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Declaring and Diagnosing Research Designs
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Researchers need to select high-quality research designs and communicate those designs clearly to
readers. Both tasks are difficult. We provide a framework for formally “declaring” the analytically
relevant features of a research design in a demonstrably complete manner, with applications to

qualitative, quantitative, andmixedmethods research.The approach to designdeclarationwedescribe requires
definingamodelof theworld(M),an inquiry(I),adatastrategy(D),andananswerstrategy(A).Declarationof
these features in codeprovides sufficient information for researchers and readers touseMonteCarlo techniques
to diagnose properties such as power, bias, accuracy of qualitative causal inferences, and other “diagnosands.”
Exantedeclarations canbeused to improvedesignsand facilitatepreregistration, analysis, andreconciliationof
intendedandactualanalyses.Expostdeclarationsareuseful fordescribing, sharing, reanalyzing,andcritiquing
existing designs. We provide open-source software, DeclareDesign, to implement the proposed approach.

As empirical social scientists, we routinely face
two research design problems. First, we need to
select high-quality designs, given resource

constraints. Second, we need to communicate those
designs to readers and reviewers.

To select strong designs, we often rely on rules of
thumb, simple power calculators, or principles from the
methodological literature that typically address one

component of a design while assuming optimal con-
ditions for others. These relatively informal practices
can result in the selection of suboptimal designs, or
worse, designs that are simply tooweak to deliver useful
answers.

To convince others of the quality of our designs, we
often defend them with references to previous studies
that used similar approaches, with power analyses that
may rely on assumptions unknown even to ourselves,
or with ad hoc simulation code. In cases of dispute over
the merits of different approaches, disagreements
sometimes fall back on first principles or epistemo-
logical debates rather than on demonstrations of the
conditions under which one approach does better than
another.

In this paperwedescribe an approach to address these
problems. We introduce a framework—MIDA—that
asks researchers to specify information about their
background model (M), their inquiry (I), their data
strategy (D), and their answer strategy (A). We then
introduce the notion of “diagnosands,” or quantitative
summaries of design properties. Familiar diagnosands
include statistical power, the bias of an estimator with
respect to an estimand, or the coverage probability of a
procedure for generating confidence intervals. We say
a design declaration is “diagnosand-complete” when
a diagnosand can be estimated from the declaration.
We do not have a general notion of a complete design,
but rather adopt an approach in which the purposes of
the design determine which diagnosands are valuable
and in turnwhat featuresmust be declared. In practice,
domain-specific standards might be agreed upon
among members of particular research communities.
For instance, researchers concerned about the policy
impact of a given treatmentmight require a design that
is diagnosand-complete for an out-of-sample diag-
nosand, such as bias relative to the population average
treatment effect. Theymay also consider a diagnosand
directly related to policy choices, such as the
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probability of making the right policy decision after
research is conducted.

We acknowledge that although many aspects of de-
sign quality can be assessed through design diagnosis,
many cannot. For instance the contribution to an aca-
demic literature, relevance to a policy decision, and
impact on public debate are unlikely to be quantifiable
ex ante.

Using this framework, researchers can declare
a research design as a computer code object and then
diagnose its statistical properties on the basis of this
declaration. We emphasize that the term “declare”
does not imply a public declaration or even necessarily
a declaration before research takes place. A re-
searcher may declare the features of designs in our
framework for their own understanding and declaring
designs may be useful before or after the research is
implemented. Researchers can declare and diagnose
their designs with the companion software for this
paper, DeclareDesign, but the principles of design
declaration and diagnosis do not depend on any par-
ticular software implementation.

The formal characterizationanddiagnosis of designs
before implementation can servemanypurposes. First,
researchers can learn about and improve their in-
ferential strategies. Done at this stage, diagnosis of
a design and alternatives can help a researcher select
from a range of designs, conditional upon beliefs about
the world. Later, a researcher may include design
declaration and diagnosis as part of a preanalysis plan
or in a funding request. At this stage, the full specifi-
cationof a design serves a communication function and
enables third parties to understand a design and an
author’s intentions. Even if declared ex-post, formal
declaration still has benefits. The complete charac-
terization can help readers understand the properties
of a research project, facilitate transparent replication,
and can help guide future (re-)analysis of the study
data.

The approach we describe is clearly more easily
applied to some types of research than others. In
prospective confirmatory work, for example,
researchers may have access to all design-relevant
information prior to launching their study. For more
inductive research, by contrast, researchers may
simply not have enough information about possible
quantities of interest to declare a design in advance.
Although in some cases the designmay still be usefully
declared ex post, in others it may not be possible to
fully reconstruct the inferential procedure after the
fact. For instance, although researchers might be able
to provide compelling grounds for their inferences,
they may not be able to describe what inferences they
would have drawn had different data been realized.
This may be particularly true of interpretivist
approaches and approaches to process tracing that
work backwards from outcomes to a set of possible
causes that cannot be prespecified. We acknowledge
from the outset that variation in research strategy
limits the utility of our procedure for different types of
research. Even still, we show that our framework can
accommodate discovery, qualitative inference, and

different approaches to mixed methods research, as
well as designs that focus on “effects-of-causes”
questions, often associated with quantitative
approaches, and “causes-of-effects” questions, often
associated with qualitative approaches.

Formally declaring research designs as objects in the
mannerwe describe here brings, we hope, four benefits.
It can facilitate the diagnosis of designs in terms of their
ability to answer the questionswewant answered under
specified conditions; it can assist in the improvement of
research designs through comparison with alternatives;
it can enhance research transparency by making design
choices explicit; and it can provide strategies to assist
principled replication and reanalysis of published
research.

RESEARCH DESIGNS AND DIAGNOSANDS

We present a general description of a research design
as the specification of a problem and a strategy to
answer it. We build on two influential research design
frameworks. King, Keohane, and Verba (1994, 13)
enumerate four components of a research design:
a theory, a research question, data, and an approach to
using the data. Geddes (2003) articulates the links
between theory formation, research question formu-
lation, case selection and coding strategies, and
strategies for case comparison and inference. In both
cases, the set of components are closely aligned to
those in the framework we propose. In our exposition,
we also employ elements fromPearl’s (2009) approach
to structural modeling, which provides a syntax for
mapping design inputs to design outputs as well as the
potential outcomes framework as presented, for ex-
ample, in Imbens andRubin (2015), whichmany social
scientists use to clarify their inferential targets. We
characterize the design problem at a high level of
generality with the central focus being on the re-
lationship between questions and answer strategies.
We further situate the framework within existing lit-
erature below.

Elements of a Research Design

The specification of a problem requires a description of
the world and the question to be asked about the world
asdescribed.Providing ananswer requires adescription
of what information is used and how conclusions are
reached given this information.

At its most basic we think of a research design as
including four elements ÆM, I, D, Aæ:

1. A causalmodel,M, of how theworldworks.1 In general,
following Pearl’s definition of a probabilistic causal
model (Pearl 2009) we assume that a model contains
three core elements. First, a specification of the varia-
bles X about which research is being conducted. This

1 ThoughM is a causal model of the world, such a model can be used
for both causal and non-causal questions of interest.
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includes endogenous and exogenous variables (V andU
respectively) and the ranges of these variables. In the
formal literature this is sometimes called the signature of
a model (e.g., Halpern 2000). Second, a specification of
how each endogenous variable depends on other vari-
ables (the “functional relations” or, as in Imbens and
Rubin (2015), “potential outcomes”), F. Third, a prob-
ability distribution over exogenous variables, P(U).

2. An inquiry, I, about the distribution of variables, X,
perhaps given interventions on some variables. Using
Pearl’s notation we can distinguish between questions
thataskabout theconditionalvaluesofvariables, suchas
Pr(X1|X2 5 1) and questions that ask about values that
would arise under interventions: Pr(X1|do(X2 5 1)).2

We let aM denote the answer to I under the model.
Conditional on the model, aM is the value of the esti-
mand, the quantity that the researcher wants to learn
about.

3. A data strategy,D, generates data d onX under model
Mwith probabilityPM(d|D). The data strategy includes
sampling strategies and assignment strategies,whichwe
denote with PS and PZ respectively. Measurement
techniques are also a part of data strategies and can be
thought of as procedures by which unobserved latent
variables are mapped (possibly with error) into ob-
served variables.

4. An answer strategy, A, that generates answer aA using
data d.

Akey feature of this bare specification is that ifM,D,
and A are sufficiently well described, the answer to
question I has a distribution PM(a

A|D). Moreover, one
can construct a distribution of comparisons of this an-
swer to the correct answer, under M, for example by
assessing PM(a

A 2 aM|D). One can also compare this
to results under different data or analysis strategies,
PM(a

A 2 aM|D9) and PM(a
A9 2 aM|D), and to answers

generated under alternative models, PM(a
A 2 aM9|D),

as long as these possess signatures that are consistent
with inquiries and answer strategies.

MIDA captures the analysis-relevant features of
a design, but it does not describe substantive elements,
such as how theories are derived, how interventions are
implemented, or even, qualitatively, how outcomes
are measured. Yet many other aspects of a design that
are not explicitly labeled in these features enter into this
framework if they are analytically relevant. For ex-
ample, if treatment effects decay, logistical details of
data collection (such as the duration of time between
a treatment being administered and endline data col-
lection) may enter into the model. Similarly, if a re-
searcher anticipates noncompliance, substantive
knowledge of how treatments are taken up can be in-
cluded in many parts of the design.

Diagnosands

The ability to calculate distributions of answers, given
a model, opens multiple avenues for assessment and
critique. How good is the answer you expect to get from
a given strategy? Would you do better, given some
desideratum, with a different data strategy? With
a different analysis strategy?How good is the strategy if
the model is wrong in one way or another?

To allow for this kind of diagnosis of a design, we
introduce two further concepts, both functions of re-
search designs. These are quantities that a researcher or
a third party could calculate with respect to a design.

1. A diagnostic statistic is a summary statistic generated
from a “run” of a design—that is, the results given
a possible realization of variables, given the model and
data strategy. For example the statistic: e5 “difference
between theestimatedand theactual average treatment
effect” is adiagnostic statistic that requires specifyingan
estimand. The statistic s ¼ 1 p#0:05ð Þ, interpreted as
“the result is considered statistically significant at the
5% level,” is a diagnostic statistic that does not require
specifying an estimand, but it does presuppose an an-
swer strategy that reports a p-value.

Diagnostic statistics are governed by probability
distributions that arise because both the model and the
data generation, given the model, may be stochastic.

2. A diagnosand is a summary of the distribution of
a diagnostic statistic. For example, (expected) bias in
the estimated treatment effect is E eð Þ and statistical
power is E sð Þ.

To illustrate,consider thefollowingdesign.AmodelM
specifies three variablesX, Y, and Z defined on the real
number line that form the signature. In additional we
assume functional relationships between them that allow
for thepossibilityof confounding(forexample,Y5bX1
Z1 «Y;X5Z1 «X, withZ, «X, «Z distributed standard
normal). The inquiry I is “what would be the average
effectof aunit increase inXonY in thepopulation?”The
specification of this question depends on the signature of
the model, but not the functional relations of the model.
The answer provided by the model does of course de-
pend on the functional relations. Consider now a data
strategy,D, in which data are gathered onX andY for n
randomly selectedunits.AnansweraA, is thengenerated
using ordinary least squares as the answer strategy, A.

We have specified all the components of MIDA.We
nowask:How strong is this research design?Oneway to
answer this question is with respect to the diagnosand
“bias.” Here the model provides an answer, aM, to the
inquiry, so the distribution of bias given themodel, aA2
aM, can be calculated.

In this example, the expected performance of the
design may be poor, as measured by the bias diag-
nosand, because the data and analysis strategy do not
handle the confounding described by the model (see
Supplementary Materials Section 1 for a formal dec-
laration and diagnosis of this design). In comparison,

2 The distinction lies in whether the conditional probability is
recorded through passive observation or active intervention to
manipulate the probabilities of the conditioning distribution. For
example, Pr(X1|X2 5 1) might indicate the conditional probability
that it is raining, given that Jack has his umbrella, whereas Pr(X1|
do(X251))would indicate theprobability of rain, given Jack ismade
to carry an umbrella.
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better performance may be achieved through an al-
ternative data strategy (e.g., where D9 randomly
assignedX before recordingX andY) or an alternative
analysis strategy (e.g.,A9 conditionsonZ).Thesedesign
evaluations depend on the model, and so one might
reasonably ask how performance would look were the
model different (for example, if the underlying process
involved nonlinearities).

In all cases, the evaluation of a design depends on the
assessmentofadiagnosand,andcomparing thediagnoses
to what could be achieved under alternative designs.

Choice of Diagnosands

What diagnosands should researchers choose? Al-
though researchers commonly focus on statistical
power, a larger range of diagnosands can be examined
and may provide more informative diagnoses of design
quality. We list and describe some of these in Table 1,
indicating for each the design information that is re-
quired in order to calculate them.

The set listed here includes many canonical diag-
nosands used in classical quantitative analyses. Diag-
nosands can also be defined for design properties that
are often discussed informally but rarely subjected to
formal investigation. For example one might define an
inference as “robust” if the same inference is made

under different analysis strategies. Onemight conclude
thatan interventiongives“value formoney” if estimates
are of a certain size and be interested in the probability
that a researcher in correct in concluding that an in-
tervention provides value for money.

We believe there is not yet a consensus around
diagnosands forqualitativedesigns.However, in certain
treatments clear analogues of diagnosands exist, such as
sampling bias or estimation bias (e.g., Herron and
Quinn 2016). There are indeed notions of power,
coverage, and consistency for QCA researchers (e.g.,
Baumgartner and Thiem 2017; Rohlfing 2018) and
concerns around correct identification of causes of
effects, orof causalpathways, for scholarsusingprocess-
tracing (e.g.,Bennett 2015; Fairfield andCharman2017;
Humphreys and Jacobs 2015; Mahoney 2012).

Though many of these diagnosands are familiar to
scholars using frequentist approaches, analogous diag-
nosands can be used to assess Bayesian estimation strat-
egies (see Rubin 1984), and as we illustrate below, some
diagnosands are unique to Bayesian answer strategies.

Given that there are many possible diagnosands, the
overall evaluation of a design is both multi-dimensional
andqualitative.For somediagnosands,quality thresholds
have been established through common practice, such as
the standard power target of 0.80. Some researchers are
unsatisfied unless the “bias” diagnosand is exactly zero.

TABLE1. ExamplesofDiagnosandsand theElementsof theModel (M), Inquiry (I),DataStrategy (D),and
Answer Strategy (A) Required in Order for a Design to be Diagnosand-Complete for Each Diagnosand

Diagnosand Description

Required:

M I D A

Power Probability of rejecting null hypothesis of no effect 3 3 3

Estimation bias Expected difference between estimate and
estimand

3 3 3 3

Sampling bias Expected difference between population average
treatment effect and sample average treatment
effect (Imai, King, and Stuart 2008)

3 3 3

RMSE Root mean-squared-error 3 3 3 3

Coverage Probability the confidence interval contains the
estimand

3 3 3 3

SD of estimates Standard deviation of estimates 3 3 3

SD of estimands Standard deviation of estimands 3 3 3

Imbalance Expected distance of covariates across treatment
conditions

3 3

Type S rate Probability estimate has incorrect sign, if
statistically significant (Gelman and Carlin
2014)

3 3 3 3

Exaggeration ratio Expected ratio of absolute value of estimate to
estimand, if statistically significant (Gelman and
Carlin 2014)

3 3 3 3

Value for money Probability that a decision based on estimated
effect yields net benefits

3 3 3 3

Robustness Joint probability of rejecting the null hypothesis
across multiple tests

3 3 3
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Yet for most diagnosands, we only have a sense of better
andworse, and improving one canmeanhurting another,
as in the classic bias-variance tradeoff. Our goal is not to
dichotomizedesigns intohighand lowquality, but instead
to facilitate the assessment of design quality on dimen-
sions important to researchers.

What is a Complete Research
Design Declaration?

A declaration of a research design that is in some sense
complete is required in order to implement it, com-
municate its essential features, and to assess its prop-
erties. Yet existing definitions make clear that there is
no single conception of a complete research design: at
the time of writing, the Consolidated Standards of
Reporting Trials (CONSORT) Statement widely used
in medicine includes 22 features, while other proposals
range from nine to 60 components.3

We propose a conditional conception of complete-
ness: we say a design is “diagnosand-complete” for
a givendiagnosand if that diagnosandcanbe calculated
from the declared design. Thus a design that is
diagnosand-complete for one diagnosand may not be
for another. Consider, for example, the diagnosand
statistical power. Power is the probability of obtaining
a statistically significant result. Equivalently, it is the
probability that the p-value is lower than a critical
value (e.g., 0.005). Thus, power-completeness requires
that the answer strategy return a p-value and a signif-
icance threshold be specified. It does not, however,
require a well-defined estimand, such as a true effect
size (see Table 1 where, for a power diagnosand, there
is no check under I). In contrast, bias- or RMSE-
completeness does not require a hypothesis test, but
does require the specification of an estimand.

Diagnosand-completeness is a desirable property to
the extent that it means a diagnosand can be calculated.
How useful diagnosand-completeness is depends on
whether the diagnosand is worth knowing. Thus,
evaluating completeness should focus first on whether
diagnosands for which completeness holds are indeed
useful ones.

The utility of a diagnosis depends in part on whether
the information underlying declaration is believable.
For instance, a design may be bias-complete, but only
under the assumptions of a given spillover structure.
Readersmightdisagreewith theseassumptions.Even in
this case, however, an advantage of declaration is
a clarification of the conditions for completeness.

EXISTING APPROACHES TO LEARNING
ABOUT RESEARCH DESIGNS

Much quantitative research design advice focuses on
one aspect of design at a time, rather than on theways in

which multiple components of a research design relate
to each other. Statistics articles and textbooks tend to
focus on a specific class of estimators (Angrist and
Pischke 2008; Imbens and Rubin 2015; Rosenbaum
2002), set of estimands (Heckman, Urzua, and Vytlacil
2006; Imai, King, and Stuart 2008;Deaton 2010; Imbens
2010), data collection strategies (Lohr 2010), or ways of
thinking about data-generation models (Gelman and
Hill 2006; Pearl 2009). In Shadish, Cook, and Campbell
(2002, 156), for example, the “elements of a design”
consist of “assignment, measurement, comparison
groups and treatments,” a definition that does not in-
clude questions of interest or estimation strategies. In
some instances, quantitative researchers do present
multiple elements of research design. Gerber and
Green (2012), for example, examine data-generating
models, estimands, assignment and sampling strategies,
and estimators for use in experimental causal inference;
and Shadish, Cook, and Campbell (2002) and Dunning
(2012) similarly describe the various aspects of de-
signing quasi-experimental research and exploiting
natural experiments.

In contrast, a number of qualitative treatments focus
on integrating the many stages of a research design,
from theory generation, to case selection, measure-
ment, and inference. In an influential book on mixed
method research design for comparative politics, for
example, Geddes (2003) articulates the links between
theory formation (M), research question formulation
(I), case selection and coding strategies (D), and
strategies for case comparison and inference (A). King,
Keohane, and Verba (1994) and the ensuing discussion
in Brady and Collier (2010) highlight how alternative
qualitative strategies present tradeoffs in terms of
diagnosands suchasbias andgeneralizability.However,
few of these texts investigate those diagnosands for-
mally in order to measure the size of the tradeoffs be-
tween alternative qualitative strategies.4 Qualitative
approaches, including process tracing and qualitative
comparative analysis, sometimes appear almost her-
metic, complete with specific epistemologies, types of
research questions, modes of data gathering, and
analysis. Though integrated, these strategies are often
not formalized.And if they are, it is seldom in away that
enables comparison with other approaches or quanti-
fication of design tradeoffs.

MIDA represents an attempt to thread the needle
between these two traditions. Quantifying the strength
of designs necessitates a language for formally de-
scribing the essential features of a design. The relatively
fragmented manner in which the quantitative design is
thought of in existing work may produce real research
risks for individual research projects. In contrast, the
more holistic approaches of some qualitative traditions
offer many benefits, but formal design diagnosis can be
difficult. Our hope is that MIDA provides a framework
for doing both at once.

3 See “Pre Analysis Plan Template” (60 features); World Bank De-
velopment Impact Blog (nine features).

4 Some exceptions are provided on page 4. Herron andQuinn (2016),
for example, conduct a formal investigation of the RMSE and bias
exhibited by the alternative case selection strategies proposed in an
influential piece by Seawright and Gerring (2008).
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A useful way to illustrate the fragmented nature of
thinking on research design among quantitative
scholars is to examine the tools that are actually used to
do research design. Perhaps the most prominent of
these are “power calculators.”These have an all-design
flavor in the sense that they ask whether, given an an-
swer strategy, a data collection strategy is likely to
return a statistically significant result. Power calcu-
lations like these are done using formulae (e.g., Cohen
1977; Haseman 1978; Lenth 2001; Muller et al. 1992;
Muller and Peterson 1984); software tools such as Web
applications and general statistical software (e.g.,
easypower for R and Power and Sample Size for Stata)
as well as standalone tools (e.g., Optimal Design,
G*Power, nQuery, SPSS Sample Power); and some-
times Monte Carlo simulations.

Inmost cases these tools, though touchingonmultiple
parts of a design, in fact leave almost no scope to de-
scribe what the data generating processes can be, what
the questions of interest are, and what types of analyses
will be undertaken.We conducted a census of currently
available diagnostic tools (mainly power calculators)
and assessed their ability to correctly diagnose three
variants of a common experimental design, in which
assignment probabilities are heterogeneous by block.5

The first variant simply uses a difference-in-means es-
timator (DIM), the second conditions on block fixed
effects (BFE), and the third includes inverse-
probability weighting to account for the heteroge-
neous assignment probabilities (BFE-IPW).

We found that the vast majority of tools used are
unable to correctly characterize the tradeoffs these
three variants present. As shown in Table 2, none of

the tools was able to diagnose the design while taking
account of important features that bias unweighted
estimators.6 In our simulations the result is an
overstatement of the power of the difference-in-
means.

Because no tool was able to account for weighting in
the estimator, none was able to calculate the power for
the IPW-BFE answer strategy. Moreover, no tool
sought to calculate the design’s bias, root mean-
squared-error, or coverage (which require in-
formation on I). The companion software to this article,
which was designed based on MIDA, illustrates that
power is amisleading indicator of quality in this context.
While the IPW-BFE estimator is better powered and
less biased than the BFE estimator, its purported effi-
ciency is misleading. IPW-BFE is better powered than
DIM and BFE because it produces biased variance
estimates that lead to a coverage probability that is too
low. In terms of RMSE and the standard deviation of
estimates, the IPW-BFE strategy does not outperform
theBFE estimator. This exercise should not be taken as
proof of the superiority of one strategy over another in
general; instead we learn about their relative perfor-
mance for particular diagnosands for the specific design
declared.

We draw a number of conclusions from this review of
tools.

First, researchers are generally not designing studies
using the actual strategies that they will use to conduct
analysis. Fromtheperspectiveof theoverall designs, the
power calculations are providing the wrong answer.

Second, the tools can drive scholars toward relatively
narrow design choices. The inputs to most power cal-
culators are data strategy elements like the number of
units or clusters. Power calculators do not generally

TABLE 2. Existing Tools Cannot Declare Many Core Elements of Designs and, as a Result, Can Only
Calculate Some Diagnosands

(a) Declare design elements (b) Diagnosis capabilities

Design feature Diagnosand

(M) Effect and block size correlated 0/30 Power (DIM estimator) 28/30
(I) Estimand 0/30 Power (BFE estimator) 13/30
(D) Sampling procedure 0/30 Power (IPW-BFE estimator) 0/30
(D) Assignment procedure 0/30 Bias (any estimator) 0/30
(D) Block sizes vary 1/30 Coverage (any estimator) 0/30
(A) Probability weighting 0/30 SD of estimates (any estimator) 0/30

Note: Panel (a) indicates the number of tools that allowdeclarationof a particular feature of thedesign as part of the diagnosis. In the first row,
for example, 0/30 indicates that no tool allows researchers to declarecorrelatedeffect andblock sizes.Panel (b) indicates thenumberof tools
that can perform a particular diagnosis. Results correspond to design tool census concluded in July 2017 and do not include tools published
since then.

5 We assessed tools listed in four reviews of the literature (Green and
MacLeod 2016; Groemping 2016; Guo et al. 2013; Kreidler et al.,
2013), in addition to the first thirty results fromGoogle searches of the
terms “statistical bias calculator,” “statistical power calculator,” and
“sample size calculator.”We found no admissible tools using the term
“statistical bias calculator.” Thirty of the 143 tools we identified were
able to diagnose inferential properties of designs, such as their power.
See Supplementary Materials Section 2 for further details on the tool
survey.

6 For example, no design could account for: the posited correlation
between block size and potential outcomes; the sampling strategy; the
exact randomization procedure; the formal definition of the estimand
as the population average treatment effect; or the use of inverse-
probability weighting. The one tool (GLIMMPSE) that was able to
account for theblocking strategyencounteredanerrorandwasunable
to produce diagnostic statistics.
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focus on broader aspects of a design, like alternative
assignmentproceduresor thechoiceofestimator.While
researchers may have an awareness that such tradeoffs
exist, quantifying the extent of the tradeoff is by no
means obvious until the model, inquiry, data strategy,
and answer strategy is declared in code.

Third, the tools focus attention on a relatively narrow
set of questions for evaluating a design. While un-
derstanding power is important for some designs, the
range of possible diagnosands of interest is much
broader. Quantitative researchers tend to focus on
power, when other diagnosands such as bias, coverage,
or RMSE may also be important. MIDA makes clear,
however, that these features of a design are often linked
in ways that current practice obscures.

Asecond illustrationof risksarising fromafragmented
conceptualizationof researchdesigncomes fromdebates
over the disproportionate focus on estimators to the
detriment of careful consideration of estimands. Huber
(2013), for example, worries that the focus on identifi-
cation leads researchers away from asking compelling
questions. In the extreme, the estimators themselves
(andnot the researchers)appear toselect theestimandof
interest. Thus, Deaton (2010) highlights how in-
strumental variables approaches identify effects for
a subpopulation of compliers. Who the compliers are is
jointly determined by the characteristics of the subjects
and also by the data strategy. The implied estimand (the
Local Average Treatment Effect, sometimes called the
Complier Average Causal Effect) may or may not be of
theoretical interest. Indeed, as researchers swap one
instrument for another, the implied estimand changes.
Deaton’s worry is that researchers are getting an answer,
but they do not know what the question is.7 Were the
question posed as the average effect of a treatment, then
theperformanceof the instrumentwoulddependonhow
well the instrumental variables regression estimates that
quantity, and not how well they answer the question for
a different subpopulation. This is not done in usual
practice, however, as estimands are often not included as
part of a research design.

To illustrate risks arising from the combination of
a fractured approach to design in the formal quantitative
literature,andtheholisticbutoften less formalapproaches
in the qualitative literature, we point to difficulties these
approaches have in learning from each other.

Goertz andMahoney (2012) tell a tale of two cultures
in which qualitative and quantitative researchers differ
not just in the analytic tools they use, but in very many
ways, including, fundamentally, in their con-
ceptualizations of causation and the kinds of questions
theyask.Theauthors claim(thoughnotallwouldagree)
that qualitative researchers think of causation in terms
of necessary and/or sufficient causes, whereas many
quantitative researchers focus on potential outcomes,
average effects, and structural equations. One might
worry that such differences would preclude design
declarationwithin a common framework, but they need

not, at least for qualitative scholars that consider causes
in counterfactual terms.8

For example, a representation of a causal process in
termsofcausal configurationsmight take the form:Y5AB
1C,meaning that thepresenceofA andBor thepresence
ofC is sufficient toproduceY.This configuration statement
maps directly into a potential outcomes function (or
structural equation)of the formY(A,B,C)5max(AB,C).
Given this, the marginal effect of one variable, conditional
on others, can be translated to the conditions in which the
variable is difference-making in the sense of altering rel-
evant INUS9 conditions: E(Y(A 5 1|B, C) 2 Y(A 5 0|B,
C))5 E(B5 1, C5 0).10 Describing these differences in
notation as differences in notions of causality suggests that
there is limited scope for considering designs that mix
approaches, and that there is little that practitioners of one
approach can say to practitioners of another approach. In
contrast, clarification that the difference is one regarding
the inquiry—i.e., which combinations of variables guar-
antee a given outcome and not the averagemarginal effect
of a variable across conditions—opens up the possibility to
assess how quantitative estimation strategies fare when
applied to estimating this estimand.

A second point of difference is nicely summarized by
Goertz and Mahoney (2012, 230): “qualitative analysts
adopt a ‘causes-of-effects’ approach to explanation […
whereas] statistical researchers follow the ‘effects-of-
causes’ approach employed in experimental research.”
We agree with this association, though from a MIDA
perspective we see such distinctions as differences in
estimands and not as differences in ontology. Condi-
tioning on a givenX andY the effects-of-cause question is
E(Yi(Xi 5 1) 2 Yi(Xi 5 0)). By contrast, the cause-of-
effects question can bewritten Pr(Yi(0)5 0 |Xi5 1,Yi(1)
5 1). This expression asks what are the chances that Y
wouldhavebeen0 ifXwere0 foraunit i forwhichXwas1
and Yi(1) was 1. The two questions are of a similar form
though the cause-of-effects question is harder to answer
(Dawid 2000). Once thought of as questions about what
the estimand is, one can assess directly when one or an-
other estimation strategy is more or less effective at fa-
cilitating inference about the estimand of interest. In fact,
experiments are in general not able to solve the identifi-
cation problem for cause-of-effects questions (Dawid
2000) and this may be one reason for why these questions
are often ignored by quantitative researchers. Exceptions
include Yamamoto (2012) and Balke and Pearl (1994).

Below, we demonstrate gains from declaration of
designs in a common framework by providing examples

7 AronowandSamii (2016) express a similar concern formodels using
regression with controls.

8 Schneider andWagemann (2012, 320–1) also note that there are not
grounds to assume incommensurability, noting that “if set-theoretic,
method-specific concepts…. can be translated into the potential
outcomes framework, the communication between scholars from
different research traditions will be facilitated.” See also Mahoney
(2008) on the consistency of these conceptualizations.
9 An INUS condition is “an insufficient but non-redundant part of an
unnecessary but sufficient condition” (Mackie 1974).
10 Goertz and Mahoney (2012, 59) also make the point that the dif-
ference is in practice, and is not fundamental: “Within quantitative
research, it does not seem useful to group cases according to common
causal configurations on the independent variables.Althoughone could
do this, it is not a practice within the tradition.” (Emphasis added.)
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of design declaration for crisp-set qualitative compar-
ative analysis (Ragin 1987), nested case analysis
(Lieberman 2005), and CPO (causal process observa-
tion) process-tracing (Collier 2011; Fairfield 2013),
alongside experimental and quasi-experimental designs.

Overall, this discussion suggests that the common
ways inwhich designs are conceptualized produce three
distinct problems. First, the different components of
a design may not be chosen to work optimally together.
Second, consideration is unevenly distributed across
components of a design. Third, the absence of a com-
mon framework across research traditions obscures
where the points of overlap and difference lie and may
limit both critical assessment of approaches and cross-
fertilization. We hope that the MIDA framework and
tools can help address these challenges.

DECLARING AND DIAGNOSING RESEARCH
DESIGNS IN PRACTICE

A design that can be declared in computer code can then
be simulated in order to diagnose its properties. The
approach to declaration that we advocate is one that
conceives of a design as a concatenation of steps. To il-
lustrate, the top panel of Table 3 shows how to declare
a design in code using the companion software to this

paper,DeclareDesign (Blair et al. 2018).The resulting
set of objects (p_U, f_Y, I, p_S, p_Z, R, and A) are
all steps. Formally, each of these steps is a function. The
design is the concatenation of these, which we represent
using the “1” operator: design,- p_U1 f_Y1 I 1
p_S 1 p_Z 1 R 1 A. A single simulation runs through
these steps, calling each of the functions successively. A
design diagnosis conducts m simulations, then summa-
rizes the resulting distribution of diagnostic statistics in
order to estimate the diagnosand.

Diagnosands can be estimated with higher levels of
precision by increasing m. However, simulations are
often computationally expensive. In order to assess
whether researchers have conducted enough simu-
lations to be confident in their diagnosand estimates, we
recommend estimating the sampling distributions of the
diagnosands via the nonparametric bootstrap.11 With
the estimated diagnosand and its standard error, we can
characterizeour uncertainty aboutwhether the rangeof

TABLE 3. A Procedure for Declaring and Diagnosing Research Designs Using the Companion
Software DeclareDesign (Blair et al. 2018)

Design declaration Code

M
Declare background variables
Declare functional relations

� p_U ,- declare_population(N 5 200, u 5 rnorm(N))
f_Y ,- declare_potential_outcomes(Y ~Z 1 u)

I Declare inquiry I,-declare_estimand(ATE5mean(Y_Z_12Y_Z_0))

D
Declare sampling
Declare assignment
Declare outcome revelation

8<
: p_S ,- declare_sampling(n 5 100)

p_Z ,- declare_assignment(m 5 50)
R ,- declare_reveal(Y, Z)

A Declare answer strategy A ,- declare_estimator(Y ~Z, estimand 5 “ATE”)
Declare design, ÆM, I, D, Aæ design ,- p_U 1 f_Y 1 I 1 p_S 1 p_Z 1 R 1 A

Design simulation (1 draw) Code

1 Draw a population u using P(U) u ,- p_U()
2 Generate potential outcomes using fY D ,- f_Y(u)
3 Calculate estimand aM a_M ,- I(D)
4 Draw data, d, given model assumptions

and data strategies
d ,- R(p_Z(p_S(D)))

5 Calculate answers, aA using A and d a_A ,- A(d)
6 Calculate a diagnostic statistic t using

aA and aM
e ,- a_A[“estimate”] 2 a_M[“estimand”]

Design diagnosis (m draws) Code

Declare a diagnosand bias ,- declare_diagnosands(
bias 5 mean(estimate 2 estimand))

Calculate a diagnosand diagnose_design(
design, diagnosands 5 bias, sims 5 m)

Note: The toppanel includeseachelementof adesign that canbedeclaredalongwithcodeused todeclare them.Themiddlepaneldescribes
steps to simulate that design. The bottom panel includes the procedure to diagnose the design.

11 In their paper on simulating clinical trials through Monte Carlo,
Morris, White, and Crowther (2019) provide helpful analytic formula
for deriving Monte Carlo standard errors for several diagnosands
(“performance measures”). In the companion software, we adopt
a non-parametric bootstrap approach that is able to calculate standard
errors for any user-provided diagnosand.
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likely values of the diagnosand compare favorably to
reference values such as statistical power of 0.8.12

Design diagnosis places a burden on researchers to
come up with a causal model, M. Since researchers
presumably want to learn about the model, declaring it
in advancemay seem to beg the question. Yet declaring
a model is often unavoidable when diagnosing designs.
Inpractice, doing so is already familiar toany researcher
whohas calculated thepowerof adesign,which requires
the specification of effect sizes. The seeming arbitrari-
ness of the declaredmodel canbemitigatedby assessing
the sensitivity of diagnosis to alternative models and
strategies, which is relatively straightforward given
a diagnosand-complete design declaration. Further,
researchers can inform their substantive models with
existing data, such as baseline surveys. Just as power
calculators focus attention on minimum detectable
effects, design declaration offers a tool to demonstrate
design properties and how they change depending on
researcher assumptions.

In the next sections, we illustrate how research designs
that aim to answer descriptive, causal, and exploratory
research questions can be declared and diagnosed in
practice. We then describe how the estimand-focused
approach we propose works with designs that focus
less on estimand estimation and more on modeling data
generating processes. In all cases, we highlight potential
gains fromdeclaringdesignsusing theMIDAframework.

Descriptive Inference

Descriptive research questions often center on mea-
suringaparameter in a sampleor in thepopulation, such
as the proportion of voters in the United States who
support the Democratic candidate for president. Al-
though seemingly very different from designs that focus
on causal inference, because of the lack of explanatory
variables, the formal differences are not great.

Survey Designs

We examine an estimator of candidate support that
conditions on being a “likely voter.” For this problem,
the data that help researchers predict who will vote are
of critical importance. In the Supplementary Materials
Section 3.1, we declare a model in which latent voters
are likely to vote for a candidate, but overstate their true
propensity to vote. The inquiry is the true underlying
support for the candidate among those who will vote,
while the data strategy involves taking a randomsample
from the national adult population and asking survey
questions that measure vote intention and likelihood of
voting. As an answer strategy, we estimate support for
the candidate among likely voters. The diagnosis shows
that when people misreport whether they vote,

estimates of candidate support may be biased, a com-
monplace observation about the weaknesses of survey
measures. The utility of design declaration here is that
we can calibrate how far off our estimates will be under
reasonable models of misreporting.

Bayesian Descriptive Inference

Although our simulation approach has a frequentist
flavor, the MIDA framework itself can also be applied
to Bayesian strategies. In Supplementary Materials
Section 3.2, we declare aBayesian descriptive inference
design. The model stipulates a latent probability of
success for each unit, and makes one binomial draw for
eachaccording to thisprobability.The inquiry is the true
latent probability, and the data strategy involves
a random sample of relatively few units. We consider
two answer strategies: first, we stipulate uniform priors,
with a mean of 0.50 and a standard deviation of 0.29; in
the second,weplacemorepriorprobabilitymass at 0.50,
with a standard deviation of 0.11.

Once declared, the design can be diagnosed not only
in terms of its bias, but also as a function of quantities
specific to Bayesian estimation approaches, such as the
expected shift in the location and scale of the posterior
distribution relative to the prior distribution. The di-
agnosis shows that the informative prior approach
yieldsmore certain andmore biased inferences than the
uniform prior approach. In terms of the bias-variance
tradeoff, the informative priors decrease the posterior
standard deviation by 40% relative to the uniform
priors, but increase the bias by 33%.

Causal Inference

The approach to design diagnosis we propose can be
used todeclare anddiagnose a rangeof research designs
typically employed to answer causal questions in the
social sciences.

Process Tracing

Although not all approaches to process tracing are
readily amenable to design declaration (e.g., theory-
building process tracing, see Beach and Pedersen 2013,
16), some are. We focus here on Bayesian frameworks
that have been used to describe process tracing logics
(e.g., Bennett 2015; Humphreys and Jacobs 2015; Fair-
field and Charman 2017). In these approaches, “causal
process observations” (CPOs) are believed to be ob-
served with different probabilities depending on the
causal process that has played out in a case. Ideal-type
CPOsasdescribedbyVanEvera (1997) are“hoop tests”
(CPOs that are nearly certain tobe seen if the hypothesis
is true, but likely either way), “smoking-gun tests”
(CPOs that are unlikely to be seen in general but are
extremely unlikely if a hypothesis is false), and “doubly-
decisive tests” (CPOs that are likely tobeseen if andonly
if a hypothesis is true).13 Unlike much quantitative

12 This procedure depends on the researcher choosing a “good”
diagnosand estimator. In nearly all cases, diagnosandswill be features
of thedistributionofadiagnostic statistic that, given i.i.d. sampling,can
be consistently estimated via plug-in estimation (for example taking
sample means). Our simulation procedure, by construction, yields
i.i.d. draws of the diagnostic statistic.

13 See also Collier, Brady, and Seawright (2004), Mahoney (2012),
Bennett and Checkel (2014), Fairfield (2013).
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inference, such studies often pose “causes-of-effects”
inquiries (did the presence of a strongmiddle class cause
a revolution?), and not “effects-of-causes” questions
(what is the average effect of a strong middle class on
the probability of a revolution happening?) (Goertz
and Mahoney 2012). Such inquiries often imply
a hypothesis—“the strong middle class caused the rev-
olution,” say—that canbe investigatedusingBayes’ rule.

Formalizing thiskindofprocess-tracingexercise leads
to non-obvious insights about the tradeoffs involved in
committing to one or anotherCPO strategy ex ante.We
declare a design based on amodel of the world in which
both the driver,X, and the outcome,Y,might bepresent
in a given case either becauseX caused Y or because Y
wouldhavebeenpresent regardless ofX (or perhaps, an
alternative cause was responsible for Y). See Supple-
mentaryMaterials Section 3.3. The inquiry is whetherX
in fact caused Y in the specific case under analysis (i.e.,
would Y have been different if X were different?). The
data strategy consists of selecting one case from a pop-
ulation of cases, based on the fact that bothX andY are
present, and then collecting two causal process obser-
vations. Even before diagnosis, the declaration of the
design illustrates an important point: the case selection
strategy informs the answer strategy by enabling the
researcher to narrow down the number of causal pro-
cesses that might be at play. This greatly simplifies the
application of Bayes’ rule to the case in question.

Importantly, the researcher attaches two different ex
ante probabilities to the observation of confirmatory
evidence in each CPO, depending on whether X did or
did not cause Y. Specifically, the first CPO contains
evidence that is more likely to be seen when the hy-
pothesis is true, Pr(E1|H) 5 0.75, but even when H is
false and Y happened irrespective of X, there is some
probability of observing the first piece of evidence:
Pr(E1|¬H) 5 0.25. The first CPO thus constitutes
a “straw-in-the-wind” test (albeit a reasonably strong
one). By contrast, the probability of observing the ev-
idence in the second CPO when the hypothesis that
X caused Y is true, Pr(E2|H) is 0.30, whereas the
probability of observing the evidence when the hy-
pothesis is false, Pr(E2|¬H) is only 0.05. The second
CPO thus constitutes a “smoking gun” test of H. Ob-
serving the secondpieceofevidence ismore informative
than observing the first, because it is so unlikely to
observe a smoking gun when the hypothesis is false.

Diagnosis reveals that a researcher who relied solely
on the weaker “straw-in-the-wind” test would make
better inferences on average than one who relied solely
on the “smoking gun” test. One does better relying on
the straw because, even if it is less informative when
observed, it is much more commonly observed than the
smokinggun,which is an informative,but rare, clue.The
Collier (2011, 826) assertion that, of the four tests,
straws-in-the-wind are “the weakest and place the least
demand on the researcher’s knowledge and assump-
tions” might thus be seen as an advantage rather than
a disadvantage. In practice, of course, scholars often
seek multiple CPOs, possibly of different strength (see,
for example, Fairfield 2013). In such cases, the diagnosis
suggests the learning depends on the ways in which

these CPOs are correlated. There are large gains
from seeking two CPOs when they are negatively
correlated—for example, if they arise from alternative
causal processes. But there are weak gains when CPOs
arise from the same process. Presentations of process
tracing rarely describe correlations between CPO
probabilities yet the need to specify these (and the gain
from doing so) presents itself immediately when
a process tracing design is declared.

Qualitative Comparative Analysis (QCA)

One approach to mixed methods research focuses on
identifying ways that causes combine to produce out-
comes. What, for instance, are the combinations of
demography, natural resource abundance, and in-
stitutional development that give rise to civil wars? An
answermight beof the form: conflicts arisewhen there is
natural resource abundance and weak institutional
structure or when there are deep ethnic divisions. The
key idea is that different configurations of conditions
can lead to the same outcome (equifinality) and the
interest is in assessingwhich combinations of conditions
matter.

Many applications of qualitative comparative anal-
ysis use Boolean minimization algorithms to assess
which configurations of factors are associated with
different outcomes. Critics have highlighted that these
algorithms are sensitive to measurement error (Hug
2013).Pointing to such sensitivity, someevengoas far as
to call for the rejection of QCA as a framework for
inquiry (Lucas and Szatrowski 2014; for a nuanced
response, see Baumgartner and Thiem 2017).

However, a formal declaration of a QCA design
makes clear that these criticismsunnecessarily conflate
QCA answer strategies with their inquiries (for
a similar argument, see Collier 2014). Contrary to
claims that regression analysis and QCA stem
from fundamentally different ontologies (Thiem,
Baumgartner, and Bol 2016), we show that saturated
regression analysis may mitigate measurement error
concerns in QCA. This simple proof of concept joins
efforts toward unifying QCA with aspects of main-
stream statistics (Braumoeller 2003; Rohlfing 2018)
and other qualitative approaches (Rohlfing and
Schneider 2018).

In Supplementary Materials Section 3.4 we declare
a QCA design, focusing on the canonical case of binary
variables (“crisp-set QCA”). The model features an
outcome Y that arises in a case if and only if cause A is
absent and causeB is present (Y5 a *B). The approach
extends readily to cases with many causes in complex
configurations. For our inquiry, we wish to know the
trueminimal set of configurations of conditions that are
sufficient to cause Y. The data strategy involves mea-
suring and encoding knowledge aboutY in a truth table.
We allow for some error in this process. As in Rohlfing
(2018), we are agnostic as to how this error arises: it may
be that scholarly debate generates epistemic un-
certainty about whether Y is truly present or absent in
a given case, or that there is measurement error due to
sampling variability.
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For answer strategies, we compare two QCA mini-
mization approaches. The first employs the classical
Quine-McCluskey (QMC)minimization algorithm (see
Duşa and Thiem 2015, for a definition) and the second
the “Consistency Cubes” (CCubes) algorithm (Duşa
2018) to solve for the set of causal conditions that
producesY. This comparisondemonstrates theutility of
declaration and diagnosis for researchers using QCA
algorithms,whomightworryaboutwhether their choice
of algorithm will alter their inferences.14 We show that,
at least in simple cases such as this, such concerns are
minimal.

We also consider how ordinary least squares mini-
mization performs when targeting a QCA estimand.
The right hand side of the regression includes indicators
formembership inall feasible configurationsofAandB.
Configurations that predict the presence of Y with
probability greater than 0.5 are then included in the set
of sufficient conditions.

The diagnosis of this design shows that QCA algo-
rithms can be successful at pinpointing exactly the
combination of conditions that give rise to outcomes.
When there is noerror and the sample is large enough to
ensure sufficient variation in the data, QMC and
CCubes successfully recover the correct configuration
100%of the time.Thediagnosis also confirms thatQCA
via saturated regression can recover the data generating
process correctly and the configuration of causes esti-
mand can then be computed, correctly, from estimated
marginal effects.

This last point is important for thinking through the
gains from employing the MIDA framework. The
declaration clarifies that QCA is not equivalent to
saturated regression: without substantial trans-
formation, regression does not target the QCA esti-
mands (Thiem, Baumgartner, and Bol 2016). However,
it also clarifies that regression models can be integrated
into classical QCA inquiries, and do very well. Using
regression to perform QCA is equivalent to QMC and
CCubes when there is no error, and even slightly out-
performs these algorithms (on the diagnosands we
consider) in the presence of measurement error. More
work is required to understand the conditions under
which the approaches perform differently.

However, thedeclarationanddiagnosis illustrate that
there need not be a tension between regression as an
estimation procedure and causal configurations as an
estimand. Rather than seeing them as rival research
paradigms, scholars interested in QCA estimands can
combine the machinery developed in the QCA litera-
ture to characterize configurations of conditions with
the machinery developed in the broader statistical lit-
erature to uncover data generating processes. Thus, for
instance, in answer to critiques that themethod does not
have a strategy for causal identification (Tanner 2014),
one could in principle try to declare designs in which

instrumental variables strategies, say, are used in
combination with QCA estimands.

Nested Mixed Methods

A second approach to mixed methods research nests
qualitative small N analysis within a strategy that
involvesmovement back and forwards between largeN
theory testing and smallN theory validation and theory
generation. Lieberman (2005) describes a strategy of
nested analysis of this form. In Supplementary Mate-
rials Section 3.5, we specify the estimands and analysis
strategies implied by the procedure proposed in Lie-
berman (2005). In our declaration, we assume a model
with binary variables and an inquiry focused on the
relationship between X and Y (both causes-of-effects
and effects-of-causes are studied). Themodel allows for
the possibility that there are variables that are not
known to the researcher when conducting large N
analysis, but might modify or confound the relationship
between X and Y. The data strategy and answer
strategies are quite complex and integrated with each
other. The researcher begins by analyzing a data set
involving X and Y. If the quantitative analysis is
“successful” (defined in terms of sufficient residual
variance explained), the researcher engages in within-
case “on the regression line” analysis.Usingwithin-case
data, the researcher assesses the extent to which X
plausibly caused Y (or not X caused not Y) in these
cases. If the qualitative or quantitative analyses reject
themodel, then a newqualitative analysis is undertaken
to better understand the relationship betweenX andY.
In the design, this qualitative exploration is treated as
the possibility of discovering the importance of a third
variable that may moderate the effect of X on Y. If an
alternative model is successfully developed, it is then
tested on the same large N data.

Diagnosis of this design illustrates some of its
advantages. In particular, in some settings the within-
case analysis can guide researchers tomodels that better
capture data generating processes and improve identi-
fication. The declaration also highlights the design fea-
tures that are left to researchers.Howmany cases should
be gathered and how should they be selected? What
thresholds should be used to decide whether a theory is
successful or not? The design diagnosis suggests in-
teresting interactions between these design elements.
For instance, if the bar for success in the theory testing
stage is low in terms of the minimum share of cases
explained that are considered adequate, then the re-
searcher might be better off sampling fewer qualitative
cases in the testing stage and more in the development
stage. More variability in the first stage makes it more
likely that onewould reject a theory, whichmight in turn
lead to the discovery of a better theory.

Observational Regression-Based Strategies

Many observational studies seek tomake causal claims,
but do not explicitly employ the potential outcomes
framework, instead describing inquiries in terms of
model parameters. Sometimes studies describe their

14 For both methods, we use the “parsimonious” solution and not the
“conservative”or“intermediate” solutions thathavebeencriticized in
Baumgartner and Thiem (2017), though our declaration could easily
be modified to check the performance of these alternative solutions.
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goal as the estimation of a parameter b from amodel of
the form yi5a1bxi1 «i.What is the estimand here? If
we believe that this model describes the true data
generating process, then b is an estimand: it is the true
(constant) marginal effect of x on y. But what if we are
wrong about the model? We run into a problem if we
want to assess the properties of strategies under dif-
ferent assumptions about data generation when the
inquiry itself depends on the data generating model.

To address this problem, we can declare an inquiry as
a summary of differences in potential outcomes across
conditions, b. Such a summary might derive from
a simple comparison of potential outcomes—for ex-
ample t ” ExEi(Yi(x) 2 Yi(x 2 1)) captures the dif-
ference in outcomes between having income x and
having a dollar less, x2 1, for different possible income
levels. Or it could be a parameter from amodel applied
to the potential outcomes. For examplewemight define
a and b as the solutions to:

min
a;bð Þ�i

Z
Yi xð Þ � a� bxð Þ2f xð Þdx

HereYi(x) is the (unknown)potential outcome for unit i
in condition x. Estimand b can be thought of as the
coefficient one would get on x if one were to able to
regress all possible potential outcomes on all possible
conditions for all units (given density of interest f(x)).15

Our data strategy will simply consist of the passive
observation of units in the population, andwe assess the
performance of an answer strategy employing an OLS
model to estimate b under different conditions.

To illustrate, we declare a design that lets us quickly
assess the properties of a regression estimate under the
assumption that in the true data-generating process y is
in fact a nonlinear function of x (Supplementary
Materials Section 3.6). Diagnosis of the design shows
that under uniform random assignment of x, the linear
regression returns an unbiased estimate of a (linear)
estimand, even though the true data generating process
is nonlinear. Interestingly, with the design in hand, it is
easy to see that unbiasedness is lost in a design in which
different values of xi are assigned with differing prob-
abilities. The benefit of declaration here is that, without
defining I, it is hard to see the conditions under whichA
is biased or unbiased. Declaration and diagnosis clarify
that, even though the answer strategy “assumes” a non-
linear relationship inM thatdoesnothold,under certain
conditionsOLS is still able to estimate a linear summary
of that relationship.

Matching on Observables

In many observational research designs, the processes
by which units are assigned to treatment are not known
with certainty. In matching designs, the effects of un-
known assignment procedure may, for example, be
assessed by matching units on their observable traits
under an assumption of as-if random assignment

betweenmatched pairs. Diagnosis in such instances can
shed light on risks when such assumptions are not
justified. In Supplementary Materials Section 3.7, we
declare a design with amodel inwhich three observable
random variables are combined in a probit process that
assigns the treatment variable, Z. The inquiry pertains
to the average treatment effect of Z on the outcome Y
among those actually assigned to treatment, which we
estimate using an answer strategy that tries to re-
construct the assignment process to calculate aA. Our
diagnosis shows thatmatching improvesmean-squared-
error (E[(aA 2 aM)2]) relative to a naive difference-in-
means estimator of the treatment effect on the treated
(ATT), but can nevertheless remainbiased (E[aA2 aM]
„ 0) if thematching algorithm does not successfully pair
units with equal probabilities of assignment, i.e., if
matching has not eliminated all sources of confounding.
The chief benefit of the MIDA declaration here is to
separate out beliefs about the data generating process
(M) from the details of the answer strategy (A), whose
robustness to alternative data generating processes can
then be assessed.

Regression Discontinuity

While in many observational settings researchers do
not know the assignment process, in others, researchers
may know how assignment works without necessarily
controlling it. In regression discontinuity designs, causal
identification is often premised on the claim that po-
tential outcomes are continuous at a critical threshold
(see De la Cuesta and Imai 2016; Sekhon and Titiunik
2016). The declaration of such designs involves amodel
that defines the unknown potential outcomes functions
mapping average outcomes to the running and treat-
ment variables. Our inquiry is the difference in the
conditional expectations of the two potential outcomes
functions at the discontinuity. The data strategy
involves passive observation and collection of the data.
The answer strategy is a polynomial regression in which
the assignment variable is linearly interacted with
a fourth order polynomial transformation of the run-
ning variable. In Supplementary Materials Section 3.8,
we declare and diagnose such a design.

The declaration highlights a difference between this
design and many others: the estimand here is not an av-
erage of potential outcomes of a set of sample units, but
rather an unobservable quantity defined at the limit of the
discontinuity. This feature makes the definition of diag-
nosands such as bias or external validity conceptually
difficult. If researchers postulate unobservable counter-
factuals, such as the “treated” outcome for a unit located
below the treatment threshold, then the usefulness of the
regressiondiscontinuityestimateof theaverage treatment
effect for a specific set of units can be assessed.

Experimental Design

In experimental research, researchers are in control of
sample construction and assignment of treatments,
which makes declaring these parts of the design
straightforward. A common choice faced in experi-
mental research is between employing a 2-by-2 factorial

15 An alternativemight be to imagine amarginal effect conditional on
actual assignment: if xi is the observed treatment received by unit i,
define, for small d, t ” E[Yi(xi) 2 Yi(xi 2 d)]/d.
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design or a three-arm trialwhere the “both” condition is
excluded. Supposeweare interested in theeffect of each
of two treatments when the other condition is set to
control. Should we choose a factorial design or a three-
arm design? Focusing for simplicity on the effect of
a single treatment,wedeclare twodesigns under a range
of alternative models to help assess the tradeoffs. For
both designs, we consider modelsM1,…,MK, where we
let the interaction between treatments vary over the
range 20.2 to 10.2. Our inquiry is always the average
treatment effect of treatment 1 given all units are in the
control condition for treatment 2. We consider two
alternative data strategies: an assignment strategy in
which subjects are assigned to a control condition,
treatment 1, or treatment 2, each with probability 1/3;
andanalternative strategy inwhichweassign subjects to
each of four possible combinations of factors with
probability 1/4. The answer strategy in both cases
involves a regression of the outcome on both treatment
indicators with no interaction term included.

We declare and diagnose this design and confirm that
neither design exhibits bias when the true interaction
term is equal to zero (Figure 1 left panel). The details of
thedeclarationcanbe found inSupplementaryMaterials
Section 3.9. However, when the interaction between the
two treatments is stronger, the factorial design renders
estimates of the effect of treatment 1 that are more and
more biased relative to the “pure”main effect estimand.
Moreover, there is a bias-variance tradeoff in choosing
between the two designs when the interaction is weak
(Figure 1 right panel).When the interaction term is close
to zero, the factorial design is preferred, because it is
morepowerful: it comparesonehalfof the subjectpool to
the other half, whereas the three-arm design only com-
pares a third to a third.However, as themagnitude of the
interaction term increases, the precision gains are offset
by the increase in bias documented in the left-panel.
When the true interaction between treatments is large,
the three-arm design is then preferred. This exercise

highlights key points of design guidance. Researchers
often select factorial designs because they expect in-
teraction effects, and indeed factorial designs are re-
quired to assess these. However if the scientific question
of interest is the pure effect of each treatment,
researchers should (perhaps counterintuitively) use
a factorial design if they expect weak interaction effects.
An integrated approach to design declaration here
illustrates non-trivial interactions between the data
strategy, on the one hand, and the ability of answers (aA)
to approximate the estimand (aM), on the other.

Designs for Discovery-Oriented Research

In someresearchprojects, theultimatehypotheses thatare
assessedarenotknownat thedesign stage.Some inductive
designs are entirely unstructured and explore a variety of
data sources with a variety of methods within a general
domain of interest until a new insight is uncovered. Yet
many can be described in a more structured way.

In studying textual data, for example, a researchermay
have a procedure for discovering the “topics” that are
discussed in a corpus of documents.Before beginning the
research, the set of topics andeven thenumberof topics is
unknown. Instead, the researcher selects a model for
estimating the content of a fixed number of topics (e.g.,
Blei,Ng,andJordan2003)andaprocedure forevaluating
themodelfit used to selectwhichnumberof topicsfits the
data best. Such a design is inductive, yet the analytical
discovery process can be described and evaluated.

We examine a data analysis procedure in which the
researcher assesses possible analysis strategies in a first
stage on half of the data and in the second stage applies
her preferred procedure to the second half of the data.
Split-sample procedures such as this enable researchers
to learn about the data inductively while protecting
against Type I errors (for an early discussion of the
design, see Cox 1975). In Supplementary Materials
Section 3.10, we declare a design in which the model
stipulates a treatment of interest, but also specifies

FIGURE 1. Diagnoses of DesignsWith Factorial or Three-ArmAssignment Strategies Illustrate a Bias-
Variance Tradeoff

Bias (left), root mean-squared-error (center), and power (right) are displayed for two assignment strategies, a 23 2 treatment arm factorial
design (blacksolid lines;circles)anda three-armdesign (graydashed lines; triangles)according tovarying interactioneffect sizesspecified in
the potential outcomes function (x axis). The third panel also shows power for the interaction effect (squares) from the factorial design.
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groups for which there might be heterogeneous treat-
ment effects. Themain inquiry pertains to the treatment
effect, but the researchers anticipate that they may be
interested in testing for heterogeneous treatment
effects if they observe prima facie evidence for it. The
data strategy involves random assignment. The answer
strategy involves examination of main effects, but in
addition the researchers examine heterogeneous
treatment effects inside a random subgroup of the data.
If they find evidence of differential effects they specify
a new inquiry which is assessed on the remaining data.
The results on heterogeneous effects are compared
against a strategy that simply reports discoveries found
using complete data, rather than on split data (we call
this the “unprincipled” approach).

Wesee lowerbias fromprincipleddiscovery than from
unprincipled discovery as one might expect. The decla-
ration and diagnosis also highlight tradeoffs in terms of
mean squared error. Mean squared error is not neces-
sarily lower for the principled approach since fewer data
are used in the final test. Moreover, the principled
strategy is somewhat less likely to produce a result at all
since it is less likely that a result would be discovered in
a subset of the data than in the entire data set. With this
design declared, one can assess what an optimal division
of units into training and testing data might be given
different hypothesized effect sizes.

Designs for Modeling Data
Generation Processes

For most designs we have described, the estimand of
interest is a number: an average level, a causal effect, or
a summary of causal effects. Yet in some situations,
researchers seeknot to estimate a particular number, but
rather to model a data generating process. For work of
this kind, the data generating process is the estimand,
rather than any particular comparison of potential out-
comes. This was the case for the qualitativeQCA design
we lookedat, inwhich the combinationof conditions that
produce an outcome was the estimand. This model-
focused orientation is also common for quantitative
researchers. In the example from Observational
Regression-Based Strategies, we noted that a researcher
might be interested not in the average effect resulting
from a change in X over some range, but in estimating
a function f �YðXÞ (which itself might be used to learn
about different quantities of interest). This kind of ap-
proach can be handled within the MIDA framework in
twoways.Oneasks theresearcherto identify theultimate
quantities of interest ex ante and to treat these as the
estimands. In this case, the model generated to make
inferences about quantities of interest is thought of as
part of the answer strategy, a, and not part of i. A second
approach posits a true underlying DGP as part ofm, f ��Y .
The estimand is then also a function, f �Y , which could be
f ��Y itself or anapproximation.16Anestimate is a function

fY that aims toapproximate f �Y . In this case, it is difficult to
think of diagnosands like bias or coverage when com-
paring f �Y to fY, but diagnosands can still be constructed
that measure the success of the modeling. For instance,
for a range of values of X we could compare values of
fY(X) to f �YðXÞ, or employ familiar statistics of goodness
offit, suchas theR2. TheMIDAframework forces clarity
regarding which of these approaches a design is using,
and as a consequence,what kinds of criticismsof a design
are on target. For instance, returning to the regression
strategies example: if a linear model is used to estimate
a linear estimand, it may behave well for that purpose
even when the underlying process is very nonlinear. If,
however, the goal is to estimate the shape of the data
generating process, the linear estimator will surely fare
poorly.

***
Theresearchdesignswehavedescribed in this section

are varied in the intellectual traditions as well as in-
ferential goals they represent. Yet commonalities
emerge, which enabled us to declare each design in
terms of MIDA. Exploring this broad set of research
practices through MIDA clarified non-obvious aspects
of thedesigns, suchas the targetof inference (Inquiry) in
QCA designs or regression discontinuity designs with
finite units, as well as the subtle implications of beliefs
about heterogeneity in treatment effects (Model) for
selecting between three-armand 23 2 factorial designs.

PUTTING DECLARATIONS AND DESIGN
DIAGNOSIS TO USE

We have described and illustrated a strategy for de-
claring researchdesigns forwhich“diagnosands” canbe
estimated given conjectures about the world. How
might declaring and diagnosing research designs in this
way affect the practices of authors, readers, and repli-
cation authors? We describe implications for how
designs are chosen, communicated, and challenged.

Making Design Choices

Themove toward increasing credibility of research in the
social sciences places a premium on considering alter-
native data strategies and analysis strategies at early
stages of research projects, not only because it reduces
researcherdiscretionafterobservingoutcomes,butmore
importantlybecause it can improvethequalityof thefinal
research design. While there is nothing new about the
idea of determining features such as sampling and esti-
mation strategies ex ante, in practice many designs are
finalized late in the research process, after data are
collected. Frontloading design decisions is difficult not
only because existing tools are rudimentary and often
misleading, but because it is not clear in current practice
what features of a design must be considered ex ante.

We provide a framework for identifying which fea-
tures affect the assessment of a design’s properties, de-
claring designs and diagnosing their inferential quality,
and frontloadingdesigndecisions.Declaring thedesign’s
features in code enables direct exploration of alternative

16 For instance researchers might be interested in a “conditional
expectation function,” or in locating a parameter vector that can
render amodel as goodas possible—such asminimizing theKullback-
Leibler information criterion (White 1982).
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data and analysis strategies using simulated data; eval-
uating alternative strategies through diagnosis; and ex-
ploring the robustness of a chosen strategy to alternative
models. Researchers can undertake each step before
study implementation or data collection.

Communicating Design Choices

Bias in published results can arise for many reasons.
For example, researchers may deliberately or in-
advertently select analysis strategies because they
produce statistically significant results. Proposed sol-
utions to reduce this kind of bias focus on various types
of preregistration of analysis strategies by researchers
(Casey, Glennerster, and Miguel 2012; Green and Lin
2016; Nosek et al. 2015; Rennie 2004; Zarin and Tse
2008). Study registries are now operating in numerous
areas of social science, including those hosted by the
American Economic Association, Evidence in Gov-
ernance and Politics, and the Center forOpen Science.
Bias may also arise from reviewers basing publication
recommendations on statistical significance. Results-
blind review processes are being introduced in some
journals to address this form of bias (e.g., Findley et al.
2016).

However, the effectiveness of design registries and
results-blind review in reducing the scope for either
form of publication bias depends on clarity over which
elements must be included to describe the design. In
practice, some registries rely on checklists and pre-
analysis plans exhibit great variation, ranging from lists
of written hypotheses to all-but-results journal articles.
In our view, the solution to this problem does not lie in
ever-more-specific questionnaires, but rather in a new
way of characterizing designs whose analytic features
can be diagnosed through simulation.

The actions to be taken by researchers are described
by the data strategy and the answer strategy; these two
features of a design are clearly relevant elements of
a preregistration document. In order to know which
design choices were made ex ante and which were ar-
rived at ex post, researchers need to communicate their
data and answer strategies unambiguously. However,
assessingwhether thedataandanswer strategies areany
goodusually requires specifying amodel andan inquiry.
Design declaration can clarify for researchers and third
parties what aspects of a study need to be specified in
order to meet standards for effective preregistration.
Rather than asking: “are the boxes checked?” the
question becomes: “can it be diagnosed?” The relevant
diagnosands will likely depend on the type of research
design. However, if an experimental design is, for ex-
ample, “bias complete,” then we know that sufficient
information has been given to define the question, data,
and answer strategy unambiguously.

Declaration of a design in code also enables a final and
infrequently practiced step of the registration process, in
which the researcher “reports and reconciles” the final
with the planned analysis. Identifying how and whether
the features of a design diverge between ex ante and ex
post declarations highlights deviations from the pre-
analysis plan. The magnitude of such deviations

determines whether results should be considered ex-
ploratory or confirmatory. At present, this exercise
requires a review of dozens of pages of text, such that
differences (orsimilarities)arenot immediatelycleareven
toclosereaders.Reconciliationofdesignsdeclaredincode
can be conducted automatically, by comparing changes to
the code itself (e.g., a move from the use of a stratified
sampling function to simple random sampling) and by
comparingkeyvariables in thedesignsuchas sample sizes.

Challenging Design Choices

The independent replication of the results of studies
after their publication is an essential component of the
shift toward more credible science. Replication—
whether verification, reanalysis of the original data, or
reproduction using fresh studies—provides incentives
for researchers to be clear and transparent in their
analysis strategies, and can build confidence in
findings.17

In addition to rendering the designmore transparent,
diagnosand-complete declaration can allow for a dif-
ferent approach to the re-analysis and critique of
published research. A standard practice for replicators
engaging in reanalysis is to propose a range of alter-
native strategies and assess the robustness of the data-
dependent estimates to different analyses. The problem
with this approach is that, when divergent results are
found, third parties do not have clear grounds to decide
which results to believe. This issue is compounded by
the fact that, in changing the analysis strategy, repli-
cators risk departing from the estimand of the original
study, possibly providing different answers to different
questions. In theworst case scenario, it canbedifficult to
determine what is learned both from the original study
and from the replication.

A more coherent strategy facilitated by design sim-
ulations would be to use a diagnosand-complete dec-
laration to conduct “design replication.” In a design
replication, a scholar restates the essential design
characteristics to learn about what the study could have
revealed, not just what the original author reports was
revealed. This helps to answer the question: under what
conditions are the results of a study to be believed? By
emphasizing abstract properties of the design, design
replication provides grounds to support alternative
analyses on the basis of the original authors’ intentions
and not on the basis of the degree of divergence of
results. Conversely, it provides authors with grounds to
question claims made by their critics.

Table 4 illustrates situations that may arise. In a de-
clareddesign an authormight specify situation 1: a set of
claims on the structure of the variables and their po-
tential outcomes (the model) and an estimator (the
answer strategy).Acriticmight thenquestion the claims
on potential outcomes (for example, questioning a no-
spillovers assumption) or question estimation strategies

17 Foradiscussionof thedistinctionsbetween thesedifferentmodesof
replication, see Clemens (2017).
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(for example, arguing for inclusion or exclusion of
a control variable from an analysis), or both.

In this context, there are several possible criteria for
admitting alternative answer strategies:

• HomeGroundDominance. If ex ante the diagnostics for
situation 3 are better than for 1 then this gives grounds to
switch to 3. That is, if a critic can demonstrate that an
alternative estimation strategy outperforms an original
estimation strategy even under the data generating
process assumed by an original researcher, then they
have strong grounds to propose a change in strategies.
Conversely, if an alternative estimation strategy pro-
duces different results, conditional on the data, but does
not outperform the original strategy given the original
assumptions, this gives grounds to question the
reanalysis.

• Robustness to AlternativeModels. If the diagnostics in
situation 3 are as good as in 1 but are better in situation
4 than in situation 2 this provides a robustness argu-
ment for altering estimation strategies. For example,
in a design with heterogeneous probabilities by block,
an inverse propensity-weighted estimator will do
about as well as a fixed effects estimator in terms of
bias when treatment effects are constant, but will
perform better on this dimension when effects are
heterogeneous.

• Model Plausibility. If the diagnostics in situation 1 are
better than in situation 3, but the diagnostics in situation
4 are better than in situation 2, then things are less clear
and the justificationof a change inestimators dependson
the plausibility of the different assumptions about po-
tential outcomes.

The normative value or relative ranking of these
criteria should be left to individual research commu-
nities. Without a declared design, in particular the
model and inquiry, none of these criteria can be eval-
uated, complicating the defense of claims for both the
critic and the original author.

APPLICATION: DESIGN REPLICATION OF
Björkman and Svensson (2009)

We illustrate the insights that a formalized approach to
design declaration can reveal through an application to
the design of Björkman and Svensson (2009), which
investigated whether community-basedmonitoring can
improve health outcomes in rural Uganda.

We conduct a “design replication:” using available
information, we posit a Model, Inquiry, Data, and
Answer strategy to assess properties of Björkman
and Svensson (2009). This design replication can be
contrasted with the kind of reanalysis of the study’s data
thathasbeenconductedbyDonatoandGarciaMosqueira
(2016) or the reproduction by Raffler, Posner, and Par-
kerson (2019) in which the experiment was conducted
again.

The exercise serves three purposes: first, it sheds
light on the sorts of insights the design can produce
without using the original study’s data or code; sec-
ond, it highlights how difficulties can arise from
designs in which the inquiry is not well-defined; third,
we can assess the properties of replication strate-
gies, notably those pursued by Donato and Garcia
Mosqueira (2016) and Raffler, Posner, and Parkerson
(2019), in order to make clearer the contributions of
such efforts.

In the original study, Björkman and Svensson
(2009) estimate the effects of treatment on two im-
portant indicators: child mortality, defined as the
number of deaths per 1,000 live births among under-5
year-olds (taken at the catchment-area-level) and
weight-for-age z-scores, which are calculated by
subtracting from an infant’s weight the median for
their age from a reference population, and dividing by
the standard deviation of that population. In the
original design, the authors estimate a positive effect
of the interventiononweight among surviving infants.
They also find that the treatment greatly decreases
child mortality.

We briefly outline the steps of our design replication
here, and present more detail in Supplementary
Materials Section 4.

We began by positing a model of the world in which
unobserved variables, “family health” and “community
health,” determine both whether infants survive early
childhood and whether they are malnourished.

Our attempt to define the study’s inquiry met with
a difficulty: the weight of infants in control areas whose
lives would have been saved if they had been in the
treatment is undefined (for a discussion of the general
problem known as “truncation-by-death,” see Zhang
and Rubin 2003). Unless we are willing to make con-
jectures about undefined states of theworld (such as the
control weight of a child whowould not have survived if
assigned to the control), we can only define the average
difference in individuals’ potential outcomes for those
children whose survival is unaffected by the treatment:

TABLE 4. Diagnosis Results Given Alternative Assumptions About theModel and Alternative Answer
Strategies

Author’s assumed model Alternative claims on model

Author’s proposed answer strategy 1 2
Alternative answer strategy 3 4

Note: Four scenarios encountered by researchers and reviewers of a study are considered depending on whether the model or the answer
strategy differ from the author’s original strategy and model.
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E[Weight(Z 5 1) 2 Weight(Z 5 0)|Alive(Z 5 0) 5
Alive(Z 5 1) 5 1].18

As in the original article we stratify sampling on
catchment area and cluster-assign households in 25 of
the 50 catchment areas to the intervention.

We estimatemortality at the cluster level andweight-
for-age among living children at the household level, as
in Björkman and Svensson (2009).

Figure 2 illustrates how the existence of an effect on
mortality can pose problems for the unbiased estima-
tion of an effect on weight-for-age. The histograms
represent the sampling distributions of the average
effect estimates of community monitoring on infant
mortality and weight-for-age. The dotted vertical line
represents the true average effect (aM). The mortality
estimand is defined at the cluster level and the weight-
for-age estimand is defined for infants who would
survive regardless of treatment status. The dashed line
represents the average answer, i.e., the answer we ex-
pect the design to provide (E[aA]). The weight-for-age
answer strategy simply compares the weights of sur-
viving infants across treatment and control. Under our
postulated model of the world, the estimates of the
effect on weight-for-age are biased downwards because
it is precisely those infants with low health outcomes
whose lives are saved by the treatment.

Wedrawupon the“robustness to alternativemodels”
criterion (described in the previous section) to argue for
an alternative answer strategy that exhibits less bias
under plausible conjectures about the world.

An alternative answer strategy is to attempt to subset
the analysis of the weight effects to a group of infants

whose survival does not depend on the treatment. This
approach is equivalent to the “find always-responders”
strategy for avoiding post-treatment bias in audit studies
(Coppock 2019). In the original study, for example, the
effects on survival aremuch larger among infants younger
than two years old. If indeed the survival of infants above
this age threshold is unaffected by the treatment, then it is
possible to provide unbiased estimates of the weight-for-
age effect, if only among this group. In terms of bias, such
an approachdoes at least aswell if we assume that there is
no correlationbetweenweight andmortality, andbetter if
such a correlation does exist. It thus satisfies the “ro-
bustness to alternative models” criterion.

A reasonable counter to this replication effort might
be to say that the alternative answer strategy does not
meet the criterion of “home ground dominance” with
respect to RMSE. The increase in variance from sub-
setting to a smaller group may outweigh the bias re-
duction that it entails. In both cases, transparent
arguments can be made by formally declaring and
comparing the original and modified designs.

The design replication also highlights the relatively low
power of the weight-for-age estimator. As Gelman and
Carlin (2014) have shown, conditioning on statistical
significance in suchcontexts canposerisksofexaggerating
the true underlying effect size. Based on our assumptions,
what can we say here, specifically, about the risk of ex-
aggeration? How effectively does a design such as that
used in the replication by Raffler, Posner, and Parkerson
(2019) mitigate this risk? To answer this question, we
modify the sampling strategy of our simulation of the
original study to include 187 clusters instead of 50.19 We

FIGURE 2. Data-independent Replication of Estimates in Björkman and Svensson (2009)

Histogramsdisplay the frequencyof simulated estimates of the effect of communitymonitoring on infantmortality (left) andonweight-for-age
(right). The dashed vertical line shows the average estimate, the dotted vertical line shows the average estimand.

18 Of course,we coulddefineour estimandas the difference in average
weights for any surviving children in either state of the world: E
[Weight(Z5 1)|Alive(Z5 1)5 1]2E[Weight(Z5 0)|Alive(Z5 0)5
1].This estimandwould leadtoveryaberrant conclusions. Suppose, for
example, that only one child with a very healthyweight survived in the
control and all children, with weights ranging from healthy to very
unhealthy, survived in the treatment. Despite all those lives saved, this
estimandwould suggest that the treatment has a large negative impact
on health.

19 Raffler, Posner, and Parkerson (2019) employ a factorial design
which breaks down the original intervention into two subcomponents:
interface meetings between the community and village health teams,
on theonehand,and integrationof report cards into theactionplansof
health centers, on the other.We augment the sample size here only by
thenumberof clusters corresponding to thepurecontrolandboth-arm
conditions, as the other conditions of the factorialwerenot included in
the original design. Including those other 189 clusters would only
strengthen the conclusions drawn.
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then define the diagnosand of interest as the “exaggera-
tion ratio” (Gelman and Carlin 2014): the ratio of the
absolute value of the estimate to the absolute value of the
estimand, given that the estimated effect is significant at
the a 5 0.05 level. This diagnosand thus provides
ameasureofhowmuch thedesignexaggerates effect sizes
conditional on statistical significance.

The original design exhibits a high exaggeration ratio,
according to the assumptions employed in the simu-
lations: on average, statistically significant estimates tend
to exaggerate the true effect of the intervention on
mortality by a factor of two and on weight-for-age by
a factor of four. In other words, even though the study
estimates effects on mortality in an unbiased manner,
limiting attention to statistically significant effects pro-
vides estimates that are twice as large inabsolutevalue as
the true effect size on average. By contrast, using the
samesamplesizeas thatemployed inRaffler,Posner,and
Parkerson (2019) reduces the exaggeration ratio on the
mortality estimand to where it should be, around one.

Finally,wecanalsoaddress theanalytic replicationby
Donato and Garcia Mosqueira (2016). The replicators
(D&M) noted that the eighteen community-based
organizations who carried out the original “power to
the people” (P2P) intervention were active in 64% of
the treatment communities and 48% of the control
communities. Donato and Garcia Mosqueira (2016)
posit that prior presence of these organizations may be
correlated with health outcomes, and therefore include
in their analytic replication of themortality and weight-
for-age regressions both an indicator for CBOpresence
and the interaction of the intervention with CBO
presence. The inclusion of these terms into the re-
gression reduces the magnitude of the coefficients on
the intervention indicator and thereby increases the
p-values above thea5 0.1 threshold in some cases. The
original authors (B&S) criticized the replicators’ de-
cision to include CBO presence as a regressor, on the
grounds that in any such study it is possible to find some
unrelated variable whose inclusion will increase stan-
dard error of the treatment effect estimate.

In short, the original replicators make a set of con-
trasting claims about the true model of the world: B&S
claim that CBOpresence is unrelated to the outcome of
interest (Björkman Nyqvist and Svensson 2016),
whereas D&M claim that CBO presence might indeed
affect (or be otherwise correlated with) health out-
comes. As we argued in the previous section, diagnosis
of the properties of the answer strategy under these
competing claims should determine which answer
strategy is best justified.

Since we do not know whether the replicators would
have conditioned on CBO presence and its interaction
with the intervention if it had not been imbalanced, we
modify the original design to include four different
replicator strategies: the first ignoresCBOpresence as in
the original study; the second includes CBO presence
irrespective of imbalance; the third includes an indicator
for CBO presence only if the CBO presence is signifi-
cantly imbalanced among the 50 treatment and control
clustersat thea50.05 level;and the last strategy includes
terms for bothCBOpresence and an interaction of CBO

presence with the treatment irrespective of imbalance.
Weconsiderhow these strategiesperformunder amodel
in which CBO presence is unrelated to health outcomes,
and another inwhich, as claimedby the replicators, CBO
presence is highly correlated with health outcomes.

Including the interaction term is a strictly dominated
strategy from the standpoint of reducing mean squared
error: irrespective of whether CBO presence is corre-
lated with health outcomes or imbalanced, the RMSE
expected under this strategy is higher than under any
other strategy. Thus, based on a criterion of “Home
Ground Dominance” in favor of B&S, one would be
justified in discounting the importance of the repli-
cators’ observation that “including the interaction term
leads to a further reduction in magnitude and signifi-
cance” of the estimated treatment effect (Donato and
Garcia Mosqueira 2016, 19).

Supposing now that there is no correlation between
CBO presence and health outcomes, inclusion of the
CBO indicator does increase RMSE ever so slightly in
those instances where there is imbalance, and the
standard errors are ever so slightly larger. On average,
however, the strategies of conditioning on CBO pres-
ence regardless of balance and conditioning on CBO
presence only if imbalanced perform about as well as
a strategy of ignoring CBO presence when there is no
underlying correlation. However, when there is a cor-
relation between health outcomes and CBO presence,
strategies that include CBO presence improve RMSE
considerably, especially when there is imbalance. Thus,
D&M could make a “Robustness to Alternative
Models” claim in defense of their inclusion of the CBO
dummy: including CBO presence does not greatly di-
minish inferential quality on average, even if there is no
correlation inCBOpresence and outcomes; and if there
is such a correlation, including CBO presence in the
regression specification strictly improves inferences. In
sum, a diagnostic approach to replication clarifies that
one should resist updating beliefs about the study based
on the use of interaction terms, but that the inclusion of
theCBO indicator only harms inferences in a very small
subset of cases. In general, including it does not worsen
inferences and in many cases can improve them. This
approach helps to clarify which points of disagreement
aremost critical forhow the scientific community should
interpret and learn from replication efforts.

CONCLUSION

We began with two problems faced by empirical social
science researchers: selecting high quality designs and
communicating them to others. The preceding sections
have demonstrated how the MIDA framework can ad-
dress both challenges. Once designs are declared in
MIDA terms, diagnosing their properties and improving
them becomes straightforward. Because MIDA
describes a grammar of research designs that applies
across a very broad range of empirical research tradi-
tions, it enables efficient sharing of designs with others.

Designing high quality research is difficult and comes
with many pitfalls, only a subset of which are
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ameliorated by theMIDA framework.Others we fail to
address entirely and in some cases, we may even ex-
acerbate them. We outline four concerns.

The first is the worry that evaluative weight could get
placed on essentiallymeaningless diagnoses.Given that
design declaration includes declarations of conjectures
about the world it is possible to choose inputs so that
adesignpassesanydiagnostic test set for it. For instance,
a simulation-based claim to unbiasedness that incor-
porates all features of a design is still only good with
respect to the precise conditions of the simulation (in
contrast, analytic results, when available, may extend
over general classes of designs). Still worse, simulation
parameters might be selected because of their prop-
erties. A power analysis, for instance, may be useless if
implausible parameters are chosen to raise power
artificially. While MIDA may encourage more honest
declarations, there is nothing in the framework that
enforces them. As ever, garbage-in, garbage-out.

Second, we see a risk that researchmay get evaluated
on the basis of a narrow, but perhaps inappropriate set
of diagnosands. Statistical power is often invoked as
a key design feature—but there may be little value in
knowing thepowerof a study that is biasedaway from its
target of inference. The appropriateness of the diag-
nosanddependson thepurposes of the study.AsMIDA
is silent on the question of a study’s purpose, it cannot
guide researchers or critics to the appropriate set of
diagnosands by which to evaluate a design. An ad-
vantage of the approach is that the choice of diag-
nosands gets highlighted and new diagnosands can be
generated in response to substantive concerns.

Third, emphasis on the statistical properties of a de-
sign can obscure the substantive importance of a ques-
tion being answered or other qualitative features of
a design. A similar concern has been raised regarding
the “identification revolution” where a focus on iden-
tification risks crowding out attention to the importance
of questions being addressed (Huber 2013). Our
framework can help researchers determine whether
a particular design answers a question well (or at all),
and it alsonudges themtomake sure that theirquestions
are defined clearly and independently of their answer
strategies. It cannot, however, help researchers choose
good questions.

Finally, we see a risk that the variation in the suit-
ability of design declaration to different research
strategies may be taken as evidence of the relative su-
periority of different types of research strategies.While
we believe that the range of strategies that can be de-
clared and diagnosed is wider than what one might at
first think possible, there is no reason to believe that all
strong designs can be declared either ex ante or ex post.
An advantage of our framework, we hope, is that it can
help clarifywhen a strategy can or cannot be completely
declared. When a design cannot be declared, non-
declarability is all the framework provides, and in such
cases we urge caution in drawing conclusions about
design quality.

We conclude on a practical note. In the end, we are
asking that scholars add a step to their workflow. We
want scholars to formally declare and diagnose their

research designs both in order to learn about them and
to improve them. Much of the work of declaring and
diagnosing designs is already part of how social scien-
tists conduct research: grant proposals, IRB protocols,
preanalysis plans, anddissertationprospectuses contain
design information and justifications for why the design
is appropriate for the question. The lack of a common
language to describe designs and their properties,
however, seriously hampers the utility of these practices
for assessing and improving designquality.Wehope that
the inclusion of a declaration and diagnosis step to the
research process can help address this basic difficulty.

SUPPLEMENTARY MATERIAL

To view supplementary material for this article, please
visit https://doi.org/10.1017/S0003055419000194.

Replication materials can be found on Dataverse at:
https://doi.org/10.7910/DVN/XYT1VB.
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APPENDIX

In this appendix, we demonstrate how each diagnosand-
relevant feature of a simple design can be defined in code,
with an application in which the assignment procedure is
known, as in an experimental or quasi-experimental design.

M(1) The population. Defines the population variables,
including both observed and unobservedX. In the example
below we define a function that returns a normally dis-
tributed variable of a given size. Critically, the declaration is
not a declaration of a particular realization of data but of
a data generating process. Researchers will typically have
a sense of the distribution of covariates from previous work,
and may even have an existing data set of the units that will
be in the study with background characteristics. Researchers
should assess the sensitivity of their diagnosands to differ-
ent assumptions about P(U).

population ,-
declare_population(N 5 1000, u 5 rnorm

(N))

M(2) The structural equations, or potential outcomes
function. Thepotential outcomes functiondefines conjectured
potential outcomes given interventions Z and parents. In the
example below the potential outcomes function maps from
a treatment condition vector (Z) and background data u,
generatedbyP(U) to avector of outcomes. In this example the
potential outcomes function satisfies a SUTVA con-
dition—each unit’s outcome depends on its own condition
only, though in general since Z is a vector, it need not.

potential_outcomes ,-
declare_potential_outcomes(Y ~ 0.25 * Z

1 u)

In many cases, the potential outcomes function (or its fea-
tures) is the very thing that the study sets out to learn, so it can
seemoddtoassumefeaturesof it.Wesuggest twoapproaches to
developing potential outcomes functions that will yield useful
information about the quality of designs. First, consider a null
potential outcomes function in which the variables of interest
are set to have no effect on the outcome whatsoever. Diag-
nosands such as bias can then be assessed relative to a true

estimand of zero. This approach will not work for diagnosands
like power or the Type-S rate. Second, set a series of potential
outcomes functions that correspondtocompeting theories.This
approach enables the researcher to judge whether the design
yields answers that help adjudicate between the theories.

I Estimands. The estimand function creates a summary of
potential outcomes. In principle, the estimand function can
also take realizations of assignments as arguments, in order to
calculatepost-treatment estimands.Below, theestimand is the
AverageTreatmentEffect, or the average difference between
treated and untreated potential outcomes.

estimand ,-
declare_estimand(ATE 5 mean(Y_Z_1 2

Y_Z_0))

D(1) The sampling strategy. Defines the distribution over
possible samples for which outcomes are measured, pS.

In the example below each unit generated by P(U) is
sampled with 10% probability. Again sampling describes
a sampling strategy and not an actual sample.

sampling ,- declare_sampling(n 5 100)

D(2) The treatment assignment strategy. Defines the
strategy for assigning variables under the notional control of
researchers. In this example each sampled unit is assigned to
treatment independently with probability 0.5. In designs in
which the sampling process or the assignment process are in the
control of researchers, pz is known. In observational designs,
researchers either know or assume pz based on substantive
knowledge. We make explicit here an additional step in which
the outcome for Y is revealed after Z is determined.

assignment ,- declare_assignment(m5 50)
reveal ,- declare_reveal(Y, Z)

A The answer strategies are functions that use information
fromrealizeddataand thedesign, butdonothaveaccess to the
full schedule of potential outcomes. In the declaration we
associate estimators with estimands and we record a set of
summary statistics that are required to compute diagnostic
statistics. In the example below, an estimator function takes
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data and returns an estimate of a treatment effect using the
difference-in-means estimator, as well as a set of associated
statistics, including the standard error, p-value, and the con-
fidence interval.

estimator ,- declare_estimator(Y ~ Z,
model 5 lm_robust, estimand 5 “ATE”)

We then declare the design by adding together the ele-
ments. Order matters. Since we have defined the estimand
before the sampling step, our estimand is the Population
Average Treatment Effect, not the Sample Average Treat-
ment Effect. We have also included a declare_reveal()
step between the assignment and estimation steps that reveals
the outcome Y on the basis of the potential outcomes and
a realized random assignment.

design ,-
population 1 potential_outcomes 1

estimand 1
sampling 1 assignment 1 reveal 1

estimator

These six features represent the study. In order to assess
the completeness of a declaration and to learn about the
properties of the study, we also define functions for the
diagnostic statistics, t(D,Y, f), and diagnosands, u(D,Y, f, g).
For simplicity, the two can be coded as a single function. For
example, to calculate the bias of the design as a diagnosand
is:

diagnosand ,- declare_diagnosands
(bias 5 mean(estimate 2 estimand))

Diagnosing the design involves simulating the designmany
times, then calculating the value of the diagnosand from the
resulting simulations.

diagnosis ,-
diagnose_design(design 5 design,
diagnosands 5 diagnosand,
sims 5 500, bootstrap_sims 5 FALSE)

Thediagnosis returns an estimate of the diagnosands, along
with other metadata associated with the simulations.
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