
Lahiri, Kajal; Wang, Wuwei

Working Paper

Estimating macroeconomic uncertainty and discord using
info-metrics

CESifo Working Paper, No. 7674

Provided in Cooperation with:
Ifo Institute – Leibniz Institute for Economic Research at the University of Munich

Suggested Citation: Lahiri, Kajal; Wang, Wuwei (2019) : Estimating macroeconomic uncertainty and
discord using info-metrics, CESifo Working Paper, No. 7674, Center for Economic Studies and ifo
Institute (CESifo), Munich

This Version is available at:
https://hdl.handle.net/10419/201900

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/201900
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 

7674 
2019 

May 2019 

 

Estimating macroeconomic 
uncertainty and discord using 
info-metrics 
Kajal Lahiri, Wuwei Wang 



Impressum: 

CESifo Working Papers 
ISSN 2364-1428 (electronic version) 
Publisher and distributor: Munich Society for the Promotion of Economic Research - CESifo 
GmbH 
The international platform of Ludwigs-Maximilians University’s Center for Economic Studies 
and the ifo Institute 
Poschingerstr. 5, 81679 Munich, Germany 
Telephone +49 (0)89 2180-2740, Telefax +49 (0)89 2180-17845, email office@cesifo.de 
Editor: Clemens Fuest 
www.cesifo-group.org/wp 

An electronic version of the paper may be downloaded 
· from the SSRN website:  www.SSRN.com 
· from the RePEc website:  www.RePEc.org 
· from the CESifo website:         www.CESifo-group.org/wp

mailto:office@cesifo.de
http://www.cesifo-group.org/wp
http://www.ssrn.com/
http://www.repec.org/
http://www.cesifo-group.org/wp


CESifo Working Paper No. 7674 
Category 12: Empirical and Theoretical Methods 

 
 
 
Estimating macroeconomic uncertainty and discord 

using info-metrics 
 
 

Abstract 
 
We apply generalized beta and triangular distributions to histograms from the Survey of 
Professional Forecasters (SPF) to estimate forecast uncertainty, shocks and discord using 
information framework, and compare these with moment-based estimates. We find these two 
approaches to produce analogous results, except in cases where the underlying densities deviate 
significantly from normality. Even though the Shannon entropy is more inclusive of different 
facets of a forecast density, we find that with SPF forecasts it is largely driven by the variance of 
the densities. We use Jenson-Shannon Information to measure ex ante “news” or “uncertainty 
shocks” in real time, and find that this ‘news’ is closely related to revisions in forecast means, 
countercyclical, and raises uncertainty. Using standard vector auto-regression analysis, we 
confirm that uncertainty affects the economy negatively. 

JEL-Codes: E370. 

Keywords: density forecasts, uncertainty, disagreement, entropy measures, Jensen-Shannon 
information, Survey of Professional Forecasters. 
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1. Introduction 

For informed decision making in businesses and governments, forecasts as well as 

their uncertainties are equally important. Not surprisingly, policy makers in diverse fields 

are increasingly being interested in the uncertainty surrounding point forecasts. There is a 

rich literature in economics and finance developing models of ex post uncertainty by 

analyzing different functions of forecast errors in vector autoregressive and volatility 

models. However, the decision makers need ex ante uncertainty in real time before 

observing the outcome variable. Density forecasts obtained from surveys of experts are 

particularly suited to produce such information. There have been attempts to compare these 

subjective uncertainties with those generated from estimated time series models.2    

Before the availability of survey density forecasts, variance of point forecasts or 

disagreement was used as a convenient proxy for uncertainty. However, using density 

forecasts from the Surveys of Professional Forecasters (SPF), Zarnowitz and Lambros 

(1987) and Lahiri et al. (1988) distinguished between aggregate forecast uncertainty and 

disagreement. This literature has attracted increasing attention in recent years. 3  Most 

recently, a number of interesting studies on the methodology of using info-metrics in 

economic forecasting have evolved.4 Shoja and Soofi (2017) decompose entropy of the 

consensus density forecast into average uncertainty and disagreement, and use information 

                                                                 
2 See Lahiri and Liu (2005), Clements (2014), and Knuppel (2014). For various problems in generating ex 

   ante forecast uncertainty from time series models, see Fresoli et al. (2015) and Mazzeu (2018). 
3 See, for example, Lahiri and Sheng (2010), Boero, Smith and Wallis (2008, 2013), and Abel et al. (2016).  
4 See Mitchell and Hall (2005), Lahiri and Liu (2006, 2009), Mitchell and Wallis (2011), Rich and Tracy 

(2010), Kenny et al. (2015) and references therein. 
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divergence as a proxy for disagreement. In this chapter, we utilize the info-metrics 

approach to estimate uncertainty, and decompose it into components that include a 

disagreement term. We compare the conventional moment-based measures with info-

metrics based measures, including entropy and information divergence.  

Our approach involves fitting continuous distributions to the histogram data. Many 

previous studies have utilized raw histograms, assuming that the probability mass is located 

on the midpoint of the bin. This approach essentially treats each forecast as a discrete 

distribution. For various reasons, the alternative of fitting continuous distributions to the 

histograms has become common in recent years. For output and inflation forecasts, it is 

reasonable to assume that the true underlying distributions are indeed continuous, even 

though surveys are recorded in the form of histograms (i.e. probabilities attached to the 

bins) for convenience. However, changing from a discrete to a continuous system may 

involve trade-offs, especially when the variable of interest is uncertainty, cf. Golan (1991). 

Furthermore, there are a certain number of observations in the survey where forecasters 

attached probabilities to only a few bins. In these cases, assumption on distribution is more 

tenuous, and may have indeterminate impact at the individual level. These all remain 

challenges, though some of the issues do not affect the stylized facts after averaging over 

individuals. However, given that the target variables are continuous, we choose to adopt 

the method of fitting continuous distributions to the histograms. Following Giordani and 

Soderlind (2003), some researchers have assumed normal distributions or that the 

probability mass in a bin is uniformly distributed. The later assumption is inconsistent with 

distributions that are globally unimodal. Since many of the histograms are not symmetric 
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and exhibit widely different shapes, we follow Engelberg et al. (2006) and use generalized 

beta as our preferred choice.  

We are the first to apply continuous distributions to histograms while using info-

metrics to estimate uncertainty, after painstakingly approximating all the individual 

histograms that have gone through occasional changes in survey bin sizes and number of 

bins. We further adjust for different forecast horizons to estimate a quarterly time series of 

aggregate uncertainty. The estimated information measures are then utilized successfully 

in several macroeconomic applications, including vector auto-regression (VAR) models to 

estimate the effect of uncertainty on the macro economy. We use Jenson-Shannon 

Information to measure ex ante “news” or “uncertainty shocks” and study its effect on 

uncertainty in real time. 

The chapter is organized as follows: in Section 2 we briefly introduce the dataset and 

the key features of the recorded density forecasts. In Section 3 we compare different 

measures of uncertainty by analyzing variances and confirm previous findings that 

disagreement regarding point forecast should not be used as a sole proxy for uncertainty. 

In Section 4 we employ info-metrics to estimate uncertainty and study the difference 

between two approaches – the moment-based and the entropy approach. In Section 5 we 

correct for horizons to get a time series of uncertainty and compare our measures to other 

popular uncertainty indices. In Section 6 we apply Jensen-Shannon information divergence 

to individual densities to estimate “uncertainty shocks” or “news” from successive fixed 

target forecasts, and study the impact of these on uncertainty. In Section 7 we evaluate the 

effects of uncertainty on macroeconomic variables using VAR. Finally, Section 8 

summarizes the main conclusions of the study.  
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2. The data 

The U.S. Survey of Professional Forecasters (SPF), spearheaded by Victor Zarnowitz5 

in the late 1960’s, is a unique dataset that provides probability forecasts from a changing 

panel of professional forecasters. The forecasters are mostly from financial institutions, 

universities, research institutions, consulting firms, forecasting firms, and manufacturing. 

SPF was formerly conducted jointly by the American Statistical Association (ASA) and 

the National Bureau of Economic Research (NBER). It started in the fourth quarter of 1968 

and was taken over by the Federal Reserve Bank of Philadelphia from the second quarter 

of 1990. Similar siblings of the survey, though considerably much younger, include the 

Bank of England Survey of External Forecasters, and the European Central Bank's Survey 

of Professional Forecasters. The timing of the survey has been planned carefully such that 

the forecasters will have the initial estimate of selected quarterly macroeconomic variables 

at the time of forecasting and at the same time issue forecasts in a timely manner. For 

instance, while providing forecasts in the middle of quarter 3, a forecaster has the 

information of the first estimate of the real GDP for quarter 2. 

The survey asks professional forecasters about their predictions of a number of macro 

variables, including real GDP, nominal GDP, GDP deflator, and unemployment rate. 

Forecasters provide their point forecasts for these variables for the current year and the 

next year, and for the current quarter and next four quarters. Besides the point forecasts, 

they also provide density forecasts for output and price level growth for the current and 

next year. The definition of the ‘output’ variable has changed in the survey several times. 

                                                                 
5 See Zarnowitz (2008) for a remarkable autobiography. 
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It was defined as nominal GNP before 1981 Q3, and as real GNP from 1981 Q3 to 1991 

Q4. After 1991 Q4, it is real GDP. The definition of the inflation variable ‘Price of output’ 

or GDP price deflator (PGDP) has changed several times as well. From 1968 Q4 to 1991 

Q4, it stood for the implicit GNP deflator. From 1992 Q1 to 1995 Q4, it was implicit GDP 

deflator. From 1996 Q1 onward, it stands for GDP price index. The density forecasts for 

these two variables (output and price of GDP) are fixed-target probability forecasts of their 

annual growth rates in percentages for predefined intervals (bins) set by the survey. In this 

chapter, the numerical values of closed “bins” or “intervals” like “+1.0 to +1.9 percent” 

will be defined as [1, 2), and an open interval like “decline more than 2%” will be defined 

as an open bin (-∞, -2). We have utilized all density forecasts ever recorded in SPF during 

1968Q4 to 2017Q3.6  

 

3. Aggregate uncertainty, aggregate variance and their components 

In the absence of density forecasts, the early literature used variance of the point 

forecasts or disagreement as proxy for uncertainty. In this section, we calculate aggregate 

variance (i.e., the variance of the consensus distribution), average of the individual 

variances and forecaster discord (i.e., disagreement) as the variance of the mean forecasts 

to highlight the decomposition and their trends over last few decades. Unlike many 

previous studies where the recorded histograms are treated as discrete data or approximated 

                                                                 
6 Initially we had a total 24,011 forecast histograms, but our final sample is 23, 867 after dropping a few 

forecasts due to bi-modality, confusion regarding target years and horizons, etc.   

The Fed is unsure about the correct horizon of the density forecasts for 1985Q1 and 1986Q1. In order to 

salvage these two rounds, we compared forecast uncertainty measures of each respondent from each survey 

to that of the same person in adjacent quarters, and concluded that the 1985Q1 density forecasts were for 

horizon 0 (i.e., current quarter) and the 1986Q1 density forecasts were for horizon 4. That is, both were 

current year forecasts. This enabled us to derive a continuous series for the variables of interest from the 

beginning of the survey until 2017Q3. 
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by normal distributions, we fit generalized beta distributions or triangular distributions to 

the density forecast histograms following Engelberg, Manski and Williams (2009). For 

density forecasts with more than two intervals, we fit generalized beta distributions. When 

the forecaster attaches probabilities to only one or two bins, we assume that the subjective 

distribution has the shape of an isosceles triangle. There are many different ways to 

generalize beta distribution to generate other distributions. 7  The generalized beta 

distribution we choose has four parameters and its probability density function is defined 

as follows: 

    

f (x;α ,β ,l,r) = 1

Β(α ,β )(r − l)α+β−1
(x − l)α −1(r − x)β−1 , l ≤ x ≤ r , α > 0, β > 0           (1)  

where Β is the beta function. We further restrict α and β to be greater than 1 to maintain 

uni-modality of the fitted individual density distribution. 

The two parameters α and β define the shape of the distribution, and the other two 

parameters l and r define the support. The generalized beta are the preferred forms of 

distributions for the recorded histograms for several reasons. First, when the histograms 

are treated as discrete distributions with the usual assumption that the probability mass 

within an interval is concentrated at the mid-point of each interval, it does not reflect the 

expected continuity and uni-modality of the true underlying distributions. Second, 

compared to the normal distribution, the generalized beta distribution is more flexible to 

accommodate different shapes in the histograms. The histograms often display excess 

skewness as well as different degrees of kurtosis. Finally, generalized beta distributions are 

truncated at both sides, while the normal distribution is defined over an open interval (-∞, 

                                                                 
7 See, for instance, Gordy (1998) and Alexander et al. (2012).  
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+∞), which is not true with most of the histograms and counterintuitive to the fact that the 

target variables have historical bounds.  

We have adopted the triangular distributions when only 1 bin or 2 bins have positive 

probability masses (nearly 8% of our histograms). Normal distributions will shrink to a 

degenerate distribution in these cases. While the use of triangular distribution yields a 

unique solution for each observation, we should be cognizant of possible limitations of the 

assumption. The triangular distribution may exaggerate the spread and uncertainty 

imbedded in the distribution. In the fitting process we restrict the triangular distribution to 

be isosceles and allow the support to cover the whole bin which has a probability not less 

than 50%. There are triangular distributions we could fit with shorter supports and smaller 

variances if we change the restrictions and assumptions. In fact, Liu and Sheng (2018) find 

that the triangular distribution tends to overestimate the associated uncertainty. However, 

to avoid multiple solutions for densities with only one or two bins and in the absence of 

additional information, we choose isosceles triangular distributions. 

Fitting continuous distributions to histogram forecasts 

Suppose forecaster i (i is forecaster ID number) makes a point forecast yi,t,h for the 

variable yt with a horizon of h quarters for the target year t and a probability forecast pi (for 

convenience subscripts t and h are omitted for now), where pi is a k×1 vector of 

probabilities (in percentage points) corresponding to k pre-defined intervals such that 

p
i
( j)

j=1

k

å = 100 . The target variable y is annual growth rates of output or price level in 

percentage points. We fit a continuous distribution fi to the histogram of pi. The fitting 

process is to minimize the sum of squared differences between the cumulative probabilities 

at the nodes. As mentioned above, the choice between generalized beta and triangular 



 

9

distribution depends on whether there are more than two bins with positive probabilities. 

Histograms fitted to generalized beta are also divided into four different cases depending 

on whether the open bin on either end of the support has positive probabilities. If all 

probabilities are attached to closed bins then for the generalized beta distribution whose 

density is f(x, α, β, l, r), l and r are set to be the lower bound and upper bound of the bins 

which have positive probabilities. Then in the fitting process only the shape parameter α 

and β need to be solved in the minimization problem. If the left (right) open bin has positive 

probabilities, then l (r) needs to be solved in the minimization problem. 

Uncertainty decomposition – decomposing aggregate variance 

The mean and variance of fi are μi and respectively (subscripts t and h are omitted 

for convenience). For individual i,  is the forecast uncertainty. If we take the average of 

over all forecasters, we get the average uncertainty . If we take the average of all 

the means we get the mean consensus forecast µ
i
. The variance of the means μi (N is the 

number of forecasters in that quarter), σ µ
2 = 1

N
(µ

i
− µ

i
)2

i=1

N

å , is the disagreement about 

means. We also pool all individual distributions into a consensus distribution, and obtain 

the aggregate variance as the variance of that consensus (aggregate) distribution. Lahiri, 

Teigland and Zaporowsky (1988) show the following identity: 

       Aggregate Variance = disagreement in means + .                                              (2) 

σ
i

2

σ
i

2

σ
i

2 σ
i

2

σ
i

2
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Boero, Smith and Wallis (2013) have corroborated the above identity by characterizing the 

aggregate density as a finite mixture. 8  Multiplying both sides by N, we get another 

representation of (2) in terms of total variation: 

  f
i
(x)(x − µ

i
)2 dxò

i=1

N

å = (µ
i
− µ

i
)2

i=1

N

å + σ
i

2

i=1

N

å                                                          (3) 

The left hand side of (3) is the total variation, which is the sum of the variation over 

bins across all forecasters from the consensus mean. On the right hand side we have the 

sum of squares of means deviations and sum of individual variances, which is N times of 

disagreement and average uncertainty respectively. Obviously, equations (2) and (3) are 

equivalent, and show that the variance of the aggregate distribution is the sum of the 

forecaster discord regarding their means and average of the individual variances. 

Therefore, disagreement is only one component of the aggregate uncertainty and may not 

be a good proxy for uncertainty if the average variance turns out to be the dominant 

component during a period and varies over time, cf. Lahiri and Sheng (2010). We now 

proceed to calculate these components from SPF density forecasts and look at their 

variations and relative importance. 

Estimation of variance: 

To compute the aggregate variance, we could follow two approaches. In approach 1, 

we can get the consensus histogram pc= first, then fit a generalized beta distribution 

 to the consensus histogram, and obtain the variance of  denoted by . In 

approach 2, we utilize the individual generalized beta and triangular distributions that we 

                                                                 
8 Interestingly, the mixture model formulation and this decomposition is well known in the Bayesian 

forecast combination literature for some time, see Draper (1995).  

1

N
p

i

i=1

N

å

f
p

c

f
p

c

σ
f

pc

2
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have fitted to the individual histograms. We take the average of them to get the consensus 

distribution , and compute the variance of fc, denoted by . The order of 

completing these two procedures will yield different results. Since the individual 

distributions are not linear, it is obvious that . Whereas  is a uni-modal 

distribution, fc is a mixture distribution as the average of many generalized beta and 

triangular distributions, and may have multiple modes. Moreover, in approach 2, identity 

(2) strictly holds while in approach 1 it does not. Indeed, in approach 1 for several quarters 

in our sample period the aggregate variance was smaller than its disagreement component. 

For this reason, we adopt approach 2 in computing the aggregate variance in the remaining 

sections. 

Correcting for bin size for variance decomposition  

Before reporting our variance decomposition results, we have to deal with a 

complication in the survey design that between 1981Q3 and 1991Q4 the predefined 

intervals had length of 2.0 percentage points rather than 1.0 percentage point as in other 

quarters (or 0.5 percentage points for inflation forecasts in more recent quarters).  

First, we show that bin-length affects the computed levels of uncertainty, especially 

when uncertainty is low. Smaller number of bins and longer bin sizes reduce accuracy and 

information in the forecasts, and can in principle inflate calculated variances, cf. Shoja and 

Soofi (2017). For periods before 1981 and after 1991, bin-length was 1.0 for GDP growth 

and inflation. For inflation, the bin-length has changed further to 0.5 after 2014Q1. For 

periods when bin size is 1.0, we combine probabilities in adjacent bins from the original 

f
c

= 1

N
f

i

i=1

N

å
  
σ

f
c

2

f
p

c

≠ f
c

f
p

c
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survey histograms to create new histograms with 2-point bins, re-fit continuous 

distributions to them, and then re-calculate all relevant measures, (cf. Rich and Tracy 2010). 

Figure 1 uses a scatter plot of observations for all quarters to show that, for the same 

density forecast, 2-point bin produces higher aggregate (upper panel) and average (lower 

panel) variances compared to 1-point bins. This over-estimation may partly be due to the 

fact that in the process of conversion from 1-point bin to 2-point bin histograms, we will 

have more number of cases with only 1 or 2 bin of positive reported probabilities that would 

necessitate fitting triangular distributions, which may overstate the variances (see Liu and 

Sheng, 2018). However, by comparing variances based on triangular distributions after 

converting all histograms to 2-bin histograms, we found that this concern is not an issue in 

our calculations.  

In order to adjust the uncertainty measures during 1981-91 with a wider bin, we run 

OLS regressions to approximately convert the uncertainty measures recorded estimated 

with 2% bins to the same we would have obtained had the bins been 1%, like the rest of 

the sample. We also correct for bin-size for 2014Q1-2017Q3 inflation forecasts by 

combining adjacent 0.5% bins into 1% bins and re-calculate uncertainty measures from the 

new histograms. Thus, our estimated uncertainty series will have an underlying bin size of 

1% point throughout the sample.  

We use two regressions to correct average variances for bin-length. In these 

regressions, dependent variable is the uncertainty measures computed using 1-point bin 

settings (y), and independent variable is the uncertainty measures computed using 2-point 

bin settings (x). We regress y on x for the output forecast sample {post-1991Q4} and 

inflation forecast sample {pre-1981Q3 and 1992Q1-2013Q4} respectively, and use these 
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coefficients to calculate ŷ from x for samples in the period of {1981Q3 to 1991Q4}. In this 

way, estimates from surveys when bin-length is 2 points could be adjusted to their 1-point-

bin-length equivalents. The regression results are presented in Table 1. 

With the above regressions, average variances in most quarters during 1981Q3 and 

1991Q4 are adjusted a little lower by around 0.1 (range - 0.09 to 0.13). Since the mapping 

coefficients were very similar with average variance, we adjusted the aggregate variances 

by the same magnitude that left the disagreement measures unchanged. During 1981Q3- 

1991Q4, uncertainty measures in most quarters were adjusted a bit lower, but compared to 

the era after, the values are still high, and are not attributed to the larger bin size. 

Variance decomposition results 

The time series of aggregate variance, disagreement and average individual variance 

for forecast horizons from 1 to 8 quarters are presented in Figures 2A and 2B for output 

and inflation forecasts, respectively. The sixteen graphs in Figures 2A and 2B show how 

the aggregate variance and its two components evolve over time by forecast horizon.  

We summarize the main results as follows: 

1) For the period between 1981Q3 and 1991Q4 output growth uncertainty as well as 

inflation forecast uncertainty were exceptionally high. This elevated level of historical 

uncertainty cannot be explained by the size of the bin being 2.0 rather than 1.0 percentage 

point.  

3) The recent two decades have witnessed persistently low levels of uncertainty and 

disagreement for both output and inflation forecasts. Forecaster discord tends to soar 

quickly and can exceed uncertainty component during recessions and structural breaks. It 

can be argued that during these periods, forecasters facing conflicting news, interpret them 
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differentially and generate higher disagreement. We also note that output uncertainty and 

disagreement are significantly higher than those of inflation because the former is more 

difficult to predict, cf. Lahiri and Sheng (2010). 

4) When we look at the two components of aggregate variance, we find that before 

1981 disagreement accounted for most of the aggregate uncertainty, while after 1981, it 

plays a less prominent role. Before 1981, most spikes in aggregate variance were due to 

sharp increases in disagreement, while between 1981 and 1991, most spikes in aggregate 

variance are a result of higher average variances.   

5) Average variance is much less volatile than disagreement over the full sample, and 

picks up only a little during the 1980s. Again, as we showed before, this is not an artifact 

due to the length of interval being 2.0% rather than 1.0% during 1981-1991.  

6) Uncertainty is higher when forecast horizon is longer. Generally, the average values 

of all three series tend to decrease as forecast horizon shortens, but over horizons 8 to 6 

uncertainly does not decline much. The decline, however, is dramatic as the horizon falls 

from 5 to 1. We expected this since as more information (‘news’) comes in related directly 

to the current year, forecasters become increasingly more certain of current year’s outturn.9   

Noting the different trends of the three series, we can conclude that disagreement is 

not a good proxy for uncertainty, especially since the early 1990s. Furthermore, the 

variance of the point forecasts as a measure of uncertainty has another limitation. Lahiri 

and Liu (2009), Engelberg et al. (2009), and Clements (2012) find that point forecasts can 

deviate from the means/medians of density forecasts, and that forecasters tend to provide 

                                                                 
9 Note that for some quarters before 1981Q3 we do not have data for 1-quarter and longer horizon forecasts 

(6 ~ 8 quarters) -- as a result we cannot see the potentially high spikes in these volatile quarters, particularly 

for the longer horizon graphs. 
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more favorable point forecasts than their corresponding density central tendencies. Elliot 

et al. (2005) attribute this to asymmetry in forecaster loss functions. Thus, disagreement in 

point forecasts may even be a worse proxy than disagreement in density means as a 

measure of uncertainty.  

 

4. Uncertainty and information measures 

Recently info-metrics has been incorporated in forecast analysis.10 Soofi and Retzer 

(2002) present a number of different information measures and estimation methodologies. 

Rich and Tracy (2010) calculate entropy of forecast densities and show uncertainty should 

not be proxied by disagreement. Shoja and Soofi (2017) show that entropy of the consensus 

distribution can be decomposed into average entropy and disagreement in terms of 

information divergence, and the decomposition of the aggregate variance could be 

incorporated in a Maximum Entropy model based on the first two moments. In this section, 

we build on their contribution, and compute entropies and information measures based on 

fitted generalized beta and triangular distributions that we estimated in the previous section. 

We decompose the uncertainty in the info-metrics framework, but unlike Shoja and Soofi 

(2017), use fitted continuous distributions. In info-metrics, entropy reflects all information 

contained in a distribution, independent of its shape. The Shannon Entropy is defined as 

  
H ( f ) = − f ( y) log( f ( y))dyò .                                                                                   (4) 

It measures how close a distribution is to a uniform distribution on the same support. 

The higher the entropy, the less information the distribution contains, and hence the higher 

the level of uncertainty. The entropy is akin to the variance of the distribution, but embodies 

                                                                 
10  Golan (2018), especially chapter 4, contains the necessary background literature. 
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more characteristics of the distribution. Different distributions may have the same variance, 

but their shapes may be different and thus have different entropies. López-Pérez (2015) 

shows that entropy satisfies several properties as a “coherent risk measure” whereas 

moment based measures such as variance does not. Entropy is superior to variance, 

especially in cases when the underlying distribution is not unimodal and potentially 

discontinuous. 

The divergence between two distributions is related to the entropy. A popular 

divergence measure is the Kullback-Leibler information measure (KL) or Kullback-Leibler 

divergence (Kullback and Leibler 1951). For two distributions whose pdf are f(x) and g(x), 

the KL divergence is defined as 

 .                                                                       (5) 

The KL information measure is valid only when f(x) is absolutely continuous with 

respect to g(x). This has some limitations while working with beta shaped distributions. 

Besides, the KL information measure as it is used widely is not symmetric to the order of 

the two component density distributions, i.e. KL(f(x),g(x)) ≠ KL(g(x),f(x)), if certain 

conditions are not met.11 

We adopt another information measure – the Jensen-Shannon divergence (JS). Shoja 

and Soofi (2017) adopts the JS divergence for mixture models as a measure of 

disagreement as well as the expected uncertainty reduction in info-metrics. For two 

distributions f(x) and g(x), the JS divergence is defined as 

    ,                              (6) 

                                                                 
11 The original KL paper introduced a symmetric function also.  

KL( f (x),g(x)) = f (x) log
f (x)

g(x)
dxò

JS( f (x),g(x)) = 1

2
( f (x) log

f (x)

m(x)
dxò + g(x) log

g(x)

m(x)
dxò )
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where m(x)=½×(f(x)+g(x)). The JS information measure is symmetric to the order of the 

two component density distributions and is suitable for cases when the densities f(x) and 

g(x) are defined over different intervals. The JS divergence has been extensively studied 

by statisticians since the 1990s (see Lin 1991 and Minka 1998). 

The information measure can be viewed as a measure of disagreement between 

forecasters, but contains more information than ‘disagreement in means’. It captures the 

differences in all aspects of the distributions rather than the difference in the means only. 

Following Shoja and Soofi (2017), we develop a parallel analysis between variance 

decomposition and entropy decomposition. 

Entropy of aggregate distribution=Average individual entropy+Information measure   (7) 

Entropy decomposition: 

We first obtain an estimate of the entropy of the consensus or aggregate distribution 

in two steps similar to approach 2 in Section 3. We utilize the individual generalized beta 

and triangular distributions that we have fitted to the individual histograms. We take the 

average of them to get the consensus distribution , and compute the entropy 

of fc  denoted by H(fc ). The first term of right hand side of equation (7), ‘average individual 

entropy’ is obtained by taking the average of entropies of fi across forecasters.  

The third term in equation (7), the ‘information measure’, captures disagreement 

among fi in a more holistic manner. With N forecasters, we can compute the JS information 

measure for  pairs of distributions, but this approach is computationally 

inconvenient and unwieldy. Rather, we use the generalized Jensen-Shannon information 

measure, which is defined for more than two distributions as: 

f
c

= 1

N
f

i

i=1

N

å

  

N (N −1)

2
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(8) 

where H(.) is the Shannon entropy. This form of JS information measure is closely related 

to Kullback-Leibler information measure: 

                                                                             

(9) 

We follow equation (8) and take the difference between H(fc) and average entropy 

 to get the information measure.  

Correcting for bin-size across surveys 

Similar to section 3 where the variance approach is used, we examine if the heightened 

entropy during 1981- 1991 can be attributable to the longer bin length of 2% in this period? 

To see the effect of this longer bin length on entropy, we re-calculated the uncertainty of 

output and inflation forecasts in periods when bin length is 1% assuming they all had a 

two-point bin length as well (in a similar way as with variances in section 3). We combine 

probabilities in adjacent bins for the original survey histograms to create a new histograms 

with 2-point bins, re-fit a continuous distribution to each of them, and then re-calculate all 

relevant measures.  

In Figure 3, we plot the aggregate entropy with 1-point bin length against the same 

recalculated with 2-points bin-length for 2-quarter-ahead forecasts for the sake of 

illustration. Since we suspect the effects of bin size change is different for different levels 

of uncertainty, and uncertainty was high in the 1970s, we include pre-1981Q3 output 

forecasts as well in this figure even though the output variable was defined as nominal 

GNP. Uncertainty, assuming 2-point bin length, is uniformly higher than that using a 1-
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point after 1991. However, in the 1970s, the use of 2-point bin length does not cause the 

uncertainty to be much different. These results are very similar for both GDP growth and 

inflation. Similar to Figure 1, a plot of uncertainty calculated from the two settings 

indicates that when uncertainty is low, the structure of bins (bin length) will have a larger 

effect on the outcome, and will cause the entropy measure to be higher. An explanation is 

that when entropy is high, the densities span over many intervals and after a change of the 

bin length from 1 point to 2 points, there are still enough number of bins with positive 

probabilities to provide adequate information to approximate the distribution well. 

However if entropy is low, after the change, the number of bins may shrink to 1 or 2, which 

may alter the choice of the fitted continuous distribution and the estimate of entropy. 

Similar to what we did in last section, we regressed average entropy measures 

calculated from the 1-point bin length (y) on entropy measures re-calculated using 2-point 

bin-length (x) for the sample that has 1-point bin size. We then use the coefficients to 

calculate ŷ using x for sample in the period 1981Q3 - 1991Q4, and in this way our estimates 

from surveys with 2-points bin-length are adjusted to their 1-point bin-length equivalents. 

We also correct for bin-size for 2014Q1-2017Q3 inflation forecasts by combining adjacent 

0.5% bins into 1% bins and re-calculate uncertainty measures from the new histograms. 

We presented these regression results in Table 2.  After the correction for bin length for 

average entropies, we adjust the aggregate entropy of each quarter by the same values, thus 

leaving information divergence unchanged.  

In Figures 4A (output forecasts) and 4B (inflation forecasts), the aggregate entropy, 

average entropy, and the information measures are displayed by forecast horizon. In these 

graphs, aggregate entropy is H(fc), average entropy is , and information 
1

N
H( f

i
)

i=1

N

å
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measure is obtained from equation (8). During 1981 - 1991, both aggregate entropy and 

average entropy are now smaller in magnitudes than those without any adjustment for bin 

length, and are not as high as the in the 1970s. 

Findings from entropy decomposition:  

Figure 5 suggests a highly significant linear relationship between individual entropies 

and the logarithm of the variances for majority of the observations. It is not surprising in 

view of the well-known result that for normally distributed densities with variances σ2, 

    ,                                        (10) 

cf. Ebrahimi et al. (1999).  However, many of the observations in Figure 5 are located 

below the diagonal line as well. We checked the properties of these distributions and found 

that they are significantly more skewed and longer horizon forecasts than those on the 

diagonal. We also regressed the entropies on the first four moments from the same 

individual densities and obtained the following regression (standard errors in parentheses, 

subscripts i, t, h are ignored): 

H = 1.36 + 0.0003 µ  + 0.494 log (σ2) + 0.014 Skewness- 0.038 Excess Kurtosis; R2=.995  

    (.1293)   (.0001)       (.0004)              (.0019)                (.0015) 

                                                                                                                               (11)  

                           

The significance of the skewness and excess kurtosis in the above regression suggests 

non-normality of some of the forecast distributions, even though the total marginal 

contribution of these two factors is only 3%. Ebrahimi et al. (1999) used the Legendre 

series expansion to reveal that entropy may be related to high-order moments of a 

distribution, which unlike the variance, could offer a much closer characterization of the 

density distribution. In the above regression, other parameter estimates are consistent with 

  
H =

1

2
log(2πeσ 2

) =
1

2
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2
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our expectations, i.e., and the intercept and the coefficient of log (σ2) are close to 1.42 and 

0.5 respectively.  

We can now summarize the main characteristic features of the calculated entropies of 

the consensus distributions, average entropies and information measures for GDP growth 

(1981-2017) and inflation (1968-2017) for the eight horizons separately.  

1) Output and inflation forecasts have similar cyclical variations in uncertainty across 

all forecast horizons over the sample. Pre-1981Q3 period for inflation is characterized by 

the high overall uncertainty (high aggregate entropy), and high disagreement (high 

information measure). The 1981Q3-1991Q4 period is characterized by a big contribution 

of average entropy to the aggregate entropy. The post-1992 era sees smaller aggregate 

entropy.  

2) As horizon decreases, uncertainty falls, but the quarterly declines from horizon 8 to 

horizon 5 is quite small. Only from horizon 4 to 1, that uncertainty declines sharply. It 

means that as the quarterly values of the target variable in the current year get announced, 

part of the target variable becomes known, and hence the uncertainty with the remaining 

part of the target variable becomes less. It does not suggest that forecasters are getting 

better and more efficient over the quarters. Even though we see new information reducing 

uncertainty consistently in all eight rounds of forecasting, news coming in the current year 

does not reduce uncertainty very much for next year forecasts. This is true for both output 

and inflation.12   

3) Over all, entropy and information measure in Figures 4A & 4B are similar to 

aggregate variance and disagreement in Figures 2A & 2B. By comparing these figures 

                                                                 
12 Clements (2014) and Knüppel (2014) find that the SPF ex ante survey uncertainties underestimate the ex 

post RMSE-based uncertainty for the current year forecasts, but overestimate for next year forecasts.   
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more closely, we find that from longer to shorter horizons, and from 1970s to the 2000s, 

uncertainty as measured by variance falls more precipitously than those based on entropy. 

The highly volatile disagreement in the moments-based measure are much muted in the 

information measure during the 1970’s, primarily because the later reflects more than just 

disagreement in means.  As a result, the entropy measures are more stable and less volatile 

than variance measures. The decline in trend uncertainty using entropy is not as significant 

and sustained as the variance-based measures. We also note that disagreement in means 

contributed more than 80% of the aggregate uncertainty in certain quarters, but 

disagreement in distributions (information measure) never contributed more than 50% of 

the aggregate entropy. Thus, the relative importance of disagreement towards aggregate 

uncertainty is more limited with entropy measures compared to variance. These findings 

are very noteworthy regarding the use of info-metrics in measuring uncertainty and 

forecaster discord.  

Entropy based on continuous distributions vs. discrete distributions 

We conclude Section 4 by pointing out that the calculation of entropy using fitted 

continuous distributions rather than discrete distributions may produce quite different 

results with or without the adjustment for the unequal number of bins (normalized entropy 

index) as used by Shoja and Soofi (2017) for discrete distributions. For each calculated 

entropy, the upper panel in Figure 6 reports two entropy values for output forecasts using 

discrete distributions – one without the division by the log of the number of bins (denoted 

by red *) and the other with the number of bins adjustment (blue •), against the entropy 

calculated from fitted continuous distributions. The latter are adjusted individually for bin 

sizes following the logic in the previous section. The lower panel of Figure 6 reports the 



 

23

same scattered diagram for inflation forecasts. For a vast majority of distributions in the 

upper panel, the red *’s are close to the 45ᵒ line, indicating entropies from discrete 

distributions match well with the estimated entropies based on continuous distributions. 

However, there is a group of red *’s that run parallel but significantly below the diagonal 

line. We identified the latter group of observations as those coming from histograms 

between 1981Q3 and 1991Q4 (when survey has 6 bins and bin size 2%). Clearly, for these 

histograms, entropy for discrete distributions is lower than that from a continuous fit. With 

the correction for the number of bins, the blue •’s are not separated into two blocks any 

more, meaning the correction is successful. The slope of the block of blue •’s is smaller 

than one – this is mostly due to the fact that the correction multiplier is greater than 1.  

In the lower panel of Figure 6 (inflation), there are three clusters of red *’s. The group 

of *’s above the 45° diagonal are from the 2014Q1-2017Q3 period (when bin size is 0.5%), 

the group below the 45° diagonal are from the 1981Q3-1991Q4 period (when bin size is 

2%), and the group close to the diagonal are from 1968Q4 - 1981Q2 and 1992Q1-2013Q4 

(when the bin size is 1.0%). After applying the normalized entropy correction as used by 

Shoja and Soofi (2017), the group below and on the 45° line merge into the bulk of blue 

•’s; however, the group of *’s for 2014Q1-2017Q3 still form a separate group. The 

correction of dividing by ln (number of bins) does not match the entropy values from 

continuous distributions. This is because the calculations based on discrete distributions 

cannot adjust for the bin size as two discrete distributions that have the same height but 

two different bin widths will have exactly the same entropy. We present such an example 

in Figure 7. It is only coincidental that the normalized entropy successfully corrects the 

observations during 1981Q3-1991Q4 because a smaller number of bins was accompanied 
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by a larger bin size in this period. The number of bins during 2014Q1-2017Q3 is 10 and is 

similar to that in the majority of the histograms, but the bin size in the last sample period 

is 0.5%. As a result, the correction does not take into account this smaller bin size and fails 

to adjust these entropies at par with others. Thus, even after correcting for the number of 

bins, discrete entropies are not directly comparable when two histograms have different 

bin sizes. It is obvious that a larger bin size, ceteris paribus, makes the entropy based on 

discrete distributions smaller than it should be. 

To be consistent with 1981-1991, Rich and Tracy (2010) converted the bin lengths in 

all other sub-periods to 2.0%, thereby inflating the entropy. For inflation forecasts, 

substantial information will be lost if the data since 2014Q1 are adjusted into 2%-bin-size 

equivalents from 0.5% bin size as it would require combining 4 bins into one. Another 

disadvantage of the discrete method is that, the estimates are very sensitive to the number 

of forecasters who attach a probability mass to only one bin. As shown in Figure 5 of Shoja 

and Soofi (2017), such sensitivity creates abrupt spikes in disagreement. 

 

5. Time series of uncertainty measures 

After obtaining various uncertainty measures and correcting for bin length for different 

horizons, we adjust these values for horizons to obtain a single time series of uncertainty. 

The mean value of uncertainty measures for each horizon is subtracted and then the average 

of horizon 4 is added to make all observations horizon 4-equivalent. This way we can have 

a complete time profile of the aggregate macroeconomic uncertainty in the last few decades. 

We have displayed horizon-corrected uncertainty measures for output and inflation 
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forecasts in Figure 8, where we report quarterly average uncertainty as the overall 

uncertainty measure. 

Based on both entropy and variance, output uncertainty fell steadily from the peak in 

1980s to a trough around 1995, but this decline is more dramatic with variance measure. 

The fall of uncertainty in the post-1990 era seems to be permanent, and is consistent with 

the macro-economic uncertainty series generated by a factor stochastic volatility model by 

Jo and Sekkel (2017).    

Uncertainty increased during the 2008 financial crisis, and peaked at the end of 2008, 

which is coincident with the dramatic events of that quarter - Lehman Brother’s bankruptcy, 

and U.S. government’s bailout. A concerning trend now is that uncertainty of output 

forecasts based on entropy remains somewhat elevated during last two years, suggesting 

risk build up in the economy. 

For inflation forecasts, uncertainty remained high from 1970s until early 1990s. Then 

it went into a downward trend. Similar to the output forecast uncertainty, the fall of 

inflation uncertainty in the 1990s seems to be permanent, and the new peak in the 2008 

financial crisis is quite low compared to 1970/80 levels. Unlike output forecasts, inflation 

uncertainty has taken a slow but steady downward trend beginning 2010, reflecting a 

persistently low and stable inflation environment in the U.S. economy.  

For the sake of comparison, we have plotted our output entropy measure (aggregate 

entropy) together with two other popular uncertainty indices from the literature (viz., 

Jurado, Ludvigson and Ng 2015 (JLN) and Baker, Bloom and Davis 2016 (BBD)) in Figure 

9. While doing this we have normalized each series in terms of their means and variances. 

JLN measures general macroeconomic uncertainty, whereas BBD measures economic 
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policy uncertainty. Since these three uncertainty measures are related to three different 

underlying target variables, they are not strictly comparable. Still, Figure 9 reveals certain 

common features in these series. The overall cyclical movement of all three series are very 

similar except that JNL is smoother and BBD exhibits very high and variable values in the 

post great recession era. If we smooth the entropy series, it would be very similar to JNL 

over the whole sample. Like our entropy measure of uncertainty, both JNL and BBD 

reached their troughs in the mid-1990s and spiked during the great recession of 2008. 

However, the magnitude and duration of the spikes are quite different between the three 

measures. Our entropy measure did not reach the unprecedented high levels of JLN and 

BBD during the 2008 crisis.  BBD’s high policy uncertainty is also persistent in the last 

few years even when the economy has recovered. The extraordinary policy environment 

and subsequent policy changes that existed at the federal level following the financial crisis 

can explain the unique gyrations in BBD.  

 

6. Information measure and “news” 

Economists frequently study how “news” affects the economy. The conventional 

approach in macroeconomics is to generate “news” from estimated VAR models requiring 

values of the forecast errors. Revisions in fixed target forecasts as measures of news was 

first suggested by Davies and Lahiri (1995, 1999), and come closest to the theoretical 

concept that are obtained in real time using forecasts alone without requiring values of the 

target variables. The Jensen-Shannon information measure is a more comprehensive 

measure of the same derived from info-metrics. In SPF, forecasters make fixed-target 

density forecasts, making it possible to check how forecasters update their forecasts quarter 
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to quarter. If a forecaster updates his forecasts for the same target variable by moving from 

fi,t,h+1 to fi,t,h, we can obtain the information divergence of these distributions, based on 

JS(fi,t,h+1, fi,t,h). This measure can be viewed as ‘news’ or ‘shocks to uncertainty’. It is new 

information that makes the forecaster update his forecast.  Since each JS is computed using 

the same forecasters in two adjacent quarters, the ‘news’ series will be independent of the 

varying composition of the SPF panel, cf. Engelberg et al. (2011).  

In Figure 10, we report news or uncertainty shocks based on Jensen-Shannon 

information measure for both output and inflation. We find that forecasters were faced with 

more news in the tumultuous 1970s. Since the mid-1980s the arrival of news has become 

less volatile, consistent with the so-called ‘moderation hypothesis’. Exceptions are the 

three recessions of early 1980s, 2000/01 and 2008/09. ‘News’ for real output shows a 

slightly countercyclical property. It spikes in the recessions when economic data exhibit 

more negative surprises that lead to large forecasts revisions, and correspondingly large 

values of “news” as information measure. The time series on inflation news looks quite 

different from that of real output news, and the correlation between read GDP and inflation 

news over the whole sample period is only 0.354. The sign and magnitude of this 

correlation is expected to be time varying, and will be determined by the nature of the 

shocks (demand or supply, for example) affecting the real and the monetary sectors of the 

economy.  

Determinants of “news” 

The info-metric measure of “news” is quite similar in concept to “revisions in point 

forecasts”. In order to see the relationship between JS information divergence and revisions 

in mean forecasts, in Figure 11, we plot “news” against absolute values of forecast 
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revisions at the individual level for current year output forecasts. There is a strong positive 

correlation between the two, but the association far from perfect. We also see that, because 

Jensen-Shannon information divergence has an upper bound of ln2, as the revisions in 

forecast means take large values, the relationship gets more variable and the dots eventually 

get aligned with the upper bound to form a horizontal line. As a local approximation, we 

regressed “news” on absolute values of first difference of the first four moments at the 

individual level (first difference between fi,t,h+1 and fi,t,h), and found that “news” is 

significantly correlated with the differences (i.e. forecast revisions) in means, variances, 

skewness and kurtosis of the density forecasts. The forecast revisions in the means explain 

most of the info-meric “news”, i.e., a shift in the forecast density’s mean causes the biggest 

kick in the information divergence, while changes of variance, skewness or kurtosis only 

explain less than 3% of the variation, even though their coefficients are statistically 

significant. This evidence indicates that even though information-based ‘news’ 

theoretically reflects changes in higher moments of the forecast densities, in the SPF data 

it is well approximated by changes in mean forecasts alone.  

 “News” and its impact on uncertainty 

Engle and Ng (1993) first introduced the “News impact curve”. In the last two decades, 

many authors have studied how “news’ impacts on volatility, using mostly high frequency 

data from the stock market. Davies and Lahiri (1995) showed a positive relationship 

between news and inflation volatility and a greater effect of bad news on volatility. With 

our carefully constructed information-based uncertainty measure, we regressed our 

uncertainty measure on two types of news to estimate such effects. Our regression model 

is 
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      H
t ,h

= α + β
1
⋅ news _ good

t ,h
+  β

2
⋅ news_ bad

t ,h
+  β

3
⋅ H

t ,h+1
+ ε

t ,h
,                           (12) 

where Ht,h is entropy of the consensus forecast density for target year t and horizon h. 

News_goodt,h is average of “news” across forecasters for target year t and horizon h, when 

the mean forecast revision is positive. News_badt,h is average of “news” across forecasters 

for target year t and horizon h, when the mean forecast revision is negative. ε
t ,h

 is error 

term with zero mean. The results of the regression are given in Table 3. 

For output forecasts, β2 is greater than β1, which is consistent with Davies and Lahiri 

(1995), indicating greater impact of bad news on output forecast uncertainty. However, the 

signs of the coefficients β1 and β2 are both positive indicating both good news and bad 

news increase uncertainty. Chen and Ghysels (2011) found that in stock market both very 

good news (unusual high positive returns) and bad news (negative returns) increase 

volatility, with the latter having a more severe impact. For inflation forecasts, β1 is not 

statistically different than β2, indicating bad news does not cause more severe impact on 

uncertainty than good news of similar size, and both are highly significant. The coefficient 

of lagged entropy is significant in both regressions, but inflation uncertainty (β3 = 0.57) 

seems to be more persistent than output uncertainty (β3 = 0.21). It is interesting to note that 

conventional information theory suggests that news is associated with uncertainty 

reduction. But in our case with fixed target forecasts, At = yi,t,h + εi,t,h, where At is the actual 

realized value of the target variable and εi,t,h is the forecast error, with the variance of At the 

same over horizons. As h decreases yi,t,h absorbs more information, and hence the forecast 

variance will necessarily increase. However, with variance of At the same over h, an 

increase in the entropy of yi,t,h will be compensated by a corresponding reduction in forecast 

error variance.  
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7. Impact of Real GDP uncertainty on macroeconomic variables 

In this section, we explore how our measure of entropy as output forecast uncertainty 

affects the macro economy. Bloom et al. (2007), Bloom (2009, 2014), and Bloom et al. 

(2014) explore several channels through which uncertainty affects the real economy. 

Following the literature and particularly Baker et al. (2016) and Jurado et al. (2015), we 

use a standard vector autoregression (VAR) model with Cholesky-decomposed shocks to 

study the effects. We estimate a VAR with the following five quarterly variables: entropy 

of output forecasts, log of real output (RGDP), log of Non-Farm payroll (NFP), log of 

private domestic investment (PDI), and Federal Funds rate (FFR). The last variable is an 

indicator for monetary policy stance – it is increased in order to slow down the economy 

to avoid future inflation. We include four lags of each variable that minimized the overall 

AIC. We drew the impulse responses of all five variables to a one standard deviation 

change in the entropy, keeping the Cholesky ordering the same as above. They are 

presented in Figure 12. We find that an increase of output uncertainty has negative effects 

on real GDP, payroll employment, and private investment significantly over next 5-10 

quarters, after which they tend to revert back to their original values over next 5 quarters. 

Thus, uncertainty shocks have a long lasting effect of the real sector of the economy. 

Uncertainty itself converges back quickly after the initial shock. The dampening effect of 

uncertainty shock on FFR suggests the reaction of the monetary authority to combat the 

consequent negative effects on the real variables. A change in the ordering of variables 

does not alter the results. Specifications with fewer variables produce similar results that 

output uncertainty has negative effects on real GDP growth. The negative relationship 
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between uncertainty and economic activity has been widely reported in recent 

macroeconomic research, see Bloom (2009, 2014), Bloom et al. (2014), and Jurado et al. 

(2015). 

 

8. Summary and conclusions 

We approximate histogram forecasts reported in the Survey of Professional 

Forecasters (SPF) by continuous distributions and decompose moment-based and entropy-

based aggregate uncertainty into average uncertainty and disagreement. We adjust for bin 

sizes and horizon effects, and report consistent time series of uncertainty in real output and 

inflation forecasts over last few decades. We find that adjustments for changes in the SPF 

survey design are difficult to implement while working directly with discrete distributions. 

Even though the broad cyclical movements in uncertainty measures provided by the 

variance and the entropy of the forecast densities are similar, and show significant 

moderation in the post 1990 era, the former is significantly more variable and erratic than 

the entropy-based uncertainty. In addition, the variance of mean forecasts as a measure of 

disagreement is a much larger and a more variable component of the variance of the 

consensus density compared with the Jensen-Shannon measure based on aggregate entropy. 

These results are very similar for both output and inflation.  

The cyclical dynamics of our entropy-based output uncertainty is consistent with 

Jurado et al. (2015), despite the fact that the latter is based on forecast errors of a very large 

number of macro indicators. Following Baker et al. (2016) and Jurado et al. (2015), we 

also examine the importance of our output entropy in a 5-variable VAR and find that higher 

uncertainty has significant negative effects on real GDP, employment, investment and 
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federal funds rate, that lasts anywhere from 5 to 10 quarters. These impulse response results 

are consistent with recent empirical evidence on the pervasive role uncertainty has on the 

economy, and lend credibility to the entropy-based uncertainty measure we presented in 

this chapter.   

The other significant empirical findings are summarized as follows: 

First, since SPF density forecasts provide a sequence of eight quarterly forecasts for a 

fixed target, the Jensen-Shannon information divergence between two successive forecast 

densities yields a natural measure of “uncertainty shocks” or “news” at the individual level 

in a true ex ante sense. We find both bad and good news increase uncertainty and are 

countercyclical, which is consistent with the previous literature. It is noteworthy that new 

information in our context increases the horizon-adjusted forecast uncertainty, but 

correspondingly should reduce the ex post forecast error uncertainty. Somewhat 

surprisingly, we find that the entropy-based “news” is conditioned mostly by the changes 

in the means of the underlying densities and very little by changes in other higher moments 

of the density forecasts.  

Second, we find that the historical changes in the SPF survey design in the number of 

bins and bin sizes, and how one adjusts for these changes affect uncertainty measures. 

Bigger bin sizes, ceteris paribus, inflate uncertainty estimates and, more importantly, the 

over-estimation will be relatively higher during low uncertainty regimes. We also find the 

normalized entropy index for correcting the unequal number of bins by dividing the 

discrete entropies by the natural log of the number of bins may have certain unexpected 

distortions. Compared to the entropies based on continuous distributions, the normalized 
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entropies for discrete distributions fail to adjust for bin size, resulting in overestimation 

during periods where bin size is small. 

Finally, even though the Shannon entropy is more inclusive of different facets of a 

forecast density than just variance, we find that with SPF forecasts it is largely driven by 

the variance of the densities. An initial indication of this evidence can be found in Shoja 

and Soofi (2017). However, skewness and kurtosis continue to be statistically significant 

determinants of entropy, but the total marginal contribution of these two factors is less than 

5% in a regression of average entropy on the first four moments of the distribution. There 

is enough number of non-normal densities in the sample that make these high-order 

moments non-ignorable components of aggregate entropy. All in all, our analysis of 

individual SPF densities suggest that uncertainty, news shocks and disagreement measured 

based on info-metrics are useful for macro-economic policy analysis because these are ex 

ante, never revised and reflect information on the whole forecast distributions.   
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Table 1: Regression results with variance for mapping 2-point bins to 1-point bins: y=a+bx+u 

 a b 

Average variance, output forecasts 

(Sample period: 1992Q1-2017Q3) 

-0.1468 

(0.0147) 

1.0375 

(0.0167) 

Average variance, inflation forecasts 

(Sample period: pre-1981Q3 plus 1992Q1-2013Q4) 

-0.1312 

(0.0133) 

1.0085 

(0.0199) 

Note: y is variance when bin-length is 1%; x is the measured variance after converting bin-length to 2%. 

Standard errors are in parentheses.  

 

 

Table 2: Regression results with entropy for mapping 2-point bins to 1-point bins: y=a+bx+u 

 a b 

Average entropy, output forecasts 

(Sample period: 1992Q1-2017Q3) 

-0.6987 

(0.0415) 

1.4615 

(0.0362) 

Average entropy, inflation forecasts 

(Sample period: pre-1981Q3 plus 1992Q1-2013Q4) 

-0.5859 

(0.0476) 

1.3657 

(0.0457) 

Note: y is entropy measured when bin-length is 1%; x is calculated entropy after converting bin-length to 2%. 

Standard errors are in parentheses.  

 

 

Table 3: Regression of news on uncertainty 
 

 

Output forecasts Inflation forecasts 

Parameter Estimate p-value Parameter Estimate p-value 

α 0.8563 0.0000 α 0.3827 0.0000 

β1 0.7791 0.0377 β1 0.8693 0.0342 

β2 0.9997 0.0020 β2 0.8708 0.0233 

β3 0.2059 0.0055 β3 0.5735 0.0000 
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Figure 1: Effect of bin size on uncertainty, all quarters 

 

Aggregate variance:                                                      

 

Average variance: 

 

 

 

 

 

 

 

 

 

 

 

 

0 1 2 3 4 5 6

aggregate variance, bin-length=2

0

1

2

3

4

5

6

a
g
g

re
g

a
te

 v
a
ri

a
n

c
e

, 
b

in
-l
e

n
g
th

=
1

Output forecasts

0 1 2 3 4 5 6

aggregate variance, bin-length=2

0

1

2

3

4

5

6

a
g
g

re
g

a
te

 v
a
ri

a
n

c
e

, 
b

in
-l
e

n
g
th

=
1

Inflation forecasts

0 0.5 1 1.5

average variance, bin-length=2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

a
v
e

ra
g

e
 v

a
ri
a

n
c
e

, 
b
in

-l
e
n

g
th

=
1

Output forecasts

0 0.5 1 1.5

average variance, bin-length=2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

a
v
e

ra
g

e
 v

a
ri
a

n
c
e

, 
b
in

-l
e
n

g
th

=
1

Inflation forecasts



 

41

Figure 2A: Output Variance and its components, corrected for bin-length, 1981Q3 to 2017Q3. 
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Figure 2B: Inflation variance and its components, corrected for bin-length, 1968 Q4 -2017 Q3.  
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Figure 3: Effects of bin-length on uncertainty measures and the correction 
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Figure 4A: Output entropy and its components, corrected for bin-length, 1981Q3 to 2017Q3. 
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Figure 4B: Inflation entropy and its components corrected for bin-length, 1968Q4 to 2017Q3. 

 

 

 

entropy of consensus distribution

average entropy

information measure

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
0

0.5

1

1.5

2
Inflation forecasts

h=1

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
0

0.5

1

1.5

2
Inflation forecasts

h=2

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
0

0.5

1

1.5

2
Inflation forecasts

h=3

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
0

0.5

1

1.5

2
Inflation forecasts

h=4

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
0

0.5

1

1.5

2
Inflation forecasts

h=5

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
0

0.5

1

1.5

2
Inflation forecasts

h=6

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
0

0.5

1

1.5

2
Inflation forecasts

h=7

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
0

0.5

1

1.5

2
Inflation forecasts

h=8



 

46

 

Figure 5:  Entropy vs. log (Variance) 

X axis: individual level current year output forecasts log (variance) 

Y axis: individual level current year output forecasts (Entropy) 
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Figure 6: Scattered plot of entropy from alternative methods (continuous vs. discrete) 

Red * (stars): X-axis: entropy values calculated from continuous distributions 

                      Y-axis: entropy values calculated from discrete distributions 

Blue  (dots): X-axis: entropy values calculated from continuous distributions 

                      Y-axis: entropy values calculated from discrete distributions, with  

                       adjustment for number of bins.  

Upper panel: output forecasts 1968Q4-2017Q3 

Lower panel: inflation forecasts 1968Q4-2017Q3 
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Figure 7: Two discrete distributions with same entropy but different levels of uncertainty 

The following two observations have the same entropy under discrete distribution, viz. :  

H=-(0.2ln0.2+0.5ln0.5+0.3ln0.3)=1.0297 

However they imply different levels of uncertainty. The forecaster for the left forecast is certain 

that there is a 100% probability that the target variable will be between [2%, 3.5%] while the right 

forecast implies only a 50% chance that the target variable will fall between [2%, 4%]. 
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Figure 8: Uncertainty (Entropy and Variance) - corrected for bin length and horizon 
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Figure 9: Uncertainty compared with other works 
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Figure 10: Uncertainty shocks or “news” based on J-S Information  
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Figure 11: Information “news” vs. forecast revisions, current year output forecasts:  
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Figure 12: Impulse response functions in a 5-variable VAR to a one S.D. shock of 

                 output entropy, (1981Q3 – 2017Q3) 

 

Notes: The 5 variables are entropy of output, log of real output, log of Non-farm payroll, log of 

private domestic investment, and Federal Funds rate (FFR).  

Dashed lines are one standard deviation bands.  X-axis is in quarters. 
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