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Abstract 
 
This paper proposes a comprehensive perspective on the question of self-enforcing solutions for 
normal form games. While this question has been widely discussed in the literature, the focus is 
usually either on strict incentives for players to stay within the proposed solution or on strategic 
uncertainty, i.e. robustness to trembles. The present approach combines both requirements in 
proposing the concept of robust sets, i.e. sets of strategy profiles which satisfy both strict 
incentives and robustness to strategic uncertainty. The result is a set valued solution, a variant of 
which is shown to exist for all finite normal form games. 
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1 Introduction

What does it mean for a proposed solution to a game to be self-enforcing? Almost

ever since Nash (1950) proved the existence of equilibrium points in general n-person

games, the game theoretic literature has been abound with discussions of this question.

The most prominent branch in this, perhaps, is the refinement literature focusing on

Nash equilibria which are robust to some form of error or uncertainty about the

behaviour of others (e.g. Selten, 1975, Myerson, 1978, Kreps and Wilson, 1982, Kalai

and Samet, 1984, Kohlberg and Mertens, 1986). In their seminal 1986 paper, Kohlberg

and Mertens indeed motivate their analysis by saying that they intend to establish

“...which Nash equilibria are strategically stable, i.e. self-enforcing,...” (Kohlberg and

Mertens, 1986, p. 1003).

An alternative perspective on the matter is due to Basu and Weibull (1991) who

propose a set-valued extension of the notion of strict equilibrium, named CURB

(mnemonic for “closed under rational best replies”). In contrast to the refinement

literature, their focus is not on robustness against potential errors but on the re-

quirement of strict incentives to stay within the solution. Accordingly, they consider

sets of strategies containing all best replies to the opponents’ strategies. Referring to

Kohlberg and Mertens, they write (Basu and Weibull, 1991, p. 142) “...while they se-

lect sets of Nash equilibria, i.e. sets contained in their own best replies, we here select

sets containing all their own best replies, a ‘dual’ approach which can be viewed as a

set-theoretic coarsening of the notion of strict Nash equilibrium while [Kohlberg and

Mertens’s] approach is a set-theoretic refinement of the Nash equilibrium concept.”

In the present paper, we bring together both strands of the discussion considering

strict incentives and strategic uncertainty at the same time, with a focus on static

games. For the purposes of our analysis, we conceive of players as being in a context

where a particular solution is proposed, this candidate solution always being a selec-
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tion (i.e. a product set) of pure strategies.1 The restriction to pure strategies here

reflects the idea to identify all best responses rather than a particular equilibrium

distribution.

In order to determine criteria for robust recommendations, it is useful to first

make explicit the dual nature of game-theoretic solutions often left implicit in the

literature (for an exception, though in the context of dynamic games, see Rubinstein,

1991): on the one hand the solution to a game is a set of recommendations about

strategies that players should use, on the other, a set of conjectures that each player

can entertain about the other players’ behaviour. Eventually, these two aspects of

a solution, of course, should be aligned: recommendations should contain strategies

that can be rationalised given some justifiable conjecture, and conjectures about a

player’s behaviour should closely reflect the recommended strategies for this player.

Robustness of a solution, therefore, should cover both aspects: strict incentives of

players to remain within the solution and immunity regarding strategic uncertainty

when it comes to the expected behaviour of others.

For our solution concept, we require players to have strict incentives to conform to

the solution, i.e. each player should be recommended to play a given strategy if and

only if it is rational under some conjecture justifiable under the candidate solution.

Notice that this implies both external and internal stability with respect to the can-

didate solution: no rational strategy is excluded (external stability) and no irrational

one included (internal stability). We view this requirement as a prerequisite for a

truly self-enforcing solution: unless the recommended strategies coincide with the set

of possibly rational choices, the corresponding conjectures will be inappropriate and

1This context is similar to the one proposed by Kohlberg and Mertens (1986, fn. 3) although in
their set-up the proposed solution is a mixed strategy profile while in our approach each player is
recommended a set of pure strategies. However it contrasts strongly with solution concepts – such
as rationalizability (e.g. Bernheim, 1984; Pearce, 1984) and iterated dominance (e.g. Asheim and
Dufwenberg, 2003; Brandenburger, Friedenberg and Keisler, 2008; Brandenburger and Friedenberg,
2010) – which only rely on each player reasoning deductively on the basis of his knowledge about
the game and the other players.
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will have to be revised, thus upsetting the solution. Sufficiently refined equilibrium

concepts typically satisfy internal, but not external stability. To meet both require-

ments a set-valued approach is called for. Notably, the notions of tight curb set (Basu

and Weibull, 1991) and tight σ-curb set (Balkenborg et al., 2013) both satisfy the

strict-incentives condition.

In addition and more in line with the the refinement literature, we require that

the players’ conjectures reflect some amount of strategic uncertainty: although each

player strongly believes that the others will act rationally, he is not absolutely certain.

Accordingly, we assume that players only consider conjectures which assign a positive

probability to every strategy of a given player.2 Moreover, we again make an external-

internal distinction: external uncertainty concerns strategies outside the solution while

internal uncertainty refers to strategies within. However, we assume that the latter has

a much larger magnitude: any strategy included in the proposed solution is considered

much more likely than any strategy not included. This key assumption will be labelled

prevalence of internal uncertainty.

Our main solution concept, which we name robust set, then, is derived from the

above assumptions by means of a natural limit procedure. Formally, we describe it

as a fixed point of the robust best-reply function B : T → T which maps the set of

all selections T into itself. For any selection T ∈ T, B(T ) contains the pure strategies

that a rational player can be expected to play given T and our assumptions about

strategic uncertainty. Intuitively, a robust set consists of recommendations from which

no rational player has any incentive to deviate even in the face of some uncertainty

about the behaviour of others.

As it turns out, there are games in which there is no robust set and, hence, no

solution that satisfies all our desiderata. To amend for this, we propose the notion

2This assumption embodies a certain measure of realism: in a real-life setting, it is virtually
impossible for a player to exclude events which could induce an opponent to make an irrational
move. Our approach attempts to account for such unmodelled events in a practicable way.
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of quasi-robust set. Such a solution is the outcome of an iterative procedure based

on the robust best-reply function B; as we show, quasi-robust sets exist for every

finite normal form game. In a sense, quasi-robust sets can be viewed as a natural

weakening of robust sets which follows our goal to identify all justifiable behaviour

within a solution. Hence, it is no surprise that a robust set is always quasi-robust

and, if a selection T is quasi-robust but not robust, then B(T ) is a proper subset of

T . Thus, what is lost in weakening robustness is that quasi-robust sets sometimes do

not satisfy internal stability.

In order to illustrate the role of the key assumption of our main model – the

prevalence of internal uncertainty – we also consider a variant where this condition

is not met, a model with unrestricted strategic uncertainty. Solutions of this model

are called semi-robust sets. As we will see, semi-robust sets always exist in finite

games but, unlike robust sets, they sometimes contain strategies that are relatively

dominated, i.e. dominated in the constrained game where players are restricted to

their solution strategies.

Before we proceed to illustrate the the main features of our approach with some

examples, we want to briefly return to some related papers. For the sake of brevity,

we focus on those two concepts which we think are closest related to the subsequent

discussion. A recent, concise and more comprehensive review of the related literature

can be found in Myerson and Weibull (2015, introduction).

An interesting recent approach which bears some resemblance to the spirit of

(semi-)robust sets is due to Myerson and Weibull (2015). In their paper, Myerson

and Weibull consider selections of strategies – blocks in their terminology – which

no player would want to deviate from once almost all others adhere to it. Similar to

the present discussion, they also use a notion of robustness which requires behaviour

outside the proposed solution to be considered much less likely. Unlike the present

approach, however, they start by assuming that average behaviour within the selection

5



constitutes a Nash Equilibrium of the perturbed game. Deviations, then, are judged

against this equilibrium and not, as in the present context, against each single strategy

in the proposed solution. Accordingly, Myerson and Weibull reach finer solutions, yet

at the cost of already presuming some equilibrium coordination to begin with.3

Finally, a concept which is (technically) related to the present approach, albeit

coming from a very different (evolutionary) direction, is the most refined best-reply

correspondence σ defined by Balkenborg et al. (2013, 2015). More specifically, Balken-

borg et al. (2013, p.169) “are interested [...] in identifying and characterizing the

smallest faces [of the polyhedron of mixed strategy profiles] that are evolutionarily

stable under some reasonable dynamics (appropriate for highly rational and highly in-

formed human beings)” – a motivation very different from the present attempt to find

those strategy sets which are robust to both strategic uncertainty and strict incentives

to stay within the solution. From their notion of a best-response correspondence, they

then define the notion of a σ-curb set which is a refinement of curb sets (Basu and

Weibull, 1991). As it turns out, one version of this notion, namely that of a tight

σ-curb set, is technically equivalent to our notion of a semi-robust set to be defined

below. Given the difference in motivation and the fact that Balkenborg et al. are

mainly interested in the dynamics generated by the correspondence σ, however, we

want to emphasise that the criticism of semi-robust sets expressed in the present paper

need not apply to σ-curb sets in the context where this notion is used.

The rest of this paper is structured as follows: In Section 2, we discuss some

illustrating example before moving on to the formal modelling in Section 3. Section

4 concludes with some final comments. All proofs are gathered in the Appendix.

3Myerson and Weibull (2015) suggest to interpret (tenable) blocks as possible norms for a certain
interaction. From that point of view, a strong reliance on equilibrium ideas, i.e. presuming some
amount of equilibrium coordination to begin with, is very natural. The focus of the present discussion,
however, is a totally different one, namely to clarify what can be argued for as rational in case without
any existing form of equilibrium coordination.
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2 Modelling Strategic Uncertainty: Motivation and

Examples

In this section, we provide an informal account of robust (and quasi-robust) sets and

illustrate their main features through two examples.

Model (informal)

As we have argued in the introduction, we are interested in selections of strategies

which contain all best responses to strategies within the selection and which – if

proposed to the players as a solution – are robust to some uncertainty regarding the

behaviour of others; for our main solution concept, we will assume, though, that the

uncertainty still focuses on strategies within the proposed solution.

To clarify the role of the assumption of prevalence of internal uncertainty, we use

as a comparison the model with unrestricted strategic uncertainty and the associated

notion of semi-robust set. Both models consider a situation where a selection T –

a product set of pure strategies – is proposed as a solution to a given game. Each

player, then, forms conjectures corresponding to completely mixed strategies that

are concentrated on T . However, while the semi-robust model contains no further

restriction, the one underlying robust sets is based on the additional assumption that

any strategy within T is much more likely than any other in the conjectures of the

players.

More specifically, the two models are generated by best-reply functions B : T→ T

and A : T→ T to be defined formally later. For the two-person games to be analysed

here, it is useful to consider the types of conjectures, to be called ε-conjectures and

δ-conjectures respectively, by means of which these functions can be approximated.

Given a selection T as the proposed solution, a player entertaining ε-conjectures, for

some small ε > 0, will assume that the probability cj(sj) > 0 of any pure strategy sj
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for the other player not in Tj is less than ε · cj(tj), for any pure strategy tj within Tj.

If, on the other hand, he has δ-conjectures for some small δ > 0, he will simply assume

that the other player uses a completely mixed strategy such that the probability of

some pure strategy not in Tj being played is less than δ. Thus, ε-conjectures generally

prioritise strategies within T while δ-conjectures do not.

The pure strategies included in B(T ) and A(T ), then, are the ones that, for each

player, maximise payoffs for some ε-conjectures and δ-conjectures with arbitrarily

small ε and δ, respectively.4

To begin with, we make two observations: First we note that, for any T , B(T ) ⊆

A(T ) so that B is potentially more precise than A. This follows from the fact that for

any ε-conjecture cj one can find δ∗ > 0 such that cj is also a δ-conjecture for δ ∈ (0, δ∗)

while the converse does not hold. If, however, T is a singleton, i.e. contains a single

pure strategy profile, the converse does hold. So, in this case B and A coincide.

Secondly, we note that the semi-robust best-reply A function has the following

monotonicity property: for any selections Tand U in T, if T ⊆ U , then A(T ) ⊆ A(U).

This ensues from the fact that, for any δ, if cj is a δ-conjecture with respect to Tand

T ⊆ U , then cj is also a δ-conjecture with respect to U . By contrast the robust best-

reply function B does not have this property as will become clear from the examples

below. We also note that monotonicity can be used to show existence of semi-robust

set: the property implies that if we iterate A starting from the whole strategy space S,

we obtain a decreasing sequence which will end up in a fixed point in a finite number

of steps.

Examples

In the remainder of this section, we present some illustrating examples, including a

version of the famous Beer-Quiche game (Cho and Kreps, 1982); cf. Example 3.

4This characterization works for the present examples but is not correct in general as will be seen
when the best-reply functions are defined formally in Section 3.
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A

B

C

D

E F G H

3,1 3,1 0,0 0,0

0,0 0,0 1,3 1,3

3,1 0,0 3,1 0,0

0,0 1,3 0,0 1,3

Figure 1: Game G1.

Example 1: Prevalence of Internal Uncertainty and Non-Monotonicity of B

The first example, game G1 (cf. Figure 1), illustrates that the non-monotonicity of B

is closely linked to the prevalence of internal uncertainty.5

To see this, note first that game G1 has no weakly dominated strategies. As a re-

sult, iterated weak dominance and, a fortiori, rationalizability have no bite. Moreover

the whole game is a robust set and also a semi-robust set. One may also note that the

game has eight pure-strategy Nash equilibria none of which satisfies external stability

with respect to B or A.

What we are looking for now are minimal robust and semi-robust sets (a robust

set – semi-robust set – is minimal if it does not contain a smaller robust set – semi-

robust set). As can be seen, there is a unique minimal semi-robust set, namely

{A,C} × {E,F,G}. This selection, however, is not very plausible in a context where

solution candidates are being recommended to the players in a pre-play phase: if

player 2 expects player 1 to play either A or C, playing E seems like the only rational

choice. – Note that, under the proposed selection, strategies F and G are relatively

dominated. – The selection {A,C} × {E,F,G} is not a robust set, though: under ε-

5This game can be seen as a two-stage cheap-talk game in which player 1 first sends one out of
two available signals to player 2 after which the players simultaneously choose actions in a 2 × 2
game with two strict Nash equilibria with payoffs (3, 1) and (1, 3). Here, however, we disregard this
dynamic interpretation and assume that the game is completely static.
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conjectures player 2 will consider both A and C much more likely than B and D and,

hence, will strictly prefer to play E (as F and G are relatively weakly dominated).

The selection {A,C}×{E}, by contrast, is a robust set and makes good sense also for

player 1: when player 2 plays E with high probability, only A and C can be optimal

for player 1. The reason why {A,C} × {E} is not a semi-robust set is that, under

that notion, player 2 is allowed to attach more weight to deviations than to some

solution strategy. For instance, if player 2 has δ-conjecture (1− [2 · 2δ+ 3δ], 2δ, 3δ, 2δ)

on S1 = {A,B,C,D}, F will be optimal for δ small enough.

It is instructive to point out that the robust set {A,C}×{E} relies on a violation

of monotonicity of the best-reply correspondence B. To see this, notice first that B

and A, obviously, agree on the singletons {A} × {E} and {C} × {E}:

B({A} × {E}) = A({A} × {E}) = {A,C} × {E,F}

and

B({C} × {E}) = A({C} × {E}) = {A,C} × {E,G}.

Nevertheless, as {A,C} × {E} is a robust set, we have

B({A,C} × {E}) = {A,C} × {E}

while monotonicity would have required B({A,C} × {E}) to include both F and G.

(Indeed, we have A({A,C} × {E}) = {A,C} × {E,F,G}.) This shows that a robust

sets may have more external stability than its component strategy profiles, a feature

which clearly derives from the prevalence of internal uncertainty.

It should also be noted that, in addition to {A,C} × {E}, there are three more

minimal robust sets, viz. {A} × {E,F}, {C} × {E,G}, and {B,D} × {H}. These
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solutions have similar justifications.6

A number of features can be observed in the example. First of all, in the present

case the unique minimal semi-robust set contains smaller robust sets, and the minimal

robust sets are more numerous than the minimal semi-robust sets. Yet, as semi-robust

sets always exist while robust sets sometimes do not, it should be clear that these two

features do not hold in general. Substituting quasi-robust for robust, we will be able to

prove (weak) versions of these observations in the following, though. Moreover, notice

that minimal robust sets can overlap: for instance, {A,C} × {E} and {A} × {E,F}

in Game G1. This, again, derives from the prevalence of internal uncertainty. By

contrast, such overlapping can never occur with minimal semi-robust sets.7

T

M

B

L R

1,1 1,1

0,1 2,0

1,0 0,1

Figure 2: Game G2

6A tedious, but safe way to find all strict sets is to derive the best reply for each player to any
selection using ε-conjectures and then look for fixed points. In Game G1 this gives the following
result (fixed points are underlined):

B1 : S2 → S1,

{E,F,G} → {A,C}, {E,F,H} → {A,D}, {E,G,H} → {B,C}, {F,G,H} → S1,

{E,F} → {A}, {E,G} → {C}, {E,H} → S1, {F,G} → {A,C}, {F,H} → {A,D},
{G,H} → {B,C}, {E} → {A,C}, {F} → {A}, {G} → {C}, {H} → {B,D}.
B2 : S1 → S2,

{A,B,C} → {E,G}, {A,B,D} → {F,H}, {A,C,D} → {E,F}, {B,C,D} → {G,H},
{A,B} → S2, {A,C} → {E}, {A,D} → {F}, {B,C} → {G}, {B,D} → {H},
{C,D} → S2, {A} → {E,F}, {B} → {G,H}, {C} → {E,G}, {D} → {F,H}.

Thus, in addition to the four minimal robust sets, we also have the (non-minimal) robust set S1×S2.
Semi-robust sets can be derived in a similar way.

7Proof: Assuming V is the non-empty intersection of two such sets, it is clear that A(V ) ⊆ V .
Iterating A from A(V ) on, one obtains – exploiting monotonicity – a decreasing sequence which
necessarily ends up in a fixed point, i.e. V contains a semi-robust set, a contradiction.
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Example 2: Possible Non-Existence of Robust Sets

Next, consider Game G2, depicted in Figure 2, which illustrates the possible non-

existence of robust sets. To see that there is no robust set in this game, notice first

that strategy B is weakly dominated and, thus, cannot be part of any robust set.

Secondly, assume that, for example, {T} × {L} is proposed as a solution. Although

this would work for player 1, T being his only admissible best reply to L, strategy

R has to be added for player 2 as he may consider player 1 more likely to deviate

to B than to M . However, once R is added to the solution, we also need to add

M which is player 1’s unique best reply to R. Following a similar line of argument,

we are then forced to move from {T,M} × {L,R} to {T,M} × {L} and, eventually,

back to {T} × {L}. Thus, what we obtain is a cycle, and it is easily checked that,

whatever starting point we choose, we will end up in the same cycle.8 In other words,

the best-reply function B has no fixed point and, hence, there is no robust set.

In order to handle such situations, we subsequently propose the notion of a quasi-

robust set as a possible remedy. Formally, this is defined as a selection of strategies

which is part of a cycle generated by the best-reply function B and, for each player,

consists of the strategies that appear at some point in the cycle. Accordingly, in game

G2, {T,M}×{L,R} is a quasi-robust set – actually, the only one. As we show below,

quasi-strict sets always exist.

Example 3: The Beer-Quiche Game

As our last introductory example, the famous Beer-Quiche game introduced by Cho

and Kreps (1987) provides another illustration of non-existence of robust sets. In the

original (dynamic) version of this two-person game, Nature first chooses a type, Weak

8The non-monotonicty of B is crucial for this phenomenon: we have, for instance,

B({T} × {L}) = {T} × {L,R}

and
B({T,M} × {L}) = {T} × {L}

while monotonicity would have required B({T,M} × {L}) to include R.
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or Strong, for player 1 with probabilities 0.1 and 0.9, respectively. Next, player 1,

being informed of his type, sends either a “strong” (s) or a “weak” (w) signal. A

true signal is costless, whereas a false signal costs 1 unit. Finally, player 2, who is

only informed about the signal, decides whether to fight (f) or to retreat (r). If he

fights, he will win or lose 1 unit depending on whether his opponent was Weak or

Strong. Player 1 loses 2 whenever there is a fight. Game G3 provides the normal

form representation of this interaction (cf. Figure 3), which we will focus on for our

discussion.9

ss

sw

ws

ww

ff fr rf rr

0.9, -0.8 0.9, -0.8 2.9, 0 2.9, 0

1, -0.8 1.2, -0.9 2.8, 0.1 3, 0

0, -0.8 1.8, 0.1 0.2, -0.9 2, 0

0.1, -0.8 2.1, 0 0.1, -0.8 2.1, 0

Figure 3: G3: The Beer-Quiche Game, strategic form; the unique quasi-robust selec-
tion being indicated by bold corresponding payoffs. A strategy of the form xy for
player 1 indicates x as his message if he is “strong” and y if he is “weak.” For player
2, a strategy of the form xy indicates action x after getting message s and action y
after getting message w.

9For the purpose of reference, we here provide the corresponding extensive form for the Beer-

Quiche game.

��
�

H
HH

��
�

HHH

HH
H

�
��

HH
H

���

r

r

r

r
r

r

r

r

r
r

r
r

r
r

r 0,0

2,1

1,1

3,0

1,0

3,1

0,1

2,0

nature

strong

weakquiche (w)

quiche (w)

beer (s)

beer (s)
f

r

f

r

f

r

f

r

1
10

9
10

13



The first thing to note is that the set of Nash equilibria for game G3 consists of

two connected components:

1. Both types of player 1 send the strong signal (s); player 2 retreats (r) if the

signal is strong, and fights (f) with probability greater than or equal to 0.5 if

the signal is weak (w).

2. Both types of player 1 send the weak signal; player 2 retreats if the signal is

weak, and fights with probability greater than or equal to 0.5 if the signal is

strong.

Arguably, equilibria in the first component make more sense than those in the

second component where, counterintuitively, player 2’s posterior belief about his op-

ponent being strong after hearing a strong signal needs to be lower (at most 0.5) than

his prior (0.9). Still many solution concepts fail to distinguish between these two

types of Nash equilibria all of which are sequential, perfect, and proper. As Cho and

Kreps (1987) note, however, only the first type of equilibrium satisfies strategic sta-

bility (Kohlberg and Mertens, 1986). The present approach provides partial support

for this conclusion.

Applying the robust best-reply B function to game G3, what is reached – irrespec-

tive of the specific starting point – is the following cycle

{ss}×{rf} → {ss}×{rf, rr} → {ss, sw}×{rf, rr} → {ss, sw}×{rf} → {ss}×{rf}

. Hence, the game has no robust but a unique quasi-robust set, namely {ss, sw} ×

{rf, rr}. Note that this set contains all Nash equilibria of the first component of

equilibria described above and no other.

To see how this solution can be rationalised, consider a situation where the quasi-

robust set {ss, sw}×{rf, rr} is recommended to the players. As in the game restricted
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to this set rr is dominated by rf , the latter strategy appears to be the only rational

choice for player 2. Accordingly, considering this, player 1 should play ss. (Indeed,

{ss}×{rf} is the unique robust set of the restricted game.) These conclusions about

rational strategies, however, have been derived on the assumption that conjectures

are concentrated on the quasi-robust set {ss, sw}× {rf, rr}. In this sense, the quasi-

robust set is part of the solution.

3 The Solution Concepts

Next, we provide the formal presentation of our model.

3.1 Preliminaries

For our analysis, we consider finite normal form games G = {I;S;ui, i ∈ I} with

player set I = {1, ..., n}, set of pure strategy profiles S = ×i∈ISi and payoff functions

ui : S → R extended to mixed strategies in the usual way. T denotes the collection of

all selections, i.e. all sets of the form T = ×i∈ITi where each Ti is a non-empty subset

of Si. Moreover, for any finite set V , ∆(V ) denotes the set of probability distributions

on V .

A conjecture about player i’s behaviour is an element ci of ∆(Si); we let ci(si)

denote the probability associated with the pure strategy si ∈ Si. A conjecture for

player i about the other players’ behaviour is an element c−i of ×j 6=i∆(Sj) and a set of

conjectures for i is a subset C−i of ×j 6=i∆(Sj).
10 For a conjecture c−i, we let BRi(c−i)

denote the set of pure best replies for i to c−i:

BRi(c−i) := argmaxsi∈Si
ui(si, c−i);

10Although, we do not allow correlated conjectures, this is more for pragmatic than ideological
reasons. Dealing exclusively with uncorrelated conjectures will simplify both analysis and presenta-
tion.
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for c ≡ (c1, ..., cn) ∈ ×i∈I∆(Si), we write BR(c) := ×i∈IBRi(c−i); moreover

BRi(C−i) :=
⋃

c−i∈C−i

BRi(c−i).

Furthermore, the stability set St(si) of a pure strategy si is defined as the set of

conjectures for which si is a best reply:

St(si) = {c−i ∈ ×j 6=i∆(Sj) : si ∈ BRi(c−i)}.

With these preliminary remarks, we now proceed to present our two models of

strategic uncertainty. In both models, we assume that the opponents of player i

consider some subset C−i of ×i 6=j∆(Sj) to be the set of appropriate conjectures for

player i. Given this set C−i, the other players form conjectures about i’s behaviour

by determining which pure strategies i can be expected to use if he acts rationally.

3.2 δ-Conjectures and Semi-Robust Sets

In our first model conjectures are concentrated on candidate solution strategies but

strategic uncertainty is otherwise unrestricted. Formally, players use δ-conjectures:

Definition 1 Given δ ∈ (0, 1) and Ti ⊆ Si, ci ∈ ∆(Si) is a δ-conjecture about player

i if

(a) ci(si) > 0 for any si ∈ Si and

(b) ci(Ti) > 1− δ.

The set of all δ-conjectures about player i given Ti is denoted by Cδ
i (Ti) .

Given a selection T = T1× . . .× Tn, we use the notation Cδ(T ) = ×i∈ICδ
i (Ti) and

Cδ
−i(T ) = ×j 6=iCδ

j (Tj). Clearly, for any δ ∈ (0, 1) and Ti, C
δ
i (Ti) is non-empty.

16



To complete the model, we have to determine which pure strategies player i can

be expected to use if he acts rationally given some set of appropriate conjectures Cδ
−i;

these will be denoted by Ti(C
δ
−i). Noting that Cδ

−i(T ) is always a subset of positive

measure in ×j 6=i∆(Sj), we let a strategy si be included in Ti(C
δ
−i) if and only if the

intersection of its stability set St(si) with Cδ
−i(T ) has positive measure.

Remark 1 Note that the preceding assumption excludes not only strategies which are

not best replies for any c−i ∈ Cδ
−i(T ) from Ti(C

δ
−i), but also strategies which are

best replies only on a subset of measure zero of Cδ
−i(T ). The rationale for excluding

the latter strategies is that if the other players’ ideas about player i’s conjectures are

reasonably blurred, they should consider it most unlikely that player i will hold the

conjectures required for choosing such strategies.

A

B

C

D E

2,2 0,0

1,1 1,1

0,0 2,2

Figure 4: Game G4

The situation is illustrated in game G4 (cf. Figure 4): Assuming player 1 thinks

both D and E are rational for player 2, his set of δ-conjectures about player 2 is

given by Cδ
2({D,E}) = {c2(D) : c2(D) ∈ (0, 1)}. Strategy B is only optimal – and

then not uniquely so – under the conjecture c2(D) = 0.5 which has measure zero in

Cδ
2({D,E}). In this case, we assume that player 2 considers the event of player 1

having such a conjecture sufficiently unlikely to be ignored. Thus, player 2 will expect

a rational player 1 to play A or C and player 1, even if he were to hold the conjecture

c2(D) = 0.5, will be aware of this fact.
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Starting from a solution candidate T , we let Aδi (T ) denote the pure strategies that

player i can be expected to play if he acts rationally given appropriate δ-conjectures:

Aδi (T ) := Ti(C
δ
−i(T )),

and write Aδ(T ) := ×i∈IAδi (T ). The assumption of strict incentives requires that

the solution candidate generates sets of conjectures which in turn generate sets of

expected rational play which coincide with the solution candidate, i.e. what we are

looking for is selections T ∈ T such that

Aδ(T ) = T.

A selection satisfying this condition will be called a δ-robust set. Semi-robust sets,

then, are derived by taking limits. Specifically, we let A denote the limit of Aδ as δ

goes to zero:

si ∈ Ai(T ) if and only if, for any δ∗ > 0, there is a δ ∈ (0, δ∗) such that si ∈ Aδi (T ).

Thus, we obtain the following definition:

Definition 2 A selection T is a semi-robust set if A(T ) = T .

In the following, the mapping A will be considered as a function A : T → T and

called the semi-robust best-reply function.

To characterise semi-robust and, later, robust sets, we need some basic definitions.

Given a game G and a selection T , let G(T ) denote the game where players are

restricted to strategies in T and inherit payoff functions from G. Thus, G(Si, T−i) is

the game where i can use all his strategies in G while the other players are restricted

to the selection T . Given a game G, a pure strategy si is inferior if its stability
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set St(si) has Lebesgue measure zero in ×j 6=i∆(Sj); si is (weakly) dominated if there

exists σi ∈ ∆(Si) such that ui(σi, σ−i) > ui(si, σ−i) for every totally mixed σ−i in

×j 6=i∆(Sj). Clearly, dominated strategies are always inferior. Given a selection T , si

is relatively inferior (relatively dominated) if si is inferior (dominated) in G(Si, T−i).

The following Proposition summarises basic properties of semi-robust sets.

Proposition 1

(a) Every finite strategic form game has a semi-robust set.

(b) Given a semi-robust set T , for each player i, if si ∈ Ti, then si is not inferior best

reply to some σ−i ∈ ×j 6=i∆(Tj).

(c) Given a semi-robust set T in a two-person game, for each player i, si ∈ Ti if and

only if si is not inferior and a best reply to some σ−i ∈ T−i.

(d) A semi-robust set may contain relatively dominated strategies

Proof. See Appendix.

To conclude this subsection, we return to the aforementioned equivalence between

semi-robust sets and tight σ-curb sets. The notion of σ-curb sets as defined by Balken-

borg et al. (2013, 2015) is based on what the authors call the most refined best-reply

correspondence, which is defined as follows:11 In a first stop, they define si ∈ Si to

be a semi-robust best reply to x−i ∈ ×j 6=i∆(Tj) if, for every neighbourhood U of

x−i, St(si) ∩ U contains an open set, and let Σi(x−i) denote the set of semi-robust

best replies to x−i. Then, the most refined best-reply correspondence σi is given by

σi(xi) := ∆(Σi(x−i)).
12 Finally, σ-curb sets are defined using the function Σ : T→ T,

11Note that Balkenborg et al. (2013, 2015) restrict attention to a certain class of games – G∗ in
their paper – which is not necessary in the present context.

12The term σ here and in σ-curb sets does not refer to mixed strategies as in the present setting
but to a best-response correspondence (cf. Balkenborg et al., 2013, 2015); we keep their notation as
we do not see any hazard of confusion.
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where Σ(T ) := ×i∈IΣi(T ), which maps any selection T on the selection which for

each player i contains his semi-robust best responses to the strategies in ×j 6=i∆(Tj).

A selection T is a σ-curb set if Σ(T ) ⊆ T and a tight σ-curb set if Σ(T ) = T .

Proposition 2 For any T ∈ T, Σ(T ) = A(T ).

Proof. See Appendix.

Corollary 1 A selection T is a tight σ-curb set if and only if it is a semi-robust set.

3.3 ε-Conjectures and Robust Sets

Our second model is based on the assumption of prevalence of internal uncertainty: an

appropriate conjecture about player i’s behaviour should assign positive probability to

all strategies in Si but any strategy in Ti should be considered much more likely than

any strategy not in Ti. This idea is formalised by means of the notion of ε-conjectures:

Definition 3 Given ε > 0 and Ti ⊆ Si, ci ∈ ∆(Si) is an ε-conjecture about i if

(a) ci(si) > 0 for any si ∈ Si and

(b) ci(si)/ci(ti) < ε whenever si ∈ Si \ Ti and ti ∈ Ti.

The set of all ε-conjectures about player i given Ti is denoted by Cε
i (Ti).

Given a selection T = T1 × ...× Tn, we define Cε(T ) := ×i∈ICε
i (Ti) and Cε

−i(T ) =

×j 6=iCε
j (Tj). Clearly, for any ε and Ti, C

ε
i (Ti) is non-empty.

From here on, we proceed in the same way as in the above derivation of semi-

robust sets, simply substituting ε-conjectures for δ-conjectures. Thus, if player i has

conjectures Cε
−i, the pure strategies he can be expected to use if he acts rationally,

denoted by Ti(C
ε
−i), are those whose stability sets have intersections of positive mea-

sure with Cε
−i. Moreover, given a solution candidate T , we let Bε

i (T ) denote the pure
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strategies that player i can be expected to use if he acts rationally given appropriate

ε-conjectures, i.e.

Bε
i (T ) := Ti(C

ε
−i(T )),

and write Bε(T ) := ×i∈IBε
i (T ). A selection T satisfying the strict-incentive condition

Bε(T ) = T , then, is called an ε-robust set. Finally, we take limits letting B denote

the limit of Bε as ε goes to zero. From this, we obtain the following definition:

Definition 4 A selection T is a robust set if B(T ) = T .

Proposition 3 below summarises some basic properties of robust sets.

Proposition 3

(a) Given a robust set T , for each player i, if si ∈ Ti, then si is neither inferior nor

relatively dominated.

(b) Given a robust set T in a two-person game, for each player i, si ∈ Ti if and only

if si is neither inferior nor relatively dominated.

Proof. See Appendix.

3.4 Quasi-Robust Sets

As observed earlier, there are normal form games for which no robust sets exist (cf.

Example 2, Section 2). For these cases, we suggest an iterative procedure to find a

solution which, in essence, still captures the spirit of our approach that all strategies

be justifiable from an outside perspective given what is proposed.

Starting with an arbitrary selection T as a candidate solution, players compute

their best replies under the function B and, thus, get B(T ) as the new candidate

solution. Continuing in this way, they eventually end up in a cycle, i.e. a collection
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of selections C = {T 1, ..., T k}, such that T j+1 = B(T j) for j = 1, ..., k − 1 and

T 1 = B(T k). Once such a cycle has been reached, we take the next solution candidate

to contain all strategies that appear in the cycle. Hence, for each player i, the next

selection T k+1 obtained by the procedure is given by T k+1 =
⋃
j=1,...,k T

j
i .

At this point, there are two possibilities depending on whether T k+1 is an element

of C or not. If T k+1 ∈ C, we consider T k+1 as a solution: iterating B from T k+1

on will just reproduce the cycle C. If, on the other hand, T k+1 6∈ C, we suggest to

proceed by iterating B starting from T k+1 until a new cycle is reached. The respective

procedure is modelled below.

For a collection of selections C = {T1, ..., Tk}, k ≥ 1, we use the following notation

U(C) = ×i∈I
⋃

j=1,...,k

T ji .

Each T ∈ T will be associated with an infinite path P (T ) = (P 0(T ), P 1(T ), ...) of

elements from T as follows

(a) P 0(T ) = T ,

(b) P 1(T ) = B(T ),

(c) for j ≥ 2,

(i) if P j−1(T ) 6∈ {P 0(T ), ..., P j−2(T )}, then P j(T ) = B(P j−1(T )), and

(ii) if P j−1(T ) ∈ {P 0(T ), ..., P j−2(T )}, then

P j(T ) = U({P k∗(T ), ..., P j−2(T )})

where k∗ := max{k : P k(T ) ∈ {P 0(T ), ..., P j−2(T )}}.

Remark 2 In the above formulation, whenever P (T ) reaches an element P j−1(T ) =

V that has already occurred, we adopt the rule that the next element will be deter-
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mined by the elements between the penultimate occurrence of V and P j−1(T ). It is

easily shown that a rule which instead started at some other occurrence of V would

be equivalent. For an informal proof, suppose V appears at least three times in P (T ).

After the second occurrence of V the next element, say Y , will contain all the strate-

gies that were used between its first and second occurrence. After the third occurrence

of V , by definition, the next element contains all the strategies that were used between

its first and third occurrence. However, as Y contains all the strategies that were used

between its first and second occurrence and itself appears between the second and third

occurrence of V , the strategies that appear between the second and third occurrence of

V coincide with the strategies used between its first and third occurrence. Clearly, this

argument can be generalised to any number of occurrences of V .

We say that a path P (T ) comes to a stop if there exist Q(T ) ∈ T and K ∈ N such

that P j(T ) = Q(T ) for any j ≥ K. Q(T ) is then the solution reached starting from

T . Any such solution will be called a quasi-robust set.

Definition 5 Any limit point of a path P (T ) as defined above is called a quasi-robust

set.

Notice that, if T is a robust set, P (T ) comes to a stop and Q(T ) = T . Thus, we

obtain the following result.

Proposition 4 Every robust set is quasi-robust.

Clearly, we would like the path for any T to come to a stop and, thus, to be

associated with a quasi-robust set. Another desirable property would be that if V is

a quasi-robust set, i.e. V = Q(T ) for some T , then V is also the solution obtained

starting from V itself, i.e. V = Q(V ). Yet another attractive property would be that

all selections which appear on the same path end up in the same quasi-robust set, i.e.
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if V ∈ {P (T )}, then Q(V ) = Q(T ). The following Theorem implies that all these

properties obtain.

Theorem 1

(a) For every T ∈ T, P (T ) comes to a stop.

(b) There exist a partition {T1, ...,Tk} of T and a collection {Q1, ..., Qk} of quasi-

robust sets such that for each j ∈ {1, ..., k} and T ∈ Tj

(i) Q(T ) = Qj and

(ii) {P (T )} ⊆ Tj.

Proof. See Appendix.

Corollary 2 Every game has a quasi-robust set.

Moreover, quasi-robust sets exhibit the following properties.

Corollary 3 If T is a quasi-robust set, then:

(i) P (T ) comes to a stop at the second occurrence of T (the first occurrence being

the first element of P (T )).

(ii) T = U({P (T )})

(iii) Either T is a robust set or T is relatively dominated and B(T ) is a proper subset

of T .

Proposition 5 Every semi-robust set contains a quasi-robust set.

Proof. See Appendix.

As the intersection of any two minimal semi-robust sets is empty – due to the

monotonicity of A(.) discussed in Section 2 – the following corollary is immediate.
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Corollary 4 In any game the number of minimal semi-robust sets is smaller than or

equal to the number of minimal quasi-robust sets.

Finally, any quasi-robust set T viewed as a restricted game obviously has a Nash

equilibrium. By definition of quasi-robustness, the respective strategy combination

also constitutes a Nash equilibrium of the unrestricted game.

Proposition 6 Every quasi-robust set T of a normal form game G contains a Nash

equilibrium of G.

4 Discussion

Having provided the formal details of our approach, we proceed with some discussion

about potential extensions and further illustrating examples.

4.1 Some Comments on Equilibrium Notions vs. Robust Sets

The notion of robust sets as defined above proposes a formal answer to the question

for which combinations of strategies there is substantial reason to believe that ratio-

nal players are going follow them once they are suggested as a solution - provided all

relevant information about preferences is reflected in the payoffs.13 Thus, contrary to

the common aim of the refinement literature, the intention is not to identify particular

equilibria that are more (or most) likely to be played in some strategic interaction

given some specific line of reasoning. The reason for this is that equilibria often en-

tail some implicit idea of repetition or average population behaviour, especially when

mixed strategies are involved.14 In single interactions, however, actual randomisation

13Note that if potential other-regarding concerns of the players as proposed, for example, by Rabin
(1993), Fehr and Schmidt (1999) or Bolton and Ockenfels (2000) are not yet captured in the payoffs
our analysis - as any argument in the refinement literature - loses empirical content.

14Myerson and Weibull, for example, explicitly argue in terms of a population average interpreta-
tion when providing intuition for the selection criteria underlying their solution concepts.
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is difficult to discern and actual equilibrium play often almost impossible to identify.

What can be said, though, is whether two (or more) pure strategies imply equal ex-

pected payoffs given some beliefs about others. Equilibrium arguments, then, might

add valuable information regarding expected frequencies of specific strategies when

observing multiple similar interactions. But for a single interaction all relevant infor-

mation effectively concerns pure strategies, which is why the selections of strategies

considered here only refer to those.

To exemplify this point by means of a simple example, consider the matching

pennies game depicted in Figure 5. Obviously, the only Nash equilibrium of the game

is the one in which both players play H and T with equal probability. Likewise

the only robust set of the game is the full set of possible pure strategy profiles S =

{H,T} × {H,T}.

H

T

H T

-1,1 1,-1

1,-1 -1,1

Figure 5: G5: Matching Pennies.

Put differently, while in the long run it is very reasonable to expect equal play of

H and T , the only thing we can say for a single interaction is that both H and T are

reasonable to be played. And this is what robust sets are intended to capture.

Of course, once some robust set is established as a solution candidate, further ideas

from the refinement literature may be used to assess which of the strategies entailed

in the proposed solution are more (or less) likely to be played if the interaction were

to be observed more than once. Similarly, refinement arguments may be used to

differentiate between robust sets. Consider, for example, the stag hunt game depicted

in Figure 6. In this game, there are 2 strict (pure strategy) equilibria ((T, T ) and
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(B,B)) and a mixed equilibrium; the robust sets, in turn, are given by {T} × {T},

{B} × {B} and {T,B} × {T,B}.

T

B

T B

5,5 0,4

4,0 3,3

Figure 6: G6: Stag Hunt

A standard equilibrium selection argument for this game would be in terms of

risk dominance (Harsanyi, Selten, 1988), favouring (B,B). In a similar vein, one may

argue for {B}×{B} as the more likely (or risk dominant) robust set. Yet again, such

an argument, while certainly interesting to explore, would implicitly leave the idea of

self-enforcing solutions for single interactions and thereby go beyond the scope of this

paper.

4.2 Evaluating Conjectures

Related to the preceding discussion, a further question to ask is whether conjectures

about opponents’ play should differentiate only between strategies within the proposed

solution and outside of it.

T

B

T B

1,1 0,0

0,0 1,1

Figure 7: G7: A coordination game.

Consider, for example, the coordination game G7 depicted in Figure 7. Note

that G7 has two strict Nash equilibria, the corresponding strategy sets of which also

27



constitute minimal robust sets. As pointed out by Myerson and Weibull (2012, p.

949f), who discuss an extensive form version of this game, proposed solutions for this

game tend to change once the outcome of a miscoordination, say (T,B), is replaced

by a matching pennies type game with a unique (mixed strategy) equilibrium leading

to zero payoffs in expected term (cf. Figure 8).15 Obviously, what is a robust set for

this type of game also depends on whether we analyse G7 or G7a.

TL

TR

BL

BR

TL TR BL BR

1,1 1,1 2,-2 -2,2

1,1 1,1 -2,2 2,-2

0,0 0,0 1,1 1,1

0,0 0,0 1,1 1,1

Figure 8: G7a: Game G7 with the cell (T,B) being replaced by a matching pennies
game in which player 1 (rows) earns 2 in case of matching choices and loses 2 otherwise.

In our view, the fact that what is considered to be part of the solution (in the

present setting) depends on the modelling of the interaction is not problematic,

though. It rather emphasises the fact that once we ask “What would be justifi-

able ways to behave in a certain situation?” – which is not the question Myerson

and Weibull try to answer – we have to be careful in choosing the model. Recall

that with respect to applications almost any game is a drastic simplification of the

corresponding “real life” situation to be commented on. That the choices made in

the course of the simplification affect what can be viewed as justifiable, then, seems

rather natural.

This notwithstanding, we believe that the dependence of solutions on the details

of the modelling indicates an important point, namely which conjectures are to be

15Myerson and Weibull (2012) emphasise that their solution concept is independent of such
changes; this is a consequence of them (different from us) focusing on particular equilibria to begin
with.
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thought of as relevant – a point that, in our view, should be taken into account in

the abstract modelling of the real life situation. For the present coordination game

example G7/G7a, we would, for instance, argue that a representation as in G7 reflects

the case where actual players have some experience in the matching pennies (sub-)

game and, hence, can be assumed (in the modelling) to expect equilibrium behaviour

there. A representation as in G7a, by contrast, would rather reflect a case in which it

is not reasonable to consider players as having any relevant experience in the matching

pennies part.

An possible way to address such issues, of course, would be to introduce further

requirements on eligible conjectures, which may or may not reflect rather informal

assessments of the players’ experience by the analyst.16 However, while certainly a

valuable avenue to consider, this would again have to be related to some external

factors which are not captured by the purely technical description of the game, which

is the basis for the arguments presented in this paper.

Finally, before leaving this discussion, we want to emphasise that the question

which conjectures (or beliefs) about the likely play of opponents are reasonable to

hold is one that is omnipresent in the refinement literature, with some requiring

robustness of solutions to some trembles (and corresponding beliefs, e.g. Selten, 1975;

Myerson, 1978; Kreps and Wilson, 1982) and others generally requiring robustness

to any possible perturbations (e.g. Kohlberg and Mertens). The only requirement

commonly made is that beliefs – inasmuch as considered – be consistent with actual

strategies.17 In the present context, we retain this assumption, albeit allowing for a

broader basis of strategies to be considered – adding a ‘strict incentives’ condition (to

remain within the proposed solution) to requiring robustness to ‘strategic uncertainty.’

16The role of the analyst in choosing between technically eligible solutions is, for example, also
emphasised by Kreps and Wilson (1982, p. 864f)

17See Carlsson and Wichardt (2012) for a discussion of how, in extensive games, existence of
equilibria may rely on appropriate off equilibrium path choices of beliefs which follow no other logic
than to support the existence of an equilibrium.
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5 Concluding Remarks

In this paper, we have proposed the notion of a robust set as an answer to the

question what would be a self-enforcing solution for a finite normal for game. As we

have argued, the notion essentially captures both the core idea of the game theoretic

refinement literature – namely robustness to strategic uncertainty – as well the key

requirement of the various CURB-type notions – namely strict incentives for players

to stay within the proposed solution.

While robust sets leave the realm of common equilibrium notions, they still rely

on some form of coordination as the respective set of strategies is thought of as a

proposal being made to the players of the game. Accordingly, strategies are not

evaluated unconditionally but against a certain range of possible behaviours of others.

The result, we believe, offers some kind of (weak) boundary to what might count as

a self-enforcing solution.

Moreover, although robust sets are designed for the analysis of static games, they

also indicate some possible avenues for dynamic analyses. More specifically, in a

repeated interaction, robust sets of the static game could be seen as the a basis on

which players might try different (justifiable) behaviours; recall that quasi-robust

sets were defined based on an iterative procedure following a stepwise best response

dynamic.

Thus, while we see robust sets as coming rather at the end of a discussion of static

solution concepts, we believe that the approach offers various aspects that might be

instructive to explore deeper also in the context of dynamic games.

Appendix

In the sequel, we provide the proofs for the results of our analysis.
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Proof of Proposition 1

Parts (a) and (d) can be inferred from the examples in Section 2. Part (b) holds by

definition. Part (c) can be seen as follows: In view of (b), we only need to show that

if si is not inferior and a best reply to some σ−i ∈ ∆(T−i), then si ∈ Ti. Now, for any

δ > 0, we can find η > 0 such that every totally mixed c−i in the open set

Cη := {c−i ∈ ∆o(S−i) : ||c−i − σ−i|| < η}

is a δ-conjecture; ∆o(S−i) denotes the interior of ∆(S−i). As si is not inferior, its

stability set is a convex set with a non-empty interior. Moreover, σ−i ∈ St(si) so that

St(si) ∩ Cη contains a non-empty open set. Therefore, si ∈ Ti. q.e.d.

Proof of Proposition 2

If si ∈ Ai(T ), then, for arbitrarily small δ, St(si) ∩ Cδ
−i(T ) has positive measure

which implies that it contains an open set. Hence, there exists sequences {cti}t=1...∞

converging to some σ−i ∈ ×j 6=i∆(Tj) and {?t}t=1...∞ converging to zero such that each

cti belongs to an open set in St(si) ∩ Cδt

−i(T ). Thus, si is a semi-robust best reply to

σ−i. Hence, si ∈ Σi(T ).

If si ∈ Σi(T ), then, there exists x−i ∈ ×j 6=i∆(Tj) such that for every neighbour-

hood U of x−i, St(si) ∩ U contains an open set. Clearly, for any δ, one can find a

neighbourhood U of x−i such that U ⊆ Cδ
−i(T ) . Thus, for any δ, St(si) ∩ Cδ

−i(T )

contains an open set and, consequently, has positive measure. Hence, si ∈ Aδi (T ) for

any δ and, as a result, si ∈ Ai(T ). q.e.d.

Proof of Proposition 3

(a) By definition, an inferior strategy cannot be part of Bε
i (T ) for any ε. Assume some

si ∈ Ti is relatively dominated. Then, there exists σi ∈ ∆(Si) such that ui(σi, s−i) ≥
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ui(si, s−i) for any s−i ∈ T−i with strict inequality for some s′−i ∈ T−i. In an ε-

conjecture, strategy combinations such as s′−i will be much more likely – in the limit

infinitely more likely – than strategies not in T−i. Thus, for sufficiently small ε, si

cannot be a best reply to any ε-conjecture.

(b) In view of (a), we only need to show the “if” part. By Myerson (1991, Theorem

1.7) it is clear that if si is not relatively dominated, then si is a best reply to some

totally mixed σ−i in ∆(T−i). For any ε > 0, we can find η > 0 such that every totally

mixed c−i in the open set

Cη := {c−i ∈ ∆o(S−i) : ||c−i − σ−i|| < η}

is an ε-conjecture. (∆o(S−i) denotes the interior of ∆(S−i).)

As si is not inferior, its stability set is a convex set with a non-empty interior. More-

over, σ−i ∈ St(si) so St(si) ∩ Cη contains a non-empty open set. Therefore, si ∈ Ti.

q.e.d.

Proof of Theorem 1

Preliminaries

Given any game, consider the function B : T → T. Iterating B starting from any

T gives a sequence B∞(T ) = (T,B(T ), B(B(T )) . . .). Eventually this sequence will

end up in a cycle C. (We include the case of a degenerate cycle containing only one

element, say V ; in such a case B(V ) = V and V is a robust set.) We let C(T ) denote

the cycle in which B∞(T ) ends up. Clearly, we have:

• There exists a non-empty, finite collection C of cycles C = {C1, . . . ,CK} for

some K ≥ 1.

• There exists a partition X = X1, . . . ,XK of T such that T ∈ Xj iff C(T ) = Cj.
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The elements of X will be called cells. We let X(T ) denote the cell to which T belongs.

The proof of Theorem 1 uses induction and is based on four lemmas. Lemma 1 to

Lemma 3 mainly serve to show the proposition for the special case where X consists

of a single cell while Lemma 4, then, is used in the inductive step of the proof.

Given a path P (T ) = (P0(T ), P1(T ), . . .), as defined in Section 3.4, we define a

sub-path P k
j (T ) as follows P k

j (T ) = (Pj(T ), . . . , Pk(T )), where j ∈ N, k ∈ N ∪ {∞},

and j ≤ k. Moreover {P k
j (T )} = {Pj(T ), . . . , Pk(T )}.

The following claim will be used frequently in the sequel. It says that if a path

P (T ) at a certain stage comes to a selection V , then P (T ) will mimick P (V ) from V

on as long as P (V ) does not encounter any element that appeared in P (T ) before it

came to V . The claim is immediate and stated without proof.

Claim 1 If for some T , V ∈ T , j ∈ N, and k ∈ N ∪ {∞},

(a) Pj(T ) = P0(V ), and

(b) {P k
0 (V )} ∩ {P j−1

0 (T )} = ∅,

then P j+k+1
j (T ) = P k+1

0 (V ).

A collection of selections H = {T 1, . . . , Tm} is a hypercycle if, for each Tj ∈

H, there exists h(j) ∈ N such that {P h(j)
0 (Tj)} = H and Ph(j)+1(Tj) = U(H), i.e.

Ph(j)+1(Tj) is the union of all elements of the hypercycle. Clearly, every cycle is a

hypercycle and every hypercycle contains a cycle. Notice that hypercycles share a

crucial feature with cycles: if a path starts within a hypercycle, then it visits all its

elemnts before, possibly, exiting.

The following lemmas show that every cell X contains a hierarchy of hypercycles

which end up in a particular hypercycle H such that either U(H) ∈ H or U(H) /∈ X.

The latter is the result in Lemma 2 while Lemma 1 provides the for the hierarchy.
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Lemma 1 If H is hypercycle such that H ⊆ Xj for some Xj ∈ X and U(H) ∈ Xj \H,

then the collection {Pm−1
0 (U(H))} ∪H, where

m := min{n : Pn(U(H)) ∈ H}

is also a hypercycle.

Remark 3 As U(H) ∈ Xj H and Cj ⊆ H, the existence of the set Pm−1
0 (U(H)) is

guaranteed by the fact that the elements of P (U(H)) until it reaches Cj are obtained

by iterating B from (U(H)) on.

Proof. We define H′ := {Pm−1
0 (U(H))} ∪ H and V = Pm(U(H)). We need to

show that, for every T ∈ H′, P (T ) first visits all the elements of H′ and no other and

then moves to (U(H′)).

If T ∈ H, P (T ) first visits all the elements of H and then moves to (U(H)). By

Claim 1, P (T ) will then mimick P (U(H)) until V = Pm(U(H)) is reached. As V has

already occurred in P (T ) its next element will now be determined by the sequence of

selections having appeared since the last occurrence of V . Since (U(H)) belongs to

this sequence, the next element will be U({Pm−1
0 (U(H))} ∪H) = U(H′) as desired.

If, instead, T ∈ Pm−1
0 (U(H)), say T = Pj(U(H)), P (T ) will start with the subpath

Pm
j (U(H)) at which point V is reached. By Claim 1, P (T ) will then mimick P (V )

until V = U(H) after which it will mimick P (U(H)) until it returns to T . At this

point it has visited all the elements of {Pm−1
0 (U(H))} ∪ H and, thus, will move to

U({Pm−1
0 (U(H))} ∪H) = U(H′).

Lemma 2 Every cell Xj contains a unique hypercycle H(Xj) = Hj such that either

U(Hj) ∈ Hj or U(Hj) /∈ Xj.

Proof. The result is obtained by constructing an increasing sequence (H0,H1, . . .)

of hypercycles within Xj starting at H0 = Cj. If U(H0) ∈ Hj or U(H0) /∈ Xj, we are
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done. Otherwise we note that, by Lemma 1, H1 = {Pm−1
0 (U(H0))} ∪ H0, for some

m ∈ N, is a hypercycle and, moreover, that H0 ⊂ H1. The increasing sequence is

obtained by iterating this argument. As Xj is finite a hypercycle with the desired

property will be reached in a finite number of steps.

The next Lemma shows that if U(Hj) ∈ Hj, then U(Hj)is a quasi-robust set and

every selection in Xj ends up in U(Hj).

Lemma 3 If U(Hj) ∈ Hj where Hj = H(Xj) and T ∈ Xj, then Q(T ) = U(Hj).

Moreover {P (T )} ⊆ Xj and, if T ∈ Xj, {P (T )} ⊆ Hj.

Proof. If T ∈ Hj, P (T ) will first visit all the elements of Hj including U(Hj)

and then move to U(Hj). The next element will contain all the strategies that have

appeared since the last occurrence of U(Hj) and will, thus, clearly be U(Hj) once

more. As a result P (T ) comes to a stop at U(Hj) on. As P (T ) = Hj and Hj ⊆ Xj,

clearly {P (T )} ⊆ Xj.

If, instead, T /∈ Hj, P (T ) will start by iterating B from T on until it reaches some

element, say V , of Hj. At this point, by Claim 1, P (T ) will mimick P (V ) until it

comes to a stop at U(Hj). Again, it is clear that {P (T )} ⊆ Xj.

Finally, Lemma 4 below considers a modified best-reply function B∗ which for

elements in a particular hypercycle Hj moves directly to U(Hj) instead of first visiting

all of Hj. The lemma shows that the essential properties of the original best-reply

function B will be preserved under this modification. This result will be used in the

inductive step of the proof of Theorem 1 where its full significance will become clear.

Lemma 4 Let Hj be a particular hypercycle as described in Lemma 2. If B∗ : T→ T

is a modified best-reply function such that P ∗(T ) comes to a stop for any T , B∗(T ) =

U(Hj) for T ∈ Hj, and B∗(T ) = B(T ) for T /∈ Hj, then, for any T ,

(a) Q(T ) = Q∗(T ) and
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(b) {P (T )} ⊆ {P ∗ (T )} ∪Hj

where Q∗(T ) is the quasi-robust set reached from T and P ∗(T ) is the path of T under

B∗.

Proof. If {P ∗(T )}∩Hj = ∅, then P (T ) and P ∗(T ) coincide so the lemma holds for

such T . Now consider T such that {P ∗(T )}∩Hj 6= ∅ and let V be the first element of

P ∗(T ) which lies in Hj. By construction, P (T ) coincides with P ∗(T ) up to the point

where they both reach V . After this point P ∗(T ) will move directly to U(Hj) while

P (T ) will visit all the elements of Hj and then move to U(Hj). The continuation after

this point depends on whether or not U(Hj) ∈ Hj.

If U(Hj) ∈ Hj and U(Hj) = V , P ∗(T ) comes to a stop at U(Hj). If U(Hj) ∈ Hj

and U(Hj) 6= V , P ∗(T ) next moves to U(Hj) and, thus, again comes to a stop at this

selection. In order to see that P (T ) also comes to a stop U(Hj), first notice that, by

Lemma 3, P (V ) comes to a stop at U(Hj) after visiting all the elements of Hj. The

result then follows from Claim 1: from V on, P (T ) will mimick P (V ). It follows that

{P (T )} = {P ∗(T )} ∪Hj.

Now consider the case U(Hj) /∈ Hj and assume that both P ∗(T ) and P (T ) en-

countered V , the first element in Hj, at stage m. The first occurrence of U(Hj) in

P ∗(T ) will then happen at stage m + 1 while P (T ) will encounter U(Hj) at some

stage n > m+ 1 after visiting all the elements of Hj. After their first encounter with

U(Hj) both P (T ) and P ∗(T ) will mimick P (U(Hj)) as long as this path does not

come across any element in {P n−1
0 (T )} by Claim 1. If this never happens, clearly,

Q(T ) = Q∗(T ) = Q∗(U(Hj)). Again, it follows that {P (T )} = {P ∗(T )} ∪Hj.

If, instead, {P (U(Hj))}∩{P n−1
0 (T )} 6= ∅, we let Y be the first element of P (U(Hj))

which lies in {P n−1
0 (T )}. First, we consider the case where Y also lies in {P ∗,m0 (T )}.

To see where P (T ) and P ∗(T ) move after their second encounter with Y , let A denote

the collection of selections occurring between the first and second appearance of Y in
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P (T ) and let A∗ be the corresponding collection for P ∗(T ). We know that A consists

of all elements of A∗ and Hj. As, however, A∗ contains U(Hj), the strategies contained

in A and A∗ are the same, i.e U(A) = U(A∗). This in turn implies that both P (T )

and P ∗(T ) move to U(A).

Next consider the case where Y does not belong to P ∗,m0 (T ). Clearly this can only

happen if Y ∈ Hj which means that P ∗(T ) after its encounter with Y next moves

to U(Hj) for a second time. Now, let B denote the collection of selections occurring

between the first and second appearance of Y in P (T ), and let B∗ denote the selections

occurring between the first and second appearance of U(Hj) in P ∗(T ). Again it is

easily seen that U(B) = U(B∗) so that both P (T ) and P ∗(T ) next move to U(B).

Whether P (T ) and P ∗(T ) next move to U(A) or U(B), the proof can be completed

by iterating the above argument, mutatis mutandi. The fact that P ∗(T ) comes to a

stop ensures that a common quasi-strict set will be reached in a finite number of steps.

Proof of Theorem 1

We now prove the claim of the theorem by induction on #X , the number of cells in

X .

If #X = 1, Theorem 1 holds by virtue of Lemmas 2 and 3: all selections come to

a stop at U(H1) which, thus, is the unique quasi-robust set.

Now assume the result holds for #X = n and consider the case #X = n + 1 so

that X = (X1, . . . ,Xn+1). If U(Hj) ∈ Hj for every particular hypercycle Hj, then any

T ∈ Xj comes to a stop at U(Hj),j = 1, . . . , n+ 1, so Theorem 1 holds and the game

has n+ 1 quasi-robust sets.

If, instead, U(Hj) /∈ Xj for some j, we may assume this is the case for U(H1)

and, moreover, that U(H1) ∈ X2. We then consider a modified best-reply function

B∗ : T → T such that for T ∈ H1, B∗(T ) = U(H1) and for all other T , B∗(T ) = B(T ).

Iterating B∗ to find the cycles under this function shows that the elements belonging
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to X1 will now end up in the cycle of X2. All other selections end up in the same

cycles as under B. Thus, X1 ∪X2 will be a single cell under B∗ and all the other cells

will be as under B. As a result, there are now only n cells so the claim of Theorem 1

holds by assumption.

Item (a) of Theorem 1 now follows from the fact that, by Lemma 4 (a), Q(T ) =

Q∗(T ) for every T .

Regarding item (b) we need to show that, for every T , Q(V ) = Q(T ) for any

V ∈ {P (T )}. If V /∈ H1, we know that V ∈ {P ∗(T )} from Lemma 4 (b). Thus,

Q∗(V ) = Q ∗ (T ) as the proposition holds for B∗ and Q(V ) = Q(T ) by Lemma 4 (a).

If, instead, V ∈ H1, we know that {P ∗(T )} ∩ H1 6= ∅ as P (T ) and P ∗(T ) obviously

coincide until they reach an element of H1. Hence, by the definition of B∗, U(H1) ∈

{P ∗(T )}. Similarly, we get B∗(V ) = U(H1). As a result Q∗(V ) = Q∗(U(H1)) = Q∗(T )

and, thus, again Q(V ) = Q(T ) by Lemma 4 (a).

Note that although {P n
0 (T )} contains some elements that are not in {P ∗,m+1

0 (T )},

all these elements belong to Hj. So we have U({P n
0 (T )}) = U({P ∗,m+1

0 (T )}) =

U({P ∗,m−10 (T )} ∪Hj). q.e.d.

Proof of Proposition 5

The proof of Proposition 5 again uses three initial steps before the proposition itself

is proven.

Lemma 5 For any T , B(T ) ⊆ A(T ).

Proof. First note that for any δ > 0 there exists ε(δ) such that, for any ε ∈ (0, ε(δ)],

every ε-conjecture is also a δ-conjecture. This can be seen by setting ε(δ) = δ/M ,

where M is the largest number of pure strategies for any player. As a result Cε
−i(T ) ⊆

Cδ
−i(T ) for any T and ε ∈ (0, ε(δ)]. This, in turn, implies Bε(T ) ⊆ Aδ(T ) and, thus,

B(T ) ⊆ A(T ) for any T .
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Before moving on to the second step, we need some further terminology. Given

any function F : T→ T, say that a selection T is closed under F if, for any selection

V such that V ⊆ T , we have F (V ) ⊆ T .

Lemma 6 If T is a semi-robust set, then T is closed under A.

Proof. By definition, A(T ) ⊆ T . The result, then, follows from the monotonicity

property that for any selections Tand V in T, if V ⊆ T , then A(V ) ⊆ A(T ).

The next Lemma is an immediate consequence of the two previous ones.

Lemma 7 If T is a semi-robust set, then T is closed under B.

Finally, we can prove Proposition 5: From Proposition 3, we know that the it-

erative procedure starting at any selectionV comes to a stop at a quasi-robust set

Q(V ). Thus, what we need to show is that if T is a semi-robust set and V ⊆ T , then

Q(V ) ⊆ T .

Consider the path P (V ) and assume that Ph(V ) ⊆ T for any h < k and kinN. Now

consider Pk(V ). If Pk(V ) 6∈ P k−1
0 (V ), then Pk(V ) = B(Pk−1(V )). As Pk−1(V ) ⊆ T , so

is Pk(V ) by Lemma 7. On the other hand, if Pk(V ) ∈ P k−1
0 (V ), then Pk(V ) = U(C),

where C is some collection of selections from P k−1
0 (V ). Hence U(C) ⊆ T . q.e.d.
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