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Constrained Fixed Sample Search

Roberto Bonilla� and Francis Kiraly
Newcastle University, Newcastle-upon-Tyne, England

April 30, 2019

Abstract

We consider a version of the Stigler model of �xed sample price search,
where consumer utility depends on whether or not at least one sampled
price ful�ls a pre-set target.

Keywords: �xed sample search, constrained search
JEL classi�cation: D83

1 Introduction

In the classic Stigler (1961) model of �xed sample (or pre-determined) price
search, a risk-neutral consumer ends up paying the best (lowest) encountered
price. In this paper, we change this setup: here, the consumer obtains additional
utility if at least one sampled price (and hence the price paid) is lower than a
pre-set threshold (constraint).

The concept of constrained search was introduced in Bonilla et al. (2019),
in the context of sequential search. Here we ask: what is the e¤ect of a price
target (constraint) on the optimal �xed sample search strategy? On the one
hand, although the analysis is completely di¤erent, we establish that the non-
monotonicity property of search intensity (here captured by sample size) is ro-
bust across the two standard search methods. Here, for relatively high (easy)
price targets the searcher will increase the optimal sample size as this target de-
creases, but will reduce it for relatively low price targets as even harder targets
are increasingly di¢ cult to ful�l. On the other hand, our results in this paper
also point to a hitherto unexamined disadvantage of the �xed sample search
method compared to sequential search.

�Corresponding author at: Newcastle University, Business School, 5 Barrack Road, NE1
4SE Newcastle-upon-Tyne, United Kingdom. Tel.: (00) 44 (0) 191 208 1670. Email addresses:
Roberto.Bonilla@ncl.ac.uk, Francis.Kiraly@ncl.ac.uk
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2 Analysis

A consumer aims to buy one unit of some good, but does not know the price
that any particular shop is charging. Assuming a continuum of shops, from the
perspective of the consumer, prices are distributed according to the cumulative
probability distribution function F (:) with support [p; p]. At cost c per shop
(same for all shops), the consumer can observe the exact price that a shop is
charging. The consumer uses the �xed sample search strategy, choosing the
optimal number of shops to visit given that the objective is to buy at the best
possible price.

Crucially, we assume that the consumer receives additional utility (here, a
payment reduction of y) if at least one sampled price is no higher than an ex-ante
set price target bp. This is a highly stylised setup, but one that can relatively
easily be embedded into a richer framework. For example, one could think of
the multiple-good demand problem of a consumer who has a budget constraint
and can only a¤ord one good if the price of the other (obtained through search)
is low enough.1

Let N denote the number of sampled shops. Following Hey (1979) and
others, assume that N is a continuous choice variable - it simpli�es the analysis
of what is of course an integer problem. Let p(N) denote the expected best
(lowest) price observed if the sample is of size N . The random variable p(N)
is characterised by the cumulative probability distribution function G(:) with
support [p; p].

In our version of the story, if the consumer commits to sampling N shops,
the expected overall payment is p(N) + cN if all sampled prices are above bp,
and it is p(N) + cN � y if at least one observed price is no higher than bp. The
consumer�s problem is:

min
N
L � [1�G(p̂)]

264 pZ
bp
pdG(p)=[1�G(bp] + cN

375+G(p̂)
264 bpZ
p

pdG(p)=G(bp) + cN � y

375 ;
where

G(p̂) = 1� [1� F (p̂)]N :
The expected best price if N shops are sampled is:

p(N) =

pZ
p

pdG(p) = p+

�pZ
p

[1� F (p)]N dp;

1For the pioneering work on this, see Burdett and Malueg (1981) and Manning and Morgan
(1982).
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where the latter equality is derived using integration by parts.

The optimisation problem simpli�es to:

min
N
L � p(N) + cN �G(bp)y (1)

One can think of the optimally chosen sample size N� as a measure of search
intensity. We show that the optimal search intensity is non-monotonic in the
target price bp. As soon as the constraint starts to bite, the consumer increases
the sample size. However, the incentive to do so decreases after a certain thresh-
old price, when the additional costs exceed the increasingly unlikely bene�ts of
increased sampling.

To see this, �rst observe that for p̂ � p the threshold price constraint cannot
possibly be ful�lled and, since F (p̂) = F (p) = 0, the optimal sample size N� is
obtained by solving:

min
N
L � p+

�pZ
p

[1� F (p)]N dp+ cN

In turn, for p̂ � �p the threshold price constraint is always ful�lled and, since
F (p̂) = F (�p) = 1, now N� is the solution to:

min
N
L = p+

�pZ
p

[1� F (p)]N dp+ cN � y

As y is just a constant, the optimal sample size is clearly the same in both
cases (denote it by N0), and is obtained from the �rst-order condition dL=dN =
0:

�pZ
p

[1� F (p)]N ln(1� F (p))dp+ c = 0

For bp 2 (p; p), the �rst-order condition for an optimum in problem (1) sim-
ply equates the expected marginal bene�t from an increased sample, and the
marginal cost c:

�
�pZ
p

[1� F (p)]N ln(1� F (p))dp� [1� F (bp)]N ln(1� F (bp)y = c (2)

The expected marginal bene�tMB(N; bp) has two components, as an increase
in N has two e¤ects. Ceteris paribus (in particular, for a given bp), higher search
intensity results in a lower expected best price as well as a higher probability of
obtaining the additional utility y (the second term being simply @G(bp)=@N).
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Since ln(1�F (p)) < 0, the expected marginal bene�t is positive. It can also
be shown to be decreasing in sample size:

@MB

@N
= �

pZ
p

[1� F (bp]N ln(1� F (bp))2dp� [1� F (bp]N ln(1� F (bp))2y < 0
Then, the optimal sample size N� balances these expected bene�ts with the

additional cost of increasing the sample size (and technically it will of course be
one of the two integers nearest to the N that satis�es (2)).

Furthermore, when graphed as a function ofN , the downward slopingMB(N; bp)
curve is identical for both bp = p and bp = p, and it moves as p̂ changes. To see
this, please note that:

@MB

@bp = [1� F (bp)]N�1 f(bp)y [N ln(1� F (bp)) + 1]
As bp approaches p from the right, the above derivative is positive; in turn, as bp
approaches p from the left, the derivative approaches �1. Since ln(1 � F (bp))
is strictly monotonic and decreasing, @MB=@bp is zero for a unique target pricebp 2 (p; p), which we denote by ep. Figure 1(a) captures the above:

FIGURE 1

For bp 2 (ep; p) the marginal bene�t curve tilts and shifts to the right as bp
decreases. In turn, for bp 2 (p; ep) it tilts and it shifts to the left as bp decreases.
A decrease of bp from p creates incentives to increase the sample size, so as to
decrease expected best price and improve the chances of ful�lling a relatively
easy target price. However, the e¤ect of this on both p(N) and G(bp) is decreas-
ing, so at some point it is not worth it. It is this second negative e¤ect that is
novel here, and it stems from the fact that it is of course increasingly di¢ cult
to hit relatively low pre-set price targets.

We can further characterise the optimal strategy (also see Figure 1 (b)).
Equation (2) determines the optimal sample size N� as a function of bp. Using
implicit di¤erentiation one then obtains:

@N�

@p̂
=

�[1� F (p̂)]N��1f(p̂)[N�ln(1� F (p̂)) + 1]y

[1� F (p̂)]N� [ln(1� F (p̂)]2 y +
�pZ
p

(1� F (p))N� [ln(1� F (p))]2 dp

(3)

The N�(bp) function has two kinks, one at each extreme of the price range on
the market. For bp = p, the left-hand limit of the above derivative is zero, while
for p̂ = p the right-hand limit is positive, given by:
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limbp!p

@N�

@p̂
=

f(p̂)y
�pZ
p

[1� F (p)]N [ln(1� F (p)]2dp

One can already conclude that (i) the optimal sample size N� is continuous
in price threshold bp, (ii) N� = N0 in both cases when the constraint is ignored -
either because it is impossible or because it is spurious, and (iii) search intensity
picks up (N� > N0) as soon as a meaningful price target is in place. In other
words, the optimal sample size function N�(bp) is indeed non-monotonic forbp 2 (p; p) and has one maximal stationary point.2
To further investigate the uniqueness of this peak search intensity, please

note from (3) that @N�=@bp = 0 for N�ln(1� F (p̂)) + 1 = 0. There is only one
interior maximum N� if this equation has a unique solution, which is indeed
the case provided N�ln(1�F (p̂)) is monotonic in bp. To check this, �rst observe
that:

@[N�ln(1� F (p̂))]
@p̂

=
@N�

@p̂
ln(1� F (bp))� N�f(p̂))

1� F (p̂)
Substitute @N�=@bp from (3), re-arrange and factorise, to obtain:

@[N�ln(1� F (p̂))]
@p̂

=
A�B
C

< 0;

where

A � N�f(p̂)

�pZ
p

(1� F (p))N
�
[ln(1� F (p))]2 dp (> 0)

B � [1� F (bp)]N�
f(bp)ln(1� F (bp))y (< 0)

C � [F (p̂)�1]f[(1�F (p̂)]N
�
[ln(1� F (p̂))]2 y+

�pZ
p

[1�F (p)]N
�
[ln(1� F (p))]2 dpg (< 0)

This proves that the search intensity function N�(bp) has a unique interior max-
imum, given by:

N�(ep) = � 1

ln(1� F (ep))
What is the best price the consumer can expect to obtain for any optimally

chosen sample size given a price target bp? Denote this expected best price by
2The rate at which the optimal search intensity changes with bp depends on the properties

of f and F . In particular, the e¤ect of bp on the change in hazard rate f(bp)=[1�F (bp)] depends
on log-concavity. This is true also for constrained sequential search and the shape of the
reservation strategy function there.

5



p� � p(N�). Given that - ceteris paribus - we have @p(N)=@N < 0, it follows
that p� has a minimum for bp = ep. Since N� = N0 for both bp = p and bp = p, the
expected best price p� is also the same (denote it by p0) in both extreme cases.
Overall therefore, p� is higher than bp for low values of bp. Crucially, this implies
that for any parameter values there exists a range of price targets bp such that
p�(bp) > bp. Or, putting it di¤erently: there are no parameter values for which
p�(bp) � bp for all bp 2 (p; p). Figure 2 illustrates this, and depicts the case where
p� = bp once.

FIGURE 2

3 Discussion

How do the results for constrained �xed sample search compare to those for
constrained sequential search?

First, our analysis here and a comparison with Bonilla et al. (2019) reveal
a robust result: in both cases, search intensity is a non-monotonic function of a
constraint (target) whose attainment guarantees extra utility.

Second, it is well-known that in many settings, sequential search performs
better than �xed sample search, the main disadvantage of the latter method
being that it implies an ex-ante commitment to a rigid sample size. In this paper,
we point out a further apparent drawback of �xed sample search. The underlying
reason for this drawback is that with constrained �xed sample search, there is no
search intensity that would ex post guarantee the ful�lling of the target. With
pre-determined search and an active (i.e. not impossible or spurious) constraint
(target), there is always a positive probability that the realised outcome does
not ful�l this target, regardless of search intensity.

In sharp contrast, this is not the case with constrained sequential search.
Firstly, very easy active targets are automatically ful�lled - they have no impact
on search intensity as captured there by the reservation strategy. Secondly, with
constrained sequential search, there is always a range of (still relatively easy)
targets that the searcher is able to and does in fact commit to ful�lling.

We believe that constrained (�xed sample and sequential) search methods
could fruitfully be integrated into richer economic models. In the context of
price search, we already mentioned the potential application to consumer de-
mand theory. Bonilla et al.(2019) and Bonilla and Kiraly (2013) obtain inter-
esting results in models where constrained job search provides the link between
two frictional markets. More generally, constrained search is relevant whenever
access to another market (frictional or not) or further options are conditional
on securing an appropriate "ticket" �rst, through search.
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