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Welfare Losses of Road Congestion 
 
 

Abstract 
 
We estimate the marginal external congestion cost of motor-vehicle travel for Rome, Italy, using 
a methodology that accounts for hypercongestion (a situation where congestion decreases a 
road’s throughput). We show that the external cost – even when roads are not hypercongested – 
is substantial, equaling about two thirds of the private (time) cost of travel. About one third of 
this cost is borne by public transport users. Most roads are never hypercongested, but some are 
hypercongested for more than one hour per day. Hypercongestion accounts for about 40 percent 
of congestion-related welfare losses. Welfare losses incurred on roads that are hypercongested 
are substantial, predominantly because of a reduction in speed rather than throughput. Our 
results suggest policies that reduce congestion can result in important welfare gains. 

JEL-Codes: D620, R410, H230. 

Keywords: marginal external congestion cost, deadweight loss, hypercongestion, public 
transport. 
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1. Introduction 

This paper measures the welfare losses due to travel delays caused by road congestion, focusing 

on private motor-vehicle (i.e. cars, motorbikes) and public bus traffic, for a wide set of road 

segments in the city of Rome, Italy. We explicitly account for a situation where congestion 

decreases a road’s throughput, originally labelled by William Vickrey (1973) as 

hypercongestion. 

Road congestion is a major issue in urban areas throughout the world. The average road 

user in France, Germany, the UK and the US spent 36 hours in gridlock in 2013 (CEBR, 2014). 

To deal with congestion, policymakers have several options, including road tolls, quantity 

restrictions (e.g. license-plate rationing), subsidized public transit supply and infrastructure 

expansion. None of these options comes at a low price, however. Tolls and quantity restrictions 

are politically controversial (De Borger and Proost, 2012), transit subsidies can be expensive 

(Parry and Small, 2009) and road infrastructure expansions produce additional traffic (Duranton 

and Turner, 2011). Given that policies that reduce congestion are not cheap, quantifying the 

costs imposed by congestion is important. However, we still know surprisingly little about these 

costs in large urban areas.  

Since Pigou (1920), the most common way of characterizing road congestion 

externalities has been to focus on a (small) road segment and postulate a positive monotone 

relationship between the time to travel this segment and traffic flow, i.e. the number of vehicles 

that pass the segment per unit of time, also called throughput.1 However, this characterization 

is inaccurate, because congestion relates to a more complex externality: as more cars take the 

road, higher density of vehicles – not flow – forces drivers to slow down, because it is the 

distance between cars that affects their speed (Greenshields, 1935). Importantly, when density 

is large enough, increasing it further slows traffic down to such an extent that flow decreases. 

Hence, the relation between traffic throughput and travel time, i.e. the road supply curve, is not 

monotonically upward sloping, but rather backward bending. This throughput-reducing 

phenomenon is called hypercongestion, and has been observed on several types of roads, e.g. 

highways and dense city road networks (Keeler and Small, 1977; Geroliminis and Daganzo, 

2008).2  

                                                           
1 This includes academic publications (e.g., Mayeres et al., 1996), authoritative reports by the US Federal Highway 

Administration (e.g., FHWA, 1997) and in much-cited handbooks (e.g., Maibach et al., 2008). 
2 The situation where congestion decreases a road’s throughput is originally labelled by William Vickrey (1973) 

as hypercongestion. There are many other situations where congestion reduces throughput (Small and Chu, 2003). 

For example, overloads of switching equipment cause breakdowns in telephone networks. Storms drain clogs when 

high water flow carries extra debris. Service desk clerks take longer to handle enquiries when facing high 
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Hypercongestion has been extensively analyzed by the theoretical literature. Some 

authors have modeled this phenomenon as the consequence of downstream bottlenecks 

(Verhoef, 2003, 2005; Hall, 2018). Others have analyzed hypercongestion in isotropic road 

conditions (Arnott and Inci, 2010). However, the empirical economic literature on congestion 

within cities tends to ignore hypercongestion.3 We aim to introduce a straightforward approach 

to measure the presence and welfare losses due to hypercongestion, and to calculate the 

marginal external congestion cost of travel. 

The city of Rome provides an interesting setting for our study. First, congestion is heavy 

compared to other cities of similar size. This is the result of a high modal share of cars and 

motorbikes, combined with a limited supply of public transit infrastructure.4 Second, Rome’s 

public transport system relies primarily on buses, which share road space with private traffic.5 

This enables us to quantify the costs of road congestion through travel delays for bus travelers. 

Third, public transport strikes are extremely frequent in Rome and vary in intensity. We have 

information about hourly reductions in public transit supply due to strikes, which we use as an 

exogenous shock for identification purposes. 

The first contribution of our paper is to propose a methodology to consistently estimate 

road supply curves for city roads, allowing for hypercongestion. In an early contribution, Keeler 

and Small (1977) address the issue by estimating travel time as a function of flow (on highways) 

and then inverting the estimated function. We improve upon their methodology by following 

the transportation science literature, which estimates the effect of vehicle density (e.g. the 

number of vehicles divided by the length of the road segment) on travel time and then derive 

the travel time-flow relation by applying fundamental identities (Hall, 1996; Geroliminis and 

Daganzo, 2008).6 However, contrary to the transportation literature, we account for potential 

endogeneity issues. Common unobservable shocks, e.g. road accidents, may affect density and 

travel time simultaneously, producing an omitted variable bias. More fundamentally, density is 

                                                           
paperwork flows. Hall (2018) provides a valuable survey of engineering studies indicating the presence of 

hypercongestion. 
3 Theory indicates that the deadweight loss of congestion is significantly higher in the presence of hypercongestion, 

because the excessive demand for car travel not only raises travel time or queueing (Verhoef, 2005).but also 

because the road’s throughput is reduced (Arnott, 2013; Fosgerau and Small, 2013; Hall, 2018). 
4 Traffic congestion indexes rank Rome among the world’s most congested cities, similarly to Mexico City, Jakarta 

and Bangkok. Note that these cities are much bigger than Rome. The TomTom Traffic Index ranks Rome as the 

sixth most congested city during the morning peak. The Castrol Stop-Start Index places Rome just behind Mexico 

City. 
5 Until 2015, Rome had only two subway lines, recently augmented by a third short line, which is exceptionally 

low for a European city of comparable size (2.8 million inhabitants). Limited public resources and a high 

concentration of archeological sites are regularly cited as the main causes for the lack of infrastructure provision.  
6 In a dynamic model of congestion, Henderson (1974) also models travel time as a function of density, measured 

as the quantity of commuters on a road at a given time. See also Henderson (1981).  
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defined as the product of flow and travel time. Hence, any measurement error in travel time 

induces a positive correlation with density, implying an overestimate of its effect. 

To overcome endogeneity issues, we instrument for density using two different demand-

shifting instruments (which generate similar results). The first exploits weekly regularities in 

travel demand, captured by hour-of-the-week dummies. Specifically, we use the fact that, for 

example, traffic demand on Mondays at 9am is higher than at 12am. The second instrument 

exploits shocks in hourly public transit supply due to strikes, which induce motor vehicle travel 

demand shocks. Both instruments are arguably valid conditional on a range of controls for time 

(e.g., hour-of-the-day fixed effects) and weather. The validity of the strike instrument is 

enhanced by the fact that we observe many strikes in Rome.  

Our second contribution is to employ the road supply estimates to quantify the marginal 

external cost of congestion and the associated deadweight losses, using data from a large set of 

roads in Rome. We find that the marginal external cost of congestion is high even when roads 

are not hypercongested. On average, we find that each motor-vehicle kilometer produces an 

external cost of 0.88 minutes per kilometer of additional travel delay. This value is equal to 

about 66 percent of the average motor vehicle travel time (1.33 min/km) in Rome. The external 

cost is much larger in the morning peak (1.4 min/km). Our results imply that, on average, the 

hourly deadweight loss per kilometer of road lane from congestion equals 2.21 vehicle-hours.  

In our sample, hypercongestion is rather rare: it is present in only about 1.5 percent of 

the observations and limited to a subset of roads. Most roads are never hypercongested, but 

some are hypercongested for more than one hour per day. Nevertheless, hypercongestion 

accounts for a significant share (about 40 percent) of the overall deadweight loss. The 

deadweight loss due to congestion per unit of time is about 50 times higher when there is 

hypercongestion.7 Welfare losses incurred on roads that are hypercongested are predominantly 

due to reductions in speed, rather than in throughput. 

These results suggest that policy interventions that reduce congestion such as road 

pricing can bring significant welfare gains. However, if pricing is (for political reasons) 

unavailable, it is possible to achieve gains just by limiting hypercongestion, for example by 

adopting demand management measures such as adaptive traffic lights (Kouvelas et al., 2017).  

Our third contribution is to estimate the external costs of congestion on bus users, which 

have so far been ignored in the empirical literature (see Small, 2004, for a simulation study). 

We show that in Rome, where buses travel on mixed traffic roads, about one third of the 

                                                           
7 The low frequency of hypercongestion is consistent with recent findings of the traffic engineering literature. See, 

e.g., Loder et al. (2017). 
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marginal external congestion cost of motor vehicle travel is borne by bus travelers. These results 

have policy implications particularly for large cities in emerging and less developed economies, 

where buses are often the mainstay of the public transport system. 

Our welfare calculations are based on a static framework, assuming an isotropic road 

segment in steady state (in line with Arnott and Inci, 2010). This framework fits with our traffic 

data, collected using loop detectors, which involves observations of traffic conditions for 

specific discrete periods (of one hour) and locations (roads). Applying this framework is 

straightforward but requires two important – potentially restrictive – assumptions. First, we 

ignore that individuals have preferences regarding the time of travel (e.g. arrival time at work) 

and rescheduling of the timing of trips might be costly. Hence, we do not capture the welfare 

losses of congestion through rescheduling of trips (to other time periods). The rescheduling cost 

are likely much smaller than the losses through increases in travel time.8  Consequently, we 

underestimate the welfare losses from congestion.  

In addition, road networks are typically not isotropic and may include bottlenecks that 

cause queueing. As the theoretical literature has pointed out, hypercongestion may also result 

from queuing before a bottleneck (Vickrey, 1969; Arnott et al., 1990; 1993, 1994; Van den 

Berg and Verhoef, 2011). Our data does not allow to distinguish between different causes of 

hypercongestion. 9  Therefore, we also employ an “approximated measure” of welfare losses, 

which assumes that hypercongestion is due to a downstream bottleneck operating at maximum 

capacity (Verhoef, 2003, Arnott et al., 1990). The latter allows for travel delays due to queueing 

before the bottleneck which results into welfare losses. We show that the welfare losses using 

this alternative measure are almost identical to those using our static framework. This is 

intuitive, because we will show that for hypercongested roads, the welfare loss due to a 

reduction in throughput is much smaller than that due to reductions in speed.  

Our findings contribute to the literature measuring the costs of congestion (Small and 

Verhoef, 2007). We adopt a disaggregate framework that measures such costs at the level of 

single roads and is thus complementary to recent studies by Couture et al. (2018), who estimate 

                                                           
8 In the extreme case that travelers have identical preferences regarding arrival times and all go through the same 

bottleneck, then the rescheduling losses are exactly equal to the travel time losses (Small and Verhoef, 2007). 

Because travelers are extremely heterogeneous regarding arrival times and many travelers do not reschedule, it is 

plausible that these rescheduling cost are an order of magnitude smaller than the travel time losses. 
9 Recently, Hall (2018) has shown that queuing may also cause reductions in a bottleneck’s throughput and 

evaluates the implications for pricing and welfare. 
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aggregate travel supply relationships for a large sample of U.S. cities, and Akbar and Duranton 

(2016), who estimate this relationship at a citywide level for Bogotá.10  

The paper proceeds as follows. Section 2 introduces the theory that underlies our 

identification strategy. Section 3 and 4 present the empirical approach and the data. Section 5 

provides estimates of the marginal external cost of road congestion and welfare losses. Section 

6 concludes.  

2. Theoretical background 

We develop a theoretical framework to guide the estimation of the relations between traffic 

flow (or throughput) and travel time, the marginal external cost of congestion and the ensuing 

welfare losses. There are two travel modes: private motor vehicles (cars and motorbikes) and 

public transit, which consists only of bus service. We consider an isotropic one-lane road 

segment of unit length (say, 1 km) in a stationary steady-state. Individuals choose whether to 

travel and which mode to use. 

In our empirical application, we observe traffic conditions at the hourly level. Hence, 

our steady-state assumption implies that we ignore dynamic adjustments in traffic conditions 

within each hour. The assumption of an isotropic road segment implies we do not model the 

presence of downstream bottlenecks, i.e. reductions in road capacity that may cause queueing. 

In the welfare analysis, we shall show how our framework can take into account the presence 

of bottlenecks and their impact on welfare.  

 

2.1 The demand for travel 

There is a given number of heterogeneous individuals, N, who have some valuation for 

traveling, either by motor vehicle or public transit. Each individual takes at most one trip. Let 

 𝑁𝑃𝑇 be the demand for public transit trips, i.e. the number of individuals who travel by public 

transit. Similarly, let  𝑁𝑀 be the demand for motor-vehicle trips.11 The demand functions for 

public transit as well as motor-vehicle travel are negatively sloped with positive cross-price 

elasticities (i.e. the modes are substitutes). For public transit travelers, the generalized price of 

travel, 𝑝𝑃𝑇, encompasses fares and time costs. For motor-vehicles, the price of travel only 

consists of travel time 𝑇. We have:  

(1) 𝑁𝑃𝑇 = 𝑁𝑃𝑇(𝑝𝑃𝑇 , 𝑇), 

                                                           
10 Our approach may therefore be less representative of travel costs at a wide area level, for example because it 

does not account for the possibility that drivers avoid heavily congested roads by taking detours. On the other 

hand, our approach provides a more fine-grained view of congestion costs at the street level. 
11 Hence there are 𝑁𝑁  individuals who do not travel, where 𝑁𝑁 =  𝑁 − (𝑁𝑃𝑇 + 𝑁𝑀). 
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(2) 𝑁𝑀 = 𝑁𝑀(𝑇, 𝑝𝑃𝑇). 

In the welfare analysis, we assume that the demand function for motor-vehicle travel is linear: 

(3) 𝑇 = 𝜇 + 𝜃𝑝𝑃𝑇 −  𝜑𝑁𝑀 , 

where 𝜇 > 0, 𝜑 > 0 and 𝜃 > 0.12 We shall assume that 𝜑 is a constant (we considering a wide 

range of values for this slope in the analysis), but we will estimate 𝜃 and 𝜇 separately for each 

hour and road. This is important as one expects the intercept of demand to change, for instance, 

between peak and off-peak hours. A key assumption for our empirical analysis is that shocks 

captured by changes in 𝜃 and 𝜇, as well as public transit strikes, shift the demand for motor 

vehicle travel and can thus be exploited for identification purposes.  

 

2.2 Cost functions for motor vehicle and bus travel  

2.2.1 The road supply curve  

Let D be the density of motor vehicles (e.g., 20 vehicles per kilometer), and 𝐹 be the flow (or 

throughput) of vehicles passing the segment per unit of time (e.g. 10 vehicles per minute). The 

road supply curve is defined here as the relation between the time cost of motor vehicle travel 

T (e.g., two minutes per kilometer) and the flow, F. This is a supply relation, describing how 

the price of travel changes with the road’s travel output.  We denote this relation as 𝑇(𝐹) and 

derive it from fundamental physical relations, as follows. In line with the transport engineering 

literature (Helbing, 2001), we assume 𝑇 is an increasing and convex function of D: 

(4) 𝑇 =  ℎ(D), 

where  
𝜕ℎ

𝜕𝐷
> 0 and 

𝜕2ℎ

𝜕𝐷2 > 0. This assumption is intuitive: drivers choose their speed based on 

the distance to the car in front of them: a higher implies a shorter distance between cars and 

thus lower speed.13 Furthermore, we use the following fundamental identity: 

(5) 𝐷 ≡ 𝐹 × 𝑇. 

Combining (4) and (5), and applying the Implicit Function Theorem, we obtain the relation 

between travel time and flow: 

(6) 
𝑑𝑇

𝑑𝐹
= −

−
𝜕ℎ(𝐹𝑇)

𝜕𝐹

1 −
𝜕ℎ(𝐹𝑇)

𝜕𝑇

=

𝜕𝑇
𝜕𝐷

𝑇

1 −
𝜕𝑇
𝜕𝐷

𝐹
. 

                                                           
12 Demand for transit is also linear. We characterize it in Appendix A as it is not of importance here.  
13 For simplicity, we only focus on density of motor-vehicles, ignoring buses. Buses have a stronger effect on 

travel time delays than cars. However, in Rome, less than 1 percent of total traffic consists of buses. Hence, our 

results remain essentially unchanged even if one bus creates the same congestion as ten private cars. 
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Figure 1 – Fundamental diagram of traffic congestion.  

      

 

To understand this relationship, note that (5) implies when D is zero, F is also zero. Now 

consider an increase in D. Expression (6) implies that when 𝜕𝑇/𝜕𝐷 < 1/𝐹, a higher D raises 

travel time and F. 14 As D increases, a critical level 𝐷̅ is reached, where the denominator of (6) 

becomes zero and 𝑑𝑇/𝑑𝐹 approaches infinity. Above 𝐷̅, 𝜕𝑇/𝜕𝐷 > 1/𝐹 holds, so 𝑑𝑇/𝑑𝐹 < 0 

and 𝑑𝐹/𝑑𝐷 < 0. Consequently, due to the fundamental identity (5), D has a positive mechanical 

effect on F, but also an indirect negative effect because vehicles travel at lower speed. When 

the latter dominates, the supply relationship bends backwards, and there is 

hypercongestion.15’16  Figure 1 provides an illustration: the left-hand side of the figure denotes 

the postulated effect of 𝐷 on 𝑇, whereas the right-hand side shows the implied relationship 

between T and 𝐹. 

The above discussion implies that there is a maximum flow on the road segment, 𝐹̅, and 

a corresponding critical level of density 𝐷̅,  such that: 

  (7) 1 − 𝐹 ̅
𝜕𝑇

𝜕𝐷
|𝐷 =𝐷̅ = 0. 

Hypercongestion occurs when 𝐷 > 𝐷̅. Henceforth, we specify (4) as follows: 

(8)  𝑇 = 𝛽𝑒𝛼𝐷 , 

where α, 𝛽 > 0, as proposed by Underwood (1961). This relation provides an accurate 

description of the travel time-density relation for roads in Rome. Given (8), we have: 

(9) 
𝑑𝑇

𝑑𝐹
=

α𝑇2

1 −  αD
. 

                                                           
14 It also follows that 𝑑𝐹/𝑑𝐷 = (1-F ∂T/∂D)/T. Note that 𝑑𝑇/𝑑𝐹 and 𝑑𝐹/𝑑𝐷 have the same sign. 
15 Convexity of h(.) is crucial for this argument: if the function is linear, hypercongestion cannot occur. 
16 There is a debate in the transport literature, whether hypercongestion is a stable phenomenon in a static 

framework. Arnott and Inci (2010) show that hypercongestion is a stable phenomenon given similar steady-state 

assumptions as in the current paper. Gonzales (2015) shows that hypercongested traffic can be part of a stable 

equilibrium state given the presence of public transit. 



9 
 

Consequently, the critical density is 𝐷 ̅ = 1 −  α𝐷̅ = 0, so 𝐷̅ = 1/α.17 Hence, by estimating 

(8), one can calculate whether hypercongestion is present (i.e. whether 𝐷 > 𝐷̅). 

 

2.2.2 The generalized price of public transit travel  

The generalized price of public transit travel, 𝑝𝑃𝑇, increases with the in-vehicle bus travel time, 

𝑇𝑃𝑇, and the fare, 𝑓, but decreases with the supply of public transit, 𝑆.18 We assume 𝑝𝑃𝑇 is an 

additive function of its arguments (note that we normalize the monetary value of time to one 

for simplicity): 

(10)  𝑝𝑃𝑇  =  𝑇𝑃𝑇(𝐷) − ϑ(𝑆) +  𝑓,   

where ϑ(. ) is a positive and increasing function, and where 𝑇𝑃𝑇 increases with motor-vehicle 

density, because, like other vehicles, buses drive slower in congestion. We aim to estimate the 

effect of motor-vehicle density on travel time of bus travelers, 𝑇𝑃𝑇 (and, hence, on 𝑝𝑃𝑇). 

Accordingly, it makes sense to assume the same functional form as (8), but allowing for 

different parameters: 

(11) 𝑇𝑃𝑇 = 𝛾𝑒𝜎𝐷 . 

Observe that in-vehicle bus travel time, 𝑇𝑃𝑇, consists of two components: time between 

stops and idle time at stops. The latter depends on traffic density as well as the number of 

boarding/alighting passengers at each stop, which we do not have information on.19 Hence, in 

the empirical analysis we will ignore time at stops, although we take it into account in the 

welfare analysis.  Note also that buses may either share the road with other vehicles, which we 

label as mixed traffic lanes, or use roads that enclose a dedicated bus lane, where bus traffic is 

largely – but possibly not fully – separated from other vehicles.20  In the empirical analysis, we 

allow 𝛾 and 𝜎 to differ between mixed traffic and dedicated bus lanes.  

We are also interested in the relationship between traffic flow and bus travel time. 

Combining (11) with (5) and (6), we write the marginal effect of an increase in private motor-

vehicle flow on bus travel time as: 

                                                           
17 We will see that α is around 0.02 when estimating density (expressed in veh/km-lane), which implies that 𝐷̅ is 

about 50 vehicles per kilometer of road lane. 
18 For instance, higher supply of public transit, S, results in higher service frequency, which reduces waiting time 

at bus stops (Mohring, 1972).  
19 Congestion may affect time at stops, for example, because dense traffic makes it harder for buses to maneuver 

in and out of stops. In the welfare analysis, we assume that time at stops is not affected by congestion, hence we 

likely underestimate the negative welfare effect of congestion.  
20 In Rome (as in other large cities) dedicated lanes are shared with taxis, ambulances, police and public official 

vehicles. 
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(12) 
𝑑𝑇𝑃𝑇

𝑑𝐹
= 𝛾𝑒𝜎𝐷𝜎

𝑑𝐷

𝑑𝐹
= 𝑇𝑃𝑇𝜎 (𝑇 + 𝐹

𝑑𝑇

𝑑𝐹
) = 𝑇𝑃𝑇𝜎

𝑇

1−
𝜕𝑇

𝜕𝐷
𝐹

. 

We use this expression to derive the marginal external cost of private motor-vehicle travel on 

bus travelers.21 

 Our empirical identification strategy exploits public transit strikes as an exogenous 

shock to transit supply, 𝑆. To motivate this choice, let us focus on the theoretical effect of 

strikes. We assume that, in the absence of strikes, 𝑆 does not vary over time and is normalized 

to one.22 If a public transit strike takes place, however, 𝑆 drops below one, so 𝑆 ∈ [0,1], causing 

an increase in the generalized price of public transit, 𝑝𝑃𝑇. Note also that, in addition to this 

direct effect (that is, given the level of congestion), the reduction in transit supply also generates 

an increase in demand by motor-vehicle travel and, hence, in D. Therefore, there is also an 

indirect effect on the price of transit travel, because 𝑇𝑃𝑇 goes up due to the increased congestion 

(see (11)). 

 

2.3 Welfare Analysis 

We now focus on the steady-state equilibrium, where motor-vehicle travel demand, 𝑁𝑀, equals 

supply, F. Furthermore, demand for public transit equals supply.23 

 

2.3.1 Social and external costs of motor vehicle travel 

To understand the external congestion cost of travel, we focus on the time costs of travel (we 

ignore other external costs, such as fuel consumption, pollution and noise). The aggregate time 

cost is then the sum of aggregate time cost of travel for motor vehicle users, 𝐹 ×  𝑇, plus the 

aggregate time cost for public transit travelers, 𝑁𝑃𝑇 ×  𝑇𝑃𝑇. 

 The marginal external cost of motor-vehicle travel, which we denote as 𝑀𝐸𝐶, is the 

difference between the marginal social cost of a trip, MSC (the increase in the aggregate time 

cost due to the marginal motor-vehicle kilometer) and the user cost of this kilometer, 𝑇. The 

external cost can be divided in two components: the external cost to motor vehicle users, 

                                                           
21 Note that the last term in the equality is positive in the absence of hypercongestion. 
22 This assumption literally holds for Rome between 8 a.m. and 17 p.m. It does not hold outside these hours, hence 

in our empirical analysis we will control for hour of the day. 
23 We use hourly observations for many road segments in the empirical analysis. Hence, for each road segment, 

we assume a steady-state equilibrium for a period of one hour. We ignore any variation within the hour, which 

might lead to underestimates of the welfare losses of congestion (and the pervasiveness of hypercongestion). This 

can be shown by noting that travel time is a convex function of density, and therefore that travel time is a convex 

function of flow, when density is in the hypercongested range.  
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denoted 𝑀𝐸𝐶𝑀,  and that to public transit users, denoted 𝑀𝐸𝐶𝑃𝑇 . Hence, 𝑀𝑆𝐶 = 𝑀𝐸𝐶𝑀 +

𝑀𝐸𝐶𝑃𝑇 + 𝑇. We measure these external costs in the empirical analysis.  

Let us focus first on the marginal external cost on motor-vehicle users, 𝑀𝐸𝐶𝑀. 

Differentiating  𝐹 × 𝑇 with respect to 𝐹 using (6) and subtracting the user cost, T, shows that: 

(13) 𝑀𝐸𝐶𝑀  =
𝑑[𝐹𝑇]

𝑑𝐹
− 𝑇  =

𝑑𝑇

𝑑𝐹
𝐹 =

𝜕𝑇
𝜕𝐷

𝐷

1 −
𝜕𝑇
𝜕𝐷

𝐹
. 

Given (8), 𝑀𝐸𝐶𝑀 is specified as: 

(14) 𝑀𝐸𝐶𝑀 =
𝛼𝐷𝑇 

1 −  𝛼𝐷
. 

Let us now focus on the external cost of motor-vehicle travel on bus users (i.e. the effect 

of an increase in motor-vehicle trips, F, on travel time of bus travelers through an increase in 

𝑇𝑃𝑇). We now differentiate 𝑁𝑃𝑇 ×  𝑇𝑃𝑇 with respect to F. Given (12) and (8), the marginal 

external cost of motor vehicle travel on public transit users can be written as: 24 

(15) 𝑀𝐸𝐶𝑃𝑇 =
𝑑𝑇𝑃𝑇

𝑑𝐹
𝑁𝑃𝑇 = 𝑇𝑃𝑇𝜎𝑁𝑃𝑇 (

𝑇

1 −
𝜕𝑇
𝜕𝐷

𝐹
) = 𝑇𝑃𝑇𝜎𝑁𝑃𝑇 (

𝑇

1 −  𝛼𝐷
). 

The marginal social cost of motor vehicle travel is then: 

(16) 𝑀𝑆𝐶 = (𝛼𝐷 + 𝑇𝑃𝑇𝜎𝑁𝑃𝑇)
𝑇

1 −  𝛼𝐷
. 

 Consider an equilibrium which is not hypercongested, i.e. 1 −  𝛼𝐷 > 0, so that an 

increase in 𝐷 causes an increase in F. It follows from the above expressions that 𝑀𝐸𝐶𝑀, 

𝑀𝐸𝐶𝑃𝑇 and 𝑀𝑆𝐶 are positive and increase with F, with a slope that tends to infinity as F reaches 

the critical level 𝐹̅. See Figure 2, which shows a backward-bending supply curve plus 𝑀𝐸𝐶𝑀, 

𝑀𝐸𝐶𝑃𝑇 and 𝑀𝑆𝐶.  

 The socially-optimal traffic flow and travel time, and therefore density, are defined 

where the inverse demand for motor-vehicle travel (expression (3)) equals the marginal social 

cost of travel. See Figure 2, where the superscript eq denotes the equilibrium and opt the 

optimum.  

                                                           
24 We ignore the welfare effect of the marginal user of public transport (as an increase in motor vehicle flow goes 

along with a smaller decrease in public transit use). If public transport users pay the marginal social cost of transit 

trips, the latter effect is zero. 
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Figure 2 – Marginal external and social costs of motor vehicle travel.  

 

The deadweight loss of traffic congestion, DWL, in a given equilibrium is the increase 

in welfare when moving from this equilibrium to the optimal one. DWL is straightforward to 

calculate in our setup and equal to the integral of the difference between MSC and the inverse 

demand function for motor vehicle travel, computed between the optimal flow and the 

equilibrium one. See the top-right quadrant of Figure 3. A portion of the deadweight loss is due 

to the increase in travel time for transit users, denoted by DWLPT. This portion is shown in the 

bottom-right quadrant of the same figure. A welfare-maximizing policy intervention is to set a 

road toll equal to 𝑀𝐸𝐶𝑀 + 𝑀𝐸𝐶𝑃𝑇 (evaluated at the optimum). In conclusion, when the 

equilibrium is not hypercongested, our theoretical framework is able to calculate the marginal 

external cost of travel as well as the welfare losses of congestion. 

Consider now an equilibrium where the road is hypercongested, i.e. such that 1 −

 𝛼𝐷 < 0 holds. Therefore, an increase in 𝐷 causes a reduction in the road’s throughput, F. The 

above expressions imply then that 𝑀𝐸𝐶𝑀, 𝑀𝐸𝐶𝑃𝑇 and 𝑀𝑆𝐶 are negative (and not shown in 

Figure 2). Intuitively, density is so large that a reduction in density results in lower travel time 

but higher flow, i.e. lower costs for society as well as higher travel output. Therefore, an 

equilibrium with hypercongestion can never be optimal. Hypercongestion is an inefficient (i.e. 

exceedingly slow) way of ‘producing’ travel, not only because of the exceedingly high travel 

time, but also because the road’s throughput (flow) is lower than optimal. Accordingly, the 

associated deadweight loss tends to be large. Figure 4 provides two illustrations of this type of 

equilibria and the associated deadweight loss on the motor-vehicle market (given by the extra 

travel time as well as the possible loss in throughput). In one illustration (left panel), the demand 

for motor vehicle travel is perfectly elastic, whereas in the other illustration (right panel), it is 
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quite inelastic. Contrary to the non-hypercongested case, the deadweight loss can be large even 

if demand is completely inelastic. 

 

Figure 3 – Deadweight loss of motor-vehicle travel in congested equilibria  

 

 

Figure 4 – Deadweight loss of motor-vehicle travel in hypercongested equilibria 

 

 

2.3.2 Hypercongestion, bottlenecks and approximate welfare losses 

We take a static approach to describing the road supply conditions. Specifically, we ignore the 

possibility that an equilibrium with hypercongestion may result from traffic queuing before a 

bottleneck (e.g. the junction between two roads or a reduction in the number of available lanes). 
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In the presence of bottlenecks, queueing is the main source of inefficiency (Arnott, 2013; 

Fosgerau and Small, 2013; Hall, 2018). 

Given the nature of our data (based on vehicle counts and average speed measurements 

at specific points on a road, see below), we cannot identify whether hypercongestion results 

from queues before a bottleneck. Nevertheless, it is important to take the possibility of 

bottlenecks into account for the welfare analysis. Accordingly, we now adapt the conceptual 

framework to allow for bottlenecks and discuss the main implications for the way we 

characterize the optima and the deadweight losses from hypercongestion.  

Suppose there is indeed such a bottleneck and that we observe traffic conditions at a 

point before it. The key difference with respect to the framework considered so far is that, by 

definition, flow on this road cannot exceed the maximum defined by the bottleneck’s capacity. 

Hence, assuming the bottleneck is used to capacity in the equilibrium we observe, the optimum 

cannot entail a higher flow, but only lower travel time due to removing queues. Accordingly, 

in this alternative interpretation, we will estimate approximate welfare losses by making the 

conservative assumption that the observed (hypercongested) flow cannot be exceeded in the 

optimum.25 The approximate welfare loss is then obtained by multiplying the observed flow 

with the difference between the observed travel time and the counterfactual travel time obtained 

keeping flow constant, but without queueing (and hypercongestion). See Figure 5 for an 

illustration. Note that this approach potentially underestimates actual welfare losses because it 

ignores potential losses in throughput due to hypercongestion.26 However, we will show that 

both measures give essentially identical results. The reason is that the welfare loss due to the 

reduction in throughput when roads are hypercongested is small compared to the welfare loss 

due to reduced travel speed. In other words, the backward-bending part of the supply curve is 

close to being vertical in the range of values observed in our data. 

   

                                                           
25 An alternative interpretation of this assumption is that the road supply curve is effectively vertical, which is in 

line with Verhoef (1999; 2003). We emphasize that this assumption does not imply that we assume away the 

welfare losses of congestion when roads are hypercongested. Quite the opposite, we will see that substantial 

welfare gains can be obtained by reducing demand which reduces travel times on the road. 
26 See Hall (2018) for an analysis allowing for reduced throughput due to queueing at a dynamic bottleneck.  
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Figure 5 – Hypercongested equilibria without (left panel) and with bottleneck (right panel) 

     

Finally, note that, as Figure 6 shows, the alternative interpretation allowing for 

bottlenecks has no practical consequence for the way we characterize optima and deadweight 

losses if the observed equilibrium is not hypercongested. Indeed, without hypercongestion the 

optimal flow is always smaller than the equilibrium one.   

 

Figure 6 – Congested equilibria without (left panel) and with bottleneck (right panel) 

       

 

3. Empirical Approach 

3.1 Estimation of the road supply curve 

We are interested in estimating the marginal external cost of congestion through increased 

travel time of motor-vehicle and public transit travelers. We first focus on the marginal external 

cost through increased travel time of motor-vehicle travelers. To estimate this cost, one needs 

information about the relationship between motor-vehicle travel time and flow, i.e. the road 

supply curve.  
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We cannot apply standard econometric techniques to estimate the road supply relation, 

because, as shown above, due to hypercongestion the relationship between 𝑇 and 𝐹 is a 

correspondence and not an injective function. We therefore proceed as follows: we first estimate 

the effect of motor-vehicle density on motor-vehicle travel time by making parametric 

assumptions on the functional form of ℎ(𝐷), see (4). We then combine this estimate with (6) to 

derive 𝑑𝑇/𝑑𝐹. Given estimates of h(D), denoted ℎ̂(D), for each observation of D, we calculate 

the predicted travel time 𝑇̂  =  ℎ̂(D), as well as the predicted flow 𝐹̂(D) =  D/𝑇̂. We show 

below that the travel-time flow relationship obtained in this way accurately predicts the 

observed one.27 

In our empirical application, we assume for ℎ(𝐷) the functional form in (8), which 

implies that the logarithm of travel time is a linear function of density. We use observations 

which vary by road and hour during the week, estimating separate models for each road. To be 

specific, we assume that log𝑇𝑖,𝑡, at road i and hour t is a linear function of density 𝐷𝑖,𝑡, given 

several controls 𝑋𝑡 and an error term 𝑢𝑖,𝑡, so that: 

(17) 𝑙𝑜𝑔𝑇𝑖,𝑡 = 𝜏𝑖 + 𝛼𝑖𝐷𝑖,𝑡 + 𝜅𝑖𝑋𝑡 + 𝑢𝑖,𝑡. 

The controls 𝑋𝑡 include weather (e.g. temperature using a third-order polynomial, precipitation) 

and three types of time controls: hour-of-the-day, day-of-the-week fixed effects and week-of-

year fixed effects. These time controls aim to capture unobserved changes in supply conditions 

(e.g. due to road works which only occur during certain periods or due to changes in the amount 

of sunlight). We emphasize that the estimates without these controls are almost identical. We 

cluster standard errors by hour, so we allow 𝑢𝑖,𝑡 and 𝑢𝑗,𝑡 to be correlated.28  

We first estimate (17) using OLS. This approach assumes that 𝑢𝑖,𝑡 is not correlated to 

density, conditional on controls. However, density may be endogenous, because (5) implies that 

density is equal to the flow multiplied with travel time – which is the dependent variable of 

interest. This aspect is especially problematic, because in many studies – including the current 

one – density is derived from observations of flow and travel time, rather than being explicitly 

observed. Therefore, any measurement error in travel time causes a positive correlation between 

                                                           
27 Keeler and Small (1977) estimate flow directly as a quadratic (and therefore non-monotonic) function of travel 

time and then invert the estimated function. There are two disadvantages of this approach. First, it generally does 

not provide the causal effect of flow on travel time. Second, we have compared their approach for Rome with our 

approach and it appears that the fit of the estimated relation between flow and travel time is worse, despite relying 

on more parameters. The intuition for the lower fit is that the relationship between the logarithm of travel time and 

density is approximately linear, and therefore straightforward to estimate, whereas the relationship between flow 

and travel time is non-monotonic, and therefore difficult to estimate. 
28 Hence, each cluster contains a number of observations equal to the number of road segments observed.  
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travel time and density, resulting in overestimation of the effect of density.29 Besides, 

measurement error is not the only source of endogeneity. For example, many unobserved supply 

shocks, such as road closures, accidents or bad weather, may simultaneously affect density and 

travel time. In sum, it is possible that OLS estimates of 𝛼𝑖 are inconsistent. Formally, the 

endogeneity problem with the estimation of (17) is that the key requirement that 

𝐸(𝐷𝑖,𝑡𝑢𝑖,𝑡|𝑋𝑡) = 0 may fail.  

To deal with endogeneity, we note that (17) essentially describes a (technological) 

supply relationship. To identify this relation, therefore, we use an instrumental variable 

approach exploiting variation in demand. Our approach is based on two demand-shifting 

instruments. The first instrument exploits regularities in travel demand over the hours of the 

week, as in Adler et al. (2019). Specifically, we use hour-of-the-week dummies, 𝑧𝑡 ,  as 

instruments (e.g. a dummy for Monday morning between 9 and 10 AM is one instrument). 

Hence, we assume that 𝐸(𝑧𝑡𝑢𝑖,𝑡|𝑋𝑡) = 0. Importantly, 𝑋𝑡 includes three other types of time 

fixed effects – hour-of-the-day, day-of-the-week and week-of-the-year dummies – as controls. 

Thus, the variation we exploit is that demand is higher during a certain hour of the week, but 

we control for the hour of the day (i.e., we control for daily variation in sunlight or policies that 

apply only on certain hours of the day, e.g. traffic light changes), day of the week and week of 

the year (i.e., we control for roadworks that tend to occur only on certain days or that are specific 

to a certain period of the year). So, for example, we exploit the fact that demand is lower at 7am 

in on Mondays compared to 8am on the same day, and we control for that at 7am there might 

be less light, which potentially influences driving speed for given levels of traffic density.  

Our argument for why 𝐸(𝑧𝑡𝑢𝑖,𝑡|𝑋𝑡) = 0 must hold is that these hour-of-the-week 

dummies capture shifts in demand, conditional on other time fixed effects that control for any 

possible shifts in supply (e.g., for a given density, drivers may reduce speed in the evening 

because it gets darker).30 Note that a hour-of-the-week dummy essentially measures the demand 

for a certain hour of the week averaged over the whole period. Hence the exclusion restriction 

is that, conditional on other time fixed effects, variation in average density over hour of the 

                                                           
29 This problem is standard in many applications. One example are labor supply models where the number of hours 

worked per week is regressed on the hourly wage rate which is calculated as the weekly wage divided by the 

number of hours worked. See, e.g., Borjas (1980). We ran simulations – available upon request – indicating that 

measurement error in travel time is important: when its standard deviation is only 10 percent of the standard 

deviation of travel time, then the upward bias in the estimate of α is about 30 percent. Note also that, in presence 

of measurement error in flow, one would expect some attenuation bias (Wooldridge, 2002, p.75). However, our 

simulations indicate that measurement error in flow produces an almost negligible downward bias. 
30 Note that the travel demand function is usually expressed as a relationship between travel time and flow. Because 

density is the product of travel time and flow, it means that a shift of the demand function results in a shift in the 

in the demand relationship between travel time and flow. 
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week, where we average over the full period of observation, is entirely due to changes in 

demand. Consequently, the instrument is valid given the mild – and realistic in the context of 

Rome – assumption that that there are no supply shocks – including policies – that change the 

speed of vehicles systematically at a certain hour for a specific day of the week. Thus, this IV 

approach allows for policies that adapt road supply with a fixed pattern over the time of the day 

across different days of the week. For example, it allows for roadworks which only take place 

in the evening, or only on Fridays. Our controls also take care of environmental conditions that 

affect driving speed for given density at certain hours of the day, as well as weather conditions 

(rain and temperature). 

Let us suppose now that the above instrument is invalid, which would be the case if 

there are road supply shocks that are specific to certain hours of the week (e.g., on Monday 

morning, traffic lights do not function properly). In this scenario, one wishes to control for 

systematic hour-of-the-week variation. Hence, we introduce an alternative instrument where – 

in addition to the other time controls mentioned – we also control for these hour-of-the-week 

fixed effects. The second instrument uses variation in the supply of public transit, 𝑆𝑡, due to 

strikes, which cause positive shocks to the demand for motor vehicle travel as argued above. 

This instrument is arguably valid, i.e. random, conditional on our extensive set of time controls. 

Furthermore, this instrument is more likely to be valid given a large number of strikes, as we 

observe for Rome. This reduces the probability of relying on a set of strikes which accidentally 

occur on days where the congestion level differs from the norm. 

When adopting this second instrument, the use of hour of the week controls in (17) is 

key for two reasons. First, the occurrence of strikes is not completely random with respect to 

hours of the week (for example, strikes are common on Friday outside peak hours). Second, 

hour-of-the-day fixed effects capture any variation in the supply of scheduled public transit 

(i.e., the schedule in the absence of strikes), which makes it plausible that changes in public 

transit supply are entirely due to strikes and therefore exogenous.31 

A potential disadvantage of using strikes is that demand shocks due to strikes may be 

less representative for identifying road supply curves than demand shocks using travel demand 

regularities (for example, strikes may have a larger effect at times when roads are busy). Hence, 

the LATE interpretation of instrumental variable outcomes suggest that the obtained estimate 

using strikes has less external validity than using travel demand regularities. Another potential 

disadvantage, when using public transit strikes as an instrument, is that changes in public transit 

                                                           
31 The results do not change when we do not control for hour-of-the-week fixed effects. Hence, in the context of 

Rome, it is a matter of taste whether one prefers to control for these fixed effects. 
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supply directly change the number of vehicles on the road, which may invalidate the assumption 

that bus strikes are valid instruments of motor-vehicle density. This is a minor issue however, 

because on average less than 1 percent of all vehicle flow in Rome refers to buses (specifically, 

only six buses pass a road per hour). Nevertheless, we have addressed this issue by estimating 

models where we explicitly acknowledge that an increase in public transit supply increases the 

number of vehicles on the road. We did not find major changes in the results. 

Finally, it is not a priori guaranteed that the demand shifters we described are valid 

instruments for density to identify the supply relation. The LATE interpretation of instrumental 

variable outcomes allows for heterogeneous effects of the demand-shifting instrument, but 

requires that these demand-shifting instruments monotonically affect density (Imbens and 

Angrist, 1994; Angrist and Pischke, 2009). It is not obvious that this requirement holds in our 

setup.32 In Appendix C, we show that the monotonicity assumption holds when the following 

condition is satisfied: 

(18) 𝛼𝑇 <
𝑇𝜑

𝜑𝐷−𝑇2          or        𝑇2 > 𝜑𝐷. 

We will show that this condition generally holds in our data, see Section 5.1. 

 

3.2. Estimating the MEC on motor vehicle travelers 

Given estimates of α based on (17), we can derive 𝑀𝐸𝐶𝑀 using (14). Intuition suggests that this 

approach does not generate precise estimates when density approaches the critical level 𝐷̅, 

because the supply curve is vertical. This can be formally shown by assuming that 𝜕𝑇/𝜕𝐷 is a 

random variable with a given variance, 𝑣𝑎𝑟(𝜕𝑇/𝜕𝐷). Because the ratio of two random variables 

does not have a well-defined variance, we approximate the variance using a Taylor expansion. 

Using this expansion, the variance of 𝑀𝐸𝐶𝑀 can be written as follows: 

(19) 𝑣𝑎𝑟(𝑀𝐸𝐶𝑀)  ≈
𝑣𝑎𝑟(𝜕𝑇/𝜕𝐷) 𝐷2 

(1 −
𝜕𝑇
𝜕𝐷

𝐹)
4 =

𝑣𝑎𝑟(α)(𝑇𝐷)2

(1 − αD)4
. 

The denominator of this expression contains a power of four. This implies that the estimate of 

𝑀𝐸𝐶𝑀 using (14) divided by its standard error, defined by the square root of (19), is equal to 

α(1 −  αD)  and therefore goes to zero when density approaches the critical density. Thus, 

estimates of 𝑀𝐸𝐶𝑀 for levels of flow close to its maximum are extremely unreliable, because 

its standard error is large relative to the estimate. Although there are only few observations of 

                                                           
32 A positive shock to 𝜇 (or 𝑝𝑃𝑇) in (3) implies that the demand for motor-vehicle travel shifts outwards in travel 

time – flow space. Given hypercongestion, this shock may cause either an increase or a decrease in density in 

equilibrium. 
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flow close to the maximum in our data, we will exclude these observations (our estimate of the 

total welfare loss of congestion remains unaffected by this issue). 

Another issue is that 𝑀𝐸𝐶𝑀 is a highly non-linear function of the effect of density on 

travel time, α. This raises the question of how a bias in the estimate of α affects the estimate of 

𝑀𝐸𝐶𝑀. Given (14), we note that 𝑀𝐸𝐶𝑀 is increasing in α: 

(20)  
𝜕𝑀𝐸𝐶𝑀

𝜕𝛼
 =

𝐷𝑇 +  𝐷𝑀𝐸𝐶𝑀

1 −  αD
> 0. 

Hence, any overestimate of α results in an overestimate of 𝑀𝐸𝐶𝑀.33 The elasticity of 𝑀𝐸𝐶𝑀 

with respect to α can be shown to exceed one and is increasing in density, because: 

(21)  
𝜕𝑀𝐸𝐶𝑀

𝜕𝛼

𝛼

𝑀𝐸𝐶𝑀
 = 1 +

𝛼𝐷 

1 −  𝛼D
> 1. 

We note that in our application, on average, 𝛼𝐷 is equal to 0.2, so, the elasticity is 1.20 and 

only slightly above one. Therefore, for the average estimate, the bias in 𝑀𝐸𝐶𝑀 is roughly 

proportional to the bias in 𝛼.34 

 

3.3 Estimating the MEC on bus users 

We also aim to estimate the marginal external cost of congestion on bus travelers, exploiting 

hourly data on travel time on road segment i at time t, 𝑇𝑃𝑇𝑖,𝑡. Combined with information about 

density of motor vehicles that use the same road, this allows us to estimate parameter 𝜎 in (11). 

Given α and 𝜎, we calculate the 𝑀𝐸𝐶𝑃𝑇 as described in (15). 

To estimate 𝜎, we use a similar approach as to estimate α as described in 3.1. We 

estimate separate models for each road, using a log-linear specification including time controls 

(hour-of-the-day, day-of-the-week and week-of-the-year fixed effects). These time controls aim 

to capture unobserved supply shocks for bus travel (e.g., roadworks). Furthermore, we include 

weather controls and bus stop fixed effects. Hence, the equation we estimate is: 

 (22) 𝑙𝑜𝑔𝑇𝑃𝑇𝑖,𝑡 = 𝜋𝑖 + 𝜎𝑖𝐷𝑖,𝑡 + 𝜗𝑖𝑋𝑡 + 𝑣𝑖,𝑡, 

where 𝑣𝑖,𝑡 is the error term.  

Arguably, endogeneity of traffic density due to reverse causality is less of a problem 

here than when analyzing the effect of density on motor-vehicle travel time, because bus travel 

time does not enter the expression for density, 𝐷 ≡ 𝐹𝑇. Nevertheless, there are still reasons to 

                                                           
33 Note that the numerator and denominator of (20) are both positive when hypercongestion is absent, and they are 

negative when hypercongestion is present. 
34 For higher levels of density, this issue is more serious. For example, where density is about 2.5 times the average 

density, the relative overestimate equals two. Hence, any overestimate of α will result in a disproportional 

overestimate of on 𝑀𝐸𝐶𝑀. 
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suspect that OLS estimates are biased, particularly on mixed traffic roads (e.g., accidents may 

affect both car density and travel speed of buses). To account for endogeneity, we use hour-of-

the-week fixed effects as an instrument, based on the same arguments as when estimating α in 

section 3.1. Specifically, these fixed effects capture regular changes in travel demand. However, 

we do not use public transit strikes as an instrument when estimating this model. The reason is 

that during the two-month period for which we observe bus travel times, we observe relatively 

few strikes. Although the strikes instrument turns out to be strong for most roads in our sample, 

using few strikes reduces the strength of our identification strategy, increasing the likelihood of 

spurious results.35 

 

4. Data 

The city of Rome is heavily dependent on motorized travel: 66% of trips are made by motor 

vehicles (50% by car and 16% by motorbike/scooter). Roughly, 28% of trips take place by 

public transport (ATAC SpA, 2013).36 The main share of public transit supply is through buses 

(about 70% in terms of vehicle-kms as well as passenger-kms), see Table B1 in Appendix. 

 

4.1 Travel data  

Our data on motor vehicle traffic is derived from loop detectors. We employ 422,691 hourly 

observations (of which about 5 percent is during strikes) on flow and travel time for 33 

measurement points of different roads between 5am and midnight for 769 working days, during 

a period from the 2nd of January 2012 to the 22nd of May 2015.37 Motor vehicles refers to cars, 

commercial trucks and motorbikes, whereas flow refers to the number of motor vehicles passing 

a road per minute per road lane. Travel time is measured in minutes per kilometer.38 Density is 

                                                           
35 One may also suspect that, due to reduced frequency, bus occupancy tends to increase during strikes, thereby 

also raising idle time at bus stops. This effect could potentially invalidate strikes as instruments for density. 

However, recall that our data on bus travel time only refers to travel between stops, excluding time at stops. Hence, 

it is reasonable to expect no direct effect of strikes on bus travel time (given traffic density).    
36 The rate of motorization is high with 67 cars and 15 motorcycles per 100 inhabitants. There are about 1.6 cars 

per household. The high car ownership rate combined with substantial public transit use indicates that many regular 

transit users have access to a private vehicle, and are able to switch mode in the event of a transit strike. 
37 Measurement locations include twelve one-lane (per direction) roads – all located in the city center and with a 

speed limit of 50km/h (1.2 min/km). The other 21 roads have two lanes. These include seven large arterial roads 

with a speed limit of 100 km/h (0.6 min/km), eight with speed limits between 60 and 100 km/h and six with a 

speed limit of 50 km/h. 
38 We observe the average speed of vehicles at an hourly level (we invert speed to obtain average hourly travel 

time). We also observe counts (i.e., the number of vehicles passing a detector) per hour and convert it in flow per 

minute, ignoring within-hour variation. 
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calculated as the product of flow and travel time and measures the number of motor vehicles 

per kilometer of road lane. See Table 1.39 

 

Table 1 – Motor vehicle travel  
 Travel time [min/km] Density [veh/km-lane] Flow [veh/min-lane] Obs. 

Strike 1.365 14.6 11.1 23,018 

No strike 1.327 13.4 10.5 399,673 

Total 1.33 13.5 10.6 422,691 

 

On average, travel time of private motor vehicles is 1.33 min/km, which corresponds to 

an average (instantaneous) speed of 46 km/h. This speed is far above the average speed of an 

entire trip, e.g. because we exclude waiting time at traffic lights. Flow per lane is above 11 

vehicle-kms per minute and density is about 13.5 motor vehicles per kilometer. The above 

figures provide information for average traffic conditions, and thus mask substantial differences 

in congestion levels over time and between roads. We define a road as heavily congested during 

a certain hour when the speed on that road is less than 60 percent of free-flow speed (defined 

by the 95 percent percentile of the speed distribution observed on that road). Using this 

definition, on average roads are heavily congested about one hour per day, or 5 percent of the 

time. However, there is extreme variation between roads. Figure 7 shows the share of hours per 

day that a road is heavily congested. We single out ten ’heavily congested roads’, which are 

heavily congested at least one hour per day, with an average of about three hours per day, 

whereas the other 23 roads are heavily congested less than one hour per day (Figure B10 in 

Appendix shows the frequency of heavy congestion on roads in our sample). 

A road is defined as hypercongested when, for given flow, the travel time lies on the 

backward bending portion of the supply curve. Visual inspection suggests that the 10 heavily 

congested roads (as defined above) are hypercongested for some time of the day, whereas the 

other 23 are not.40 In Figures 8 and 9, we provide a scatterplot of the relationship between travel 

time and flow for two roads: one that clearly shows signs of hypercongestion and one where 

hypercongestion is absent. Clearly, hypercongestion is an empirically relevant occurrence. In 

                                                           
39 We drop a few observations when travel time either exceeds 5 min/km or is below 0.4 min/km, when flow is 

zero or exceeds 2,100 vehicles per hour. The results are robust to the inclusion of these outliers. Information from 

the measurement locations is sometimes missing (e.g., meters are malfunctioning). Information on the whole 

month of August 2012 is missing, because the data collection agency moved to another office in this month. A few 

other days are missing for unknown reasons. 
40 Note that our definition of ’heavily congested road’ does not imply that a road is hypercongested. Traffic on a 

road may be slow on a given hour for reasons not directly related to density (e.g., because cars cruise for parking). 

On the other hand, all roads that we identify as hypercongested also turn out to be heavily congested. 
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both figures, we have also drawn the predicted supply curve, derived from one of our travel 

time-density estimates discussed later on in Section 5.1. 

 

Figure 7 – Daily share heavily congested  Figure 8 – Hypercongested road 

                      

 

A priori, it is sometimes ambiguous whether a road is hypercongested during a certain 

hour. To illustrate, consider the road in Figure 8 – which exhibits hypercongestion – and focus 

on observations with a flow around 25 motor vehicles per minute per lane, and where travel 

times are in between the (to-be-estimated) backward-bending supply curve. Without some 

theoretical basis, it is unclear whether these observations refer to hours where the road is 

hypercongested. We address this ambiguity by defining a road as hypercongested during an 

hour if and only if traffic density during that hour exceeds the critical level 𝐷̅. Note that this 

definition implies that if a road is hypercongested for only a couple of minutes during a certain 

hour, we do not consider it as hypercongested during that hour. Hence, we most likely 

underestimate the pervasiveness of hypercongestion. Finally, recall that we estimate travel-time 

density relationships that assume that the logarithm of travel time is a linear function of density. 

In Figure 10, we show a scatterplot of this relationship for the hypercongested road depicted in 

Figure 8, which indicates that assuming this functional-form is reasonable.41 A similar 

conclusion applies to other roads in our sample. 

Furthermore, we have a sample of 27 roads used by the city’s bus network, of which 

four have dedicated bus lanes (see Table 2). We distinguish between 58 bus line sections (i.e., 

the part of the ride between two successive stops), 14 of which are on dedicated lanes. We 

                                                           
41 This figure suggests that for density levels below eight, which occur mainly outside peak hours, the marginal 

effect of density on log travel time is smaller. Excluding these observations generates almost identical, but 

somewhat more pronounced, results in our regression analysis, because we will estimate models with weights 

proportional to the hourly flow, and flow levels are low outside the peak, so low density observations will receive 

little weight. 
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employ data on the hourly bus travel time for each bus line section for the months of March in 

2014 and 2015. We have hourly information on 71,645 sections for mixed traffic roads and on 

31,024 sections for dedicated bus lanes. On mixed traffic roads, average travel time in the bus 

is about 1.56 minutes per kilometer (about 30 km/h), whereas on dedicated bus lanes it is 

substantially lower and equal to 1.08 minutes per kilometer (about 20 km/h).42 

 

Figure 9 – Congested road Figure 10 – Travel time-density 

    

       

 

Table 2 – Bus travel 

 

Mixed 

Traffic 

Dedicated 

Bus Lanes 

 Mixed 

Traffic 

Dedicated 

Bus Lanes 

Bus travel time between stops 

[min/km] 
1.56 1.08 

Bus users per section [pass-

km/min] 
5.16 9.96 

Bus time at stops [min/stop] 0.69 0.78 
Travel time motor veh. 

[min/km] 
1.41 1.20 

Bus travel time (incl. at stops) 

[min/km] 
3.02 1.99 

Density motor veh. [veh/lane-

km] 
14.8 13.5 

Line section length [km] 0.47 0.85 Number of roads 23 4 

Bus flow per lane [veh/min] 0.08 0.24 Number of bus lines 15 2 

Bus flow per road [veh/min] 0.12 0.24 Number of bus line sections 44 14 

Note: 71,645 observations for mixed traffic roads and 31,024 observations for dedicated bus lanes 

 

Motor-vehicle traffic conditions are quite similar for both types of roads: roads with 

dedicated bus lanes have slightly lower motor-vehicle travel times and densities than mixed 

traffic roads. Finally, note that one can expect the congestion-relief benefit for bus travelers to 

be substantial only if buses are strongly affected by road congestion. This seems to be the case 

for Rome. Figure 11 indicates that bus travel time (between stops) strongly increases with the 

                                                           
42 Bus travel time is derived from micro data on the time of arrival and departure at each stop of every bus running 

on the city’s bus network. This data is provided by the Mobility Agency. For most road traffic measurement 

locations, we are able to precisely identify the bus line section that encompasses the location. For some locations, 

however, we do not have exact coordinates. In those cases, we use two or three successive bus line sections (per 

road direction), which surely encompass the measurement location. We consider at least two bus line sections per 

location (one for each traffic direction).  
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density of motor-vehicles on mixed traffic roads. By contrast, for roads with dedicated lanes, 

bus travel times are hardly affected by density.  

 

 

Figure 11 – Bus travel time and motor-vehicle density 

           
Note: Bus travel time includes only time between stops. 

 
 

   

4.4 Transit strikes in Rome 

Information on strikes is provided by the Italian strike regulator (Commissione di Garanzia per 

gli Scioperi). During the 769 working days we observe, there are 43 with a transit strike, of 

which 27 took place only in Rome, whereas the other 16 were national. Strikes were announced 

to the public several days in advance (seven were partially cancelled).  

We use information about hourly strike intensity at the city level. Specifically, Rome’s 

Mobility Agency provided us with the share of provided service (relative to the regular 

schedule, i.e. without strikes) during strike hours (in terms of veh/kms). Consequently we are 

able to exploit hourly variation in the share of available public transit for identification 

purposes. The average share of transit service available during strikes is 0.56. That is, during 

the average strike hour, slightly more than half of public transport is still supplied. We plot the 

distribution of this variable in Appendix B (Figure B6). There is substantial variation in the 

share during strikes: it varies mainly between 0.30 and 0.83 (with few observations below 0.3). 

The share of transit available is highest during the 8 a.m. morning peak (the median is about 

0.75) and the 7 p.m. evening peak hour (the median is about about 0.65). During these hours, 

the variation in the share is also small. From 9 a.m. to 3 p.m., the share is substantially lower, 

but the range is also much wider (see Figure B7).43 The reason is that Italian law does not allow 

full transit service shutdowns during strikes, mandating a minimum service level during peak 

                                                           
43 We also have information on the non-strike scheduled service level, i.e., the usual number of buses operating 

(see Figure B5). The number of scheduled buses in Rome hardly varies between 8am and 5pm except on strike 

days. These observations support the use of strikes as a way of identifying the effects of public transit supply.  
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hours. Moreover, regulation forbids strikes during weekends and holiday months, mainly in 

August and September. Excluding these months, the distribution of strike activity is quite even 

over the year, with somewhat higher concentration in the spring period. Most strikes take place 

on Mondays and, in particular, on Fridays (see Figures B8 and B9).  

 

5. Empirical Results 

To quantify the welfare losses caused by congestion, our first step is to estimate the effect of 

traffic density on travel time of motor-vehicles and buses, using (17) and (22). We use OLS and 

the two IV approaches described above. We report the full results for each road separately in 

the Appendix D, see Tables D1 and D2. In Table 3, we provide the average and the standard 

deviation of the marginal effect of density, α, on log motor-vehicle travel time (see equation 

(8)). Table 4 reports similar information regarding the effect of density, 𝜎, on log bus travel 

time (see equation (11)). 

The first column of Table 3 shows that when using OLS, a marginal increase in density 

increases log travel time by 0.021, on average.44 Hence, increasing density by one vehicle per 

km-lane increases travel time by about 2 percent. The standard deviation of this effect is about 

0.01, indicating that the marginal effect does not differ much between roads. The second 

column reports the IV results using the hour-of-the-week instrument. This instrument is strong 

for all roads. It appears that the effect of density is about 0.019, on average, suggesting that the 

OLS estimates are somewhat biased upwards, by about 10 percent. This upward bias is 

statistically significant for the majority of roads at the 5 percent level.45 We will use the 

estimates of column (2) for the welfare analysis (while providing results based on other 

estimates in a sensitivity analysis). 

  

                                                           
44 These results are largely consistent with the transport engineering literature, see for example Greenberg (1959). 

We have also estimated models where we explicitly acknowledge that a strike through a decrease in public transit 

supply directly decreases the number of vehicles on the road, which invalidates using strikes as an instrument by 

making assumptions on the effect of removing a bus compared to the effect of a standard motor-vehicle. Even 

when we assume that one single bus causes the same travel delays as 10 motor vehicles, we get identical results. 
45 For 20 of the 33 roads, the Hausman t-test exceeds two (in absolute value). See, Wooldridge (2002, p. 99) for 

details about this test. 
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Table 3 – Log travel time 
 (1) (2) (3) (4) (5) 

 OLS IV OLS IV IV 

Density (average) 0.0214 0.0193 0.0233 0.0211 0.0172 

Standard deviation  [0.0095] [0.0087] [0.0091] [0.0084] [0.0101] 

Instrument   Hour-of-week  Hour-of-week Public transit 

Controls Yes Yes Yes Yes Yes 

Number of roads 33 33 30 30 30 

Number of obs. 422,691 422,691 371,687 371,687 371,687 
Note: standard deviation of density effect between square brackets. The dependent variable is the logarithm of travel time 

(min/km). We estimate the marginal effect of density for each road separately and then report the average as well as the standard 

deviation of the effect. The controls include temperature, rain, hour-of-day, day-of-week and week-of-the-year fixed effects. 

In the last column, we also control for hour-of-the-week fixed effects; controlling for this variable is however immaterial for 

the results. 

 

It appears that the alternative instrument, public transit, is strong for 30 out of 33 roads, 

as the F-test exceeds the recommended value of 10 for three roads (Wooldridge, 2002, p. 105). 

For these 30 roads, we provide estimates given the public transit instrument, as well as the two 

previous approaches for comparison. Also for this subsample we find that the IV estimates 

when using the hour-of-the-week instrument are somewhat smaller than the OLS ones. Using 

public transit as an instrument reduces the estimates further, suggesting a larger upward bias of 

OLS. Using these estimates for the welfare analysis generates very similar results.  

To check the consistency of our instrumental variable approach, we test whether the 

monotonicity condition (18) holds. This condition is satisfied for all our observations as long 

as demand is sufficiently elastic, i.e. when 𝜑 ≤ 0.5 which corresponds to a demand elasticity 

of approximately -0.28. Furthermore, it holds for more than 90% of observations even when 

𝜑 = 2 (which corresponds to an average demand elasticity of - 0.04, i.e. an almost vertical 

demand for motor vehicle travel, which is rather implausible). Therefore, the condition for the 

validity of our instruments is practically always satisfied. 

 

Table 4 – Log bus travel time 

 Mixed traffic Mixed traffic Dedicated lanes Dedicated lanes 

 OLS IV OLS IV 

Density (average) 0.0160 0.0195 0.0047 0.0088 

Standard deviation  [0.0239] [0.0257] [0.0076] [0.0093] 

Instrument  Hour-of-week  Hour-of-week 

Controls Yes Yes Yes Yes 

Number of roads 23 23 4 4 

Number of obs. 71,645 71,645 31,024 31,024 

Note: standard deviation of density effect between square brackets. The dependent variable is the logarithm of bus travel time 

(min/km) in between bus station stops. We estimate the marginal effect of density for each road separately and then report the 

average as well as the standard deviation of the effect. The controls include temperature, rain, hour-of-day, day-of-week, week 

and bus line section fixed effects. 
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Table 4 reports the results on the effect of density on the log of bus travel time, 𝜎. When 

applying the IV approach, it appears that the instrument is strong for all roads included. Using 

OLS, the estimated effect of density for all mixed traffic roads is positive and statistically 

significant at the 5 percent level. Using IV, the effect is also always positive but statistically 

insignificant for some roads. On average, the results suggest that the OLS estimates are 

downward biased by about 20 percent (see Table 6). The IV specification implies that a unit 

increase in traffic density increases bus travel time on mixed traffic roads by roughly 2 percent, 

which is almost identical to our estimate for the effect on motor vehicle travel time (see Table 

3).46 There is, however, a much smaller effect on dedicated lanes, and this effect is only 

statistically significant on one road. 

Using the estimates described above, we predict each road’s supply curve – i.e. the 

travel-time flow relationship – as explained at the beginning of Section 3.1.1. Figure 9 provides 

an example of such prediction for the hypercongested road discussed earlier (black line). The 

predicted travel-time flow relationship is backward-bending, in line with traffic engineering 

studies (Helbing, 2001; Geroliminis and Daganzo, 2008). 

We now turn to the analysis of external costs and welfare losses from congestion. In 

Table 5, we describe the results for the observed as well as for the optimal equilibria, averaged 

for all roads and hours in our sample. The first column refers to the observed equilibrium. In 

the first five rows of this table, we report the average of density, flow and travel time of motor 

vehicles as well as the bus travel time (between stops) and number of bus users. Given the 

estimates of density on motor-vehicle time, α, combined with information about the observed 

density, we calculate how often hypercongestion occurs (i.e. when D > 1/α). As we report in 

Table 5, it appears that hypercongestion occurs on average only about 17 minutes per day (out 

of 19 hours), i.e. for about 1.5 percent of the time. Such a low estimate is in line with our 

descriptive statistics, which indicated that the majority of roads are heavily congested less than 

one hour per day.47 We have also examined when hypercongestion occurs most during the day. 

As one may expect, hypercongestion occurs almost exclusively during the peak hours, and 

particularly during the morning peak. 

                                                           
46 The large majority of roads has a positive coefficient, although not always statistically significant because of 

larger standard errors. A couple of roads have a negative sign but not significant. These tend to be the roads with 

lower OLS estimates. See Table D3 in Appendix D. 
47 We weigh this measure by hourly flow on a given road, although the unweighted measure is almost identical. 

Recall that the roads in our sample are heavily congested on average about one hour per day, hence roads that are 

heavily congested are also hypercongested less than 20 percent of the time. Another possible explanation for the 

low frequency of hypercongestion is that we use data that is averaged at the hourly level and, therefore, possibly 

miss instances where roads are hypercongested for only some minutes during an hour. 
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These results focus on averages per hour and road, thereby masking large differences 

between roads: for many roads there is either never hypercongestion (18 roads), or hardly any 

hypercongestion (9 roads, less than 25 minutes per day on average), but three roads are 

hypercongested for at least one hour per day (see Appendix D, Tables D1- D3). 

 

         Table 5 – Observed and optimal equilibria – Full Sample 

  Equilibrium Optimum Approx. optimum 

Density (veh/km-lane) 13.55 9.46 9.32 

Flow (veh/min-lane) 10.6 8.40 8.27 

Travel time, motor veh. (min/km) 1.33 1.21 1.20 

Travel time, bus (min/km) 1.44 1.24 1.22 

Bus users (pass-km/min) 5.87 6.04 6.07 

Hypercongestion (min/day) 17.43 0.00 0.00 

MEC (min/km) 0.88 0.40 0.40 

MECM, motor veh. (min/km) 0.6 0.21 0.21 

MECPT, buses (min/km) 0.28 0.21 0.21 

DWL (min/km-lane)  2.21 2.17 

    only hypercongestion  62.87 52.81 

    no hypercongestion  1.26 1.26 

Number of roads 33 

 

In Table 5, first column, we report the MEC for our full sample of roads, again averaging over 

roads and hours (note that we exclude observations when roads are hypercongested). The MEC 

produced by a motor-vehicle travelling one km is about 0.88 minutes on average.48 This cost is 

substantial when compared to the average travel time per km (1.33 minutes). About two thirds 

of this cost is on motor-vehicle travelers, whereas one third is on bus travelers. Assuming a 

value of time equal to 15.59€/h for car users and 9.54€/h for bus users,49 the monetary MEC 

per vehicle-km is €0.2 (0.6×15.59€/60+0.28×9.54€/60), one fourth of which is on bus travelers.  

We have performed a range of sensitivity analyses to examine these results. In particular 

we have examined to what extent our 𝑀𝐸𝐶𝑀 and 𝑀𝐸𝐶𝑃𝑇 estimates are robust to alternative 

specifications. To start with, we have examined to what extent 𝑀𝐸𝐶𝑀 is sensitive to individual 

road estimates, given that 𝑀𝐸𝐶𝑀 is a highly nonlinear function of the estimates of α. We have 

                                                           
48 In Table 5, we report the weighted average of the marginal external time cost for a road, using the flow per road 

as weight. This masks uncertainty about the estimates of the marginal external cost for individual roads. The t-

value of  𝑀𝐸𝐶𝑀 is equal to 1 −  αD multiplied with the t-value of α. In our data, 1 −  αD is on average 0.6. Hence, 

because α is precisely estimated for most roads with a high t-value,  𝑀𝐸𝐶𝑀  is also precisely estimated for these 

roads. This is not true for MEC on buses, because σ is not precisely estimated at the individual road level, due to 

the much smaller sample size (we have only two months of bus data). 
49 These are the median values for Milan, the second-largest Italian city, reported by Rotaris et al. (2010). We did 

not find this information for Rome. 
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therefore estimated road supply curve models imposing that all roads have the same functional 

form (i.e., α is identical for all roads). Results hardly changed, showing they are not due to 

extreme estimates for specific roads, as suggested by (21). We have then calculated a 95 percent 

confidence interval for 𝑀𝐸𝐶𝑀 (see last columns of Table D2). The average interval varies 

between 0.52 and 0.69. Finally, we have estimated all bus travel time models using OLS, instead 

of the instrumental variable approach, and find that the average estimate of 𝑀𝐸𝐶𝑃𝑇 is robust 

across alternative methodologies (see Table D3).50 

Table 5 also describes the optimal equilibria – in terms of density, flow and travel time. 

These equilibria are characterized for each hour 𝑡 and road i, based on our estimated supply 

relations for motor vehicle and bus travel and assuming linear demands, as specified in Section 

2.1. Specifically, we characterize the demand for motor vehicle travel (3) by estimating the 

parameters 𝜇𝑖,𝑡 and 𝜃𝑖,𝑡 assuming that each hourly observation of motor-vehicle and bus travel 

(time, flow and density) describe an equilibrium and that the slope, 𝜑, is constant. We also 

compute the number of bus users in the optimum. We refer the reader to Appendix A for a 

detailed description of this procedure. We consider the case where 𝜑 = 0, 0.1, 0.3 and 1. The 

implied corresponding average demand elasticities are, respectively, minus infinity, -1.5, - 0.5 

and - 0.14.51  Hence, we consider a rather broad spectrum of demands, spanning from perfectly 

elastic to almost perfectly inelastic. For reasons of space, however, in Table 5 we describe the 

optimal equilibria only for the case 𝜑 = 0.1. Qualitatively, the results for the other values of 𝜑 

are similar (Appendix E).  

As shown in Table 5, density decreases when moving from the observed to the optimal 

equilibria. The average reduction is substantial: from 13.55 to 9.46 vehicles per km per road 

lane, i.e. by about 30 percent. Average travel time for motor vehicles falls from 1.33 to 1.21 

min/km, i.e. about 5 percent. This reduction may seem small, but the drop is larger on more 

congested roads. For example, for the road depicted in Figure 9, average travel time falls from 

0.96 to 0.81 minutes/km, i.e. about 15 percent. In addition, average flow decreases by about 15 

percent. Furthermore, the reduction in bus travel time is more pronounced: on average, travel 

time falls from 1.44 min/km to 1.24 min/km, i.e. about 15 percent.  

                                                           
50 Given the presence of hypercongestion, one expects that an approach where one regresses (log) travel time of 

motor-vehicles on flow generates a bias in 𝑀𝐸𝐶𝑀. We have applied such an approach using OLS, which imply a 

𝑀𝐸𝐶𝑀 of about 0.20, which is less than one third of the value reported in Table 5. Instrumenting flow with hour-

of-week fixed effects does not solve the issue. We obtain then an average 𝑀𝐸𝐶𝑀 of about 0.34, i.e. 50 percent of 

the estimate in Table 7. When we use public transit strikes as an instrument, the estimate is 0.72 which exceeds in 

Table 5. Hence, in contrast to our proposed methodology, this “travel time – flow approach” is extremely sensitive 

to the estimation method used. 
51 We have also examined non-linear specifications for demand. To be more specific, we have assumed log-linear 

demand specifications assuming the given elasticities. Again the results do not change much. 
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The average MEC computed in the optimum is equal to 0.40 min/km, roughly half than 

the average MEC in the observed equilibria. In monetary terms, the MEC in the optimum is 

equal to €0.086 per vehicle-km (0.21×15.59€/60+0.21×9.54€/60). This figure is indicative of 

the size of the optimal road toll in Rome. Assuming an average trip length of 13 kilometers, as 

reported by the Mobility Agency (PGTU, 2014), the optimal toll is about 1.12 Euros per trip. 

Furthermore, we calculate the welfare change of inducing a shift from the observed 

equilibrium to the optimum, i.e. the deadweight loss (DWL), expressed in minutes of travel 

time per kilometer of road lane. We find that the average DWL is 2.24 vehicle-minutes for 

every minute of the day (or about 134 minutes each hour) per kilometer of road lane. To provide 

a sense of the relevance of hypercongestion, we also report the average DWL for 

hypercongested equilibria and non-hypercongested ones separately. The penultimate row in 

Table 5, indicates that the DWL is 1.28 minutes per lane-km on average on non-hypercongested 

roads, i.e. about 55% of the total. Therefore, despite the roads in our sample are seldom 

hypercongested, about half of the overall deadweight loss comes from hypercongestion. 

Furthermore, the average DWL on a hypercongested road is very large: it is about 62 minutes 

per lane-km on an average minute of the day. Using the same monetary values of time as above, 

we find that this is equivalent to roughly €15 every minute. Hence, the loss per vehicle travelling 

one km is about €1.78 (€15/8.4). To put this in perspective, the hourly deadweight loss is about 

€1,800 for a hypercongested two-lane road segment of one kilometer length (€15×60×2).  

Table 5 also characterizes the “approximate optima” under the assumption that the road 

includes a downstream bottleneck. Under this assumption, the optima that corresponds to 

equilibria with hypercongestion differ from the case without bottlenecks, because the optimal 

flow cannot exceed the observed one (see Section 2.3.2, Figures 5 and 6), while the welfare 

loss is entirely due to the extra travel time caused by queuing. Note that, as explained in Section 

2.3.2, this assumption only affects the equilibria with hypercongestion (there is no change in 

non-hypercongested equilibria by construction). Thus, given the small percentage of 

observations with hypercongestion, allowing for bottlenecks brings to very little change in the 

results. The most notable change is that the DWL in hypercongested equilibria is about 20 

percent lower when one does not allow for throughput reductions. The intuition for this finding 

is that the welfare loss due to the reduction in throughput when roads are hypercongested is 

small compared to the welfare loss due to reduced travel speed. In other words, the backward-

bending part of the supply curve is close to being vertical.  

To illustrate how the external costs of congestion vary during the day, we show the 

marginal external cost for the observed equilibria (excluding those with hypercongestion) in 
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Figure 12, as well as the deadweight loss per hour of the day (when 𝜑 =  0.1) in Figure 13. 

Unsurprisingly, both quantities fluctuate over the day and are much larger during peak hours.  

 

Figure 12 – Marginal external cost         Figure 13 – Deadweight Loss 

  

 

Finally, in Table 6 we break down the results for two subsamples of roads: those where 

bus and motor vehicles share the same lanes (mixed traffic) and those where buses travel on 

dedicated lanes. The main aspect to notice is that the MEC tends to be higher on mixed traffic 

roads, particularly due to the external cost of motor vehicle travel on bus users. By contrast, the 

MEC on bus users is almost non-existent when buses travel on dedicated lanes, as one would 

expect. 

Table 6 – Observed and optimal equilibria – Mixed Traffic and Bus Lane roads 

  Mixed Traffic Dedicated Lanes 

  
Equilibrium Optimum 

Approx. 

Optimum 
Equilibrium Optimum 

Approx. 

Optimum 

Density (veh/km-lane) 13.83 9.59 9.45 11.57 8.51 8.39 

Flow (veh/min-lane) 10.72 8.56 8.43 9.07 7.28 7.18 

Travel time, motor veh. 

(min/km) 
1.35 1.22 1.20 1.25 1.16 1.15 

Travel time, bus (min/km) 1.56 1.28 1.26 1.08 1.04 1.03 

Bus users (pass-km/min) 5.16 5.37 5.40 9.96 9.87 9.92 

Hypercongestion (min/day) 19.22 0.00 0.00 2.70 0.00 0.00 

MEC (min/km) 0.94 0.42 0.42 0.59 0.27 0.27 

MECM, motor veh. (min/km) 0.63 0.21 0.21 0.50 0.25 0.25 

MECPT, buses (min/km) 0.31 0.22 0.22 0.09 0.08 0.08 

DWL (min/km-lane)  2.28 2.25  0.97 0.95 

    only hypercongestion  68.98 58.63  16.23 13.79 

    no hypercongestion  1.29 1.29  0.79 0.79 

Number of roads 29 4 
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Taken together, the results of this section indicate that the welfare losses due to road 

congestion in Rome are substantial. However, there are some caveats. First, although we 

observe traffic data from many measurement locations that are quite evenly spread across the 

city, our sample may not be entirely representative of the road network in Rome. Second, we 

estimate road supply curves at the individual road level, and not at an area- or network-wide 

level. Hence, our estimates of the external costs do not account for the possibility of avoiding 

heavily-congested roads by using alternative routes or by traveling at other times.52 If, for 

example, drivers may choose alternative uncongested routes, our analysis may overestimate the 

aggregate congestion costs. However, in Rome, the extent to which drivers can avoid congested 

arteries without taking substantial detours on secondary roads (which may also easily become 

congested), is unclear. If indeed they cannot, the extra-vehicle kilometers may increase the 

aggregate travel time losses, implying that we are somewhat underestimating these losses. 

 

6. Conclusion  

We estimate the marginal external cost of road congestion, and the associated deadweight 

losses, allowing for hypercongestion and considering the travel times of cars as well as public 

transit (bus) users. We exploit variation in public transit strikes and hourly variation in demand 

over the day to account for endogeneity issues. We demonstrate that, for the city of Rome, the 

marginal external cost is substantial: it is, on average, equal to about 66 percent of the private 

time travel cost, while reaching considerably higher levels during peak hours. When roads are 

not hypercongested, the marginal external cost of motor vehicle travel is €0.2 per kilometer on 

average, but almost double during peak hours. About one third of the marginal external cost of 

road congestion in Rome is borne by bus travelers. We find that most roads are never 

hypercongested, but some roads are hypercongested for more than one hour per day, on average. 

The welfare losses produced by congestion can be up to 50 times larger for hypercongested 

than for normally congested roads. As a result, hypercongestion accounts for about 40 percent 

of congestion-related welfare losses. We also demonstrate that welfare losses incurred on roads 

that are hypercongested are substantial, predominantly because of reductions in speed rather 

than in throughput. 

Our findings suggest that policies designed to reduce congestion can bring substantial 

welfare gains. For example, the high deadweight losses of hypercongestion suggests that, 

                                                           
52 Akbar and Duranton (2016) provide citywide estimates of supply and demand functions for Bogota’, using 

information from travel surveys and Google Maps. Couture et al. (2018) also provide estimates at the aggregate 

level from a sample of US cities. 
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particularly if road pricing is unavailable, quantitative measures to curb traffic on heavily 

congested roads (e.g., through adaptive traffic lights) may be warranted (Fosgerau and Small, 

2013). These measures can prevent hypercongestion, particularly in presence of unexpected 

demand or supply shocks such as accidents (Kouvelas et al., 2017).  
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Appendix A: Computing the optima and the DWL  

We characterize the optima in Table 5 and the deadweight loss of congestion. We assume that 

the market is in equilibrium, so 𝐹𝑖,𝑡  = 𝑁𝑀,𝑖,𝑡. The first step is to characterize the demand for 

motor vehicle travel by hour and road using (3). To characterize this demand, we compute for 

each hour (indexed by t) and road (indexed by i) the values of 𝜇 and 𝜃. Inverting (3), we get: 

(A1) 𝐹𝑖,𝑡 =
𝜇𝑖,𝑡

𝜑
+

 𝜃𝑖,𝑡

𝜑
𝑝𝑃𝑇 𝑖,𝑡

−
 𝑇𝑖,𝑡

𝜑
, 

which implies that the cross-price elasticity of demand for motor vehicle travel with respect to 

the price of public transit is: 

(A2) 𝜀𝐹,𝑃𝑇𝑖,𝑡
≡

𝑑𝐹𝑖,𝑡

𝑑𝑝𝑃𝑇

𝑝𝑃𝑇 𝑖,𝑡

𝐹𝑖,𝑡
=

𝜃𝑖,𝑡

𝜑

𝑝𝑃𝑇 𝑖,𝑡

𝐹𝑖,𝑡
. 

In a companion paper, using data on monetary price changes in public transport on travel 

demand for Rome, see Adler et al. (2019), we find that 𝜀𝐹,𝑃𝑇 is about 0.1. We assume the same 

elasticity applies for travel time changes in public transport. Given the assumed 𝜑, and given 

hourly observations of 𝐹𝑖,𝑡 and 𝑇𝑃𝑇𝑖,𝑡
 for each road, we compute the value of 𝜃𝑖,𝑡 for the given 

road-hour pair as follows: 

(A3) 𝜃𝑖,𝑡 =
0.1𝜑𝐹𝑖,𝑡

𝑇𝑃𝑇𝑖,𝑡

. 

The value of intercepts 𝜇𝑖,𝑡 can be calculated given the assumption that, on a given road-hour 

pair, the market is in equilibrium. Given 𝜑, 𝜃𝑖,𝑡 and information on 𝑇𝑖,𝑡, 𝑇𝑃𝑇𝑖,𝑡
 and 𝐹𝑖,𝑡, one 

calculates 𝜇𝑖,𝑡 using (3). 

Concerning public transit travel, we assume a linear (inverse) demand, with the 

following form: 

(A4) 𝑇𝑃𝑇𝑖,𝑡
= 𝜍𝑖,𝑡 + 𝜚𝑖,𝑡 × 𝑇𝑖,𝑡 −  𝛾𝑖,𝑡 × 𝑁𝑃𝑇𝑖,𝑡

. 

Where 𝜍𝑖,𝑡, 𝜚𝑖,𝑡 and 𝛾𝑖,𝑡 are positive parameters. To characterize this function, we first need to 

characterize these parameters. Inverting (A4), we get: 

(A5) 𝑁𝑃𝑇𝑖,𝑡
=

𝜍𝑖,𝑡

𝛾𝑖,𝑡
+

𝜚𝑖,𝑡

𝛾𝑖,𝑡
𝑇𝑖,𝑡 −

 𝑇𝑃𝑇𝑖,𝑡

𝛾𝑖,𝑡
. 

To determine 𝛾𝑖,𝑡, we assume the price elasticity of bus travel in Rome is -2.2 (this is the value 

that Parry and Small (2009) assume for peak-hour travel in London). This elasticity writes: 
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(A6) 𝜀𝑃𝑇 ≡
𝑑𝑁𝑃𝑇

𝑑𝑇𝑃𝑇

𝑇𝑃𝑇𝑖,𝑡

𝑁𝑃𝑇𝑖,𝑡

= −
1

𝛾𝑖,𝑡

𝑇𝑃𝑇𝑖,𝑡

𝑁𝑃𝑇𝑖,𝑡

. 

Using this expression and our observations of 𝑁𝑃𝑇𝑖,𝑡
 and 𝑇𝑃𝑇𝑖,𝑡

 we can calculate 𝐶 for the given 

hour and road as: 

(A7) 𝛾𝑖,𝑡 =
2.2 × 𝑁𝑃𝑇𝑖,𝑡

𝑇𝑃𝑇𝑖,𝑡

. 

We can then calculate 𝜚𝑖,𝑡 as follows. We assume the cross-price elasticity of public transport 

(bus) with respect to motor vehicles is 0.14, as reported in Litman (2017). We then get: 

(A8) 𝜚𝑖,𝑡 =
0.14 × 𝛾𝑖,𝑡 × 𝑁𝑃𝑇𝑖,𝑡

𝑇𝑃𝑇𝑖,𝑡

. 

Finally, we determine the intercept 𝜍𝑖,𝑡 using (A4) and information on 𝑇𝑃𝑇𝑖,𝑡
, 𝑇𝑖,𝑡, 𝑁𝑃𝑇𝑖,𝑡

 and the 

parameters determined previously.  

The next step is to characterize the optimal equilibrium – in terms of density, flow, 

number of bus users and travel-time of motor vehicles and buses – corresponding to each 

observed equilibrium (per hour and road). To do so, we combine the information on demand 

with an estimate of the road-specific road supply curve using our IV estimates in Tables 5 and 

6. Optimality requires that marginal benefit equals marginal social cost. Hence, in the optimal 

equilibrium, 𝜇 + 𝜃𝑇𝑃𝑇 −  𝜑𝐹 =𝑀𝐸𝐶𝑀 + 𝑀𝐸𝐶𝑃𝑇 + 𝑇 must hold. Given (8), (11), (14) and (15), 

the optimal density is found by numerically solving the following equation (we omit the i and 

t indexes for ease of notation): 

(A9) 

𝜇 + 𝜃𝛾𝑒𝜎𝐷 −  𝜑 (D/ 𝛽𝑒𝛼D)  = 𝛽𝑒𝛼D  +  αD 𝛽𝑒𝛼D /(1 −  αD) +

𝛾𝑒𝜎𝐷𝜎𝑁𝑃𝑇 (
 𝛽𝑒𝛼D

1 − 𝛼𝐷
), 

where the parameters in the equation are estimated empirically. Given the optimal density, we 

calculate the corresponding optimal travel time and flow as well as the optimal number of bus 

users (using (A5)) and bus travel time. One can then evaluate the MEC in the optimum. Also, 

we can find the corresponding DWL by comparing the optimum to the observed equilibrium 

for the given road-hour pair, using the estimated supply functions and the demand functions in 

(3) and (A5). 
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Appendix B: Figures 

 

Figure B1 – Map of Rome and location of traffic measurement points 
 

      

  

Figure B2 – Vehicle density histogram   Figure B3 – Vehicle flow histogram 

 
 

Figure B4 – Heavy congestion by hour Figure B5 – Public transit on non-strike 

day 
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Figure B6 – Public transit share for strikes Figure B7 – Public transit share per strike 

hour 

        

Figure B8 – Strikes by month   Figure B9 – Strikes by day 

          
Figure B10 – Frequency heavy congestion 

  
 

 
    

Table B1 – Travel in Rome’s metropolitan area  

    Car Bus Rail 

    Peak Off- Peak Off- Peak Off- 

         Peak   Peak   Peak 

Annual veh-kms, millions 6,116 8,445 66.7 67.7 10.24 7.2 

Annual passenger kms, millions 8,623 12,837 3,403 2,304 1,639 628 

Vehicle occupancy (pass-km/veh-km) 1.4 1.51 51 34 160 87 
Source: Own calculations based on information from Rome’s General Traffic Plan (PGTU, 2014). The data refer to the year 

2013. 
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Appendix C: sufficient conditions for monotonic effect of instruments on density 

We derive (18) and show that this condition is sufficient for demand-shifting instruments to 

affect density monotonically. We start from (3) and rewrite this relation in the time-density 

space. Noting that 𝑁𝑀 captures traffic flow and using (5) we can write (3) as: 

(C1) 𝑇 = 𝜇 + 𝜃𝑝𝑃𝑇 −  𝜑
𝐷

𝑇
. 

We have assumed that 𝜑 is constant. Hence, an increase in demand implies an increase in 𝜇 +

𝜃𝑝𝑃𝑇 . Furthermore, this equation implies that the demand curve is such that: 

(C2) 
𝑑𝑇

𝑑𝐷
= −

𝑇𝜑

𝑇2 − 𝜑𝐷
. 

Hence, the demand relationship is backward bending (in the time-density space): it is upward-

sloping if and only if 𝑇2 −  𝜑𝐷 < 0. Demand crosses the vertical axis at the origin (D = 0 and 

𝑇 = 0) and where D = 0 and 𝑇 = 𝜇 + 𝜃𝑝𝑃𝑇 . By contrast, the supply function, 𝑇 =  ℎ(D), is 

upward sloping with a positive intercept. See the specification of this function in expression 

(8). Hence, there can be at most three equilibria, two on the upward sloping part of the demand 

relationship and one on the downward sloping part. See Figure C1 for an illustration. We now 

provide two sufficient conditions for the equilibrium to lie on a part of the demand curve such 

that an increase in 𝜇 + 𝜃𝑝𝑃𝑇 results in an increase in the equilibrium level of density. 

Figure C1  

   

Consider the equilibrium marked by 1 in Figure C1. This equilibrium lies on the upward sloping 

part of demand. Furthermore, the supply function intersects the demand function from above. 

Hence, the following condition is satisfied: 
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(C3) 
𝑑ℎ

𝑑𝐷
= 𝛼𝑇 < −

𝑇𝜑

𝑇2 − 𝜑𝐷
. 

An increase in 𝜇 + 𝜃𝑝𝑃𝑇 makes the demand relation rotate clockwise around the origin. To see 

this, rewrite (C1) as 𝐷 =
(𝜇+𝜃𝑝𝑃𝑇)𝑇−𝑇2

𝜑
. This implies that 

𝑑𝐷

𝑑(𝜇+𝜃𝑝𝑃𝑇)
=

𝑇

𝜑
> 0 and  

𝑑2𝐷

𝑑(𝜇+𝜃𝑝𝑃𝑇)𝑑𝑇
=

1

𝜑
> 0. Hence, the equilibrium marked by 1 is such that density increases when 𝜇 + 𝜃𝑝𝑃𝑇 

increases.   

Consider now the equilibrium marked by 3 in Figure C1, which lies on the downward-

sloping part of demand. Hence, the following condition must hold: 

(C4) −
𝑇𝜑

𝑇2 − 𝜑𝐷
< 0 ⇒ 𝑇2 > 𝜑𝐷. 

An increase in 𝜇 + 𝜃𝑝𝑃𝑇 induces demand to rotate clockwise around the origin. Hence, this 

equilibrium is also such that density increases when 𝜇 + 𝜃𝑝𝑃𝑇 increases.   

Finally, notice that we cannot be in the equilibrium marked by 2 when either (C3) or 

(C4) hold, because this equilibrium is such that the supply function intersects the demand 

function from below and the demand function is positively sloped. Consequently, when either 

(C3) or (C4) hold, a positive shock to the in intercept in the demand for motor-vehicle travel 

demand causes a monotonic increase in D.  
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Appendix D: road-level effects of density on travel time    

Table D1 – Log travel time, OLS 
Road OLS Se(OLS) Critical value (𝐷̅) Hyper-conges. 

(min/day) 
𝑀𝐸𝐶𝑀  𝑀𝐸𝐶𝑀 (IV) 

95% CI 

𝑀𝐸𝐶𝑀 (IV) 

95% CI 

1 .011595 .000097 86.2407 0 0.5837 0.5184 0.6826 

2 .007497 .000102 133.391 0 0.3427 0.2605 0.4485 

3 .031770 .000116 31.4759 33.768 0.9595 0.8368 1.1028 

4 .028459 .000078 35.1381 55.553 0.6011 0.5272 0.6795 

5 .031108 .000169 32.1460 13.391 1.6703 1.3957 1.9961 

6 .019860 .000298 50.3535 0 1.1489 1.0633 1.2884 

7 .006302 .000191 158.668 0 0.0894 0.0778 0.1166 

8 .018264 .000125 54.7532 1.7472 0.5778 0.5075 0.6719 

9 .021675 .000113 46.1357 9.8928 0.5318 0.4609 0.6165 

10 .034469 .000111 29.0111 116.03 1.7620 1.3112 2.2276 

11 .015970 .000163 62.6166 0 0.1716 0.1301 0.2227 

12 .007382 .000104 135.467 0 1.3554 1.1889 1.6149 

13 .019441 .000153 51.4363 0.1452 0.6181 0.4618 0.8015 

14 .038659 .000478 25.8669 0.0876 0.1443 0.0482 0.2695 

15 .034491 .000193 28.9929 2.598 0.4484 0.4316 0.4734 

16 .018867 .000153 53.0030 0 0.8342 0.7171 0.9940 

17 .016399 .000141 60.9780 0 0.7811 0.6943 0.9039 

18 .021117 .000518 47.3545 0 0.0802 0.0690 0.1090 

19 .005412 .000127 184.782 0 0.1483 0.1223 0.1914 

20 .014548 .000154 68.7357 0 0.1865 0.1526 0.2318 

21 .025971 .000070 38.5043 83.404 0.8200 0.7000 0.9473 

22 .022089 .000115 45.2712 1.002 0.6353 0.5775 0.7133 

23 .027194 .000156 36.7721 5.1756 1.1688 1.1004 1.2754 

24 .021836 .000128 45.7954 3.4044 0.5999 0.5392 0.6864 

25 .02178 .000267 45.9137 8.3244 0.9546 0.8324 1.1838 

26 .023400 .000131 42.7347 3.1524 0.3422 0.3139 0.3820 

27 .029340 .000067 34.0826 113.00 0.9719 0.8509 1.1050 

28 .027826 .000197 35.9377 47.217 0.6926 0.6592 0.7364 

29 .029670 .000073 33.7047 128.32 1.0878 0.9478 1.2423 

30 .035570 .000283 28.1135 20.006 0.6273 0.6042 0.6723 

31 .027515 .000233 36.3412 1.794 0.3452 0.3297 0.3750 

32 .005390 .000147 185.536 0 0.0602 0.0502 0.0788 

33 .008079 .000232 123.778 0 0.1112 0.1107 0.1238 

Avg. 0.02148   19.644 0.6501 0.5715 0.7543 
Note: Road segment specific estimations. Dependent variable is log of travel time. We also list the critical value, the extent of 

hypercongestion and 𝑀𝐸𝐶𝑀. In the last two columns, we provide the 95 percent confidence interval estimates for 𝑀𝐸𝐶𝑀. 
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Table D2 – Log travel time, IV - instrument public transit share 
Road IV Se(IV) Critical value (𝐷̅) Hyper-conges. 

(min/day) 
𝑀𝐸𝐶𝑀  𝑀𝐸𝐶𝑀 (IV) 

95% CI 

𝑀𝐸𝐶𝑀 (IV) 

95% CI 

1 0.0155 .002283 64.7139 0.5856 0.9129 0.7288 1.1916 

2 0.0054 .001275 186.415 0 0.1929 0.0349 0.3962 

3 0.0247 .002269 40.4601 21.185 0.6870 0.3810 1.0443 

4 0.0261 .001403 38.3722 49.988 0.5641 0.3211 0.8221 

5 0.0237 .002678 42.2182 6.1596 0.8553 0.5140 1.2602 

6 0.0173 .002781 57.6817 0 0.4057 0.0484 0.9880 

7 0.0054 .005816 185.087 0 0.1012 0.0838 0.1420 

8 0.0163 .001306 61.4788 0.4992 0.5589 0.3879 0.7877 

9 0.0182 .001272 55.0537 6.0684 0.4600 0.1900 0.7825 

10 0.0358 .001020 27.9431 129.31 1.8403 1.0694 2.6364 

11 0.0144 .001337 69.6603 0 0.1761 0.0931 0.2782 

12 0.0131 .001400 76.3813 16.392 2.0451 1.1794 3.3939 

13 0.0133 .000800 75.2664 0 0.3561 -0.0443 0.8259 

14 0.0405 .003173 24.6870 0.1752 0.4073 0.1383 0.7576 

15 0.0328 .003182 30.5338 2.4312 0.3778 0.2813 0.5217 

20 0.0028 .005114 352.641 0 0.0325 -0.0113 0.0911 

21 0.0084 .008911 119.616 0 0.4085 0.3660 0.4536 

22 0.0066 .004523 150.767 0 0.1247 0.0347 0.2462 

23 0.0039 .005990 257.685 0 0.0860 -0.0455 0.2909 

24 0.0192 .001826 52.2163 2.724 0.5823 0.3330 0.9379 

25 0.0169 .002092 59.1833 1.494 0.7611 0.2947 1.6359 

26 0.0169 .002457 59.2331 2.1324 0.2496 0.1294 0.4190 

27 0.0271 .001262 36.8364 102.33 0.9280 0.5558 1.3375 

28 0.0000 .042489 25613.7 0 0.0007 -0.0229 0.0316 

29 0.0265 .001261 37.7723 111.46 1.0009 0.5737 1.4725 

30 0.0103 .016611 97.4756 0 0.1555 0.1042 0.2553 

31 0.0065 .003866 154.782 0 0.0755 0.0368 0.1498 

Avg. 0.0166 0.00476  16.775 0.531 0.287 0.857 
Note: Road segment specific estimations. Dependent variable is log of travel time. For the IV estimation, we use public transit 

share as an instrument. We do not report IV estimates for roads where public transit is a weak instrument. We also list the 

critical value, the extent of hypercongestion and 𝑀𝐸𝐶𝑀. In the last two columns, we provide the 95 percent confidence interval 

estimates for 𝑀𝐸𝐶𝑀. 
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Table D3 – Log travel time, IV - instrument hour of week 
Road IV Se(IV) Critical 

value (𝐷̅) 

Hyper-

congestion 

(min/day) 

𝑀𝐸𝐶𝑀 

(IV) 

𝑀𝐸𝐶𝑀 

(IV) 

95% CI 

𝑀𝐸𝐶𝑀 

(IV) 

95% CI 

1 0.0126 0.00079 79.10509 0.252 0.6508 0.5318 0.8054 

2 0.0108 0.0005 92.70183 0 0.4586 0.4029 0.5185 

3 0.0312 0.00081 32.1069 32.232 0.9257 0.8571 1.0008 

4 0.0275 0.0006 36.41183 53.4 0.5847 0.5681 0.6034 

5 0.0299 0.00075 33.41542 11.388 1.3144 1.2185 1.4458 

6 0.0248 0.00186 40.27681 0.42 0.6948 0.5341 0.8708 

7 0.0068 0.00129 147.8345 0 0.1291 0.0783 0.1838 

8 0.0129 0.00063 77.25784 0 0.4125 0.3545 0.4744 

9 0.0199 0.00074 50.37664 7.896 0.5093 0.4641 0.5544 

10 0.0340 0.00044 29.45576 110.892 1.8097 1.7870 1.8455 

11 0.0151 0.00066 66.21012 0 0.1872 0.1681 0.2070 

12 0.0119 0.00087 84.02668 10.956 1.7723 1.3931 2.1704 

13 0.0200 0.00056 50.05761 0.144 0.6256 0.5720 0.6712 

14 0.0450 0.00206 22.20009 0.348 0.4747 0.4142 0.5395 

15 0.0195 0.00188 51.24009 0.588 0.1992 0.1633 0.2436 

16 0.0181 0.00092 55.27551 0 0.8247 0.7042 0.9606 

17 0.0143 0.0009 69.95548 0 0.6630 0.5539 0.7841 

18 0.0163 0.00317 61.41909 0 0.1188 0.0688 0.1763 

19 0.0117 0.00116 85.78853 0 0.3123 0.2375 0.3935 

20 0.0180 0.00101 55.52052 0 0.2581 0.2220 0.2969 

21 0.0260 0.00047 38.42308 83.568 0.8228 0.8056 0.8547 

22 0.0194 0.0009 51.66095 0.252 0.5292 0.4524 0.6108 

23 0.0206 0.00134 48.59289 1.164 0.7388 0.5878 0.9159 

24 0.0187 0.00098 53.60258 2.64 0.5556 0.4646 0.6625 

25 0.0188 0.00146 53.17796 1.92 0.9850 0.6683 1.2534 

26 0.0193 0.00117 51.79839 2.688 0.3024 0.2524 0.3558 

27 0.0279 0.00051 35.79173 106.344 0.9668 0.9211 1.0132 

28 0.0192 0.00243 52.2117 26.82 0.4530 0.4126 0.5397 

29 0.0279 0.00053 35.86225 116.964 1.0731 1.0164 1.1220 

30 0.0214 0.00323 46.76476 5.556 0.3737 0.2639 0.5133 

31 0.0112 0.0015 89.18195 0 0.1434 0.0997 0.1916 

32 0.0051 0.00072 198.1779 0 0.0695 0.0491 0.0910 

33 0.0022 0.00104 451.7093 0 0.0286 0.0023 0.0566 

Average 0.0193 0.00115  17.432 0.6051 0.5239 0.6947 
Note: Road segment specific estimations. Dependent variable is log of travel time. For the IV estimation, we use hour-of-week 

dummies as an instrument. We also list the critical value, the extent of hypercongestion and 𝑀𝐸𝐶𝑀. In the last two columns, 

we provide the 95 percent confidence interval estimates for 𝑀𝐸𝐶𝑀. 
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Table D4 – Log bus travel time, instrument hour of week 
Road OLS Se(OLS) IV se(IV) Bus users Ded. Lane  𝑀𝐸𝐶𝑃𝑇 (OLS) 𝑀𝐸𝐶𝑃𝑇 (IV) 

1 0.020 0.003 0.007 0.010 6.864 No 0.9211 0.270 

2 0.007 0.002 0.001 0.004 8.274 No 0.3068 0.069 

3 0.034 0.001 0.028 0.004 5.722 No 0.4013 0.230 

4 0.038 0.001 0.036 0.003 5.775 No 0.6004 0.524 

5 0.004 0.002 0.009 0.006 10.132 Yes 0.0213 0.052 

6 0.003 0.003 -0.006 0.009 10.080 Yes 0.0539 -0.078 

8 0.018 0.001 0.024 0.003 2.002 No 0.1538 0.165 

9 0.021 0.002 0.027 0.006 2.094 No 0.1288 0.160 

10 0.023 0.002 0.021 0.004 1.924 No 0.3041 0.275 

11 0.012 0.004 0.005 0.010 1.692 No 0.0556 0.025 

12 0.014 0.003 0.031 0.007 2.346 No 0.3324 1.609 

13 0.017 0.004 0.020 0.007 4.192 No 0.1850 0.261 

14 0.125 0.009 0.133 0.021 3.235 No 1.9528 2.651 

15 0.001 0.005 -0.002 0.016 11.709 No 0.0091 -0.015 

16 0.011 0.005 0.004 0.010 5.360 No 0.1922 0.050 

17 0.003 0.007 0.017 0.015 5.261 No 0.0503 0.343 

18 0.014 0.009 0.047 0.027 2.711 No 0.0205 0.117 

19 0.002 0.002 0.003 0.005 2.834 No 0.0033 0.004 

21 0.011 0.001 0.010 0.003 11.969 No 0.3830 0.328 

22 0.009 0.004 0.008 0.012 5.284 No 0.1021 0.074 

23 -0.013 0.003 0.012 0.008 11.080 No -0.3696 0.375 

27 0.000 0.002 0.000 0.003 5.084 No 0.0027 0.002 

29 0.009 0.001 0.011 0.002 3.451 No 0.1306 0.130 

30 0.019 0.005 0.029 0.007 3.684 No 0.1912 0.131 

31 0.013 0.005 0.027 0.015 6.099 No 0.2945 0.467 

32 0.018 0.003 0.019 0.005 9.165 Yes 0.2308 0.269 

33 -0.002 0.004 0.004 0.006 10.466 Yes -0.0545 0.107 

Average 0.016 0.003 0.019 0.008 5.870 / 0.244 0.286 
Note: Road segment specific estimations for all roads. Dependent variable is log of bus travel time. For the IV estimation, we 

use hour-of-week dummies as instruments. We also list the 𝑀𝐸𝐶𝑃𝑇 based on OLS and IV estimates. Roads 7,20,24,25,26 and 

28 are omitted because we do not have traffic data for the months of March 2014 and 2015, hence we cannot estimate the effect 

of traffic density on bus travel time. 

 

Appendix E: Sensitivity of results  

Table E1 - Full Sample 

 Equilibrium Optimum  Approximate optimum 

FULL SAMPLE   φ=0 φ=0.1 φ=0.3 φ=1 φ=0 φ=0.1 φ=0.3 φ=1 

Density (veh/km-lane) 13.55 5.53 9.46 10.87 11.94 5.45 9.32 10.70 11.75 

Flow (veh-km/min-lane) 10.6 4.99 8.40 9.34 9.96 4.92 8.27 9.20 9.81 

Travel time, private veh. (min/km) 1.33 1.18 1.21 1.24 1.27 1.17 1.20 1.23 1.25 

Travel time, bus (min/km) 1.44 1.12 1.24 1.28 1.33 1.10 1.22 1.26 1.30 

Bus users (pass/min-lane) 5.87 5.78 6.04 6.04 6.05 5.81 6.07 6.07 6.08 

Hypercongestion (min/day) 17.43 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

MEC (min/km) 0.88 0.30 0.40 0.48 0.57 0.30 0.40 0.48 0.57 

MEC, motor veh. (min/km) 0.6 0.14 0.21 0.28 0.36 0.14 0.21 0.28 0.36 

MEC, buses (min/km) 0.28 0.20 0.21 0.26 0.29 0.20 0.21 0.26 0.29 

DWL (veh-min/km-lane)  2.24 2.21 2.04 1.63 2.21 2.17 2.00 1.60 

    DWL in hypercongested eq.  64.99 62.87 55.31 51.09 53.29 52.81 47.02 45.47 

    DWL w/o hypercongestion  1.28 1.26 0.98 0.80 1.28 1.26 0.98 0.80 
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Table E2 - Mixed Traffic Roads 

 Equilibrium Optimum  Approximate optimum 

MIXED TRAFFIC   φ=0 φ=0.1 φ=0.3 φ=1 φ=0 φ=0.1 φ=0.3 φ=1 

Density (veh/km-lane) 13.83 5.52 9.59 11.01 12.20 5.44 9.45 10.84 12.01 

Flow (veh-km/min-lane) 10.72 5.00 8.56 9.49 10.21 4.93 8.43 9.35 10.05 

Travel time, private veh. (min/km) 1.35 1.19 1.22 1.25 1.28 1.17 1.20 1.23 1.26 

Travel time, bus (min/km) 1.51 1.17 1.28 1.32 1.37 1.15 1.26 1.30 1.35 

Bus users (pass/min-lane) 5.16 5.57 5.37 5.38 5.38 5.59 5.40 5.41 5.41 

Hypercongestion (min/day) 19.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

MEC (min/km) 0.94 0.30 0.42 0.50 0.59 0.30 0.42 0.50 0.59 

MEC, motor veh. (min/km) 0.63 0.13 0.21 0.29 0.37 0.13 0.21 0.29 0.37 

MEC, buses (min/km) 0.31 0.22 0.22 0.29 0.32 0.22 0.22 0.29 0.32 

DWL (veh-min/km-lane)  2.44 2.28 2.24 1.79 2.41 2.25 2.21 1.77 

    DWL in hypercongested eq.  71.95 68.98 65.30 60.21 59.00 58.63 54.86 53.58 

    DWL w/o hypercongestion  1.31 1.29 1.04 0.83 1.31 1.29 1.04 0.83 

 

 

Table E3 - Roads with Dedicated Lanes 

 Equilibrium Optimum  Approximate optimum 

DEDICATED LANES   φ=0 φ=0.1 φ=0.3 φ=1 φ=0 φ=0.1 φ=0.3 φ=1 

Density (veh/km-lane) 11.57 5.58 8.51 9.90 10.10 5.50 8.39 9.75 9.94 

Flow (veh-km/min-lane) 9.07 4.80 7.28 8.25 8.27 4.73 7.18 8.13 8.14 

Travel time, private veh. (min/km) 1.25 1.11 1.16 1.19 1.21 1.09 1.15 1.18 1.19 

Travel time, bus (min/km) 1.06 1.02 1.04 1.05 1.05 1.01 1.03 1.04 1.04 

Bus users (pass/min-lane) 9.96 9.89 9.87 9.87 9.83 9.93 9.92 9.92 9.88 

Hypercongestion (min) 2.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

MEC (min/km) 0.59 0.26 0.27 0.33 0.39 0.26 0.27 0.33 0.39 

MEC, motor veh. (min/km) 0.50 0.18 0.25 0.25 0.30 0.18 0.25 0.25 0.30 

MEC, buses (min/km) 0.09 0.07 0.08 0.08 0.08 0.07 0.08 0.08 0.08 

DWL (veh-min/km-lane) 
 

1.36 0.97 0.57 0.44 1.34 0.95 0.57 0.43 

    DWL in hypercongested eq.  23.79 16.23 10.36 10.08 19.51 13.79 8.97 8.70 

    DWL w/o hypercongestion  1.24 0.79 0.54 0.52 1.24 0.79 0.54 0.52 
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