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the proposed estimator with Heckman and Singer's (1984) Non Parametric Maximum 
Likelihood Estimator (NPMLE). The methodology is applied to the analysis of youth 
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1. Introduction

This paper develops a semiparametric Bayesian methodology for analyzing dura-

tion data. The methodology specifies a hazard model belonging to a parametric

family, and allows a flexible distribution for a residual heterogeneity term, by

modeling it as a mixture of Dirichlet processes (Ferguson, 1973; Antoniak, 1974).

Markov chain Monte Carlo methods are then used to simulate posterior quantities

for parameters of interest, and to generate predictive distributions.

It is common to model duration data as a combination of a baseline hazard

and a mixing distribution, and to interpret the baseline hazard as representing

structural duration dependence, and the mixing distribution as unobserved het-

erogeneity. It is well known that parameter estimates in this model are sensi-

tive to the assumptions made about the mixing distribution. In an important

contribution, Heckman and Singer (1984) propose a Non Parametric Maximum

Likelihood Estimator (NPMLE) that overcomes the excessive sensitivity of para-

meter estimates to assumptions about the distribution of residual heterogeneity.

The NPMLE specifies a hazard function up to a finite number of unknown para-

meters, and then lets the heterogeneity term follow a discrete mixture structure.

This estimator has been used frequently in the literature to model unobserved

heterogeneity in a variety of settings: unemployment duration for Canadian men

(Ham and Rea, 1987); the effects of training on the length of unemployment and

employment spells in an experimental study (Ham and Lalonde, 1996); welfare

spells (Blank, 1989); and transitions in and out of poverty (Stevens, 1999). The

NPMLE performs well in estimating the structural parameters of the duration

model, but proves to be an unreliable guide to the shape of the true mixing dis-
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tribution of unobservables. In the case where the number of mixture points is

unknown, a distribution theory for the proposed estimator has not yet, to the

best of my knowledge, been developed.1

The estimator proposed here addresses the shortcomings of the NPMLE. The

Bayesian approach enables one to obtain, conditional on the prior distribution,

exact finite sample posterior probability intervals for the parameters of interest,

that correctly account for the uncertainty present in the model.2 The Dirichlet

process is a prior on the space of distribution functions, and allows flexibility

in the heterogeneity distribution: this can be multimodal, skewed, or fat-tailed.

The posterior distribution is a mixture of a continuous density and a discrete

density. Importantly, the algorithm used to obtain posterior distributions of the

parameters of interest generates also a posterior distribution for the number of

mass points in the heterogeneity distribution. Therefore, the marginal distribution

of the parameters reflects the uncertainty surrounding the number of mixture

points. This enables one to directly compare the performance of my estimator to

Heckman and Singer’s NPMLE.

In most applications of the Dirichlet process, the data is modeled as a normal

density, mixed with respect to the distribution of the parameters. If the common

prior distribution follows a Dirichlet process, then the data will come from a

Dirichlet mixture of normals (Ferguson, 1983; Escobar, 1994; Escobar and West,

1995). An interesting economic application is in Hirano (2002), who uses this
1Van der Vaart (1996) proves asymptotic normality for the NPMLE in certain special cases,

but does not provide a general proof.
2In a parametric model, the 95 percent posterior probability interval does have the frequentist

property that, in repeated samples, and for large sample sizes, it contains the true parameter
95% of the time. In semiparametric applications such as the one studied here, it is no longer
clear that the posterior probability interval has the desired frequentist property. Nevertheless,
it can still be a useful summary measure of uncertainty.
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methodology to study the structure of earning dynamics in a longitudinal data

set.

Non parametric analysis of duration data presents some peculiarities, because

of the nonlinearity of the problem and because the residual heterogeneity term

usually enters the model multiplicatively. The normal model is not convenient in

this case. I overcome these difficulties by specifying a Weibull hazard function,

and letting the heterogeneity term follow a Dirichlet mixture of Gamma distribu-

tions. The posterior distribution for the mixture density in this case has not been

previously derived.

Semiparametric Bayesian analysis for proportional hazard models has been

described in Kalbfleisch and Prentice (1980). Hjort (1990) proposes a nonpara-

metric Bayes estimator based on Beta processes. In economic applications, Rug-

giero (1994) proposes a fully Bayesian estimator for the regression parameters

in a proportional hazards model, by specifying a Dirichlet prior distribution for

the baseline hazard, treated as a nuisance parameter. He then computes the

posterior distribution of the parameter of interest, conditional on the data and

integrated with respect to the nuisance parameter, and applies this methodology

to an analysis of survival times of job vacancies. My approach differs in that I

specify the complete distribution of duration times, up to a finite dimensional pa-

rameter vector, and allow a flexible mixture for the distribution of the individual

heterogeneity term. This allows one to generate predictive distributions for du-

ration spells, possibly at the cost of additional functional form assumptions. My

approach is similar to that developed independently by Campolieti (2001): the

difference lies in the fact that Campolieti models the hazard in discrete time us-

ing a multiperiod probit model and a normal prior for the Dirichlet process. The
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Weibull-Gamma combination used in this paper adheres more closely to the types

of models commonly analyzed in duration studies. In addition, I present results

from a small Monte Carlo study showing that proposed estimator has the desired

frequentist properties of unbiasedness (i.e., the posterior mean approximates the

true parameter value) and correct coverage rates of the posterior interval.

The rest of the paper is structured as follows: in Section 2 I present first a brief

description of the Dirichlet process and discuss of some of its properties; then I

describe its application to the Bayesian estimation of duration data. In Section 3

I present some suggestive Monte Carlo evidence on the performance of the estima-

tion technique on simulated data sets. Section 4 applies this methodology to an

analysis of unemployment spells of young men. It also compares the performance

of the proposed estimator to Heckman and Singer’s NPMLE: parameter estimates

and standard errors based on the Dirichlet model reflect substantially more accu-

rately the uncertainty surrounding the distribution of unobserved heterogeneity.

Section 5 concludes.

2. Dirichlet Mixture Models for Duration Data

2.1. The Dirichlet Process

The following definitions and properties of a Dirichlet process are due to Antoniak

(1974).

Definition 1. Let Θ be a set, and A a σ-field of subsets of Θ. Let ν be a

finite, non-null, non-negative, finitely additive measure on (Θ,A) . We say a
random probability measure P on (Θ,A) is a Dirichlet process on (Θ,A) with
base measure ν, denoted P ∈ D (ν) , if for every k = 1, 2, ... and measurable
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partition B1, B2, ..., Bk of Θ, the joint distribution of the random probabilities

(P (B1) , ..., P (Bk)) is Dirichlet with parameters (ν (B1) , ..., ν (Bk)) . (Based on

Antoniak, 1974, Definition 1).

Following are some useful properties of the Dirichlet process:

1. If P ∈ D(γ) and A ∈ A,then E(P (A)) = γ(A)/γ(Θ).

2. If P ∈ D(γ) and conditional given P, θ1, θ2, ..., θN are i.i.d. P, then

P |θ1, θ2, ..., θN ∈ D(γ +
PN

i=1 δθi) where δx denotes the probability measure

giving mass one to the point x.

3. If P ∈ D(γ), then P is almost surely discrete.

The almost sure discreteness of the Dirichlet process is a key feature for model

analysis. Suppose that P ∼ D(γP0) is a Dirichlet process defined by γ, a positive

scalar, and P0, a probability measure. The probability measure P0 can be thought

of as the prior expectation of P. The scalar γ is a precision parameter which

determines the prior concentration of P around P0. In other words, γ represents

the weight of the belief that P is centered around the distribution P0.

Briefly, in any sample θ of size N from P , there is positive probability of

coincident values. For any i = 1, 2, ..., N , let θ(i) denote the vector θ without

element i: θ(i) = {θ1, ..., θi−1, θi+1, ..., θN}. Then the conditional prior for (θi|θ(i))
is

(θi|θ(i)) ∼ γ

γ +N − 1P0 +
1

γ +N − 1
NX

j=1, j 6=i
δθj . (1)

Similarly, the distribution of a new draw (θN+1| θ) is given by:

(θN+1|θ) ∼ γ

γ +N
P0 +

1

γ +N

NX
j=1

δθj . (2)
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Thus, given θ, a sample of size N from P , the next case θN+1 represents a

new, distinct value with probability γ
γ+N

and is otherwise drawn uniformly from

among the first N values. These first N values themselves behave as described by

(1) and so with positive probability reduce to k < N distinct values. If we write

the k distinct values among the N elements of θ as θ∗j , j = 1, ..., k, and let Nj be

the number of occurrences of θ∗j , then we can rewrite equation (2) as

(θN+1|θ) ∼ γ

γ +N
P0 +

1

γ +N

kX
j=1

Njδθ∗j . (3)

Antoniak (1974) summarizes the prior distribution for k induced by this process,

and shows that it depends critically on γ. A value of γ = 1 indicates that we are

giving the prior P0 the same weight as every other observation. For instance, for

N relatively large, E(k|γ, N) ≈ γ ln(1 + N
γ
); for N between 50 and 250, the prior

for k heavily favors single digit values.

Now assume the data t = (t1, ..., tN) are conditionally independent and follow

a distribution with density f(ti|θi). It then follows, from simple application of

Bayes’ Theorem that the posterior distribution of θi given θ(i) and t is

(θi|θ(i), ti) ∼ q0P1i +
NX

j=1, j 6=i
qjδθj , (4)

where

q0 ∝ γ ·
Z
f(ti |θ)dP0; (5)

qj ∝ f(ti |θj), (6)

and P1i is the marginal posterior distribution of θi given the data t and the prior P0.

This posterior distribution has an analogous meaning as above: with probability
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proportional to q0 we draw a new value of θ from the posterior distribution P1i,

and with probability proportional to qj we draw from one of the already existing

values, θj. The proportionality factor is easily obtained by noting that q0 + q1 +

...+ qN always sum up to one. The conditional distribution of (θi | θ(i), t) is easily
sampled from, given a convenient choice of the prior distribution P0. Given some

starting value for θ, (possibly drawn from the P1 distribution), one can sample

new elements of θ sequentially, by drawing from the distribution of (θ1 | θ(1), t),
(θ2 | θ(2), t), and so on up to (θN | θ(N), t), with the relevant elements of the most
recently sampled θ(i) values inserted in the conditioning vectors at each step, and

repeat this procedure until convergence (Escobar and West, 1995).

2.2. Dirichlet Mixture Models for Duration Data

I now apply the methodology described above to a model of duration data. I first

describe a simple model with exponential distribution of duration spells and no

covariates, where the constant hazard rate is allowed to differ between individuals.

I then extend the model to include covariates; finally, duration dependence can

be introduced by letting spell duration follow a Weibull distribution.

An Exponential Model. For a sample of size N , let t1, ..., tN be a sample

of independent duration times, distributed exponentially:

f(ti | θi) = θi exp(−θiti),

with

θi ∼ P, and P ∼ D(γP0). (7)

For the moment let γ be a fixed scalar. The prior distribution P0 is a Gamma
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distribution with mean a/b and variance a/b2, denoted G(a, b). Its density is

p(θ) =
baθa−1 exp(−bθ)

Γ(a)
. (8)

It then follows from the analysis in equations (4)-(6) that the posterior distri-

bution of θi given θ(i) and t is given by:

θi | θ(i), t ∼ q0P1i +
NX

j 6=i, j=1
qjδθj , (9)

with

q0 ∝ γ ·
Z
f(ti|θ)dP0(θ) = γ ·

Z
θe−θti

baθa−1e−bθ

Γ(a)
dθ

= γ · a · ba
(b+ ti)a+1

; (10)

qj ∝ f (ti|θj) (11)

and

P1i ∼ G(a+ 1, b+ ti). (12)

Given these distributions, one can then implement a Gibbs sampling algorithm

as described at the end of Section 2.1 above to draw from the posterior distribution

of θ. It is worth noting that q0 represents the marginal density of ti unconditional

on θ, and that this density is equivalent to the density of b · V , where V is

distributed as the ratio of two independent Gamma random variables:

V ∼ G(1,
1
2
)

G(a, 1
2
)
. (13)

It is possible to also place prior distribution on the parameters that characterize

P0, and the Gibbs sampling algorithm can be augmented by steps that draw

from the posterior distribution of these parameters. In this paper, however, the

hyperprior parameters a and b are held fixed.
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Predictive Distributions. It is also easy to draw from the posterior pre-

dictive distribution of a new observation tN+1 given the existing draw of the pa-

rameters θ1, ..., θN . This is important if we wish to generate simulated data sets

that can be used to assess goodness of fit of the model. There are two ways of

generating simulated data for this model. The first method involves drawing a

new sample of size N , t̃1, ..., t̃N , given the drawn values θ1, ..., θN from an ex-

ponential distribution with parameter θi, for i = 1, ..., N . This is equivalent to

generating a predictive distribution for exactly the same N individuals in the sam-

ple. These draws tell us about the appropriateness of the underlying exponential

model conditional on the unobserved heterogeneity.

The alternative is to take advantage of the fact that the distribution of a new

value θN+1 conditional on θ1, ..., θN follows the distribution described in equation

(2); one can easily draw a new value θN+1 given θ1, ..., θN , and then draw a

duration spell t̃N+1 from an exponential distribution with density θN+1e
−θN+1t.

Then, given θ1, ..., θN , θN+1, one can draw a new value θN+2 and a new duration

spell t̃N+2, and continue similarly until a new sample of size N has been generated.

This is equivalent to generating a predictive distribution of duration spells for a

new sample of size N with identical demographic characteristics as the original

sample.3

Duration Dependence and Covariates. The model described above can

be easily extended to allow for duration dependence and the presence of covariates.
3Note that we cannot draw independently N times from the distribution of θN+1|P, θ1, ..., θN ,

since θN+2|P, θ1, ..., θN ¿ θN+2|P, θ1, ..., θN,θN+1. Thus the sequential nature of this sampling
scheme. An alternative would be to obtain approximate exact draws from the Dirichlet process
using the Sethuraman and Tiwari construction (Sethuraman and Tiwari, 1982).
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Suppose that the distribution of completed duration spells is given by:

f(ti | θi) = θie
Xiβαtα−1i exp(−θieXiβtαi ), (14)

and θ follows a Dirichlet process as described in equations (7)-(8). Assume for

the moment that the duration dependence and regression parameters are known.

The posterior distribution of θi conditional on θ(i), t, X,α, and β has then a form

similar to equation (9) with

q0 ∝ γ
Γ(a+ 1)

Γ(a)

eXiβ

b
αtα−1i

µ
1 +

eXiβ

b
tαi

¶−(a+1)
; (15)

qj ∝ θje
Xiβαtα−1i exp (− exp (Xiβ) tαi ) (16)

and

P1i = G(a+ 1, b+ eXiβtαi ). (17)

The form of equation (15) can also be used to deduce the marginal distribution

of duration, unconditional on θi. Let V be distributed as the ratio of two gamma

random variables as in equation (13). It can then be shown that the distribution

of ti is equivalent to the distribution of
¡

b
eXiβ

V
¢ 1
α .

Prior distribution for γ and k. As noted above, k, the number of dis-

tinct elements of θ induced by the posterior distribution, depends critically on γ.

Therefore, one can specify different values for γ, and analyze the sensitivity of the

results to different assumptions. Alternatively, as in Escobar and West (1995),

and Hirano (2002), one can specify a prior Gamma distribution for the measure of

the Dirichlet process γ, and add a step to the Gibbs sampling algorithm to draw

from the posterior distribution of γ given k. I follow this latter procedure.

Summarizing the Gibbs Sampler. We can now summarize all the steps
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in the Gibbs sampling algorithm:4

1. Pick some initial values α(1), β(1), a(1) and b(1). (Details on the choice of initial

values is given in the appendix). Then draw θ1,1, ..., θN,1 from the posterior

distribution P1.

Then, for m = 1, 2, ...:

2. Given k(m), the number of distinct elements of θm, draw γ(m+1) following

the procedure described in Escobar and West (1995).

3. Draw new values θi,m+1|θ(i)m , for i = 1, ..., N following the steps described in

Section 2.1.

4. Given θ, draw from a, b,α and β from their posterior distributions, using

the Metropolis-Hastings algorithm when necessary.

5. Once a whole Gibbs iteration has been completed, generate simulated data

that will be used for sensitivity analysis following the description in Section

2.2, adapted to the Weibull model with covariates.

6. Repeat steps (2)-(5) until convergence.

To monitor convergence, I follow the methods described in Gelman and Rubin

(1992). I run several parallel Gibbs sampling simulations. If the process has

reached convergence after a burn-in period, we expect the variation within runs to

be roughly the same as the variation between runs. For each scalar estimand ψ, we
4Details on the choice of initial values, on the prior distributions for a, b, α, and β, and on

the Metropolis-Hastings algorithm are in the Appendix.
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denote draws from R parallel Gibbs runs of lengthM as ψmr (m = 1, 2, ...,M ; r =

1, 2, ...R). The between and within-sequence variances are

B =
M

R− 1
RX
r=1

¡
ψ̄.R − ψ̄..

¢2
;

W =
1

R

RX
r=1

s2r where s2r =
1

M − 1
MX
m=1

¡
ψmr − ψ̄.r

¢2
,

in obvious notation. We then calculate the Gelman-Rubin scale reduction statistic

GR =

s
M−1
M
W + 1

M
B

W
.

We then continue the simulation runs until the scale reduction statistics for all

scalar estimands of interest are “near” 1.5

3. Monte Carlo Evidence

In this Section I present some limited Monte Carlo evidence on the performance,

in the frequentist sense, of the proposed estimator. I generate repeated samples

of duration spells, and ask whether a) the mean over repeated samples of the

posterior mean of the parameters of interest approximates the true parameter;

and b) the 95 percent posterior interval for the parameters of interest does indeed

contain the true parameter 95 percent of the time. The data generating process

is

f (ti|α, β, xi, θi) = θie
xiβαtα−1i exp

¡−θiexiβ¢ i = 1, ..., N ;
α = 1; β = 1; N = 500;

xi ∼ N (0, 1) .

5Gelman et al. (1996, page 332) suggest that values of
p
R̂ below 1.2 are acceptable.
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I study the performance of the Dirichlet model under three alternative assump-

tions for the heterogeneity distribution.

1. p (θi) ∼ G (1/2, 1) .

2. p (θi) ∼Multinomial:

θ = (0.25, 0.75, 1, 1.25, 1.75) ;

P = (0.3, 0.2, 0.1, 0.15, 0.25) .

3. p (θi) ∼ Mixture of normals truncated at zero:

0.5N
¡
0.5, 0.252

¢
+ 0.5N

¡
3, 0.252

¢
.

The choice of distributions is dictated by our interest in the question of whether

the Dirichlet model does a good job at recovering the underlying heterogeneity

distribution. Since the prior and the posterior expectations of the Dirichlet process

are themselves Gamma distributions, we would expect that the Gibbs sampler

should do a particularly good job in generating posterior distributions centered

around the true parameters when the true heterogeneity is Gamma. Moreover, we

expect in this case that a relatively large weight should be given to the posterior

expectation P1: the posterior distribution for γ should be centered around large

values, and the number of distinct elements in θ should also be large — the non-

parametric model should approximate the baseline parametric model.

The multinomial and bimodal distributions, on the other hand, depart sub-

stantially from the baseline Gamma distribution. The behavior of the estimator

is studied under these two alternatives to assess the flexibility of our semipara-

metric estimator. In these alternative specifications, we expect small values for

the posterior distribution of γ and a small number of distinct elements in θ.
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For each simulated data set, I ran 8 parallel Gibbs sequences, and constructed

posterior distributions by discarding the first 25% of draws in each sequence.

Initial values for the parameters were drawn randomly from an overdispersed

distribution centered at the maximum likelihood estimates of a parametric model

with Gamma heterogeneity. The hyperprior parameters a and b were both set to

0.01 in all three models, indicating a very non-informative prior expectation for

the Dirichlet process.

The Monte Carlo analysis is based on only 50 replications. This is far from

being a comprehensive Monte Carlo exercise, but it should give us at least sugges-

tive evidence on the properties of posterior distributions based on the Dirichlet

process prior.

The basic results of the Monte Carlo simulations are presented in Table 1.

Altogether the results are encouraging. The average of the posterior means for

α and β are in the neighborhood of the true parameter values, and the coverage

rates of the 95% posterior interval appear appropriate given the small number

of replications. The behavior of the parameters governing the heterogeneity dis-

tribution also conforms to expectation. With Gamma unobserved heterogeneity,

the posterior means of γ and k are rather high, indicating that the data supports

giving relatively high weight to the baseline parametric distribution. In the two

alternative models, the posterior means of γ and k are relatively low: the data

supports a substantial departure from the baseline parametric model.
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4. An Application to Unemployment Spells in the NLSY

4.1. A Model With Parametric Heterogeneity

I now apply the proposed estimator to data on the duration of unemployment

spells for young men. My sample includes 1000 spells of unemployment (in weeks)

for males in the National Longitudinal Survey of Youth (NLSY).6 I first estimate

the parameters of a benchmark Weibull duration model with parametric Gamma

heterogeneity by maximum likelihood. The density for a completed duration spell

is

f (ti|Xi) =

Z
f (ti|Xi, θ) dP (θ)

=

Z
θeXiβαtα−1i exp

¡−θeXiβtαi ¢ baθa−1e−bθΓ (a)
dθ

=
eXiβαtα−1i ba

Γ (a)

Γ (a+ 1)

(b+ eXiβtαi )
a+1 .

I include as explanatory variables a constant, age, education, two race dummies

and a dummy for having received training. The maximum likelihood estimates

are presented in Table 2. As we can see, age and education have a positive and

significant effect on the hazard rate, the exit rate for hispanics, but not for blacks,

is significantly lower than that of whites, and training raises the exit by approxi-

mately 39 percent.7 There is slight evidence of positive duration dependence, but

the null hypothesis of α = 1 can not be rejected based on the ML estimates.

4.2. Results Based on The Dirichlet Model

In this section I describe the results obtained from application of the Dirichlet

model to the NLSY data. I assume that the unobserved heterogeneity term θ has
6I thank Guido Imbens for making this data available to me.
7Given the absence of randomization, these should not be interpreted as causal effects.
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a Dirichlet process prior distribution and I follow the methodology described in

Section 2.2. The Gibbs sampling algorithm described in section 2.2 is augmented

with a step for drawing completed duration spells for censored observations. Al-

together I ran 8 parallel Gibbs sequences of length 8,000, and retained only the

last 6,000 draws in each sequence, for a total of 48,000 draws.

The prior distributions for α and β were chosen to be diffuse but proper.

The prior for α was a G (3, 2) distribution; the prior for β was N (0, 5I) . After
some experimentation, it was decided to use information from the parametric

model to determine the values of the hyperparameters a and b. Let âML and b̂ML

be the maximum likelihod estimates of a and b in the parametric model above:

I set a = âML/5 and b = b̂ML/5, meaning that the prior expectation of the

Dirichlet process has the same mean as the heterogeneity distribution estimated

by maximum likelihood, but has five times larger variance. I have found that if

the prior is less informative, it is difficult to achieve convergence, whereas a more

informative prior will dominate the data, and the posterior distributions will not

depart meaningfully from that obtained in a fully parametric model. Finally, the

Dirichlet precision parameter γ has a G (3, 2) prior distribution. This distribution
favors heavily low values of γ and consequently a small number of mixture points

in the heterogeneity distribution.

Table 3 shows the posterior distribution of the model parameters. First of

all, note that for all the elements of β the Gelman-Rubin statistic is very close

to 1, indicating that the sequences have reached approximate convergence. The

Gelman-Rubin statistic for α is slightly above 1.2, a value considered border-

line acceptable.8 The posterior distributions for selected parameters are depicted
8Inspection of the Gibbs sequences reveals that the apparent non-convergence of α is due to
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graphically in Figures 1 to 3. The continuous lines in the figures show the prior

distribution for the chosen parameters: it is not surprising that the flat prior is

quickly dominated for the parametric part of the model. The distributions of the

elements of β are roughly symmetric, while the distribution of α has a long left

tail. This result seems to be due to one Gibbs sequence that wandered off test-

ing low values for α. A longer Gibbs chain would probably be required to verify

whether this left tail is a true feature of the posterior distribution.

Compared to the parametric model, we find that the posterior distribution for

α is located much to the right of the maximum likelihood estimate, indicating

now a substantial degree of positive duration dependence. The distributions of

the β coefficients are also shifted relative to their maximum likelihood estimates.

However, it may make more sense to look at the distribution of −β/α, which tells
us the percentage effect of the explanatory variables on expected duration in the

Weibull model (conditional on the heterogeneity parameter θ).9 This distribution

is shown in Table 4. The posterior means and standard deviation for this quantity

are relatively close to the maximum likelihood estimates and their standard errors

respectively for most variables. This is also shown in Figure 4, which show the

posterior distribution of the percentage effects on expected duration together with

the normal distribution implied by the maximum likelihood estimates. For all

explanatory variables but age, there is substantial agreement between the two

distributions.

one of the eight sequences, which wandered off to low values.
9In the Weibull model, conditional expected duration is

E (T |X,α,β, θ) = Γ
µ
1 +

1

α

¶
θ−1/αe−Xβ/α.

Therefore −β/α = ∂ lnE (T |X,α,β, θ) /∂X.
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One would also like to learn about the underlying mixing distribution. Table

5 shows the posterior distribution of the Dirichlet measure parameter γ and of the

number of mixture points k. For comparison, I also report the theoretical prior

distribution of γ and of the expected number of mixture points, E(k|γ, N) ≈
γ ln(1 +N/γ).10 The posterior and prior distributions of γ and k are also plotted

in Figure 5. The striking finding here is that the prior distribution for γ and k

is completely dominated by the data. Despite our prior preference for low values

of γ and a moderate number of distinct clusters in the heterogeneity distribution,

the data strongly supports a posterior distribution highly concentrated around

the baseline distribution P1 and with a large number of distinct clusters.

Finally, we would like to learn about features of the heterogeneity distribution

θ. The posterior distribution of the mean, 25th, 50th, and 75th percentiles of the

θ distribution are presented in Table 6. Compared to the gamma heterogeneity

distribution implied by the parametric model, the estimated distribution of θ has

a substantial portion of its mass at very low values, even though the mean is only

slightly lower. It appears that the heterogeneity distribution departs considerably

from the distribution implied from the parametric model. Moreover, the posterior

distribution for the distribution of θ seems to be dominated by the data, not

the prior. This can be seen in Figure 6, where we graph the prior and posterior

distributions for the mean of θ: as can be clearly seen, the posterior distribution

is considerably more concentrated.
10The prior for γ is a G (3, 2) distribution. The values of E (k|γ, N) are simulated using draws

from a G (3, 2) distribution.
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4.3. Comparison to the NPMLE

It is worthwhile to compare the results the methodology described here to more

traditional procedures used to model non-parametrically unobserved heterogeneity

in duration data. In particular, I compare my results to those obtained using

Heckman and Singer’s NPMLE. The Heckman and Singer estimator specifies the

conditional density of duration to be the same as in (14), but now the distribution

of the heterogeneity term is given by

θi =


η1 with probability p1
η2 with probability p2

...

ηK with probability 1−PK−1
k=1 pk

.

I estimate this model by maximum likelihood using the EM algorithm,11 and

analyze the sensitivity of the results to the number of mixture points K in the

heterogeneity distribution. As in most of the applied literature, I limit the analysis

to models with low values of K.

The Heckman-Singer estimates are presented in Table 7. One notes immedi-

ately that the parameter estimates are quite sensitive to the number of mixture

points used. This is true not only of the duration dependence parameter α, but

also of the coefficients on the explanatory variables. We conjecture that a model

that ignores the uncertainty surrounding the number of mixture points in the

heterogeneity distribution may lead to biased inference and excessively tight con-

fidence intervals. In this respect, the estimator based on the Dirichlet process

prior represents a substantial improvement: by integrating over the posterior dis-

tribution of the distribution of the unobserved heterogeneity term, it may generate

more reliable inference on the extent of duration dependence and on the effect of
11See Dempster, Laird and Rubin (1977).
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the explanatory variables on the length of unemployment spells. This statement

should be qualified by two observations. First, one should ensure that the Gibbs

sampling algorithm has indeed converged to the true posterior distribution. Sec-

ond, the posterior intervals based on the Dirichlet model are exact probability

intervals conditional on a given prior. It remains to be seen whether these inter-

vals have adequate coverage rates in the frequentist sense and can be interpreted

as confidence intervals.

5. Conclusion

In this paper I have presented and described a methodology for drawing semi-

parametric Bayesian inference for duration data and for generating predictive

distributions. Modelling unobserved heterogeneity as a Dirichlet process, I de-

scribe how to draw from the posterior distribution of the parameters of interest

using the methodology described in Escobar and West (1995). I then apply the

methodology to data on the duration of unemployment spells of young men in the

NLSY, and compare it to results from a simple parametric model. The marginal

effects of explanatory variables on expected duration differ significantly between

the two models. These differences can lead a decision maker to implement differ-

ent courses of action, depending on whether he is using the parameteric or the

non-parametric model. Consider for example the worker who must decide whether

to enroll in a training program: the predicted effect of training on unemployment

duration is a full two weeks larger in the Dirichlet model than in the parametric

one.12

I also compare the performance of my estimator with conventional methods
12I abstract here from the issue of whether results can be given a causal interpretation.
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used in modelling duration data with unobserved heterogeneity. The Heckman-

Singer estimator is quite sensitive to the number of mixture points in the distri-

bution of unobserved heterogeneity. By integrating over the uncertainty in the

distribution of unobserved heterogeneity, my estimator overcomes this problem

and generates more reliable results.

Despite implying rather different conclusions about the nature of unemploy-

ment, both a simple parametric model and the model based on the Dirichlet

process prior seem to fit the data rather well. To be precise: neither model seems

to be strikingly at odds with some of the important features of the data examined.

The final judgment about which model to adopt depends on our own economic

knowledge. If we interpret the semiparametric model as a model for duration

data with unobserved heterogeneity, and if we believe that substantial hetero-

geneity persists even after controlling for the observed covariates, then we should

base our inference on a model that allows for unobserved heterogeneity. It should

be noted though, that it may be preferable to have flexibility in the baseline haz-

ard rather than in the heterogeneity distribution, to capture for example deadline

effects associated with exhaustion of Unemployment Insurance benefits (Meyer,

1990).

The distinction between unobserved heterogeneity and structural duration de-

pendence may be purely academic: in the end it is impossible know whether the

population is heterogeneous or whether duration spells are drawn from a compli-

cated mixing distribution. Nevertheless, the methodology presented here can still

be useful because of its ability to generate predictive distributions for duration

data. Predictive distributions incorporate parameter uncertainty present in the

model, so that it is relevant for decision making under uncertainty in the expected
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utility framework of microeconomics.13 For example, consider the case of an agent

who has just become unemployed, and must now decide how to reallocate con-

sumption of durable and non-durable goods over the course of the unemployment

spell. If the agent believes that he will soon return to work, he probably will not

alter substantially his consumption when unemployed. On the other hand, if he

believes that the unemployment spell will last long, he may immediately adjust

his consumption path.14 Clearly, the agent must have knowledge of the entire

distribution of the length of unemployment spells to maximize expected utility.

The Bayesian methodology provides a powerful and relatively simple tool for gen-

erating predictive distributions for spells, which can be used to inform the agent’s

optimal consumption decision.

13See Chamberlain and Imbens (2003) for some examples of this approach.
14For example, Dynarski and Sheffrin (1987) find that consumption changes following unem-

ployment spells are smaller for workers with high recall probabilities.
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6. Appendix

The duration model is

p(ti|θi, Xi,α,β) = θie
Xiβαtα−1i e−θie

Xiβtαi

The heterogeneity term θi is assumed to have a Dirichlet process prior D(γP0)
with P0 = G(a, b). The parameters of the Weibull distribution, α and β, are given

a diffuse bu proper prior:

α ∼ G (3, 2) ,
β ∼ N (0, 5I) .

After some experimentation, it was decided to use information from a paramet-

ric model to determine the values of the hyperparameters a and b. I first estimated

a parametric model with Gamma heterogeneity by maximum likelihood, yielding

values âML and b̂ML. I then set a = âML/10 and b = b̂ML/10, meaning that the

prior expectation of the Dirichlet process has the same mean as the heterogeneity

distribution estimated by maximum likelihood, but has ten times larger variance.

The Metropolis-Hastings Algorithm for α and β. To draw from the

posterior distribution of α and β, I use a Metropolis-Hastings algorithm. The

conditional posterior distribution is proportional to the likelihood function times

the prior:

p(φ|t∗,X, θ) = p(α,β|t∗, X, θ)

∝
NY
i=1

θie
Xiβαt∗

α−1
i e−θie

Xiβt∗
α

i × p (α,β) ,

where t∗ is the vector of completed durations.
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Given an initial value φ(m) =
³
α(m),β(m)

´
, I draw a candidate value φ∗ from a

normal distribution withmean φ(m), and varianceΣ(m) =−
Ã
∂2 log p(φ(m)|t∗,X)

∂φ∂φ0

!−1
,

i.e., the inverse of the information matrix evaluated at the current parameter draw.

I then calculate the importance ratio

rφ =
p (φ∗|t∗,X)
p
³
φ(m)|t∗,X

´ N
³
φ(m)|φ∗,Σ∗

´
N(φ∗|φ(m),Σ(m)) ,

where N(·|µ,Σ) is the multivariate normal density evaluated at ·, and Σ∗ is the

inverse of the information matrix evaluated at the candidate value φ∗. I then

accept the new value φ∗ with probability min(rφ, 1).

Drawing from the posterior distribution of γ and k. The prior distrib-

ution of γ is G(a1, a2), with a1 = 3, and a2 = 2. At the beginning of each Gibbs
iteration I draw a random variable η from a Beta(γ(m−1), N) distribution. The

posterior distribution of γ(m) is then given by:

γ(m) ∼ πηG(a1 + k(m−1), a2 − log η) + (1− πη)G(a1 + k(m−1) − 1, a2 − log η)

where πη
1−πη =

a1+k(m−1)−1
N(a2−log η) .
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Table 1 - Monte Carlo Evidence
Heterogeneity Distribution
Gamma Multinomial Bimodal

α - Posterior Mean 1.001 1.0481 1.0668

α - Coverage Rate of
95% Posterior Interval

0.96 0.98 0.92

β - Posterior Mean 1.000 1.0707 1.0736

β - Coverage Rate of
95% Posterior Interval

0.96 0.98 0.92

γ (Dirichlet parameter) -
Posterior Mean

18.013 6.666 9.222

k (number of distinct elements of θ) -
Posterior Mean

15.98 4.65 7.21
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Table 2 - Weibull Model with
Parametric Gamma Heterogeneity
Maximum Likelihood Estimates

Coefficient Std. Error
α 1.1333 0.0555
Age 0.0575 0.0229

Education 0.0849 0.0253
Black 0.0072 0.1184
Hispanic -0.5029 0.1024
Training 0.3947 0.1588

a 2.6971 0.7138
b 546.196 224.452

log L −3885. 2
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Table 3: Posterior Distributions, Dirichlet Model
α Age Education Black Hispanic Training

min 1.2919 -0.0782 -0.0327 -0.9257 -1.4469 -0.5976
5% 1.5043 -0.0183 0.0554 -0.3110 -1.0193 0.2845
25% 1.6559 0.0046 0.0974 -0.1203 -0.8481 0.5206
median 1.7121 0.0022 0.1252 -0.0025 -0.7392 0.6778
75% 1.7670 0.0398 0.1534 0.1075 -0.6274 0.8334
95% 1.8438 0.0669 0.1888 0.2807 -0.4563 1.0602
max 1.9865 0.1398 0.2918 0.6640 0.0327 1.5777
mean 1.7021 -0.0017 0.1246 -0.0081 -0.7375 0.6741
std. error 0.1010 0.0333 0.0409 0.1815 0.1718 0.2402
Gelman-Rubin Statistic 1.2760 1.0410 1.0172 1.0079 1.0162 1.0159
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Table 4: Posterior Distributions of the Marginal Effect
of the Explanatory Variables on Expected Duration

Age Education Black Hispanic Training
min -0.1030 -0.1767 -0.5061 -0.0200 -1.0616
5% -0.0417 -0.1104 -0.1658 0.2729 -0.6294
25% -0.0238 -0.0894 -0.0634 0.3696 -0.4883
median -0.0130 -0.0736 0.0014 0.4315 -0.3965
75% -0.0027 -0.0577 0.0706 0.4975 -0.3069
95% 0.0104 -0.0329 0.1824 0.5960 -0.1684
max 0.0419 0.0241 0.6442 0.8904 0.4442
mean -0.0139 -0.0731 0.0049 0.4334 -0.3965
std. deviation 0.0162 0.0236 0.1091 0.0995 0.1440

–––––
ML estimate -0.0507 -0.0749 -0.0063 0.4439 -0.3484
Std. error 0.0197 0.0226 0.1045 0.0894 0.1385
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Table 5: Distribution of the mixing distribution parameters
γ−posterior k-posterior γ - prior E(k|γ,N)

min 95.64 206 0 0.3731
5% 121.07 249 0.4089 3.1486
25% 133.24 269 0.8637 6.1875
median 141.92 282 1.3370 8.8466
75% 150.89 296 1.9602 12.2103
95% 164.11 315 3.1479 18.1804
max 196.04 359 ∞ 39.3952
mean 142.17 282.12 1.5 9.5426
std. error 13.07 19.99 0. 8660 4.6476
Gelman-Rubin Statistic 1.0040 1.0025 - -
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Table 6: Features of the θ Distribution
Mean 25% Median 75%

min 2.5490 0.1316 0.4219 2.5148
5% 3.4844 0.2273 0.7509 3.7674
25% 3.9233 0.2987 0.9462 4.4318
median 4.2880 0.3628 1.1131 4.9543
75% 4.6994 0.4465 1.3183 5.5380
95% 5.4027 0.6495 1.6792 6.5122
max 8.2578 1.2150 2.6662 9.8376
mean 4.3458 0.3881 1.1510 5.0218
std. dev. 0.5937 0.1304 0.2844 0.8379

––––—
Features of the θ Distribution
in Parametric Model [G (2.7, 546)]

Mean 25% Median 75%
4.9380 2.7273 4.3430 6.5062

Note: All entries in the table are blown up by a
factor of 103
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Table 7: NPMLE Estimates
2 mass points 3 mass points 4 mass points 5 mass points

α 1.2188 1.4992 1.8726 1.9437
(0.0666) (0.0944) (0.1376) (0.1634)

age 0.0406 0.0422 0.0750 0.0735
(0.0199) (0.0270) (0.0328) (0.0345)

education 0.1171 0.1420 0.1364 0.1489
(0.0292) (0.0330) (0.0399) (0.0426)

black 0.0154 0.0086 -0.0248 -0.0023
(0.1071) (0.1396) (0.1708) (0.1842)

hispanic -0.6249 -0.6015 -0.8613 -0.8168
(0.0940) (0.1213) (0.1499) (0.1608)

training 0.4296 0.4439 0.5111 0.6349
(0.1317) (0.1685) (0.2077) (0.2227)

Notes: standard errors in parentheses.
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Figure 1: Distribution of α
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Figure 2: Distribution of βeducation
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Figure 3: Distribution of βtraining
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Figure 4:
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Figure 5: Distribution of γ and k
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Figure 6: Distribution of the mean of θ
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