

+ 1
)

+ (1− ω1) 2 +D

with
D = ω1 (M1 −Mc)

2 + (1− ω1) (M2 −Mc)
2 .

The CLP yields

Vclp = ω′V

= ω1

(
σ2
X2

+ 1
)

+ (1− ω1) 2.

Using the VULP results in
Vvulp = ω′V − E [D]

with
E [D] = ω1 (1− ω1)

(
σ2
X2

+ 1
)
.

Note that Vclp and Vvulp are constant, whereas Vlp contains a stochastic component.

In the first case considered, we employ σ2
X2

= 1.11 The weight ω1 for the first forecast
ranges from 0 to 1, and the MSFE-optimal weight is ω∗1 = 0.5. As shown in the lower left
panel of Figure 2, the variance forecasts have the property described in Proposition 5.1.
The MSFE of the combined forecast equals E[S] = Vvulp. The CLP’s constant variance,

11This setup corresponds to the baseline example in Section 3 with ρ = 0.
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Vclp, lies halfway between the constant optimal variance Vvulp and the LP’s expected
variance E[Vlp]. The difference between the CLP’s variance and the LP’s variance is given
by Vclp − E[Vlp] = E[D]. In line with Proposition 5.3, E [D] reaches its maximum at ω∗1,
implying that the largest bias in the LP’s variance forecasts occurs when MSFE-optimal
weights are used.

The regression coefficients displayed in the lower right panel at ω∗1 illustrate the result
of Proposition 5.2. The coefficient for disagreement equals zero, because disagreement
D has no explanatory power for the squared error S beyond what is contained in the
combined variance forecast ω′V which is constant here. Since ω′V is larger than E [S],
its coefficient is smaller than one. A coefficient equal to one for D, as is implicitly used
by the LP, is only observed for weights which differ considerably from ω∗1. The regression
coefficient for ω′V is almost constant across all values of ω1.

The scoring rules displayed in the two upper panels of Figure 2 show that all pools
perform best when using the weight ω∗1. The LP performs worse than the CLP and the
VULP at ω∗1 and for a wide range of weights around ω∗1. The VULP outperforms the
two other pools for most values of ω1. Concerning the Dawid-Sebastiani score and the
weight choice ω1 = ω∗1, the superiority of the VULP follows from the fact that its mean
and variance forecasts satisfy the optimality restrictions in Equations (2) and (3). For
values of ω1 close to zero or one, the differences in the scores tend to be small. With the
current setting, the CLP and the VULP yield normal densities, leading to the equality
of the Dawid-Sebastiani score and the logarithmic score. The LP produces non-normal
densities.

The second case we consider is equal to the first case except for the value of σ2
X2

which
now equals 1.5. Thus, f2 has a lower variance than f1, and M2 produces a lower MSFE
than M1. Therefore, the weighted average variance forecast ω′V of the CLP displayed in
Figure 3 increases with ω1. The variance forecast of the VULP is minimal at ω∗1 = 0.4
which is the MSFE-optimal weight. The bias term E [D] continues to have its maximum
at ω1 = 0.5.12 As implied by Proposition 5.2, the regression coefficient for D equals zero
at ω∗1. The regression coefficient for ω′V slowly decreases with ω.

The optimal weights differ for each pool. For the VULP, the minimal Dawid-Sebastiani
score is attained at ω∗1 = 0.4. For the other pools, however, it is optimal to reduce the
bias of their variance forecasts at the cost of lower accuracy of their mean forecasts. For
the CLP, the smallest Dawid-Sebastiani score is reached at ω1 = 0.37. For the LP, which
has a larger variance bias than the CLP, a considerably smaller weight of ω1 = 0.24 turns
out to be optimal. Similar observations apply to the logarithmic score, where the optimal
weights for the VULP and the CLP are virtually the same as for the Dawid-Sebastiani
score, although the forecast densities are non-normal. For the LP, the optimal weight
equals ω1 = 0.3. Since the LP’s scores are flatter due to its higher variance bias, these
simulation results indicate that finding optimal combination weights for the LP is likely
to be more difficult than for the CLP in empirical applications. Like in the first case,
with respect to both scores the LP performs worst for a wide range of weights around ω∗1,
and the VULP performs best.

12Note that Assumption A6 underlying Proposition 5.3 does not hold in this case, explaining why the
bias in the LP’s variance is not maximized at ω∗1 .
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In the third case, X1 and X2 both follow t-distributions with 5 degrees of freedom,
rescaled such that σ2

X1
= σ2

X2
= 1. Each individual forecast continues to be ideal – con-

ditional on the respective information set – in terms of its mean and variance prediction.
However, the forecast densities fi are misspecified in terms of their functional form since
they are rescaled t-distributions, while the correct density would be given by the den-
sity of Mj + U , i.e. the sum of a (rescaled) t-distributed and a normal random variable.
Concerning the weighted average variance forecasts displayed in Figure 4, the results are
identical to those from the first case. Yet the regression coefficients displayed in the lower
right panel differ because the assumption of joint normality of

[
M1, M2, U

]′
required

by Proposition 5.2 is violated. As a consequence, at ω∗1, D contains information beyond
that contained in ω′V. However, the coefficient for D still has its minimum at ω∗1. Again,
the coefficient for ω′V is relatively stable across all values of ω.

For each pool, the Dawid-Sebastiani score and the logarithmic score differ because all
pooled densities are non-normal. All pools attain their lowest values at ω∗1, and the LP
performs worse than the CLP and the VULP at ω∗1 and for a certain range of weights
around ω∗1. This range is narrower than in the first case, but still covers more than the
central 50% of all weights considered. The VULP outperforms the CLP with respect to
the Dawid-Sebastiani score. For the logarithmic score, the VULP and CLP attain similar
values, with the CLP performing marginally better.

7 Empirical case studies

We next investigate the properties of the LP and CLP in two case studies from macroeco-
nomics and finance. In both case studies, we construct measures of forecast uncertainty
from time series models with stochastic volatility.

7.1 Forecasting inflation

Here we employ inflation forecasts from the univariate unobserved component model with
stochastic volatility (UCSV) by Chan (2013) and from the bivariate unobserved com-
ponent model with trends and cycles (biUC) by Chan, Koop, and Potter (2016). The
UCSV model is closely related to the model in Stock and Watson (2007), but the stochas-
tic volatilities evolve as AR(1)-processes instead of random walks. Trend inflation in the
biUC model is bounded between 0% and 5%, and the non-accelerating inflation rate of
unemployment (NAIRU) is bounded between 4% and 7%. See Chan (2013) and Chan
et al. (2016) for all details on the Bayesian estimation methodology and prior choices.13

The models are estimated recursively using the annualized quarterly growth rate of the
GDP deflator and the unemployment rate of the US from 1948Q1 to 2018Q2. The evalu-
ation sample starts in 1964Q4. We investigate forecasts for one and two quarters ahead.
We denote the weight for the UCSV model by ω1.

13Our codes are based on the MATLAB codes kindly made available by Joshua Chan at http:

//joshuachan.org/code/code_MASV.html and http://joshuachan.org/code/code_biUC_bounded.

html.
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Figure 2: Monte Carlo simulations, case 1 (Gaussian forecasts, σ2
X2

= 1). The top row
shows the Dawid-Sebastiani and logarithmic scores (log scores) for the linear pool (LP),
the centered linear pool (CLP) and the variance-unbiased linear pool (VULP), plotted
against the combination weight ω1. A lower score indicates a more accurate forecast.
The vertical lines indicate the optimal weights for each pool considered. The optimal
weight for the VULP (shown in blue) is also optimal in terms of MSFE. The bottom row
shows the forecast variance and the regression coefficients in Equation (10), again plotted
against ω1. The vertical lines indicates the VULP- and MSFE-optimal weight. All results
are based on 10,000 simulations and 10,000 observations for Y in each simulation.
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Figure 3: Monte Carlo simulations, case 2 (Gaussian forecasts, σ2
X2

= 1.5). Figure design
analogous to Figure 2.
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Figure 4: Monte Carlo simulations, case 3 (rescaled t-distributed density forecasts,
σ2
X2

= 1). Figure design analogous to Figure 2.
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Figure 5 presents the forecasts for the mean and the variance of inflation. The forecasts
of both models are more strongly correlated for h = 1 than for h = 2, and the biUC model
tends to forecast larger variances especially around 1980. Figure 6 displays results of the
LP and the CLP for all positive weights.14 The middle row of the figure summarizes the
pools’ variance forecasts and their MSFE. The results for the corner weights ω1 = 0 and
ω1 = 1 reveal that the variance forecasts of both models exceed their respective MSFEs;
this upward bias is more pronounced for the biUC model. Furthermore, the MSFEs of the
pools’ mean forecasts attain their smallest values at ω∗1 = 0.48 for h = 1 and at ω∗1 = 0.32
for h = 2.

The regression coefficients of Equation (10) displayed in the lower row of Figure 6
exhibit a dependence on the weights which is similar to the Monte Carlo simulations.
The coefficient of ω′V is positive, smaller than 1, and relatively stable. It decreases with
ω1 due to the stronger variance bias of the biUC model. The coefficient of D reaches
values around 1 only for relatively extreme values of ω1. For weights around ω∗1, the
coefficient is comparatively small and stable. In contrast to the Monte Carlo simulations
considered, the coefficient of D becomes negative for a wide range of weights around ω∗1.

For both horizons, in general, the Dawid-Sebastiani score of the CLP shown in the top
row of Figure 6 is lower than the Dawid-Sebastiani score of the LP. The opposite holds
for extreme weights only, where the scores of both pools are almost identical. As in the
Monte Carlo simulations with unequal MSFEs, the optimal weights of both pools result
from the implicit trade-off between mean and variance forecast accuracy. Relative to ω∗1
both pools prefer to put more weight on the model with the lower MSFE, leading to a
lower (and thus, less biased) variance forecast. The trade-off between mean and variance
accuracy is particularly daunting for the LP, for which disagreement enters the variance
equation. As a consequence, the optimal weight for the LP implies a more pronounced
deterioration of its mean forecast accuracy. While the optimal weights of the CLP for
h = 1 and h = 2 equal 0.45 and 0.23, respectively, the corresponding optimal weights of
the LP are given by 0.40 and 0.12.

Since equal weights are ubiquitously used in practice, we report more detailed results
for this case. As shown in Tables 2, the CLP’s weighted average variance forecasts exceed
the respective MSFEs by roughly 50% for both horizons. Disagreement further aggravates
this bias for the LP, accounting for 8% of the LP’s variance at h = 1 and for 11% at h = 2.
The superior predictive accuracy of the CLP over the LP is not statistically significant at
h = 1, but it is for h = 2.15 Table 3 reports on regressions of S on a constant, D and ω′V .
For both horizons, neither the positive constants nor the negative coefficients of D are
statistically different from 0, whereas the positive coefficients of ω′V are. These results
indicate that D is encompassed by ω′V in the prediction of the squared forecast errors S.
The pairwise correlations of D, S, and ω′V are all positive, but the correlations of D and
S are clearly smaller than those of ω′V and S.

14In contrast to the Monte Carlo simulations, there are no results for the variance-unbiased linear
pool, since its implementation would require knowledge about E [D|η]. Moreover, we focus on the Dawid-
Sebastiani score for brevity.

15Here and in the following, we refer to two-sided tests at the five percent level when reporting on
statistical significance.
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Inflation case study

Vlp ω′V D S DSSlp DSSclp DM t-stat

h = 1 1.618 1.494 0.124 1.031 1.334 1.327 1.902
h = 2 2.485 2.210 0.275 1.502 1.523 1.510 2.652

Return case study

Vlp ω′V D S DSSlp DSSclp DM t-stat

23.255 23.192 0.063 18.101 3.776 3.776 0.218

Table 2: Sample averages for several variables and Diebold-Mariano (DM) t-statistics for
equal predictive accuracy of LP and CLP. A positive sign of the t-statistic indicates a
better score of CLP. In both case studies, equal weights are used. The test statistic is
based on Newey and West (1987) standard errors, with truncation lag chosen according
to Andrews (1991) and Zeileis (2004).

Inflation case study

(Intercept) D ω′V Cor(D,S) Cor(ω′V, S) Cor(D,ω′V )

h = 1 0.229 -0.397 0.570 0.107 0.386 0.457
(0.144) (0.358) (0.160)

h = 2 0.313 -0.280 0.573 0.105 0.367 0.466
(0.198) (0.285) (0.214)

Return case study

(Intercept) D ω′V Cor(D,S) Cor(ω′V, S) Cor(D,ω′V )

6.478 14.364 0.462 0.093 0.258 0.279
(3.462) (40.738) (0.110)

Table 3: On the left, results from regression of squared forecast errors on disagreement
and equally weighted average variance forecasts. Robust standard errors in parentheses,
see below Table 2 for details. On the right, correlation coefficients between disagreement,
equally weighted average variance forecasts, and squared forecast errors.
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7.2 Forecasting monthly excess stock returns

As a second case study, we consider predicting monthly excess returns of the S&P 500 via
models of the form

Rt = α + βXt−1 + εt, (12)

where Rt is the monthly excess return, Xt is one out of 15 predictors considered by Welch
and Goyal (2008), and εt is an error term with stochastic volatility. We follow Rapach,
Strauss, and Zhou (2010) in combining 15 univariate models of the form (12). Each model
is estimated via Bayesian methods; see Appendix D for details and prior choices. The
models are estimated recursively, with observations ranging back to January 1970. The
evaluation period is from January 1990 to December 2015. We only consider the case of
equal combination weights due to the larger number of models involved.

Figure 7 presents the return forecasts. In contrast to the previous case study, we
find that disagreement D is dwarfed by the average variance forecast ω′V , with the lat-
ter exceeding disagreement by a factor of around four hundred on average (see Table 2).
This result can be explained by low predictability of the mean excess return, which cor-
responds to similar mean predictions of the 15 individual models. Since D is very small
in magnitude, it hardly hampers the predictive accuracy of the LP, which is statistically
indistinguishable from its CLP counterpart. Yet, Table 3 shows that, like in the previous
case study, ω′V encompasses D in the prediction of the squared forecast errors S. Relative
to the correlation of ω′V and S, the correlation of D and S is larger than in the inflation
case study. Based on Proposition 5.4, this result might be explained by the fact that more
forecasts are pooled here, rendering D a less noisy predictor of S relative to ω′V .

8 Conclusion

In this paper, we have established a general setup for modeling the joint distribution
of mean forecasts, variance forecasts, and the variable to be predicted. This setup has
allowed us to derive several new results concerning the linear pool’s variance forecast. In
particular, we have described several scenarios in which disagreement – a component of
the linear pool’s variance forecast that reflects differences between the individual mean
forecasts – is harmful to the linear pool’s variance forecast. This has motivated us to
propose the centered linear pool, a trivial modification of the linear pool that removes the
disagreement component. This proposal is well aligned with macroeconomic applications
where available time series are short and prone to structural breaks, such that simple
approaches seem promising to avoid overfitting. In more data-rich situations, a natural
reaction to the shortcomings of the linear pool would be to consider more flexible com-
bination schemes like the approach of Kapetanios, Mitchell, Price, and Fawcett (2015)
or the Bayesian alternatives surveyed in Aastveit et al. (2018, Section 3.4). While such
approaches do not target disagreement specifically, they provide general re-calibration
schemes at the cost of additional parameters to be estimated.

If the concept of the linear pool is to be used, our results suggest that performance-
improving refinements should target the individual densities before they are combined.
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Procedures which aim at modifying the aggregated density provided by the linear pool
are unable to target the noisy disagreement term only. Therefore, the consideration of
optimized time-varying weights as surveyed in Aastveit et al. (2018, Section 3), or the
spread-adjusted or beta-transformed linear pools proposed in Gneiting and Ranjan (2013,
Sections 3.2 and 3.3) can be expected to yield only limited gains in accuracy unless the
disagreement term is relatively small. However, the same methods can be applied to the
centered linear pool, and the corresponding gains could actually be larger in that case,
for instance because the likelihood function, like the scores considered, becomes less flat
with respect to the weights.

Finally, our analysis rests on the assumption that a better proxy of forecast uncertainty
(based on the individual models’ variance forecasts) than disagreement is available. This
assumption is plausible in the context of forecast density combinations. In situations
where only point forecasts are available, our Proposition 5.4 formalizes the notion that
disagreement may be a reasonable ‘second-best’, provided that it is calculated from a
sufficiently large cross-section of point forecasts. The latter assessment is in line with the
approach used in many empirical studies based on macroeconomic survey forecasts.
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useful? The effect of zero lower bound and evaluation of financial stability stress tests.
International Journal of Central Banking 10, 159–188.

Gneiting, T. and A. E. Raftery (2007). Strictly proper scoring rules, prediction, and
estimation. Journal of the American Statistical Association 102, 359–378.

Gneiting, T. and R. Ranjan (2013). Combining predictive distributions. Electronic Journal
of Statistics 7, 1747–1782.

Kapetanios, G., J. Mitchell, S. Price, and N. Fawcett (2015). Generalised density forecast
combinations. Journal of Econometrics 188, 150–165.

Kim, S., N. Shephard, and S. Chib (1998). Stochastic volatility: Likelihood inference and
comparison with ARCH models. The Review of Economic Studies 65, 361–393.

24



Koop, G. and D. Korobilis (2010). Bayesian multivariate time series methods for empirical
macroeconomics. Foundations and Trends in Econometrics 3, 267–358.

Lahiri, K. and X. Sheng (2010). Measuring forecast uncertainty by disagreement: The
missing link. Journal of Applied Econometrics 25, 514–538.

Manski, C. F. (2015). Communicating uncertainty in official economic statistics: An
appraisal fifty years after Morgenstern. Journal of Economic Literature 53, 631–53.

Murphy, A. H. and R. L. Winkler (1987). A general framework for forecast verification.
Monthly Weather Review 115, 1330–1338.

Newey, W. K. and K. D. West (1987). A simple, positive semi-definite, heteroscedasticity
and autocorrelation consistent covariance matrix. Econometrica 55, 703–708.

Petersen, K. B. and M. S. Petersen (2012). The matrix cookbook. Available at http:

//www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf.

Rapach, D. E., J. K. Strauss, and G. Zhou (2010). Out-of-sample equity premium pre-
diction: Combination forecasts and links to the real economy. Review of Financial
Studies 23, 821–862.

Schmidt, V. (2013). Stochastics iii. Lecture notes, Ulm University, available
at https://www.uni-ulm.de/fileadmin/website_uni_ulm/mawi.inst.110/lehre/

ws12/Stochastik_III/skript_02.pdf.

Smith, J. and K. F. Wallis (2009). A simple explanation of the forecast combination
puzzle. Oxford Bulletin of Economics and Statistics 71, 331–355.

Stock, J. H. and M. W. Watson (2007). Why has US inflation become harder to forecast?
Journal of Money, Credit and Banking 39, 3–33.

Stone, M. (1961). The opinion pool. The Annals of Mathematical Statistics 32, 1339–1342.

Timmermann, A. (2006). Forecast combinations. Volume 1 of Handbook of Economic
Forecasting, pp. 135 – 196. Elsevier.

Wallis, K. F. (2005). Combining density and interval forecasts: A modest proposal. Oxford
Bulletin of Economics and Statistics 67, 983–994.

Welch, I. and A. Goyal (2008). A comprehensive look at the empirical performance of
equity premium prediction. Review of Financial Studies 21, 1455–1508.

Zeileis, A. (2004). Econometric computing with HC and HAC covariance matrix estima-
tors. Journal of Statistical Software 11, 1–17.

25

http://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
http://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
https://www.uni-ulm.de/fileadmin/website_uni_ulm/mawi.inst.110/lehre/ws12/Stochastik_III/skript_02.pdf
https://www.uni-ulm.de/fileadmin/website_uni_ulm/mawi.inst.110/lehre/ws12/Stochastik_III/skript_02.pdf


Appendix

A Derivations for baseline example

Here we prove that D and S are independent for ω = 0.5. Consider the zero mean vector
W =

[
X1, X2, U

]′
with variance-covariance-matrix

Ω =

 σ2
X ρσ2

X 0
ρσ2

X σ2
X 0

0 0 σ2
X

 .
We can write W as W = C Z, where C is the lower-diagonal Cholesky matrix of Ω, and
Z is a trivariate vector of independent standard normals. Simple algebra yields that

C =

 σX 0 0

ρσX
√

1− ρ2σX 0
0 0 σU

 .
D is proportional to (X1 −X2)

2. We can write

(X1 −X2)
2 = (

[
1 −1 0

]︸ ︷︷ ︸
=a′

×W )2 = Z ′ C ′aa′C Z;

furthermore,

S = (
[
ω (1 + ρ) (1− ω) (1 + ρ) 1

]︸ ︷︷ ︸
=b′

W )2 = Z ′ C ′bb′C Z.

A standard result (Craig, 1943) states that D and S are independent if C ′ aa′ CC ′ bb′ C =
0. Simple but tedious algebra shows that this condition is satisfied for ω = 0.5.

B Basic formulas

The following formulas are used repeatedly in the proofs of Appendix C, and are thus
listed for easier reference. Formulas involving third and higher moments of Gaussian
quadratic forms involve cumbersome yet well-known calculations available in Theorems
1.6 and 1.7 of Schmidt (2013).
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Object Expression Assumptions

E [D] Tr (A (ΣM + µMµ
′
M))

E [ω′V ] ω′µV
E [ω′V ] Tr ((γγ′ − 2ωγ′) ΣM + diag (ω) (ΣM + µMµ

′
M)) + σ2

U A1

E [S] Tr (BΣM) + Tr (ωω′ µMµ
′
M) + σ2

U

Cov [D,S] 2 E [η2] Tr (AΣM (BΣM − 2 (γ − ω)ω′ µMµ
′
M)) A4

+ σ2
η E [S] E [D]

Cov [ω′V, S] σ2
η E [ω′V ] E [S]

Cov [D,ω′V ] σ2
η E [ω′V ] E [D]

V [D] 2 E [η2] Tr (AΣMA (ΣM + 2µMµ
′
M)) + σ2

η (E [D])2

V [ω′V ] E [η2] ω′ΣV ω + σ2
η (E [ω′V ])2

Table 4: Formulas and underlying assumptions. Matrices A and B are defined as follows:
A = diag(ω)− ωω′, B = (γ − ω)(γ − ω)′.
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C Proofs

Proposition 4.2

Assumption A1 implies that µV,, the ith element of vector µV , equals E[Si], the MSFE
of forecast i. An expression for the latter can be recovered from the expression for E[S]
in Table 4, noting that the ith forecast corresponds to the special case ω = ι[i], an n× 1
vector with all elements equal to zero except the ith element being equal to one. The
result then follows immediately.

Proposition 4.3

Proof. A4 allows to derive explicit results for the relevant variance and covariance terms
in a1 and b1 defined in Section 5.3; see Table 4 for the corresponding formulas. The result
of Proposition 4.3 then follows from Lemma C.1 below and A5.

Lemma C.1. Under the prediction space framework together with A2 and A3, the fol-
lowing relations hold:

• Tr (AΣMBΣM) = 0

• µ′MA = 0 ι′, where ι is an n× 1 vector of ones.

Proof. We first derive an expression for B = (γ − ω∗)(γ − ω∗)′, where ω∗ denotes the
MSFE-optimal combination weights. Since the weights ω∗ are restricted to sum to 1,

ι′ω∗ = 1,

they are given by the population value of a restricted least squares regression of Y on M .
A2 implies that we can write E [MM ′] = κ2ιι′ + ΣM for some κ ∈ R. From the inverse
formula in Equation (160) of Petersen and Petersen (2012), we then find that

ω∗ = γ − Σ−1M ι
(
ι′Σ−1M ι

)−1
(ι′γ − 1).

Hence,

B ≡ (γ − ω∗)(γ − ω∗)′

=
(ι′γ − 1)2(
ι′Σ−1M ι

)2︸ ︷︷ ︸
≡ c ∈ R+

(
Σ−1M ιι′Σ−1M

)
. (13)
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Equation (13) and the definition A = [diag (ω∗)− ω∗ω∗′] imply that

AΣMBΣM = c [diag (ω∗)− ω∗ω∗′] ιι′,

= c×

diag (ω∗) ιι′︸ ︷︷ ︸
=ω∗ι′

− ω∗ω∗′ι︸︷︷︸
=1

ι′

 ,

= c× 0× I,

such that Tr (AΣMBΣM) = 0. We further have that µ′MA = κ ι′diag(ω∗) − κ ι′ω∗ω∗′ =
κ ω∗′ − κ ω∗′ = 0 ι′.

Proposition 5.3

Proof. We have that E[S] = E[ω′V ] − E[D] = c − E[D], where the first equality follows
from A1 and Proposition 5.1, and the second equality follows from A7. Note that E[D]
depends on ω. Hence minimizing E[S] is equivalent to maximizing E[D], which in turn is
equivalent to maximizing the upward bias of the LP, given by 2 E[D].

Proposition 5.4

Proof: Under the stated assumptions, we can write

A = n−1In − n−2ιι′

B = (n−1 − γ̃)2ιι′

ΣM = (σ2 − θ)In + θ ιι′

Using the fact that ιι′ιι′ = n ιι′, we find that

AΣMBΣM = 0 ιι′ (14)

Tr(AΣMAΣM) = (n− 1) n−2 (σ2 − θ) (15)

For the first statement, we consider the ratio

Rn =
Cor(D,S)

Cor(ω′V, S)
=

Cov(D,S)

Cov(ω′V, S)

√
V (ω′V )√
V (D)

Using A2’, Equations (14) and (15) and the basic formulas, we get

Rn =
ση E(D)√

2 E(η2)(n− 1)n−2(σ2 − θ) + σ2
η (E(D))2

.

The result that Rn → 1 as n → ∞ then follows from noting that the first summand in
the denominator vanishes as n→∞. The proof for the second statement is very similar
and thus omitted.
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D Details on the SV model

This appendix provides details on the model used in Section 7.2, which is of the form

Yt = X ′t−1β + εt, (16)

εt ∼ N (0, exp(ht)), (17)

ht = ht−1 + νt, (18)

νt
iid∼ N (0, σ2

ν), (19)

where the vector Xt =
[
1, Zt

]′
contains an intercept and a scalar regressor Zt. We

denote the sample period by t = 1, . . . , T , and let X =
[
X0 X1 . . . XT−1

]′
and Y =[

Y1, . . . , YT
]
.

Sketch of Gibbs sampler

We first initialize all parameters at arbitrary initial values (indicated by subindex (0)).
Then, in Gibbs sampler iteration i = 1, 2, . . . , nG,

1. Draw β(i) from a multivariate normal distribution with the following variance and
mean:

V β =
(
V −1β +X ′(i−1)X

)−1
, (20)

mβ = V β ×
(
V −1β mβ +X ′(i−1)Y

)
, (21)

where W (i−1) = diag(1/ exp(h
(i−1)
1 ), . . . , 1/ exp(h

(i−1)
T )) and V β and mβ denote the

variance and mean of the Gaussian prior distribution for β.

2. Draw h
(i)
1 , . . . , h

(i)
T using the procedure of Kim, Shephard, and Chib (1998); see Koop

and Korobilis (2010, pp. 309-310) for a concise description.

3. Draw
(
σ
2(i)
ν

)−1
from a Wishart distribution with T + bν degrees of freedom and

scale parameter
(∑T

t=2(h
(i)
t − h

(i)
t−1)

2 + aν

)−1
, where aν and bν are prior parameters

(see Table 5).

4. Simulate next period’s log volatility as h
(i)
T+1 = h

(i)
T +ν

(i)
T+1, where ν

(i)
T+1 ∼ N (0, σ

2,(i)
ν ).

The forecast mean and variance for iteration i are then given by m
(i)
T+1 = X

′(i)
T and

v
(i)
T+1 = exp(h

(i)
T+1), respectively.
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We use nG = 20, 000 Gibbs sampler draws, which are preceded by a burn-in period of
5, 000 draws. We compute the forecast mean and variance as

mT+1 =
1

nG

nG∑
i=1

m
(i)
T+1,

vT+1 =
1

nG

nG∑
i=1

v
(i)
T+1 +

1

nG
(m

(i)
T+1 −mT+1)

2;

these formulas follow from the usual view that the forecast distribution is an equally
weighted mixture of the nG forecast distributions obtained at the individual Gibbs itera-
tions.

Priors

Table 5 summarizes the prior parameters. We use loose priors for β and a diffuse prior
for (the initial log variance) h0. Our choices of aν and bν allow for a considerable amount
of stochastic volatility, as shown in the right panel of Figure 7.

Parameter Value

mβ

[
0, 0

]′
V β 1000× I2
mh0

0
V h0

100
aν 1
bν 5

Table 5: Prior parameters for the two time series models. mh0
and V h0

denote the
prior mean and variance of the initial log variance, h0. All other parameters have been
introduced in the text.
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E Additional Figures
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Figure 5: Inflation case study. Predicted mean (left) and variance (right) of the two
models, plotted over time.
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Figure 6: Inflation case study. Top row: Dawid-Sebastiani score plotted against the
combination weight ω1 placed on the UCSV model. A smaller score is better. The vertical
lines mark the ex-post optimal weight for the pools (black and orange) and in terms of
MSFE (blue). Middle row: Forecast variance plotted against combination weight; the
blue curve indicates the MSFE. Bottom row: Regression coefficients in Equation (10),
plotted against combination weight. 33
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Figure 7: Return case study. Predicted mean (left) and variance (right) of the 15 models,
plotted over time.
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