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Abstract

Many European policy initiatives continue to promote R&D collaboration in view of its expected 
benefits. Despite the advantages of R&D cooperation, to benefit from it, firms must create a structure 
to support the efficient transfer of knowledge-based assets. In fact, the set-up and administration of 
common resources might be costly. This paper derives the distribution of the costs associated with 
R&D collaboration, as they could shape firms’ R&D- related investments. To ascertain these costs, we 
model the expected benefits from R&D cooperation with a structural dynamic monopoly model. The 
modelling results show that the sunk costs of innovation are lower when collaborating with a research 
partner, and that a firm's probability of investing in R&D or innovation increases with the level of 
productivity, only when collaborating in R&D and innovation.  We also find that the sunk costs of 
innovation are 1.5 to 3 times lower than the sunk costs of R&D. Additionally, it can be seen that the 
suggested structural framework of a firm’s heterogeneity in cost functions used in our model can 
offer a straightforward extension to existing policy impact evaluation.

JEL classification: D22, D23, L14, L60, O32.

Keywords: R&D cooperation, transaction costs, dynamic structural model.

Disclaimer: The ideas proposed and the views expressed by the authors may not in any 
circumstances be regarded as stating an official position of the European Commission. The results 
and any possible errors are entirely the responsibility of the authors.
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1 Introduction

Greater competition, the demand for higher-quality customised products and services, and

fast delivery are just a few of the characteristics that shape the organisation of many indus-

tries. In this setting, rarely does a single company have the full range of expertise needed for

prompt and cost-effective innovation. As a consequence, R&D alliances have become more

common. Such alliances allow firms to access new technologies, realise economies of scale

and scope in their R&D activities, and shorten development time and, therefore, the time to

market. However, despite the evident advantages of cooperation in these alliances, to benefit

from R&D collaboration, firms must create a structure to support the efficient transfer of

knowledge-based assets and, at the same time, to minimise any unintended leakage of such

valuable assets to potential competitors. From a transaction cost theory perspective, the or-

ganisational structures needed to form a R&D alliance are costly. The costs associated with

the set-up and administration of common resources and know-how needed for the implemen-

tation of a collaboration are typically not recognised and are thus termed as “hidden cost”.

However these costs can be crucial, as firms are more likely to cooperate when the benefits

from the enhanced knowledge transfer and control are greater than the additional set-up and

administration costs (i.e. the hidden costs).

Therefore, in this paper we investigate the barriers to collaboration in terms of the hid-

den transaction costs, by first developing a model to estimate the distribution of operating

costs (henceforth, referred to as “fixed costs”) and sunk costs (costs that have already been

incurred and that cannot be recovered) associated with firms’ investment choices in R&D and

innovation activities with and without a research partner. Indeed, as firms are assumed to be

forward-looking and to take into account the implications of their decisions (and the associated

costs) on their future pay-offs, decisions to invest in R&D and in innovation (with or without

cooperation) are assumed to be costly to reverse and, therefore, more associated with sunk

costs.

To ascertain both the fixed and sunk costs of R&D and innovation activities, with and

without a research partner, we developed a structural dynamic monopoly model to quantify

the linkages between R&D spending, innovation, and cooperation investment choices.

We consider R&D investment and (product or process) innovation (i.e. technological up-

grades) as separate strategies, because they entail different levels of uncertainty and risk.

It is well known that the processes of R&D and innovation are closely correlated with each

other, but the two processes can differ according to e.g. the nature of the innovation. If the

innovation is radical (i.e. groundbreaking innovation, creating a new market), then the risks

associated with these types of innovation are higher, but so is the appropriability. In this case,

the incentives to cooperate may differ and diverge from the incentives to cooperate that occur

with only incremental innovations, i.e. those where the risks to be shared are typically smaller

as the product/process is closer to commercialisation. To the best of our knowledge, this

paper is the first reported attempt to explicitly model and derive the costs of cooperation by

adapting a transaction costs perspective to a dynamic structural framework.

To estimate our model, we merge data on the sales, labour, physical capital, price indices

for deflating total sales and material inputs of Dutch manufacturing firms extracted from the
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Production Survey1 (PS), and three waves of the Community Innovation Survey2 (CIS) for the

Netherlands, covering the period from 2002 to 2008. The leading sectors (chemicals, agri-

food, transport, high-tech) in the Dutch manufacturing industry heavily depend on research and

innovation, and these are, in turn, driven by a wide range of factors, such as firm performance,

market conditions, policy interventions, and government requirements to reduce environmental

damages. In this paper, we assume firms base their decisions to undertake an investment in

R&D or in innovation with or without a research partner on past choices, firm-level total factor

productivity, and an aggregate industry demand shifter.

When collaborating in R&D and innovation, the probability to invest in R&D or to innovate

increases with the level of productivity. On costs, we found that the sunk costs of innovation

are smaller when collaborating with a research partner. And, furthermore, that the sunk costs

of innovation are 1.5 to 3 times smaller than the sunk costs of R&D, depending on whether

the costs are shared or not, respectively.

In addition, simulating a reduction in the sunk costs of R&D cooperation and innovation can

be thought of as an example of modelling an innovation policy intervention, such as a subsidy

to start up R&D, or even an example of public procurement. Here, our results show that a

25% reduction in these sunk costs could increase the probability of investing in cooperative

innovation, but not the probability to cooperate in R&D, where a costs reduction of up to 50%

is needed, yet only increases the probability of cooperating from 0.9% to 6.5% (see Table 6.4.

Therefore, the use of a structural framework to describe firms’ heterogeneity in cost functions

can provide a straightforward extension to a policy impact evaluation.

This paper is set out as follows. Following the introduction, in section 2 we briefly sum-

marise the relevant literature about transaction cost theory concerning R&D cooperation and

firms’ heterogeneity. Section 3 then presents the model that we used to obtain information

on both the fixed and sunk costs, and consequently on the optimal R&D, innovation, and co-

operation decisions. Section 4 discusses the empirical strategy we used to obtain estimates

of the static parameters of the model. Namely, we show how we obtained a measure of the

firm-level productivity, the demand elasticity, and an aggregate demand shifter. Moreover,

we present estimates of the fixed costs associated with each investment choice in the static

case, i.e. when the firm does not take into account the future pay-offs in its profits maximisa-

tion. Section 5 describes the steps of the algorithm developed by Imai et al. (2009) that we

used to obtain the dynamic parameters estimates. Sections 6 and 7 describe the data and the

results, respectively. In Section 8, we present the results of a policy simulation, and finally,

in the last section we present our conclusions and put forward some suggestions for further

work in this research area.

2 Firms’ heterogeneity and transaction cost theories

This section provides an overview of the existing literature overarching the transaction cost

theory perspective of R&D cooperation and firms’ heterogeneity.

1Production statistics, Statistics Netherlands
2Community Innovation Survey, EUROSTAT.
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This section provides an overview of the existing literature overarching the transaction cost

theory perspective of R&D cooperation and firms’ heterogeneity. According to transaction

cost theory, a transaction can be internal or external to an organisation. The costs associated

with the transaction occurs when a good or service is transferred from a provider to a user.

The costs depend on how the transaction is organised: if the transaction occurs within an or-

ganisation, costs include the managing and the monitoring of the personnel and the acquisition

of inputs; if buying the good or service (e.g. R&D) from an external provider, costs include the

additional source selection, contract management, and performance management (Williamson,

1981, 1989). Within the transaction costs context, Brockhoff (1992) illustrates empirically

that the success of a R&D collaboration depends on the perception of the transaction costs

of the R&D cooperation, which is defined by the uncertainty of the project, the specificity

of the assets employed, and the frequency of the transactions. These aspects, in turn, are

determined by the exogenous independent variables, such as the formality of the agreement,

previous experience with R&D cooperation, internal competence, the number of partners in-

volved in the agreement, and the stage in the technological life cycle. In fact, cooperation in the

early stages of a technological life cycle might involve a high degree of uncertainty, whereas

cooperation in the later stages of a R&D project might be characterised by the use of more

specific resources associated to a lower uncertainty.

Focusing more on the probability of vertical R&D collaboration, Oerlemans and Meeus

(2001) extended the transaction cost models to incorporate the impact of a firm’s resource

base on the probability of R&D cooperation. While the transaction cost approach ofWilliamson

(1985)[pp. 142-144] relates the emergence of governance structures (in support of a R&D

alliance) to the technological innovation potential to realise cost savings at a firm’s level,

Oerlemans and Meeus (2001) empirically showed how the innovation potential rests on the

underlying assumption of the presence of a knowledge base within the firm. Indeed, in order

to exploit the gains from a collaboration, a company must be able to recognise the potential of

a cost-saving innovation and must be capable of then following through with its development.

In the literature on industry dynamics, the seminal theoretical models Jovanovic (1982);

Hopenhayn (1992); Ericson and Pakes (1995) explain the patterns behind individual firms’

success and failure rates, and the overall evolution of the industry structure that was observed

in a firm-level panel data set, given their stochastic productivity changes over time. In their

models, firms are endowed with an exogenous level of productivity, randomly drawn from

some distribution. The “lucky” firms, i.e. those with high productivity, survive and prosper,

while the others fail and eventually exit the market.

More modern literature on industrial organization (IO) relaxes this exogeneity assump-

tion, since an important source of the productivity differentials across firms is related to R&D

and innovation activities3 Consequently, a large number of empirical studies have estimated

the effect of R&D investment on such growth, and have found that R&D spending has a sig-

nificant positive effect on productivity growth, with a rate of return that is about the same

size as (or to some extent larger than) the rate of return on conventional investments. In

3Many authors have studied the connection between spending on R&D and productivity growth. Griliches
(1980) provides an extensive survey of the empirical literature linking own-firm-R&D spending, R&D spillovers,
and productivity growth.
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particular, Doraszelski and Jaumandreu (2013) assumed productivity to be dependent on the

investment decisions taken. The investment decisions they studied concerned past R&D ex-

penditure (Doraszelski and Jaumandreu, 2013), or both R&D expenditure and export market

participation (Aw et al., 2011).

However, any firm that wants to survive must not only be innovative, but must also be

ready to outsource knowledge and to develop research networks. In fact, many firms in-

creasingly rely on the external acquisition of new technological knowledge, as the institutional

locations of such resources can be quite disparate or may not even exist in the firm. Although

not the primary source of produced knowledge, R&D outsourcing4 (so-called external R&D)

has gained considerably in importance over recent years and now accounts for a substantial

share of the total innovation expenditure in a large number of firms. In other studies dealing

with R&D cooperation, alongside the transaction cost theory, the dimensions of the risks and

the costs of innovation, as well as the need to exploit complementary resources, are consid-

ered as the main motives for cooperative behaviour, and therefore, this cooperative behaviour

may be positively related to addressing a number of obstacles, such as high risk and the cost

of innovation (Belderbos et al., 2004a,b; Carboni, 2012). R&D cooperation, in fact, allows

firms to share costs and/or to reduce the risks of innovation.

In contrast to these studies, we propose a new methodology for deriving information on

the barriers to collaboration, in terms of the hidden transaction costs. Our methodology

derives the distribution of the costs associated with firms’ investment choices in R&D and

innovation activities with and without a research partner.

From our modelling, we hypothesise that cooperating in R&D could reduce both the fixed

costs and the sunk costs of introducing an innovation to the market.

3 Structural Framework

The empirical model we used builds on the class of models developed in dynamic entry games

in IO, where the dependent variable is the firm’s decision to enter or not enter in to a market.

In the same spirit, this paper defines the entry decision as actually the adoption of a set of

discrete decisions: the decision to invest in R&D, to cooperate, to innovate, and to take part in

innovation cooperation. These decisions are assumed to be costly to reverse and, therefore,

are associated with sunk costs.5 As firms are assumed to be forward-looking, it is presumed

that they take into account the implications of their decisions (and the associated costs) on

their future pay-offs. In our model, time is discrete and indexed by t. The single-agent dynamic

4R&D outsourcing refers to the contractually agreed, non-gratuitous, and temporary performance of R&D
tasks for a client primarily by private contract research and technology organisations, as well as by some private
non-profit and related hybrid organisations (Howells, 1999; Grimpe and Kaiser, 2010)

5We consider R&D investment and product or process innovation (i.e. technological upgrades) as separate
strategies, because they entail different levels of uncertainty and risk. It is well known that the processes of R&D
and innovation are closely correlated with each other, but still the two processes can differ according e.g. to the
nature of the innovation. If the innovation is radical (i.e. groundbreaking innovation, creation of a new market),
then the risks associated with these types of innovation are higher, but so is the appropriability. In this case, the
incentives to cooperate may differ and diverge from the incentives to cooperate that occur with only incremental
innovations, where the risks to be shared are typically smaller, i.e. those where the product/process is closer to
commercialisation.
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optimisation problem is solved for N firms operating in the market, which we index by i ∈ I =

{1, 2, . . . , N}. Following the standard setting of Ericson and Pakes (1995), and adapting it to

a monopolistic competitive setting, firms compete on two different dimensions: a static and

a dynamic dimension. In the dynamic dimension, a firm makes investment choices indexed by

k ∈ {na, rd, c, d, cd}, where the vector of choices is defined as ait = (nait, rdit, cit, dit, cdit)
′,

with ait ∈ Ai ≡ {0, 1}5. The firm-specific choice nait takes a value of one if the firm does

not engage in any activity other than operating in the market; rdit takes a value of one if

the firm decides to invest in R&D; choices cit and dit match firms’ decisions to start a R&D

collaboration or to invest in a technological upgrade or innovation, respectively; action cdit

marks the decision to both innovate and cooperate (e.g. with another firm, research institute,

or supplier/customer).

3.1 Static decisions

In every time period, firms are competing on prices following the static Bertrand model pat-

tern. Let Pit, the price, be the static decision variable of firm i at time t. The demand curve

faced by the monopolistically competitive firm is assumed to follow a Dixit–Stiglitz form:

QDit = Qjt (Pit/P
j
t )
ηeu

d
it (1)

where QDit is the quantity demanded for a firm i, Qjt and P
j
t are the sector j aggregate pro-

duction and price index, respectively, η < −1 is the constant elasticity of demand, and udit is a

demand shock.

The production function is assumed to take the form of a Cobb-Douglas function, with the

gross output Qit of firm i at time t a function of three specific inputs and productivity:

Qit = AitK
θiKt
it LθiLt

it MθiMt
it , (2)

where Kit denotes the capital, Lit the labour, and Mit the intermediate goods, consisting of

materials and energy, for firm i at period t. θiKt, θiLt, θiMt are the elasticities of output with

respect to capital, labour, and intermediate goods, respectively. Ait represents the Hicksian

neutral efficiency level of firm i at time t. The logarithm of Ait is defined as Ait ≡ exp(θ0+ωit)

and is the sum of the mean productivity level across firms and over time, θ0, and the produc-

tivity shock observable by the firm, but not by the econometrician (for example, managerial

ability, quality of research), ωit.

In line with the literature on imperfect competition in both product and labour markets

(Bughin, 1993, 1996; Crépon et al., 2002; Dobbelaere, 2004; Abraham et al., 2009; Dobbelaere and Mairesse

2011; Amoroso, 2013)[chapter 2], we relax the conventional assumption of perfect competi-

tion in the labour market, allowing both firms and workers’ unions to have some market power.

In particular, the workers bargain with the firm over both the levels of employment Lit, and

the wage,Wit. Additionally, we define the firm level profits as

Πit ≡ PitQit −WitLit − FC(Kit,Mit, ait), (3)
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where FC(·) are the (avoidable) fixed costs (i.e. costs that do not vary with the quantity

of output produced, and which are furthermore not irrevocably committed (Wang and Yang,

2001)), depending on capital, material, and innovation investment. Moreover, we define the

union’s utility function as

Uit(Wit, Lit) ≡ Lit(Wit − W̄it),

where W̄it is the reservation wage. Finally, the efficient bargaining model can be written as

a weighted average of the logarithms of the workers’ aggregate gain from union membership

and the firm’s profits:

max
Lit,Wit

[φit log(Uit(Wit, Lit)) + (1− φit) log Πit] ,

where φit ∈ [0, 1] is the degree of union bargaining power. In the static setting, the firm

maximises its profits only with respect to the variable costs, namely, the cost of labour.

Amoroso (2013)[chapter 2] showed that by maximising with respect to labour, and taking

into account the demand curve faced by the monopolistically competitive firm, the results

could be expressed with the following equation for the elasticity of the labour input factor:

θiLt ≡

(

η

1 + η

)

WitLit
PitQit

(1− µWit ). (4)

Amoroso (2013)[chapter 2] defined the bargained wage rate µWit ≡ Wit−W̄it
Wit

as the wage

mark-up 6 From (4), after solving for Lit (see appendix B), we derive the following expression

for labour:

Lit =

[

(exp(θ0 + ωit)K
θK
it M

θM
it )

η+1

η
1

1− µW
η + 1

η

θiLt
Wit

P jt

(Qjt )
1/η

(exp(udit))
−1/η

]η/(η−θiLt(η−1))

(5)

Substituting (5) into (3), taking into account (2), and assuming, for simplicity, that the elasticity

of labour is constant across firms and time, we obtain the final short-run profit function:

ΠSR(ωit,Wit,Kit,Mit, ψt) =

(

1− γ

γ1−δ

)

W 1−δ
it

[

(

exp(θ0 + ωit)K
θK
it M

θM
it

)
η+1

η
(

ψt(exp(u
d
it))

−1/η
)

]δ

(6)

where ψt ≡
P j
t

(Qj
t )

1/η
, γ ≡ θL

η+1
η

1
1−µW

, and δ ≡ η/(η − θiLt(η − 1)).

3.2 Dynamic decisions

In this study, we assume that the decisions to undertake R&D, to cooperate, or to innovate

cannot be revoked, so we assume the costs associated with these actions to be sunk. We

define the vector of fixed costs paid in the case of investment in R&D, cooperation, inno-

vation, or both cooperation and innovation as θFCi = (0, θFCi (rd), θFCi (c), θFCi (d), θFCi (cd))′.

6In their paper, Amoroso (2013)[chapter 2] also shows how, maximising with respect to wages leads to an
expression of the wage mark-up as a function of the bargaining parameter, φit, and the ratio between profits and
cost of labour µW

it = φit

1−φit

Πit

WitLit

.
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We also define the vector of sunk costs associated with every investment choice k, θSCi =

(0, θSCi (rd), θSCi (c), θSCi (d), θSCi (cd))′. In particular, we assume that besides the fixed and sunk

costs of R&D and innovation, there are also sunk costs of finding an efficient research partner,

or fixed costs of maintaining a research alliance, such as managing the contractual costs (i.e.

transaction costs).

Given their level of productivity, capital, materials, and present and past knowledge in-

vestment decisions ait and ait−1, firms face the following profit function:

Π(ait, ait−1, ωit,Wit,Kit,Mit, ψt) =

ΠSR(ωit,Wit,Kit,Mit, ψt)− FC(Kit,Mit, ait)− SC(ait, ait−1)

≡ ΠSR(ωit,Wit,Kit,Mit, ψt)− ˜FC(Kit,Mit)− θ′FCi ait − θ′SCi (1− ait−1)ait, (7)

where the function of the fixed costs of operation is defined as FC(Kit,Mit, ait) ≡ ˜FC(Kit,Mit)−

θ′FCi ait−1

In order to simplify the framework, while retaining the salient features of the model, we

make a set of assumptions. First, we omit the firm-level entry/exit decisions. Moreover,

to reduce the dimensionality of the state vector on which firms are assumed to base their

decisions, we consider a simpler framework, i.e. one featuring imperfect competition only on

the output market, and where capital and materials are assumed to be flexible inputs and not

subject to adjustment costs. Assuming that the productivity, ωit, and the aggregate state,

ψt, are sufficient statistics for predicting the expected future profits, the short-term profit

function under these restrictions is derived in Appendix B and here can be written as

Π(ait, ait−1, ωit, ψt) = ϕψt exp(ωit)
−(1+η) − θ′FCi ait − θ′SCi (1− ait−1)ait, (8)

where ϕ ≡ − 1
1+η

(

η
1+η

)η
.

3.2.1 State variables transition functions

We assume that the next period state of the aggregate variable ψt depends only on the current

state. In particular, we specify the evolution of the aggregate state variable as

ψt = f(ψt−1) = µ0 + ρψt−1 + ǫψ, (9)

where ǫψ is a normally distributed error term. Following Santos (2009), the variance of ǫψ,

σ2ǫ = σ2ψ(1 − ρ2), represents the aggregate uncertainty of the industry affecting the firm’s

investment choice.

Concerning the productivity, we follow Doraszelski and Jaumandreu (2008), and Aw et al.

(2011), and model the evolution of the firm’s productivity as a Markov process, allowing for

the productivity to be affected by a firm’s past choices in R&D, innovation, and cooperation.7

7Doraszelski and Jaumandreu (2008) relax the exogeneity assumption usually made about productivity in
the production function literature (see Olley and Pakes (1996), Levinsohn and Petrin (2003), Ackerberg et al.
(2006)), by letting the R&D spending and related activities determine the differences in and the evolution of pro-
ductivity across firms and over time. Aw et al. (2011) take this a step further and assume that productivity evolves
as a Markov process that depends on both investments in R&D and on export market participation.
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We define the evolution process of productivity level ωit of firm i at time t as:

ωit ≡ ω(ωit−1, ait−1) + ξit (10)

where ξit is the normally distributed stochastic shock to productivity, and ω(·) is approximated

by a third degree polynomial.

In particular, we propose the evolution process of productivity level ωit of firm i at time

t as a nonlinearly persistent process, depending on a broader set of R&D activities, namely

(cooperative) research and innovation. The productivity transition becomes:

ωit = ω(ωit−1, cit−1, dit−1, cdit−1, rdit−1) + ξit (11)

= β0 + β1ωit−1 + β2ω
2
it−1 + β3ω

3
it−1 + β4cit−1 + β5dit−1

+β6cit−1dit−1 + β7rdit−1 + ξit.

The firm profit function as given in (7) not only differs in their fixed costs intercepts,

which depend on the set of choices a, but also in their arguments. In fact, the productivity

process assumed in (11) depends on both the past level of productivity, and on the type of

technological upgrade or innovation. Therefore, the variable ωit associated with one choice

might be different from that of an alternative investment choice.

Figure 1 schematically represents the profile of all the optimal strategies for firm i and

the relative pay-offs at specific levels of productivity. Firms with a productivity level above a

certain threshold decide to either invest in R&D (ωit > ωrd), or to cooperate with a research

partner (ωit > ωc), as this might lead to higher profits than by them doing the R&D by them-

selves. In particular, cooperating can yield higher profits, as firms can reduce the costs and

associated risks of R&D by sharing them. Firms with a level of productivity high enough to bear

the sunk costs of introducing an innovation to market will typically invest in a product or pro-

cess improvement that offers greater performance or a reduced cost of production (ωit > ωd).

Firms with productivity ωit > ωcd engage in both activities and are thus assumed to be the most

productive.

3.2.2 Value and policy functions

To ascertain information about the sunk costs of R&D, innovating, and cooperating, and to

identify the evolution of the productivity states of firms depending on their research invest-

ment policies, we consider a dynamic programming problem in which a firm i makes a series of

discrete choices over its infinite lifetime.

Let ait be the control variable and let S be the set of state points and let the firms’ charac-

teristics sit be an element of S. To simplify the framework, but without losing the generality

of the model, we assume that the state of firm i at time t is defined only by the level of

productivity, ωit, the industry competition proxied by the aggregate state ψt, and by its past

investment actions, ait−1; therefore the state vector is summarized as sit = (ωit, ψt, ait−1).

To fit the model to the data, we need to add unobserved heterogeneity. In particular, we

introduce the vector of pay-off shocks ǫit = {ǫit(k)}k∈{na,rd,c,d,cd} observed only by the firm.

9



IPTS WORKING PAPER ON CORPORATE R&D AND INNOVATION-NO.02/2014 
THE HIDDEN COSTS OF R&D COLLABORATION

The unobserved characteristics ǫit are independently and identically distributed over time with

continuous support and multivariate distribution function Fǫ(ǫit). In particular, we assume that

ǫit’s are i.i.d. extreme value distributed and enter the profit function in an additively separable

way. These assumptions are not strictly necessary, though they are useful, as they lead to

a closed form likelihood function and a closed form expression for the expected maximum of

the choice-specific value functions.

The observed state variable ωit evolves as a Markov process depending stochastically

on the choices of the firm because of the assumption in equation (10) with the cumulative

distribution function given by Fω(ωit+1|ωit, ait). On the other hand, the stochastic evolution of

the aggregate state is assumed to be independent from the research activities, and therefore

can be expressed as Fψ(ψt+1|ψt). Moreover, since we do not know the firm-level production

technology, we assume the sunk costs of R&D, innovating, and of cooperating in research to

be drawn from a known joint distribution FSC(θ
SC
i ).

Let us define θΠi ≡ ((θFCi )′, (θSC)′)′, and θΠ ≡ {θΠi}i=1,...,N as the matrix of choice- and

firm-specific parameters that describe the profit function in (7). Finally, let θ = (vec(θΠ)
′, θ′ω, θ

′
ψ, θ

′
ǫ, β)

′ ∈

Θ be the vector of the parameters of interest, where vec(θΠ) is the vectorisation of the θΠ ma-

trix, and where θω and θψ are vectors of parameters that describe the transition probability

functions Fω and Fψ , respectively, θǫ represents the parameters in the distribution of Fǫ, and

β is the rate at which the firm discounts future profits.

Assuming that firms behave optimally, the value function of firm i corresponds to the maxi-

mum of the expected discounted sum of profits, conditional on the current level of productivity

and market indexes:

V (sit, ǫit; θ) ≡ max
ait,ait+1,...

E

[

∞
∑

τ=t

βτ−t (Π(aiτ , siτ ; θΠi) + ǫiτ ) |sit, ǫit

]

(12)

where β ∈ (0, 1), and Π(ait, sit; θΠi) + ǫit are the current profits of firm i with a productivity

level ωit, in the market aggregate condition ψt, choosing investment ait.

The problem then is to determine, for all N firms, the set of optimal stationary decision

rules α = {αi}
N
i=1, where αi : S → Ai, that solves the stochastic/multiperiod optimization

problem expressed in (12). Dynamic programming offers the advantage of translating the

optimization problem in (12) into a sequence of simpler deterministic/static optimization prob-

lems, where for β ∈ (0, 1) and for bounded Π(·), the value of the objective function can be

written (suppressing the subscript i) in the form of a Bellman equation:

V (a, s, ǫ; θ) = Π(a, s; θΠ) + ǫ+ βEs′,ǫ′
[

V (s′; θ)|s, a
]

(13)

V (s, ǫ; θ) = max
a∈A

V (a, s, ǫ; θ)

where s′ and ǫ′ denote the next period state and shock. Therefore, when conditioning the value

of the state and control variables, the optimal decisions of the firm do not depend on time t,

but only on the current and next period state variables. The assumption of the existence of a

state variable that is designed to capture the productive and competitive environments faced

by the firm at each point might be quite restrictive in the context of technological innovation.

10
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However, as in this paper, when we consider the dynamic optimisation problem of a single

agent, the stationary dynamic programming framework can still capture the salient features of

such a structural model.

The expected value function for next period is equal to:

Es′,ǫ′
[

V (s′, ǫ′; θ)|s, a
]

=

∫

s′

∫

ǫ′
V (s′, ǫ′; θ)dFǫ(ǫ

′; θǫ)dFs(s
′|s, a; θ), (14)

where dFs(s
′|s, a; θ) ≡ dFω(ω

′|ω, a; θω)dFψ(ψ
′|ψ; θψ). Given that the optimal strategy, α(s, ǫ),

satisfies

α(s, ǫ) = argmax
a∈A

V (a, s, ǫ; θ),

and observing data (a,ω, ψ) ≡ {{ait, ωit}
N
i=1, ψt}

T
t=1, in order to estimate θ, we construct the

likelihood as the product of firms’ conditional choice probabilities (CCPs), Pit(ait|sit; θ), as

Pit(ait|sit; θ) ≡ Pr(ǫ : V (ait, sit; θ) ≥ V (ãit, sit; θ)), ∀ãit

= Pr(ǫ : ait = α(sit, ǫit))

=

∫

1{ait = α(sit, ǫit)}dFǫ.

The joint likelihood of the observed data is then:

L(a|s; θ) =
∏

i

∏

t

Pit(ait|sit; θ). (15)

Moreover, since ǫ follows a joint Gumbel (extreme value type I) distribution, independent

across alternatives k, the likelihood increment for firm i is

Pit(ait|sit; θ) =
exp {V (ãit, sit; θ)}

∑

ait 6=ãit
exp {V (ait, sit; θ)}

. (16)

In the next section, we discuss the empirical strategy to estimate the static structural

parameters, namely, the demand elasticity, the wage mark-up, the aggregate state proxying

the industry competitive environment, the productivity evolution parameters, the fixed costs,

and the dynamic parameters, i.e., the sunk costs, and the discount factor.

4 The estimation procedure

Estimation is achieved in three steps. In the first step, we estimate a production function that

allows us to retrieve estimates of the firm-level productivity, ωit, the parameters describing

the aggregate state and the productivity evolution processes, f(ψt−1), and ω(ωit−1, ait−1), re-

spectively, and the structural parameters needed to construct the profit function as in (6). In

the second step, we ascertain the management costs concerning the research activity adopted

by the firm. In the last step, we obtain estimates of the dynamic structural parameters,

θΠ, θω, θψ, θǫ, by a numerical approximation of the solution to the dynamic programming prob-

11



IPTS WORKING PAPER ON CORPORATE R&D AND INNOVATION-NO.02/2014 
THE HIDDEN COSTS OF R&D COLLABORATION

lem at trial parameters.

4.1 Step 1: Static parameters

The production function and the demand parameters are estimated with the method proposed

by Amoroso (2013). Within the Cobb-Douglas production function framework, they relax the

conventional assumption of perfect competition in the labour market, allowing both firms and

workers’ union to have some market power.

In their study, ? report empirical evidence of the underestimation of the true level of price-

cost margins caused by the omission of direct effects of the wage bill on marginal costs. In

fact, the exclusion of frictions in the labour market (i.e., φit = 0 or Wit = W̄it) might lead to

misestimating the firm’s market power. When there is no imperfect competition in the labour

market, firms set the wage at the lowest value possible, ultimately equal to the competitive

wage, i.e., Wit = W̄it (and, therefore, µ
W
it = 0). For Wit tending to W̄it, the wage mark-up

decreases, given that the elasticity and the share of labour are constant, which is inversely

related to the output mark-up η
1+η .

Next to the labour market rigidities, Amoroso (2013) also corrected for the possible bias

in the estimated coefficients from when the deflated gross output is used instead of the gross

physical output. Defining the log deflated output as yit, this can be rewritten as

yit = qit + (pit − pjt),

where pjt is the log industry price index. The firm-level price deviations (pit − pjt) enter the

production function as an extra error component, and introduce a potential correlation with

the input choices. Substituting pit with the inverse Dixit-Stiglitz demand function, and taking

into account the labour input elasticity under imperfect competition in the labour market,

θiLt

(

η + 1

η

)

≡ γiLt = siLt(1− µWit ), (17)

where siLt is the share of labour and is defined as the ratio between the cost of labour and the

total sales
(

WitLit
Pit(Qit)Qit

)

, this allows estimating a log deflated revenue function that features

both the labour and output market distortions:

yit = γ0 + γKkit + γMmit + (1− µWit )siLtlit −
1

η
qjt + ω̃it + ũit (18)

where kit, lit,mit are logs of deflated capital, labour, and deflated materials, respectively; qjt is

the log of the production index in sector j. The composite error term, ũit ≡ uqit + udit, includes

the demand shock, ũdit ≡ −udit/η, and the measurement error, uqit. ω̃it ≡ ωit(1 + η)/η is the

productivity.

The production index is constructed as in De Loecker (2011), by proxying the total demand

for a sector j with a (market share) weighted average of deflated revenue, qjt =
∑Nj

i msityit.

Both the intercept, γ0 ≡ θ0(1 + η)/η, and the factor elasticities of the capital and material,

γk ≡ θk(1+ η)/η, k = K,M are divided by the output price mark-up defined as ≡ η/(1+ η) for

12
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η < −1. The elasticity of labour is defined as in (17).

The firm-level productivity ωit is estimated as

ω̂it = η̂/(1 + η̂)ω̃it = η̂/(1 + η̂)

[

yit −

(

γ̂0 + γ̂Kkit + γ̂Mmit + (1− µ̂Wit )siLtlit −
1

η̂
qjt

)]

.

Identification of all the structural parameters of the deflated revenue function in (18) is

ensured by the presence of firm-specific wages. To estimate all the relevant parameters,

Amoroso (2013) adopted a control function approach (Olley and Pakes, 1996) which con-

sists of including additional regressors to capture the endogenous part of the unobserved

productivity. In particular, the productivity ω̃it can be approximated by a third-degree poly-

nomial (Levinsohn and Petrin, 2003) in all three factor inputs kit, lit,mit. The productivity is

also assumed to evolve over time as a Markov process that depends on the firms’ investment

choices, as in (11). The replacement function approach allows for dynamics in the productiv-

ity process, but restricts the investment function, and consequently the productivity process,

to being homogeneous across firms. On the other hand, the instrumental variables approach

comes at the cost of not allowing for the possibility that the unobserved productivity could

be correlated with past input choices. Therefore, for the problem at hand, we rely on the con-

trol function approach to identify the deflated revenue function parameter, and our object of

interest, i.e. the firm level productivity. The estimation of (18) requires the following moment

restrictions

E(ξit + ũit|mit, kit, lit−1,mit−1, kit−1, . . . , li1,mi1, ki1) = 0,

however, identification could hold with just the current values and one lag in the conditioning

set.

The results of the estimation of the deflated revenue function under imperfect competition

in both output and labour markets, (18), of the aggregate state transition function, (9), and

of the nonlinearly persistent productivity process depending on the technology upgrade, (11),

are reported and discussed in Section 4. In the following subsection, we discuss the second

step of our estimation strategy, namely, how to retrieve the fixed costs of (cooperative) R&D

and innovation.

4.2 Step 2: Profit function parameters

It is well known that the parameters of structural dynamic programming problems are not

identified (Rust, 1994). Magnac and Thesmar (2002) sshowed that the utility functions of

the firms can be identified though if the distribution function of the unobserved preference

shocks, the discount rate, and the value function of one of the alternatives (normalisation) are

fixed. Hence, it is theoretically possible to identify both the fixed and sunk costs of R&D

and innovation. However, in practice the simultaneous identification of such costs requires

sufficient variation in the observed R&D investment decisions. To circumvent this problem,

we ascertain the fixed cost parameters within the static framework after stimulating the pro-

duction function parameters. In particular, we consider the estimation of the fixed costs of

innovative investments in a random utility model (multinomial mixed logit model), where the
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alternative specific utility function of firm i is associated with the level of productivity, and the

fixed costs represent the alternative specific firm-level random coefficients associated with

the research investment k, i.e.,

V (ait, sit, ζit; θ
FC) = ϕψηt exp(ωit)

−(1+η) − θ′FCi ait + ζit.

The error term ζit is a random term assumed to be iid extreme value distributed. To identify

θFCi , we assume that the additive separable utility shock ζit is exogenous. The results of this

estimation are reported in Section 5.

4.3 Step 3: Dynamic parameters

The main limiting factor in estimating dynamic discrete choice (DDC) models is the computa-

tional complexity resulting form the need to compute the continuation values as in (14). In

this paper, we adopt the estimation method proposed by Imai et al. (2009). Their algorithm

is related to the one proposed by Aguirregabiria and Mira (2002), but it is based on the full

solution of the dynamic programming (DP) problem, yielding the advantage of dealing with

unobserved heterogeneity. The main idea behind their estimation approach is to avoid the

computation of the full solution of the DP problem, i.e. by approximating the expected value

function at a state-space point using the average of the value functions at past iterations in

which the parameter vector is close to the current parameter vector and the state variables

are close to the current state variables. For an overview of their methodology and a summary

of the algorithm steps, the reader is referred to Appendix A.

5 Data

In this section, we report the summary statistics of all the variables used to estimate the static

and the dynamic structural models. In particular, the upper part of Table 5.1 gives the mean,

the standard deviation, and the number of observation of the variables extracted from the

PS (Production Survey, Statistics Netherlands) for the years 2002-2008. To estimate the

deflated revenue function as in (18), we use the deflated value of gross output Yit (≡
PitQit

P̃ j
t

)

of each firm i in sector j in period t, where PitQit are the firm’s revenues, and P̃ jt is the sector

j price deflator. Labour (Lit) refers to the number of employees in each firm for each year,8

collected in September of that year. The corresponding wages Wit include the gross wages

plus the salaries and social contributions before taxes. The costs of the intermediate inputs

(ZitMit) include the costs of energy, intermediate materials, and services. The unit user cost

Rit (of capital stock Kit) is calculated as the sum of the depreciation of fixed assets and the

interest charges. Qjt indicates the sector-specific production index.

The nominal gross output and intermediate inputs are deflated with the appropriate price

indices from the input-output tables available at the NACE rev. 1 two-digits sector classifi-

8For each enterprise, jobs are added and adjusted for part-time and duration factors, resulting in number of
men/years expressed as Full Time Equivalents (FTEs)(Source: Statistics Netherlands)
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cation.9 For capital, we use a two-digit NACE deflator of fixed tangible assets calculated by

Statistics Netherlands. The share of the cost of labour, material, and capital are denoted as

siLt, siMt, and siKt, respectively. The share of the cost of labour constitutes 24.2 percent

of the gross production value, while materials account for 65.7 percent of gross output, and

capital for 4 percent.

The total number of observations, after retaining only the respondents to the different

waves of the Community Innovation Survey (CIS), is 8306. The CIS data-sets are the main

data source for measuring innovation in Europe. The surveys are designed to provide an ex-

tensive description of the general structure of innovation activities at the sectoral, regional,

and country levels, including basic information of the enterprise, product and process innova-

tion, innovation activity and expenditure, effects of innovation, innovation cooperation, public

finding of innovation, source of information for innovation patents, and so forth.10

The middle part of Table 5.1 gives descriptive statistics for the different types of R&D

expenditure extracted from three waves of the Community Innovation Survey (CIS), carried

out by Statistics Netherlands. In particular, we constructed an unbalanced panel of survey

respondents, merging the CIS 4 (reference period 2002-2004), the CIS 2006 (reference

period 2004-2006), and the CIS 2008 surveys (2006-2008). The R&D expenditures are

expressed in thousands of euros. The intramural expenditure is more than three times larger

than the extramural. The average total amount of research expenditure is roughly 3 million eu-

ros. The number of firms that reported R&D spending is 2171 out the total sample of 3565

(unevenly distributed over the period 2002-2008). The last part of Table 5.1 displays the

details of the control variable, namely the investment choice k. The furthermost right column

reports the total number of firms for each year. For example, in 2002, the number of enter-

prises that participated to the CIS and that were matched with the PS was 444 , whereas

in 2008, the same matching exercise yielded a much larger number of firms, i.e. 2413. Our

R&D investment and innovation variable is constructed as follows. The firm-specific choice

nait takes a value of one if the firm does not engage in any activity other than operating in the

market; rdit takes a value of one if the firm decides to spend in R&D; the investment decision

cit takes a value of one if the firm has at least one cooperative agreement (with either a firm,

a supplier, a customer, or a public (private) research institute); dit matches the firm’s decision

to invest in a technological upgrade; while action cdit marks the decision to both innovate and

cooperate. Concerning the type of investment, simple production without innovative or coop-

eration activities is the most frequent, with a total of 3389 observations (k = na). Introducing

an innovation (product or process, k = d), and both innovating and cooperating with either

another firm (k = cd), or with a research institute are also very frequent answers (2129 and

2530 observation, respectively). On the other hand, the number of firms engaging in only

R&D (k = rd) or only research alliances (k = c) is quite small, with an average of 23 and 13

firms for the rd and c investment choices, respectively.

The cross-sectional data from each wave was expanded so as to cover the whole reference

9NACE Rev. 1 is a 2-digit activity classification which was drawn up in 1989. It is a revision of the General
Industrial Classification of Economic Activities within the European Communities, known by the acronym NACE and
originally published by Eurostat in 1970.

10Community Innovation Survey, EUROSTAT.
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Table 5.1: Summary Statistics

mean sd median 1st quartile 3rd quartile N. obs

PitQit 63323.97(K Euros) 318679 14881.500 5838.000 39925 8306
Lit 152.657 347.055 75 36 152 8306
ZitMit 48353.050(K Euros) 280848 9868 3539 27120 8306
RitKit 2255.667(K Euros) 26330 359 117 1156 8257
siLt 0.242 0.124 0.228 0.154 0.310
siMt 0.657 0.149 0.663 0.567 0.758
siKt 0.040 0.223 0.027 0.013 0.048

Qj
t 73.080 10.465 73.498 63.648 80.889 8306

Intramural R&D 1806.574(K Euros) 18396.654 100 10 400 4937
Extramural R&D 612.855(K Euros) 7243.232 0 0 50 4937
R&D Expenditure 3038.461(K Euros) 26356.650 255 63 846 4937

k = na k = rd k = c k = d k = cd Nt

N2002 153 22 9 136 124 444
N2003 133 9 7 102 167 418
N2004 175 13 6 131 221 546
N2005 179 8 3 130 184 504
N2006 769 28 15 471 557 1840
N2007 907 38 26 553 617 2141
N2008 1073 46 28 606 660 2413
Tot. 3389 164 94 2129 2530 8306

period (there is a one-year overlap between the three waves). For example, if the firm has

reported to have introduced an innovation during the reference period, and the same firm has

not abandoned the innovation project, then we impute the value of one for the whole time

span.

6 Results

In this section, we first present the parameter estimates for the deflated revenue function

under imperfect competition in both output and labour markets, (18), and for the evolution

of the state variables, (9), and (11). We then use the estimates of the static parameters to

present the results of the dynamic discrete choice model.

6.1 Static parameters

The point estimates of the output price mark-up and all the parameters used to construct the

productivity evolution in (11) are reported in Table 6.1. The upper part of the table reports

demand elasticity parameters, the aggregate state average, and the productivity level and

growth.11 The elasticity of the demand is found to be −2.8, with a corresponding output

price mark-up of 55%. On average, the log productivity is 1.381 and its growth is 1.7%. The

aggregate state, ψt, is constructed as the weighted deflated total industry revenues, ψt ≡
∑

j p̃
j
t/N

j(qjt )
1/η , where p̃jt is the price deflator for industry j at time t, and qjt is the weighted

average of deflated revenues per industry. We find the aggregate state to be 1.088, on

11For a complete discussion on the factor input elasticities and the implication of the rent-sharing parameter on
productivity growth, we would refer the reader to the paper of Ackerberg et al. (2007).
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Table 6.1: Demand and productivity evolution parameters

parameter estimate (st.err.)/st.dvt.

Eq. (18)

θL 0.266 (0.036)
θM 1.206 (0.114)
θK 0.044 (0.010)
η -2.800 (0.428)
η/η + 1 1.555 (0.132)
µW 0.311 (0.050)
ϕ 0.332 (0.000)
ψt 1.088 0.178
ωit 1.381 0.327
∆ωit 0.046 0.225

Eq. (9)
µ0 0.853 (0.022)
ρ 0.241 (0.020)
σǫ 0.114 (0.001)

Eq. (11)

β0 1.650 (0.020)
β1 0.581 (0.043)
β2 -0.002 (0.002)
β3 0.001 (0.000)
β4 0.076 (0.043)
β5 0.113 (0.205)
β6 0.062 (0.056)
β7 -0.011 (0.077)

average. In analyzing the evolution of the aggregate state over the years, we find that the

market conditions were stable until 2006 and start worsening in 2007 and 2008. The same

pattern is followed by the total factor productivity (TFP) growth. The correlation between ψt

and the productivity is 0.922 (significant at 0.001 significance level). These results confirm

that, at an aggregate level, the TFP growth estimated under the assumptions of imperfect

competition in both labour and output markets seems to be able to reflect the actual features

of the Dutch manufacturing industry.

The aggregate state transition of (9) is specified by the three estimated parameters, the

mean, µ̂0 = 0.853, the autocorrelation, ρ̂ = 0.241, and the variance, σ̂ǫ = 0.114.

With regards to the parameters of the productivity evolution, as in (11), we find evidence

of a third order polynomial, and a fair dependence on innovation and cooperation. In partic-

ular, the estimated coefficient associated with the action of cooperating is significant at the

5% significance level, being 0.076, while that of innovating is 0.113. The coefficients associated

with both cooperating and upgrading technology and the decision to do R&D are 0.062 and

-0.011, respectively. In Figure 1, we present a schematic representation of what the profile

of all the optimal strategies could look like given the levels of productivity. In Table 6.2, we

report the estimated average levels and growth of firm productivity for each of the investment

strategy. This shows that innovators (and innovators that cooperate) have the largest produc-

tivity growth, and that the firms that undertake collaborative research are the most productive

(log of productivity is 0.203). Therefore, in a static scenario, we find that optimal strategy

of a firm is to undertake collaborative innovation projects up to a certain level of productivity,

ω∗
it, above which it is optimal to invest in collaborative R&D. The four means and standard er-

rors of the posterior distributions of the fixed costs are reported in Table 6.3. Assuming that
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all firms face the same log-normal distribution for all four fixed costs, we find that the fixed

costs of R&D and cooperating in R&D (EUR 3.0 million and EUR 3.5 million, respectively) are

substantially higher than the per-period costs of maintaining an innovation (around EUR 460

000). Moreover, the fixed costs of maintaining an innovative activity, while sharing the costs of

R&D, decreases the per-period costs (EUR 290 000). This confirms the rationale behind the

cooperating strategies, i.e. the cost sharing motive (Cassiman and Veugelers, 2002; Lopez,

2008; ?).

R&D cooperation, in fact, allows firms to share costs or to reduce the risks of innovation.

The results for the fixed costs are comparable with those found by Aw et al. (2011) for the

Taiwanese electronics industry, awho estimated these costs to be on average TWD 67.606

million (roughly EUR 1.8 million) Below the posterior means and standard deviation of the

fixed costs relative to each innovative activity, we report the probabilities of undertaking the

different investments, taking into consideration the level of productivity and the market condi-

tions. On average, the probability to not engage in any activity is the highest (0.41), followed

by the probability to simultaneously cooperate and innovate (0.30), and by the probability to

introduce an innovation (0.26). Next to the averages of the probability of choosing action k,

we report the same probabilities for the levels of the log of productivity at each quartile. As

we are interested in understanding the relation between the level of productivity and the prob-

ability of undertaking an activity, Figure 2 displays the locally weighted scatterplot smoothing

(lowess)12 curves fitting the relationships between the probabilities to undertake action a and

the level of productivity, exp(ωit). The darker areas of the smoothed scatterplots represent

a higher density of the data points. The plot at the top reports the curve fitting the relation

between the probability of taking no action and the level of productivity. The probability of

remaining inactive in research and innovation is inversely related to the productivity. We find

the same pattern for the probability of doing R&D and for the probability of introducing an

innovation. Simply put, the higher the firm level productivity, the smaller the probability of in-

vesting in R&D, or innovating. However, the situation is reversed when the investment in R&D

or in a new product or process is shared with a partner. Indeed, when cooperating, the prob-

abilities of doing research, Pr(a = c|s, θ), and innovating, Pr(a = cd|s, θ), are (non-monotonic)

increasing functions of productivity. This pattern could point to the presence of knowledge

externalities. These results, together with the evidence of the endogenous firm-level produc-

tivity, which is positively associated with the action of cooperating, suggest that an innovation

policy aiming at encouraging research cooperation might result in a virtuous cycle. Indeed,

12Locally weighted regression fitting techniques provide a generally smooth curve, the value of which at a par-
ticular location along the x-axis is determined only by the points in that vicinity. The method consequently makes
no assumptions about the form of the relationship, and allows the form to be discovered using the data itself.

Table 6.2: Average productivity levels and growth per investment strategy

a avg log ωit st.dvt. ∆ωit st.dvt.
rd 0.092 0.279 0.027 0.228
c 0.203 0.299 0.038 0.213
d 0.137 0.276 0.051 0.186
cd 0.141 0.284 0.048 0.180
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Table 6.3: Fixed costs

posterior mean(×1mln) std error

θFCi (rd) 3.025 0.082
θFCi (c) 3.528 0.100
θFCi (d) 0.459 0.025
θFCi (cd) 0.286 0.025

mean ωit ≤ 1.172 ωit ≤ 1.347 ωit ≤ 1.541

Pi(a = na|s, θ) 0.408 0.409 0.415 0.414
Pi(a = rd|s, θ) 0.020 0.024 0.021 0.021
Pi(a = c|s, θ) 0.011 0.008 0.009 0.011
Pi(a = d|s, θ) 0.256 0.269 0.263 0.260
Pi(a = cd|s, θ) 0.304 0.288 0.289 0.293

past investments in cooperative research have a positive impact on current productivity, which

in turn, positively influence the probability to engage in both R&D and innovation when these

activities are shared with a research partner. Figure 3 plots the Markov Chain Monte Carlo

(MCMC) draws of the fixed cost parameters. It appears that the the MCMC draws converge

after 50 iterations.

6.2 Dynamic parameters

In this section, we present the results for the DDP model presented in (13). Once the fixed

costs are estimated, we subtract them from the profit function as in (7). For simplicity, we

estimate the model without unobserved heterogeneity. Therefore, the standard deviations σΠ

are set equal to zero. The discount factor is fixed at 0.93. During this stage, we are able

to ascertain both fixed and sunk costs of doing R&D or innovating with or without a research

partner. Figure 3 shows that the sunk cost parameters converge at different rates, and, in

general, much slower than the fixed costs.

The estimated coefficients are reported in Table 6.4. Next to the mean values of the sunk

costs, we report the standard deviations of the MCMC draws.

The values are estimated with the expected signs. Sunk costs are found to be EUR 4 million

for the average firm that undertakes

The values are estimated with the expected signs. Sunk costs are found to be EUR 4 million

for the average firm that undertakes R&D with or without a partner, 14 to 33% higher than

the fixed costs. The sunk costs of innovation are still much smaller than those of research,

but are 3 to 3.5 times higher than the fixed costs of innovating. Moreover, we find additional

evidence for the risk-sharing motive behind the decision to introduce an innovation. In fact,

the average sunk costs of producing an innovation with a research partner is almost one-third

smaller than the average sunk costs of undertaking the same project without an alliance (EUR

997 000 and EUR 1.4 million, respectively). The sunk costs parameters cannot be compared

with the reported R&D expenditures. This is because the sunk costs may also be related to

production factors, such as labour and/or capital that are allocated to research rather than to
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Table 6.4: Dynamic Parameter Estimates

posterior mean std error

θSCi (rd) 3.984 0.570
θSCi (c) 4.046 0.216
θSCi (d) 1.433 0.560
θSCi (cd) 0.997 0.216

θSCi (rd) -50% -25% 0%

Pi(a = na|s, θ) 0.141 0.264 0.367
Pi(a = rd|s, θ) 0.049 0.630 0.008
Pi(a = c|s, θ) 0.037 0.006 0.009
Pi(a = d|s, θ) 0.002 0.048 0.390
Pi(a = cd|s, θ) 0.770 0.051 0.226

θSCi (c) -50% -25% 0%

Pi(a = na|s, θ) 0.484 0.693 ”

Pi(a = rd|s, θ) 0.006 0.002 ”

Pi(a = c|s, θ) 0.065 0.008 ”

Pi(a = d|s, θ) 0.263 0.109 ”

Pi(a = cd|s, θ) 0.182 0.188 ”

θSCi (d) -50% -25% 0%

Pi(a = na|s, θ) 0.668 0.433 ”

Pi(a = rd|s, θ) 0.002 0.005 ”

Pi(a = c|s, θ) 0.002 0.007 ”

Pi(a = d|s, θ) 0.225 0.407 ”

Pi(a = cd|s, θ) 0.103 0.147 ”

θSCi (cd) -50% -25% 0%

Pi(a = na|s, θ) 0.616 0.541 ”

Pi(a = rd|s, θ) 0.007 0.003 ”

Pi(a = c|s, θ) 0.004 0.004 ”

Pi(a = d|s, θ) 0.129 0.162 ”

Pi(a = cd|s, θ) 0.244 0.290 ”
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production. For this reason, these costs will not appear in the balance sheets of the company

(Santos, 2009).

Along with the estimation of the sunk cost parameters, we show the importance of the

role played by these costs in shaping the probabilities of undertaking the different research

investments. Table 6.4 also reports the changes in probabilities associated with 50% and 25%

reductions in the costs of engaging in research and/or innovating. A reduction in the sunk costs

of R&D, cooperating, and innovating can be thought of as an example of an innovation policy,

such as a subsidy to R&D start up, or public procurement. The results show that a 25% re-

duction in these costs is expected to increase the probability of undertaking the corresponding

activity. For example, reducing the costs of R&D, θSCi (rd) by 25% leads to an increase in the

probability of undertaking R&D by 62.2%.

7 Conclusion and future work

In this paper, we present empirical evidence of the fixed and sunk costs of investments in re-

search activities, and quantify the linkages between the cost structure, firm-level productivity,

and the probabilities of technologically upgrading. In particular, we propose and estimate a

structural model with endogenous choices of technological upgrade for the Dutch manufactur-

ing industry. The model describes a firm’s dynamic decision process for undertaking different

research activities, namely, innovating and conducting R&D, with or without a research partner.

The R&D investment choices are endogenous as they depend on the firm’s level of produc-

tivity, an aggregate measure of industry competition, fixed and sunk costs of R&D, and past

research decisions. To our knowledge, none of the existing studies proposes and estimates a

dynamic structural model to derive the total cost function of firms engaging in technological

activities.

We find that the firm’s probability to do R&D or to introduce an innovation increases with

the level of productivity, but only when this activity is shared with a research partner. More-

over, according to the literature on R&D cooperation, the costs of innovating are smaller when

cooperating. In fact, given the higher risks associated with the uncertainty of the market de-

mand for new products or processes, the firm might allocate more importance to the cost/risk

sharing rationale for this type of innovation activities, rather than for the just R&D investments.

We also find that the sunk costs of innovation are 1.5 to 3 times smaller than the sunk

costs of R&D. Also, the sunk costs are found to be roughly 1.5 times larger than the fixed

costs of research (both cooperative and done alone), and 3 to 3.5 times larger than the fixed

costs of innovating. Moreover, we show the importance of the role played by these costs

in shaping the probabilities of undertaking the different research investments. In general, a

reduction in the sunk costs of R&D, cooperating, and innovating increases the probability of

undertaking the corresponding activity.

Additionally, we present some preliminary conclusions on innovation policies aimed at en-

couraging research cooperation. We show how these types of policy interventions might result

in a virtuous cycle. Indeed, past investments in cooperative research have a positive impact

on current productivity, which, in turn, positively influences the probability of engaging in both
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R&D and innovation when these activities are shared with a research partner. Therefore, in

elaborating their policies for innovation, governments should ensure to create frameworks

that encourage the collaboration throughout the innovation process.

Future work could include differentiating between the types of innovations, as well as the

types of cooperation. In particular, under future investigation, we would like to differentiate

the sunk costs of combinations of types of innovation (product/process) with different types

of cooperation partner. For example, we could include the sunk costs of product and process

innovations and take the average expected benefits and costs of R&D and innovation for dif-

ferent cooperating strategies (see Peters et al. (2013) for the expected benefits of R&D), or

the expected benefits and costs of cooperating for product versus process innovations.
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A Imai et al. (2009) estimation algorithm

The direct way of obtaining continuation values as the one in (14) has been to compute them

as the fixed point of a functional equation. For example, Rust (1987) proposes a computa-

tional strategy named the nested fixed point (NFXP) algorithm, which is a gradient iterative

search method to obtain the maximum likelihood estimator of the structural parameters. Un-

fortunately, the NFXP algorithm is computationally demanding because it requires to obtain

the fixed point of a Bellman operator (hence, it must run successive iterations of the value

functions until convergence) for each point in the state space of the structural parameters.

Additionally, the number of state points grows exponentially with the dimensionality of the

state space. This concern about the computational burden of implementing the NFXP algo-

rithm, and the curse of dimensionality, have led to a number of estimators that are computa-

tionally faster (Bajari et al., 2007; Pakes et al., 2007). For example, the two-step estimator

by Hotz and Miller (1993), using nonparametric estimates of choice and state transition prob-

abilities, yields a simple representation of the choice-specific value functions for values in a

neighborhood of the true vector of structural parameters.13 The main advantage of this two-

step estimator is its computational simplicity. The first step is a nonparametric regression to

obtain the productivity and the aggregate state transition functions, the second step is the es-

timation of a standard discrete choice model (the policy functions) with a criterion function that

is globally concave (e.g., such as the likelihood of a multinomial logit model in our investment

choice study case). Thus, the agent’s continuation values can be obtained nonparametrically

by first estimating the agent’s choice probabilities at each state, and then inverting the choice

problem to obtain the corresponding continuation values. However, as with other approaches,

there are limitations. First, since the two-step empirical strategy involves the (nonparamet-

ric) estimation of the CCPs, the continuation values are estimated rather than computed, and

therefore they contain sampling error. This sampling error might be significant if the state

space of the model is large relative to the available data. The second limitation comes from

the formal requirements of the limit properties of the estimator. As a matter of fact, to obtain

an estimator with desirable properties, the data must visit a subset of the points repeatedly.

More precisely, all the states in some recurrent class ℜ ⊆ S must be visited infinitely often,

and the equilibrium strategies must be the same every time each point of ℜ is visited. Simply

put, the two-step approach requires the assumption of stationarity. To give an example, when

forecasting the CCPs of a firm observed in year t when being active on the market in year

t + τ , it is assumed that the firm at time t would face the same decision-making environment

observed in year t + τ . Moreover, it must also be assumed that there is no permanent unob-

served heterogeneity, otherwise, it would be impossible to match the actions of the firm at

time t with the action at time t+ τ .

To correct for the finite sample bias, Aguirregabiria and Mira (2002) propose a nested

pseudo-likelihood algorithm (NPL) for the estimation of the class of discrete Markov decision

models with the conditional independence assumption. In particular, their method considers

a K-step extension of the Hotz and Miller (1993) estimator. In fact, Aguirregabiria and Mira

13For an exhaustive, but self-contained review and description of Hotz and Miller (1993) two-step estimator
and extensions, see Aguirregabiria and Mira (2010).
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(2002) obtain a new estimate of the CCPs given the two-step estimator and an initial nonpara-

metric estimator of the CCPs. Successive iterations return a sequence of estimators of the

structural parameters and CCPs that are asymptotically equivalent to the partial MLE and to

the two-step PML (Aguirregabiria and Mira, 2002, Proposition 4). Moreover, Aguirregabiria and Mira

(2002) report results fromMonte Carlo experiments that illustrate how iterating in this proce-

dure does in fact produce significant reductions in finite sample bias. However, their estimation

algorithm have difficulties dealing with unobserved heterogeneity. Extensions to accommodate

unobserved heterogeneity via finite mixture distributions into CCP estimation are attributable

to Arcidiacono and Miller (2011).

Given these recent extensions, there is still one main limiting factor in estimating DP mod-

els, which is the computational burden associated with the iterative process. Therefore, it is

not surprising that there have been continuing efforts to reduce the computational burden of

estimating DP models. Recently, computationally practical Bayesian approaches that rely on

Markov Chain Monte Carlo (MCMC) methods have been developed by Imai et al. (2009) and

Norets (2009).

The Imai et al. (2009) algorithm is related to the one proposed by Aguirregabiria and Mira

(2002), but it is based on the full solution of the DP problem, yielding the advantage of

dealing with unobserved heterogeneity. The main idea of their estimation approach is to avoid

the computation of the full solution of the DP problem, by approximating the expected value

function at a state space point using the average of value functions at past iterations in which

the parameter vector is close to the current parameter vector and the state variables are close

to the current state variables.14 In the conventional NFXP algorithm, most of the information

obtained in the past iterations remains unused in the current iteration.

The Imai et al. (2009) algorithm consists of two loops:

1. The outer loop (Metropolis-Hasting Algorithm)

The outer loop performs a M-H (Metropolis-Hasting) algorithm. First, we draw a candi-

date parameter vector from a proposal density, then we evaluate the likelihood, condi-

tional on the candidate parameter vector and on the previous iteration parameter vector,

to compute the acceptance probability, with which we can decide whether or not to

accept the candidate parameter vector.

In our setting, we allow for the parameters of the profit function, θΠ, to take different

values for each firm. In particular, we assume that the vector of firm-specific parameters

θΠi follows the density function:

θΠi ∼ g(θΠi(a);µ),

where µ = (θ̄Π, σΠ)
′ is the hyperparameter vector for this density. In particular, we

14Ching et al. (2012) claim that the practical Bayesian approach developed by Imai et al. (2009)

“...is potentially superior to prior methods because (1) it could significantly reduce the compu-
tational burden of solving for the DDP model in each iteration, and (2) it produces the posterior
distribution of parameter vectors, and the corresponding solutions for the DDP model–this avoids
the need to search for the global maximum of a complicated likelihood function.”
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assume g is a normal distribution and µ includes parameters for means, θ̄Π, and standard

deviations, σΠ. Assuming that the prior of the mean parameters is normal and that of the

standard deviation parameters is inverted Gamma, the posterior distribution for the mean

parameters is normal and that for the standard deviation parameter is inverted Gamma.

To simplify the framework, without losing the generality of the structural model, we

assume that the priors are independent across investment alternatives.

The entire parameter vector consists now of θ = (µ′, vec(θΠ)
′, θ′ω, θ

′
ψ, θ

′
ǫ, β)

′. Following

Ching et al. (2012), let us rewrite this vector as θ = (µ′, vec(θΠ)
′, (θc)

′)′, where θc =

(θ′ω, θ
′
ψ, θ

′
ǫ, β)

′ is the vector of parameters common across firms. As for the prior on θc,

we use independent flat priors. Suppose we are at iteration r, with parameter estimates

being (µr, vec(θΠ), θc), then the outer loop iteration for drawing a parameter vector from

the posterior distribution can be divided into three steps:

1.1 Hyperparameter updating step

Draw µr. That is, given θr−1
Π , for all alternative a ∈ A, draw θ̄Π ∼ fθ(·|σ

r−1
θΠ

, {θr−1
Πi }Ni=1)

and σrΠ(a) ∼ fσ(·|θ̄
r
Π, {θ

r−1
Πi }Ni=1), where fθ and fσ are the conditional posterior dis-

tributions.

1.2 Data augmentation step

Now that we have effectively constructed the prior for θΠi, we draw, for each

alternative a, a candidate parameter from the proposal density, which we assume

to be a normal density,

θ∗rΠi ∼ q(θ̄r−1
Π , σr−1

θΠ
).

Then, accept θ∗rΠi with probability λ, where

λ = min

{

g(θ∗rΠi;µ
r)P ri (ai|ωi, ψ; θ

∗r
Πi, θ

r−1
c )q(·|θ∗rΠi, µ

r)

g(θr−1
Πi ;µr)P ri (ai|ωi, ψ; θ

r−1
Πi , θ

r−1
c )q(·|θr−1

Πi , µ
r)
, 1

}

.

The computation of the firm-specific likelihood component P ri , as defined in (16),

requires the computation of the expected value function for the firm, which happens

in the inner loop.

1.3 Common parameters drawing step

We draw a candidate parameter form the proposal density θ∗rc ∼ q(θ∗rc |θr−1
c ), then

accept θ∗rc with probability λ, where

λ = min

{

π(θ∗rc )Lr(a|ω, ψ; θrΠ, θ
∗r
c )q(·|θ∗rc )

π(θr−1
c )Lr(a|ω, ψ; θrΠ, θ

r−1
c )q(·|θr−1

c )
, 1

}

,

where (a,ω) ≡ {ai, ωi}
N
i=1, and L

r is the joint likelihood defined in (15).

2. The inner loop

28



IPTS WORKING PAPER ON CORPORATE R&D AND INNOVATION-NO.02/2014 
THE HIDDEN COSTS OF R&D COLLABORATION

The inner loop computes and updates the alternative specific value function by applying

the Bellman operator once. Imai et al. (2009) propose to approximate the expected

value functions by storing and using information from earlier iterations of the algorithm.

In particular, storing up to M past accepted draws of parameters and value functions,

{θ∗l, sl, V l(sl, ǫl; θ∗l)}r−1
l=r−M , Imai et al. (2009) propose to construct the expected value

function in iteration r as,

Erǫ′
[

V (s′, ǫ′; θ∗r|s, a)
]

=

r−1
∑

l=r−M

V l(sl, ǫl; θ∗l)χ(θ∗l, θ∗r; sl, s|a), (19)

where

χ(θ∗l, θ∗r; sl, s|a) =
Khθ(θ

∗l, θ∗r)Khs(s
l, s|a)

∑r−1
k=r−M Khθ(θ

∗k, θ∗k)Khs(s
k, s|a)

,

so as to assign higher weights to past parameters that are closer the current iteration

one, and higher weights to states s′ that have higher transition density from states s.

Khθ(θ
∗k, θ∗k) and Khs(s

k, s|a) are kernel function with bandwidth hθ, and hs, for the

parameter vector, θ, and the state variable s, respectively. The value function obtained

from (19) is used to construct the choice specific value function,

V r(a, s, ǫ; θ∗r) = Π(a, s; θ∗rΠ ) + ǫ+ βErǫ′
[

V (s′, ǫ′; θ∗r)|s, a
]

. (20)

The value function in (20) is used to construct the likelihood as in (16). Note that the

integration over the continuous state variables is already incorporated into the computa-

tion of the weighted average of past value functions. This approach has the advantage,

compared to Rust’s random grid approximation, of avoiding to compute the value function

at Ngrid random points of the state variables state in each iteration.

Finally, given the assumption of iid extreme value distributed ǫ’s, we have that

V r(s, ǫ; θ∗r) = max
a∈A

V (a, s, ǫ; θ∗r) = ln

[

∑

a

exp(V (a, s; θ∗r))

]

B Profit function

Given the following maximization problem

max
Lit,Wit

[φit log(Uit(Wit, Lit)) + (1− φit) log Πit] ,

the first order conditions can be written as:

w.r.t. Lit → (1− φit)
Wit −

(

1 + 1
η

)

Pit(Qit)
∂Qit
∂Lit

Πit
=
φit
Lit

, (21)

w.r.t. Wit → (1− φit)
Wit − W̄it

Πit
=
φit
Lit

. (22)
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Combining equations (21) and (22), the marginal revenue product of labour is

(

η + 1

η

)

Pit(Qit)
∂Qit
∂Lit

= W̄it. (23)

Therefore, by multiplying both sides of (23) by Lit
Qit

, we have

η + 1

η
θiLt =

W̄itLit
Pit(Qit)Qit

=
W̄it

Wit

WitLit
Pit(Qit)Qit

.

Using Amoroso (2013) definition of the wage mark-up µWit ≡ Wit−W̄it
Wit

, and taking into account

the demand as in (1), we can rewrite the cost of labour as

WitLit =
1 + η

η
θiLt

1

1− µWit
(Qit)

1+η
η

P jt

(Qjt)
1/η

exp(−udit/η).

Replacing Qit with the Cobb-Douglas function as in (2), and solving for Lit, we get

Lit =

[

(exp(θ0 + ωit)K
θK
it M

θM
it )

η+1

η
1

1− µW
η + 1

η

θiLt
Wit

P jt

(Qjt )
1/η

(exp(−udit/η))

]η/(η−θiLt(η−1))

.

(24)

The short-run profits, PitQit −WitLit, can be rewritten as

ΠSR(ωit,Wit,Kit,Mit, ψt) = (exp(θ0+ωit)K
θK
it L

θL
it M

θM
it )

1+η
η

P jt

(Qjt )
1/η

exp(−udit/η)

[

1−
1 + η

η
θiLt

1

1− µWit

]

.

Replacing the labour demand with (24), we get the final profit function:

ΠSR(ωit,Wit,Kit,Mit, ψt) =

(

1− γ

γ1−δ

)

W 1−δ
it

[

(

exp(θ0 + ωit)K
θK
it M

θM
it

)
η+1

η
(

ψt(exp(u
d
it))

−1/η
)

]δ

where ψt ≡
P j
t

(Qj
t )

1/η
, γ ≡ θL

η+1
η

1
1−µW

, and δ ≡ η/(η − θiLt(η − 1)).

The short-run profit function as in (8), assuming no imperfect competition on the labour

market, is derived from the following optimization problem for firm i:

max
Xit

{

PitQit − V ′
itXit | AitF (Xit) ≥ Qit

}

, (25)

where Xit ≡ (Xi1t,Xi2t, . . . ,Xirt)
′ denotes the vector of r factor inputs, F (.) is production

function, and Vit ≡ (Vi1t, Vi2t, . . . , Virt)
′ is the vector of r input prices. Taking into account the

demand as in (1), the FOC is:
η + 1

η
Pit

∂Qit
∂Xit

= Vit,

since MCXit = Vit
∂Xit
∂Qit

is defined as the marginal cost of Xit, we have that

Pit −MCXit
Pit

= −
1

η
. (26)
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Assuming that the marginal cost of Xit are an inverse function of the firm-level productivity

such as

MCXit ≡
1

exp(ωit)
,

the price can be expressed as a function of the demand elasticity and the productivity,

Pit =
η

η + 1

1

exp(ωit)
. (27)

Multiplying (26) by PitQit, we obtain the profits, therefore the profit function can be written

as

Πit = −
1

η
PitQit.

Substituting Qit with (1) and Pit with (27), we obtain the following short-run profit function:

Π(ωit, ψt) = ϕψt exp(ωit)
−(1+η),

where ϕ ≡ − 1
1+η

(

η
1+η

)η
.
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Figure 1: R&D, Cooperation and Innovation Choices
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Figure 2: Investment policy functions
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Figure 3: MCMC iterations of fixed and sunk cost parameters
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Abstract 

 

Many European policy initiatives continue to promote R&D collaboration in view of its expected benefits. Despite the advantages 

of R&D cooperation, to benefit from it, firms must create a structure to support the efficient transfer of knowledge-based 

assets. In fact, the setup and administration of common resources might be costly. This paper derives the distribution of the 

costs associated with R&D collaboration, as they could shape firms’ R&D- related investments. To ascertain these costs, we 

model the expected benefits from R&D cooperation with a structural dynamic monopoly model. The modelling results show that 

the sunk costs of innovation are lower when collaborating with a research partner, and that a firm's probability of investing in 

R&D or innovation increases with the level of productivity, only when collaborating in R&D and innovation. We also find that the 

sunk costs of innovation are 1.5 to 3 times lower than the sunk costs of R&D. Additionally, it can be seen that the suggested 

structural framework of a firm’s heterogeneity in cost functions used in our model can offer a straightforward extension to 

existing policy impact evaluation. 



 

 

 


	The hidden costs of R&D collaboration (1).pdf
	Introduction
	Firms' heterogeneity and transaction cost theories
	Structural Framework
	Static decisions
	Dynamic decisions
	State variables transition functions
	Value and policy functions


	The estimation procedure
	Step 1: Static parameters
	Step 2: Profit function parameters
	Step 3: Dynamic parameters

	Data
	Results
	Static parameters
	Dynamic parameters

	Conclusion and future work
	IJC2009 estimation algorithm
	Profit function
	Tables and Figures
	WorkingPaper_JRC_englishProofed.pdf
	Introduction
	Firms' heterogeneity and transaction cost theories
	Structural Framework
	Static decisions
	Dynamic decisions
	State variables transition functions
	Value and policy functions


	The estimation procedure
	Step 1: Static parameters
	Step 2: Profit function parameters
	Step 3: Dynamic parameters

	Data
	Results
	Static parameters
	Dynamic parameters

	Conclusion and future work
	IJC2009 estimation algorithm
	Profit function
	Tables and Figures





