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Firm Decisions under Jump-Diffusive Dynamics

Neha Deopa∗† Daniele Rinaldo∗‡

March 21, 2019

Abstract

We present a model of firm investment under uncertainty and partial
irreversibility in which uncertainty is represented by a jump diffusion. This
allows to represent both the continuous Gaussian volatility and the discon-
tinuous uncertainty related to information arrival, sudden changes and large
shocks. The model shows how both sources of uncertainty negatively impact
the optimal investment and disinvestment policies, and how the presence of
large negative jumps can drastically affect the firm’s ability to recover. Our
results show that the standard Gaussian framework consistently underesti-
mates the negative effect of uncertainty on firm investment decisions. We
test these predictions on a panel dataset of UK firms: we first structurally
estimate the uncertainty parameters using multinomial maximum likelihood
and differential evolution techniques and subsequently study their impact on
firm investment rates, validating our model predictions.

Keywords: firm investment, uncertainty, jump diffusions, partial irreversibility, real options
JEL Codes: C61, C62, D21, D22, D8

1 Introduction
The analysis of firm investment decisions continues to be an important concern
for economists. It is well established that investment behaviour is receptive to
the amount of uncertainty firms face in market conditions and future prices. In
an increasingly uncertain global market, it has become crucial to understand how
firms react to technological changes, competitive moves and adverse market devel-
opments. Contemporary studies use the real options approach introduced by Dixit
and Pindyck (1994), which highlights the interaction of uncertainty over future
returns to capital, the degree of irreversibility due to presence of adjustment costs
and the option to delay investment. The majority of the literature on investment
under uncertainty assumes the demand and productivity conditions faced by firms,
∗Department of International Economics, The Graduate Institute of International and

Development Studies, Geneva, Switzerland.
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mainly captured by their prices or returns, to follow a diffusion process.

In the traditional framework, therefore, uncertainty is entirely conflated within
the variance parameter of the Gaussian distribution, which is assumed to represent
all sources of risk. Often, however, discontinuities and exogenous shocks are ob-
served in the firm dynamics due to a variety of causes, such as information arrival,
entry by a new competitor in a market with few firms, resignation of the CEO,
significant changes (“jumps”) in the operating and financial structure of the firm,
regulatory changes introduced by the government, new innovations, et cetera. If
such events are not forecastable, the times at which they arrive will be random,
and we will have another measure of uncertainty in their arrival frequency. One
must also not forget that the impact of such events on the environment the firm
faces may be of different magnitudes: the sizes of the jumps, therefore, add another
instrument to the list of measures of the uncertainty a firm faces. The introduction
of such discontinuities introduces non-Gaussianity in the firm dynamics by means
of skewness and thicker tails, and escapes the restriction of having to represent all
sources of risk by means of the variance of a Normal distribution.

Because of these requirements, jump diffusion processes are an ideal candidate.
A jump diffusion is part of a wide class of processes, the Lévy processes, which are
continuous in probability and have stationary and independent increments. Lévy
processes “allow” their sample paths to jump at specific points in time: in more
technical terms, any Lévy process allows a version of itself that is continuous to
the right and limiting to the left (the Brownian motion is a particular case of a
Lévy process). Jump diffusions can be expressed as a linear combination of the
Brownian motion and a Poisson jump process whose coefficients do not change in
time, and whose jump sizes may be themselves random. Jump diffusions, there-
fore, represent a useful generalization of Itô diffusions that can represent well the
uncertain environment faced by a firm.

In this paper we decompose the uncertainty faced by the firm into volatility
and jumps in the demand conditions. Studying how both these sources of uncer-
tainty affect the thresholds at which investment and disinvestment occur, and the
sequential determination of the optimal policies, provides the main motivation for
our model. Our model contributes to the literature by examining the firm’s invest-
ment decisions under jump-diffusive dynamics with a real option framework and
empirically investigating these effects. To the best of our knowledge this has not
been attempted before. The model describes how firms constrained by partial irre-
versibility and non-convex adjustment costs react to uncertainty that is generated
by the sum of two independent processes, a Brownian motion and a compound
Poisson process with random jump magnitudes. Coherently with the literature,
under these assumptions, firms face an inaction area in which it is not profitable
to invest: we study how volatility, the frequency of jumps and their direction
affect the size of this area and the consequent investment and disinvestment dy-
namics. Our model has multiple implications. The first is that in the presence of
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jumps in the firm’s business conditions, an increase in volatility pushes upwards
the investment threshold much more than predicted by the traditional real option
models, implying investment decisions are further delayed. Second, an increase in
the frequency of negative jumps always increases the size of the inaction region.
An increased frequency of negative jumps, furthermore, prompts firms to disinvest
quicker in order to protect themselves from a jump large enough to cause opera-
tions shutdown: in our framework this is possible even in the presence of partial
irreversibility. Another implication of the model is that an increase in positive
jump frequency has a positive effect on investment threshold only when the un-
derlying volatility is low. For high levels of volatility this effect becomes negative.
Lastly, with the inclusion of jumps, an increase in volatility and jump frequencies
amplifies the inaction region for firms with low growth rate to a greater extent than
for medium and high growing firms. We then test these results on a panel of 403
publicly listed U.K. firms by first structurally estimating the uncertainty parame-
ters using multinomial maximum likelihood and differential evolution techniques.
In the second stage using a fixed effects model we find evidence that both jumps
and volatility reduce the impact effect of a positive demand shock on the firm’s
investment rate. Our empirical evidence corroborates our theoretical implications.

The paper is organised as follows. In Section 2 of the paper, we construct a
model of a risk-neutral firm with an infinite horizon and characterize its optimal
investment decisions with partial irreversibility and uncertainty. Section 3 presents
the properties and the economic implications of the model’s numerical solutions.
Section 4 focuses on testing empirically the theoretical implications by developing
an econometric specification and applying it to firm level investment data. Section
5 offers concluding remarks.

2 The Model
We consider a risk neutral firm in a continuous time economy, which chooses at
every time interval the level of investment I+

t and disinvestment I−t . The pointwise
operating profit of the firm is π(Kt, Xt), and is assumed to be Cobb-Douglas with
quasi-fixed costs:

π(Xt, Kt) = hXγ
t K

1−γ
t −MKt. (1)

The profit function is determined by two state variables: Kt, the capital stock,
and Xt, a variable that combines firm level productivity and demand terms into
one index1, which we will henceforth refer to as business conditions (using Bloom
et al. (2007) terminology). The quasi-fixed costs represent production costs per
unit of capital, and can also be understood as firm maintenance costs.2 This profit
function is consistent with a firm whose production technology exhibits diminish-
ing returns to scale and is based on an underlying production function where a

1See the Appendix for the derivation of X and γ from a production function that includes
both capital and labor.

2The scalars h,M > 0 and 0 < γ < 1 determine the characteristics of the profit function
similarly to what is assumed by Cooper (2006).
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flexible factor of production (labor) is continuously optimized out.

The capital stock Kt is assumed to follow a deterministic law of motion, con-
trolled by the firm which chooses at every time interval the level of investment
I+ = dK+ and disinvestment I− = dK−:

dKt = −δKtdt+ I+ − I− (2)

where δ ∈ [0, 1] and I i ≥ 0. The firm incurs in a total cost of investment
C(Xt, Kt, It) which is made of non-convex costs with partial irreversibility. We
have, with 0 < αi < 1:

Ci(Kt, Xt, I
i
t) = αiπ(Xt, Kt) + piI

i
t (3)

with i = −,+ meaning when a firm both invests (or disinvests) it loses a part of
the profits as adjustment costs.

In all of this, p+ is the price of buying capital (investment, I+) and p− the price
of selling it (disinvestment, I−). We have p0 < 0 < p1 and therefore partial
irreversibility.

2.1 The Stochastic Process for Business Conditions

Business conditions, Xt, is assumed to follow a geometric Lévy process (a jump
diffusion), continuous from the left, of the form

dXt = µXtdt+ σXtdWt +Xt−

∫
Ω

zÑ(dt, dz) (4)

where the scalars µ ∈ R, σ > 0 are the drift and the diffusion parameters. Wt is
the standard one-dimensional Brownian motion on a probability space endowed
with the filtration Ft, and Ñ(dt, dz) is the compensated Poisson measure on Ω =
[−1,∞) for a compound Poisson process of the form

Ñ(dt, dz) = N(dt, dz)− λF (dz) (5)

where {N(t, z), t > 0} is a Poisson process with intensity λ ∈ R+, and the the
jump magnitudes are iid random variables with distribution F (dz). This mod-
eling may seem obscure but it has an intuitive interpretation: the jumps arrive
with intensity λ and the magnitude is determined by the distribution F (dz), for
which so far we only assume ||F || = F (−1,∞) < ∞ for boundedness. We work
with jump diffusions to allow for only one jump to happen in the infinitesimal dt,
a simplification that will be of key use in the estimation of the density parameters.3

3In technical terms, we assume a finite Lévy measure ν = λF with support Ω = [−1,∞).
The fact that the integral in (4) is bounded at -1, as in Framstad et al. (2001) is to guarantee
positivity of the state variable: because of the geometric nature of the process, the negative
jump is bounded to −X, so it cannot jump an amount greater than the pre-jump level of the
state variable, which is reasonable.
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Note that we are still keeping the probability measure of the jump term com-
pletely general: a common baseline choice is to assume a normal distribution for
the jumps, i.e. F (z) = N(µj, σ

2
j ), which is the framework of the seminal work by

Merton (1976). One, however, can easily model the jump measure as an asym-
metric distribution with different frequency rates, and the dynamics of (4) would
read

dXt = µXtdt+ σXtdWt +Xt−

(∫
Ω−
zÑd(dt, dz) +

∫
Ω+

zÑu(dt, dz)

)
(6)

where Ωi are the respective domains of the positive and negative jump distribu-
tions. The Poisson measures Ñd(dt, dz), Ñu(dt, dz) are

Ñd(dt, dz) = Nd(dt, dz)− λdFd(dz)

Ñu(dt, dz) = Nu(dt, dz)− λuFu(dz)

where Ni() has intensity λi, i = {u,d}, and the distributions Fi have the joint
density

f(z) = λD1z≤0fd(z) + λU1z>0fu(z) (7)
where fu, fd are the densities of the jump magnitudes. The asymmetry allows
to model separately the influence of positive and negative jumps. Both finance
and mathematics literatures present us with a plethora of possibilities: one of the
most tractable yet still realistic models is the double exponential distribution, as
in the celebrated model by Kou (2002), where both up and down jumps follow an
exponential distribution with different rate parameters, i.e.

f(dz) = λDη1e
zη11z≤0 + λUη2e

−zη21z>0. (8)

where 1/η1, 1/η2 are the means of the jump sizes. This requires to assume 1/η1 > 1
for boundedness of the jump, which implies the mean positive jump cannot exceed
Xt− , a reasonable restriction: together with the support of F bounded from under,
allows to limit the overall magnitude of the jumps that otherwise would remain
unbounded. The literature favors this distribution for having strong empirical
backing, as well as being relatively simple to treat analytically, and represents
well the skewed and leptokurtic features of market returns. Another distribution
would be the Pareto-Beta distribution presented by Ramezani and Zeng (2007),
where the positive jumps follow a Pareto distribution while the negative follow a
Beta. Further possibilities are the double uniform distribution, studied by Hanson
and J. Westman (2002), which is less driven by empirical evidence but allows to
model the creation of genuine fat tails in the distribution, and would fit well
the assumption of bounded negative jumps. Another possibility is the double
Rayleigh distribution, as shown in Synowiec (2008). The common assumption in
all of these distributions is that the up and down densities are additive. Each of
the presented distributions can be used in all that follows, therefore we choose
to keep the modeling general up to the simulations and the subsequent empirical
analysis. The choice to include both positive and negative jumps allows us to
include the impact of information arrival, as well as including discontinuities in
the state variable that the purely Gaussian framework of the literature cannot
incorporate.
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2.2 Model Solution and Investment Dynamics

The objective function of the operating firm is therefore

J(Kt, Xt) = Et
∫ ∞
s

e−ρs
[
π(Kt+s, Xt+s)− 1I 6=0C(Kt+s, Xt+s, I

i
t+s)
]
ds (9)

and the firm has to choose optimal investment policies dI+, dI− in order to max-
imize (9) subject to the dynamic constraints (2) and (4). Since the cost function
will activate even for very small capital adjustments, there will be an inaction
area in the (X,K)-space for which the benefits of buying or selling capital will be
overcome by the adjustment costs. In this inaction area, therefore, the value of the
firm will be close to its maximum, and the marginal increase in value generated
by an unitary capital purchase will not balance the costs it entails. The optimal
investment policy therefore will be for the firm to stay idle until the profitability
of investment will be “high enough” to justify the consequent adjustment costs.
Once this profitability condition is realized, the firm will then determine the op-
timal amount of capital to be purchased, and the state variable K will then be
brought back to the interval for which it is optimal for the firm to not invest. In
technical terms, the problem becomes finding two double sequences vI , vD of the
form

vI = (τ I1 , . . . , τ
I
j , dK

+
1 , . . . , dK

+
j )

vD = (τD1 , . . . , τ
D
j , dK

−
1 , . . . , dK

+
j )

where the τ ij are Ft-measurable hitting times and the dKi
j are investment (i = I)

and disinvestment (i = D). Given these two sequences, the (controlled) capital
process is therefore

K
(vi)
t = Kt 0 ≤ t ≤ min(τ I1 , τ

D
1 )

K
(vI)

τI1
= Kt + dK+

K
(vD)

τD1
= Kt − dK−

dKt = −δKtdt τ Ij ≤ t ≤ τ Ij+1 and τDj ≤ t ≤ τDj+1

Let us define S the area in the (X,K)-space of inaction, for which it is not prof-
itable for the firm to invest or disinvest. Define

τS = inf{t ∈ (0,∞); (Xt, Kt) /∈ S},

assume the firm is given a set of admissible controls V and assume

lim
j→∞

τ ij = τS.

Then the firm’s problem is to find a function V (X,K) and vI∗, vD∗ such that

V (X,K) = sup
vi∈V

J(X,K) i = I,D. (10)
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This problem is equivalent to solving the Hamilton-Jacobi-Bellman (HJB) equa-
tion with zero optimal controls, as in the model by Abel and Eberly (1996): be-
cause of the presence of non-convex investment costs, within the firm’s inaction
area the two problems are equivalent. The HJB equation for such firm’s problem
is

ρV I(Kt, Xt)dt = max
I+
t ,I

−
t

[
π(Kt, Xt)− 1It 6=0C(Kt, Xt, I

i
t) + EtdV I(Kt, Xt)

]
.

If the firm has the (costless) option to shut down, then the value of the firm is

V (Kt, Xt) = max[V I , 0]. (11)

and if does not simply V I = V . The equation for our problem (or equivalently, the
HJB for the inaction area), noticing that the jump increment of (4) is proportional
to zX, can be obtained by the Ito-Lévy Lemma for a semimartingale and since
the the compensated measure dNt − λdt is a martingale we obtain

ρV (Kt, Xt) = π(Kt, Xt)− δKtVk + µXtVx +X2
t

σ2

2
Vxx + (12)

+ λ

∫
Ω

[V (Kt, Xt(1 + z))− V (Kt, Xt)− zXtVx(Kt, Xt)]F (dz).

which is a partial integro-differential equation (PIDE). In order to reduce the
dimensionality of this equation we use the first degree homogeneity of the risk-
neutral firm’s well-behaving profit function, and consequently of the value function
V (.).

Coherently with the established literature, we express the value of the firm in
the space of the scaled variable s = X/K in order to reduce (12) to an ordinary
equation, which is allowed by the homogeneity of the well-behaving profit function
and is projected on the HJB equation by the assumption of risk-neutral firms. We
want to show how does the variable Xt/Kt evolve in time. This is obtained in the
following Proposition:

Proposition 1: The scaled variable st = Xt/Kt follows a geometric Lévy process
given by

dst = (µ+ δ) stdt+ σstdWt + st−

∫
Ω

zÑ(dt, dz)dt (13)

Proof: See Appendix. �

The variable Kt is deterministic so it’s just a matter of scaling and it doesn’t
change the probabilistic properties of the framework: it allows us to study the
HJB equation in the space of st instead of both Xt and Kt separately, avoiding
the necessity to deal with a PIDE.
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Figure 1: Simulation of investment dynamics. When s hits the upper threshold sI = X/Kt,
the optimal investment policy is to purchase an amount dK+ of capital in order to shift the
state variable to sTI = X/(Kt + dK+).

The inaction area translates into an interval on R, [sI , sD], for which it is op-
timal for the firm not to invest. When the state variable exceeds or equals this
interval, i.e. st ≥ sI , the firm will purchase capital: dK will be positive and con-
sequently ds < 0. This will move the state variable to a target point sTI inside the
inaction interval. Vice versa for disinvestment: when the state variable st hits or
exceeds the lower threshold sD the firm will sell capital and reach the target sTD.
The nature of the stochastic process that drives X allows for potential jumps of
the variable on either side of the interval of inaction: intuitively, since the invest-
ment decisions will be based upon observation of the state variable st, its jumping
dynamics allow for the state space of s to be outside the interval [sI , sD]. Figure
1 presents a simulation of the investment scenario.

Since V (Kt, Xt) = KtV (st) because of the zero-order homogeneity of its deriva-
tives, using the form of the Lévy process that drives st and taking the derivative
of V (.) with respect to Kt, we define q(st) = VK(Xt, Kt) as the marginal prod-
uct of capital; we can then write the new HJB equation for the region for which
investment is zero in the space of st as

(ρ+ δ)q(st) = (1− γ)asγt + st(µ+ δ)q′(st) + s2
t

σ2

2
q′′(st)

+λ

∫
Ω

[q(st(1 + z))− q(st)− stq′(st)z]F (dz). (14)

We first note the presence of higher moments of the distribution of s in the solution
of the problem, in the form of the higher moments of the jump distribution: the
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first probability integral can be expressed with as∫
Ω

q(st + stz)F (dz) =

∫
Ω

∞∑
n=0

q(n)(st)

n!
(stz)nF (dz)

which allows us to write the following expansion:

λ

∫
R

[
q(st(1 + z))− q(st)− stq′(st)z

]
F (dz) =

λ

(
n∑
i=2

qi(st)

i!

∫
Ω

ziF (dz)

)
+O(zn+1) (15)

where n is the highest moment of interest. This shows that for non-Gaussian,
heavy-tailed distributions the solution of the firm’s impulse control problem, and
consequently the investment and disinvestment thresholds, depend on moments
higher than mean and variance, due to the presence of skewness and kurtosis in
the process that drives the business conditions.

We start by guessing that the function q(st) is homogeneous of degree γ: if our
guess is right, then we have a second-order ordinary differential equation instead
of an integro-differential equation. The form of the solution for such an equation
is known and is the sum of the homogeneous and complementary solutions, and
it is an established result in the real options investment literature. We can then
state the following proposition:

Proposition 2: The firm’s investment and disinvestment policies are determined
by a set of five points sI , sD, sIT , sDT , sL which determine respectively the thresh-
olds, the target levels and the shutdown point. These points characterize completely
the impulse control of the value of the firm V̄ (st) = KtV (Xt, Kt) given by

V̄ (st) = Asγt −B + C1s
ξ1
t + C2s

ξ2
t (16)

A =
a

ρ+ δ − λφ(z)− γ
(
µ+ δ − σ2

2

)
− γ2 σ2

2

(17)

B =
M

ρ+ δ
(18)

which is the sum of the value of the firm’s asset in place and the options of both
disinvesting and investing. The two exponents ξ1 < 0, ξ2 > 0 are given by

ξ2,1 =
1

σ2

[(
σ2

2
− µ− δ + λφ1(z)

)
± (19)

±

√(
µ+ δ − λφ1(z)− σ2

2

)2

+ 2σ2 [ρ+ δ + λφ2(z)]

 .
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which imply that that the option of selling capital becomes less valuable as de-
mand increases or as the capital stock decreases.The jump parts are given by the
probability integrals

φ(z) =

∫
Ω

[
(1 + z)γ − 1− γz

]
F (dz) (20)

φ1(z) = γ

∫
Ω

zF (dz) (21)

φ2(z) =

∫
Ω

[1− (1 + z)γ]F (dz). (22)

The set of six positive constants C1, C2, sI , sD, sIT , sDT are determined by the sys-
tem of six nonlinear equations:

ṼI(sI) = ṼI(sIT )− α+s1−γ
I − p1(s−1

IT − s
−1
I ) (23)

ṼD(sD) = ṼD(sDT )− α−s1−γ
D − p0(s−1

DT − s
−1
D ) (24)

q(sIT ) = p1 (25)
q(sDT ) = p0 (26)
q(sI) = −α+(1− γ)sγI + p1 (27)
q(sD) = −α−(1− γ)sγD + p0 (28)

where Ṽ = V (X,K)/X is the value function scaled by business conditions and
q(s) = VK(X,K) is the marginal valuation of capital. Once the system is solved,
the shutdown point will be given by

B =
Ã

1− γ
sγL +

C1

1− ξ1

sξ1L +
C2

1− ξ2

sξ2L . (29)

Proof: See Appendix. �

For all values of st− for which V̄ > 0 and all feasible parameter sets,4 then KtV̄ (st)
is the value of the firm.5

4We have a regularity condition on the drift given by

µ <
1

γ
(ρ+ δ − λφ(z))− δ +

σ2

2
(1− γ).

5For asymmetric distributions, the above probability integrals will read

λφ1(z) → γ

(
λD

∫
Ω−

zFd(dz) + λU

∫
Ω+

zFu(dz)

)
λφ2(z) → λD

∫
Ω−

[1− (1 + z)γ ]zFd(dz) + λU

(
1−

∫
Ω+

(1 + z)γ ]zFu(dz)

)
and λφ(z) will be the sum of the previous two expressions, where Ωi are the respective domains
of the up and down jump measures.
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Figure 2: Upper panel: Simulation of investment dynamics with both investment and disin-
vestment. Parameters: µ = 0.1, σ = 0.1, ρ = 0.01, δ = 0.05, λU = 0.5, λD = 0.5, η1 = 2, η2 = 5..
The dashed line at sL is the absorbing barrier of firm shutdown. Lower panel: Capital dynamics
with depreciation

The optimal investment policies are therefore obtained in the following way:
whenever the demand reaches the higher threshold XI and K, investment is trig-
gered to the target level KI > K and the firm incurs in the adjustment costs. In
other words, the threshold is the point in the space (X,K) at which the increase
in firm value that investment generates is exactly balanced by its costs, and the
investment in order to be optimal will have to translate in a target level (XI , KI)
that generates as much value, net of the costs that investment triggers. This
translates in the following value matching condition:

V (XI , Kt) = V (XI , KI)− α+Xγ
IK

1−γ − p1(KI −K),

which means that the value of the firm at the target level of capital KI for the
same level of xI must match the value of the firm at the level that triggered
investment, minus the borne adjustment costs and the cost of purchasing capital.
Since this condition involves only the threshold level XI for the demand variable,
we can rewrite it in scaled form. Since ṼI = V/XI , we obtain

ṼI(sI) = ṼI(sIT )− α+s1−γ
I − p1(s−1

IT − s
−1
I ),
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where sI = XI/Kt is the value of the scaled demand X/K that triggers investment
once reached, and sIT is the target level to which the firm resets the state variable
s by means of a purchase of capital KI − Kt for any initial level of capital Kt.
The other two conditions are for optimality of the target point and for continuity
of the derivatives, and follow from the zero-order homogeneity of the derivative of
the value function:

q(sIT ) = p1

q(sI) = −α+(1− γ)sγI + p1

Note that (25) corresponds to the neoclassical condition for the investment thresh-
old, which states that the target point for the scaled demand sTI is required to
reflect the fact that in such a point the marginal valuation of capital must equal
the cost of capital, and the ratio between the marginal productivity of capital q
and the price of capital is unitary. Condition (27) has a similar interpretation: at
the point in the (X,K)-space that triggers investment, it must also be that the
marginal revenue of installed capital equals the price of buying capital, but since
such point bounds the inaction area, it must also include the marginal adjustment
costs (foregoing of part of the profits). We justified the boundary conditions by
means of an intuitive economic jist: for the more rigorous arguments used for the
mathematical derivation of the boundary conditions for impulse control of jump
diffusions we refer to Øksendal and Sulem (2004). The same reasoning applies
for disinvestment: once the high demand threshold XD is reached for any level of
capital, reflected in the threshold sD, then the firm will sell capital to the target
level KD, bringing the state variable to its target level sDT . This is reflected in
the value matching and smooth pasting conditions

ṼD(sD) = ṼD(sDT )− α−s1−γ
D − p0(s−1

DT − s
−1
D )

q(sDT ) = p0

q(sD) = −α−(1− γ)sγD + p0.

where similarly to the investment boundary we define ṼD = V/XD. Note that
(sTD)−1 − s−1

D is negative. Using the form of q and V given by (40) and (C), we
are left with a nonlinear system of six equations in six variables which allows to
identify the constants C1 and C2, the value of the investment and disinvestment
options, and the thresholds and target levels sI , sTI , sD, sTD. If the process that
drives X (and therefore s) was a jumpless diffusion, the state variable s would only
oscillate between the thresholds sI and sD. Because of the possibility of a large
enough negative jump is nonzero, there will be a point sL below the disinvestment
threshold which will act as an attracting barrier, for which the total value of the
assets in place and the real options equals the costs of operating. The firm will
then shut down operations: this point is given by the condition

Ã

1− γ
sγL +

C1

1− ξ1

sξ1L +
C2

1− ξ2

sξ2L = B.

Note that with a Gaussian diffusion driving the demand this point would be never
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(a) λ = 0 (b) λ = 5

Figure 3: Increase in inaction area for an increase in σ ∈ [0.05, 0.3], for different levels of drift
µ and a Gaussian jump diffusion with constant frequency λ and µJ = 0.

reached, since allowing partial irreversibility allows the firm to sell capital once
demand is low enough and the lower threshold sD is hit, and the purely diffusive
business conditions by their continuous nature cannot allow the threshold to be
jumped. A simulation of the full firm dynamics can be seen in Figure 2, where
the firm is simulated with the double exponential jump diffusion given by (8).
The dashed line at sL is the absorbing barrier of firm shutdown. When s hits
the upper threshold sI = X/Kt at the first upper passage time τ1I , the optimal
investment policy is to purchase an amount dK+ of capital in order to shift the
state variable to sTI = X/(Kt + dK+), and when s hits the lower threshold at
the first lower passage time τ1D, corresponding to “bad” business conditions, then
the optimal policy is to sell an amount dK− of capital shifting the state variable
back to sTD. Simultaneously the capital stock Kt depreciates “naturally”, and
its decrease is plotted on the lower panel of Figure 2. This also implies that
investment is necessary even if the business conditions were to be constant, i.e.
dXt = 0: the used capital (together with its maintenance cost M) will decrease
Kt and therefore the state variable s will be naturally pushed towards the upper
investment boundary, at which the firm will replace the exhausted capital stock.
Note that in this case the first upper passage time τ1K is deterministic.

3 Numerical Solutions and their Implications
The system determined by (23) - (29) is not tractable analytically, and we now
proceed to solve it numerically in order to study the impact of different components
of uncertainty on the investment and disinvestment thresholds. This will allow us
to show the model’s stylized predictions on investment dynamics which we will
then test empirically. We start by noticing that the equation (29) that determines
the lower threshold sL is decoupled, and that given sIT , sDT , sI , sD the system is
linear in C1, C2. Given that we will solve the system on a grid of fixed parameters
and then let different parameters of interest vary, this helps greatly in terms of
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Figure 4: Impact of an increase in σ, for different levels of positive jump frequencies λU .

computation time. In all what follows we will assume the parameter values δ =
0.01, ρ = 0.01, η1 = 0.5, η2 = 0.5, α+ = 0.01, α− = 0.02, γ = 0.85, p0 = 0.81, p1 =
1, F = 0.05.

We first show in Figure 3 how the size of the inaction area reacts to an increase
in σ, for different levels of drift (µ), for both when jumps are present and not
present. Consistent with the results in literature, in panel (a) we see in the absence
of any jumps (λ = 0) i.e. a Gaussian diffusion process, an increase in volatility
increases the inaction area of firms inversely related to their growth rates. Panel
(b) of Figure 3 plots the size of the inaction area for a Gaussian jump diffusion,
where the jump sizes are normally distributed. The figure shows that the presence
of jumps increases the inaction area much further, and has an even bigger impact
as volatility increases. This implies that regardless of the direction of jumps and/or
if their mean (µJ) is zero (i.e. negative and positive jumps are equally likely), the
effect of jumps on the firms’ inaction region continues to be increasing. What
is especially worth noting here is that in the presence of high volatility, jumps
drastically amplify the gap between low growing and medium to high growing
firms.

We now show results obtained using a double exponential distribution with
different jump frequencies λU , λD in order to study the effect of the frequency of
positive and negative jumps separately. We first show that as the frequency of
upward jumps λU increases, its impact on the inaction area depends on the level
of “continuous” component of uncertainty σ: Figure 4 shows that an increase in λU
for lesser levels of σ has a positive effect on investment threshold, since the inaction
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Figure 5: Impact of an increase in σ, for different negative jump frequencies λD.

Figure 6: Impact on the investment threshold of an increase in σ, for different negative jump
frequencies λD.



Figure 7: Impact on the disinvestment threshold and the exit line of an increase in σ, for
different negative jump frequencies λD.

area decreases: this implies that if continuous uncertainty is low, and the overall
environment is relatively stable, then up jumps will benefit firm investment, but if
σ starts to increase above a certain level then up jumps will be considered simply
as extra uncertainty, regardless of the fact that they could be beneficial. Next we
explore how an increase in frequency of negative jumps λD pushes further away the
investment thresholds: Figure 5 shows if the frequency of negative jumps is very
small, then it will increase the inaction area until it is balanced by a dominating
continuous uncertainty parameter σ, whereas if λD is large enough, the increase
in the inaction area will be unequivocal. We further show the negative impact on
investment by means of Figure 6, which shows the effect of σ and λD on the upper
investment threshold sI . The figure shows that again the magnitude of σ affects
the impact of the jumps depending on the magnitude of the jump frequencies,
always increasing the investment inaction area. Finally, in figure 7 we study the
impact of both continuous and discontinuous uncertainty on the disinvestment
threshold and on the exit line, i.e. the level of scaled business condition sL at
which the firm shuts down operations: an increase in σ pushes the threshold sD
down, consistently with the established literature results. The novelty here lies in
the impact of an increase in the frequency of negative jumps, λD: the disinvestment
threshold increases, as can be seen in Figure 7. The increase in sD is inferior to
the increase in the investment threshold sI , implying an increase in inaction area.
This can be interpreted by means of the division of uncertainty in continuous and
discontinuous: the possibility of a negative jump large enough to project the firm’s
business condition below the exit line sL increases the firm’s propensity to disinvest
and sell capital, as though to “ensure” enough distance from the absorbing barrier
of the exit line sL. This phenomenon is further strengthened by the increase in
sL (the exit point) which is greater than the increase in sD, meaning that the
disinvestment point and exit point become closer as the frequency of negative
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jumps increases. This phenomenon by construction cannot be described by a
stochastic process that admits only continuous paths, and allows to show that the
different forms that uncertainty can take can have radically different effects on the
firm’s investment decisions.

4 Empirics
In this section we test empirically the implications of our model on firm-level data.
The introduction of real options in investment literature led to a renewed attempt
at studying the relationship between investment and uncertainty in microecono-
metric studies. Due to the presence of non-convex costs of adjustment, such as
partial irreversibility, the impact of uncertainty on the average level of the capital
stock in the long run is found to be ambiguous (Abel and Eberly (1999), Caballero
(1999), Bloom (2000)), as both investment and disinvestment are deterred by real
option effects6. A less ambiguous empirical result, robust to aggregation across
investment decisions in multiple capital goods, is found in the evidence that sales
growth or a demand shock has a weaker impact effect on current investment for
firms facing higher levels of uncertainty (Bloom et al. (2007), Bond et al. (1999),
Guiso and Parigi (1999)). We use this result, tested via an interaction term be-
tween demand shock and uncertainty, in order to investigate our theoretical results.
Our model has three main testable implications:

(T1) When the stochastic process describing the firm’s business conditions is non-
Gaussian due to the presence of jumps, an increase in volatility and an in-
crease in the frequency of jumps (for a Gaussian jump diffusion) increase
the inaction region by affecting its investment and/or disinvestment thresh-
old. This inactivity should be directly reflected in the firm’s investment
behaviour.

(T2) Our model further delineates the above result by focusing on the direction
of jumps, by means of a double exponential jump diffusion. The implication
is that if the frequency of negative jumps is large enough, the increase in the
inaction area will be significant.

(T3) In the presence of increasing volatility, an increase in the frequency of jumps
magnifies the difference between a low growing firm and a medium to high
growing firm.

(T4) The effect of an increase in the frequency of positive jumps is positive for
firms with low volatility and becomes negative as the volatility increases.

We use an unbalanced panel of 403 publicly traded U.K. firms between 2003 and
20177. Our empirical strategy consists of a two stage estimation: in the first stage

6A recent paper by Bloom et al. (2016) shows how firms react to both short and long-run
uncertainty, with less reversible, longer-lived investment more strongly associated with long-run
rather than short-run uncertainty.

7As per convention, we drop firms classified under the following sectors: Banks, Financial
Services, Life and Non-Life Insurance and Investment Trusts.
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we structurally estimate the uncertainty parameters for each firm in our sample.
In the second stage, using these estimated parameters we conduct a firm level
panel analysis using a fixed effects model to see how a firm’s responsiveness to
investment is influenced by these parameters. We use Datastream to obtain the
firm stock prices and Worldscope company accounts’ annual data for firm funda-
mentals. Further information on the data is provided in the appendix.

A key caveat of our model is the assumption of constant volatility and jump
frequency underlying the firm’s business conditions. Although this is not a very
practical assumption it is important in three ways: a) it allows our jump diffusion
model to be analytically tractable, b) this makes the first stage structural esti-
mation of the uncertainty parameters less computationally intensive and c) most
importantly, although constant volatility is not a realistic feature of the data, it is
a good starting point to disentangle the volatility and jump component of uncer-
tainty and study their effects on firm investment behaviour. Consistently with the
model assumptions, in this section we estimate time-invariant uncertainty param-
eters, such as volatility, jump frequencies and the parameters related to the jump
size distribution. Time-invariance of the parameters does not affect the second
stage panel analysis, since our principal interest is the interaction between real
sales growth (demand shock) and the uncertainty components.

4.1 Stage One Estimation

The first stage of the estimation involves estimating the structural parameters of
the stochastic process given by (4). If we could observe the true underlying busi-
ness conditions (demand and productivity) of these firms or if we had access to
output price data at a sufficiently disaggregated level, we could estimate directly
the parameters from these time series. Unfortunately there is no such data avail-
ability, and therefore we use the high-frequency stock market returns data of the
firms in our sample as a proxy for business conditions. This is in line with Leahy
and Whited (1995) and Bloom et al. (2007), who state that the advantage of using
asset returns is that it captures the effects of any aspect of a firm’s environment
that investors deem important, thus essentially capturing to an extent the business
conditions.

For the estimation of the parameters, we restrict our attention to jump diffu-
sions, so the jump measure is a not “pure” Lévy process. We therefore estimate a
model of the form

dSt/St = µdt+ σdWt + zdNt (30)

and S0 = s0, where µ ∈ R, σ > 0 are scalars, Wt is the standard Brownian
motion and z is a random jump magnitude. The discontinuous jump process is a
compound Poisson process of the form

∫ t2

t1

F (z)dNt =

Nt2−t1∑
i=1

zi
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where zi is a sequence of i.i.d. random variables, and Nt is a λ-parameterized
Poisson process. Since we bounded the negative jumps to −1, we choose a variable
z̃ = ln(1 + z) and we satisfy the constraint. Solving the stochastic differential
equation (30) one obtains immediately

St = s0 exp

[(
µ− 1

2
σ2

)
+ σWt +

Nt∑
i=1

z̃i

]

and integrating over t, t+ ∆t one gets

∆ lnSt =

(
µ− 1

2
σ2

)
∆t+ σ∆Wt + z̃∆Nt, (31)

where ∆xt = xt+dt − xt and ∆t is chosen according to the frequency of the data8.
We need now to choose the distribution of the random jump magnitude: for a first
baseline estimation, we fit a Gaussian jump diffusion (GJD) on the firms’ daily
returns, in which the jump sizes are normally distributed, i.e. z̃ ∼ N(µJ , σ

2
J).

For the main estimation we first address one of the main concerns in using high-
frequency stock market returns, which is that they may reflect noise unrelated to
firm fundamentals (Bloom et al. (2007); Gilchrist et al. (2014)). We address this
issue by regressing with ordinary least squares (OLS) the firm daily returns on the
benchmark FTSE All-Share Index and extracting the residuals, thus purging the
systematic risk and focusing on the idiosyncratic component9. On these residuals,
we fit an asymmetric double exponential jump diffusion (DEJD) of the form given
by (8).

It is known that the density of log-returns given by (31) with the assump-
tion of Gaussian jump sizes is an infinite mixture of Gaussian distributions, as
shown for example by Honoré (1998), and for the DEJD model an even larger
mixture as shown by Ramezani and Zeng (2007). Since we need to fit the models
on daily observations ranging from 2003 to 2017, on an average of approximately
5000 observations per time series, for each of the 400+ firms, computation time
for estimating such mixtures (even for low-degree truncations) can be an issue.
Furthermore, for the DEJD model estimating such mixture has a variety of con-
vergence issues. We therefore resort to a simplification first introduced by Ball and
Torous (1983), which states that if the jumps do not happen too frequently, then
in a small enough ∆t only one jump can occur. Then ∆Nt can be approximated
with a Bernoulli variable and the density of ∆St is given by

f∆St(x; θ) ∼ (1− λ∆t)fW (x) + λ∆tfW∗Z(x) +O(∆t2)

8In all what follows we will deal with daily stock price data, and therefore we will choose
∆t = 1/252 in order to obtain annualised estimates for the subsequent second part of the
estimation.

9This scenario is analogous to the Capital Asset Pricing Model (CAPM) and much research
in finance has focused on idiosyncratic volatility. See Campbell et al. (2001) and Bekaert et al.
(2012)
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where fW is the density of the diffusive part of (30) fW∗Z is the convolution∫∞
−∞ fW (x)fW∗Z(x− y)dx. For the Gaussian model, the convolution of two Gaus-
sians is again Gaussian; fW is a Gaussian density with mean (µ − 1/2σ2)∆t and
variance σ2∆t, and fW∗Z is a Gaussian density with mean (µ−1/2σ2)∆t+µJ and
variance σ2∆t+ σ2

J and the parameter vector θ = (µ, σ, µJ , σJ). For the DEJD, it
can be shown that the density reads

f∆St(x; θ) =
1− (λU + λD)∆t√

σ2∆t
φ (aD) +

+ λDη1e
1
2
η2

1σ
2∆te(x−(µ− 1

2
σ2)∆t)η1Φ (aW )

+ λUη2e
1
2
η2

2σ
2∆te−(x−(µ− 1

2
σ2)∆t)η2Φ (aU)

where θ = (λU , λD, µ, σ, η1, η2), φ and Φ are the density and distribution functions
of N(0, 1) and their arguments are given by

aW =
x− (µ− 1

2
σ2)∆t

√
σ2∆t

aD = −
x− (µ− 1

2
σ2)∆t+ η1σ

2∆t
√
σ2∆t

aU =
x− (µ− 1

2
σ2)∆t− η2σ

2∆t
√
σ2∆t

.

In such mixture settings, there may exist several local minima. The estimation
of the model is therefore a difficult task and we use two estimation techniques
that help circumvent the issue of multiple stable points: multinomial maximum
likelihood and differential evolution. For the first, we implemented the following
procedure, as presented by Hanson et al. (2004) and for whose robustness and
consistency properties we refer to the original paper. We first sort the n observa-
tions of the data vector in b bins of equal size Bi = [ξi−0.5∆b, ξi+0.5∆b]. We choose
for bin size

∆b =
(xmax − xmin)

√
n

q0.75 − q0.25

where qa is the a-th percentile of the data series. We then calculate the theoretical
jump diffusion frequency for each bin as

f thi (θ) = n

∫
Bi

f∆St(x; θ)dx,

and obtain the multinomial likelihood to be minimized as

MLL(θ) = −
b∑
i=1

f empi ln f thi (θ) (32)

where f empi is the observed frequency of the data for each i-th bin. The minimiza-
tion of (32) yields the MLL estimator θ̂. Note that Ef empi = f thi (θ), therefore we
have that the mean objective is

E
[
MLL(θ)

]
= −

b∑
i=1

f thi (θ) ln f thi (θ)
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which means that the mean objective is the entropy of the information in each
bin. Particular care must be taken while estimating the DEJD to bound the pa-
rameter space for the integrals not to explode: we avoid this issue by bounding
below the parameters σ and σJ to 10−5, as well as appropriately bounding the
rest of the parameters to “reasonable” intervals. Lastly, we obtain standard errors
from the diagonal of the information matrix of MLL(θ). Furthermore, we set to
zero each parameter for which a zero null hypothesis is not rejected at 95% con-
fidence: this in our sample only happened within the jump frequency parameters10.

The second estimation technique involves using differential evolution in order
to minimize the log-likelihood

logL(θ|∆S1, . . . ,∆Sn) =
n∑
i=1

f∆Si(∆Si|θ). (33)

Differential evolution (DE) is a search heuristic introduced by Storn and Price
(1997) and is a genetic evolutionary algorithm that uses biology-inspired opera-
tions of crossover, mutation, and selection on a population in order to minimize
an objective function over the course of successive generations. It is an efficient
algorithm that is well suited for optimization problems with functions that exhibit
many optima and discontinuities, since it’s a heuristic method and does not need
to evaluate the gradient of the function at every iteration11. For further details
on the methodology we refer to the original paper that introduced the method.
We apply the DE algorithm to minimize the log-likelihood (33) since using DE
to minimize (32) increases drastically the computation time. Both methods work
well for our purposes and produce similar estimates. We estimate (30) on each
firm’s log-returns for a GJD and on each firm’s specific residuals for a DEJD.
Table 1 and Table 3 show the mean parameter estimates across firms for both sets
of estimations.

4.2 Stage Two Estimation

In the second stage we estimate the following investment equations:

Iit
Kit−1

= β1∆Yit + β2
CFit
Kit−1

+ β3
CFit−1

Kit−2

+ β4Sizeit + β5qit +

β6 (σi ×∆Yit) + +β7 (λi ×∆Yit) + αi + τt + εit (34)

Iit
Kit−1

= β1∆Yit + β2
CFit
Kit−1

+ β3
CFit−1

Kit−2

+ β4Sizeit + β5qit +

β6 (σi ×∆Yit) + +β7(λdi ×∆Yit) + β8 (λui ×∆Yit) +

αi + τt + εit (35)
10We used both nlminb in R and fminsearch in Matlab.
11This method has already been applied to Gaussian jump diffusions by Ardia et al. (2011)
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In both equations Iit is the investment of firm i in period t and Kit−1 is the
measure of capital stock at the end of the previous period. Following Cooper and
Haltiwanger (2006) and Caballero et al. (1995) we define the investment measure
as:

Iit = CAPEXit −DISPit
where Iit is investment, CAPEXit represents capital expenditure, i.e. the funds
used to acquire fixed assets other than those associated with acquisitions, and
DISPit is the disposal or retirement of fixed assets. Our focus is therefore on
the investment rate (Iit/Kit−1) which can be positive or negative. The reason
we adopt this modified definition of investment is due to the importance of both
positive and negative capital stock adjustment in our model. The intuitive gist of
how we map the data to our model dynamics is the following: every time the state
variable st hits the upper threshold sI the firm will activate a burst of investment
dK+. Similarly, every time the lower threshold sD is hit, disinvestment dK− will
be activated. The net investment rate at time t, which will be our outcome vari-
able in equations (34) and (35), will then be the sum of the investment bursts,
minus disinvestment.

Our econometric specification controls for investment opportunities by includ-
ing a measure of average q (qit), as defined by Hayashi (1982), real sales growth
(∆Yit), firm size and cash flow (CF ) since these variables are informative of a
firm’s investment decisions. The Q model of investment relates firm investment
rate to its marginal q, which is reflected in the present discounted value of ex-
pected future profits. Empirically, however, we can only observe the average q,
i.e.Tobin’s q whose low explanatory power, mainly attributed to measurement er-
ror, is well documented in the literature. We therefore include two other control
variables, real sales growth and cash flow that provide information on firm invest-
ment behaviour and may predict marginal q. Both these terms provide additional
information by capturing expectations of profitability at longer horizons, or reflect
misspecification of the basic Q model; furthermore, cash flow may specifically re-
flect financing constraints or capital market imperfections (Bond et al. (2004);
Bulan (2005); Fazzari et al. (1988)). Lastly, we include firm size as a control,
since a large literature shows that size affects the firm’s access to external capital
markets and hence may influence it’s investment rate (Kadapakkam et al. (1998);
Audretsch and Elston (2002);Whited (1992)). Equation (35) includes interaction
terms between real sales growth and our uncertainty components (σi, λi), which
are discussed in detail in the next section. Finally we also control for firm specific
fixed effects (αi) and firm-invariant time-specific effects (τt). With these controls
in place and exploiting the panel nature of our data we estimate (34) and (35)
with a fixed effects model. Additionally, since our empirical strategy consists of a
two-stage estimation where our second-stage specification contains variables con-
structed from parameters estimated in the first stage, the second step covariance
matrix may be biased, as shown by Karaca-Mandic and Train (2003) and Murphy
and Topel (2002). In order to correct for this potential noise induced by first stage
estimates we bootstrap our standard errors clustered at the firm level.
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4.2.1 Baseline Estimation: Gaussian Jump Diffusion

In the first stage, for our baseline estimation we fit a Gaussian distribution to
the random jump magnitude on the firms’ daily stock returns, which yields five
parameters per firm: (λi, σi, µi, µJi , σJi). The mean and standard deviation across
firms of the estimated parameters are given in Table 1 for both MMLE and DE
estimation techniques. For this set of parameters we then estimate (34) using the
MMLE results12.

Table 1: Mean parameter estimates across firms, Gaussian jump diffusion

µ σ λ µJ σJ

(MMLE) −0.002 0.285 2.780 −0.004 0.224
(0.222 (0.145) (2.217) (0.167) (0.172)

(DE) −0.046 0.295 3.452 −0.043 0.168
(0.245) (0.147) (2.216) (0.280) (0.091)

Volatility and drift of a firm are represented by σ and µ. The jump intensity is
represented by λ and the jump sizes are normally distributed with parameters µJ
and σJ . The interaction terms in our investment equations are of primary interest
to us as they exhibit the effect of uncertainty on the impact effect of demand
shocks on investment decision. The first term, widely used in the literature, is
an interaction between the volatility component of uncertainty and sales growth
(σi ×∆Yit). Although this distribution does not explicitly give us parameters to
differentiate between an up and down jump, it provides us with a good starting
point to test how jump frequency can influence the firm investment rate in the
presence of a demand shock. The second term in equation (34) is an interaction
between the jump intensity of a firm and sales growth (λi ×∆Yit). Since our model
predicts that an increase in frequency of jumps, for a Gaussian jump diffusion,
increases the firm’s inaction region, this interaction term will be indicative of if
and how jumps, irrespective of their direction, impact the firm’s investment rate.

Table 2 shows the estimation results. In column (1) we report results for a
simple investment regression, without uncertainty, to establish the relationship
between our control variables and firm investment rate. We find that the coef-
ficients on all the independent variables are correctly signed and significant with
the exception of current cash flow and size. In column (2) we introduce inter-
action terms which give us an insight into how our components of uncertainty
influence the firm’s investment rate. Our primary result of interest here is the sig-
nificant negative coefficient on the interaction term between real sales growth and
jump intensity, this is in line with our model’s implication (T1). Thus the jump
component of uncertainty does significantly influence the short-run response of

12DE results yield similar second-stage estimations, which we omit for brevity.
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Table 2: Investment, Jumps & Volatility

Dep.var.: Iit/Kit−1 (1) (2) (3) (4)
Baseline GJD DEJD DEJD

Sales growth (∆Yit) 0.145∗∗∗ 0.178∗ 0.327∗∗∗ 0.271∗∗
(0.0464) (0.0914) (0.125) (0.132)

Cash Flow ( Cit
Kit−1

) 0.0235 0.00956 0.0117 0.0244
(0.0306) (0.0244) (0.0307) (0.0222)

Lagged cash flow (Cit−1

Kit−2
) 0.0642∗∗ 0.0774∗∗∗ 0.0765∗∗∗ 0.0694∗∗∗

(0.0270) (0.0237) (0.0247) (0.0172)

Sizeit 0.0659 0.0523 0.0496 0.0766∗
(0.0427) (0.0336) (0.0409) (0.0424)

Tobin’s q (qit) 0.0227∗ 0.0240∗∗ 0.0253∗∗ 0.0259∗
(0.0118) (0.0120) (0.0129) (0.0142)

Volatility × sales growth -0.0649∗ -0.148∗∗
(σi ×∆Yit) (0.0394) (0.0663)

Jump freq. × sales growth -0.0366∗
(λi ×∆Yit) (0.0204)

Negative jump freq. × sales growth -0.0586∗∗
(λdi ×∆Yit) (0.0290)

Positive jump freq. × sales growth -0.0141
(λui ×∆Yit) (0.0295)

Firm growth(low)×Volatility × sales growth -0.151∗
(growthlit × σi ×∆Yit) (0.0781)

Firm growth(medium)×Volatility × sales growth -0.0450
(growthmit × σi ×∆Yit) (0.154)

Firm growth(high)×Volatility × sales growth -0.0503
(growthhit × σi ×∆Yit) (0.0887)

Firm growth(low)×Negative jump freq. × sales growth -0.0811∗
(growthlit × λdi ×∆Yit) (0.0447)

Firm growth(medium)×Negative jump freq. × sales growth -0.216
(growthmit × λdi ×∆Yit) (0.164)

Firm growth(high)×Negative jump freq. × sales growth 0.00152
(growthhit × λdi ×∆Yit) (0.0518)

Firm growth(low)×Positive jump freq. × sales growth 0.0242
(growthlit × λui ×∆Yit) (0.0391)

Firm growth(medium)×Positive jump freq. × sales growth 0.162
(growthmit × λui ×∆Yit) (0.154)

Firm growth(high)×Positive jump freq. × sales growth -0.0702
(growthhit × λui ×∆Yit) (0.0551)
N 3194 3194 3194 2978

Note: Sample period is 2003-2017 at an annual frequency (No. firms = 403). Dependent variable
in logs. Bootstrapped standard errors clustered at the firm level shown in parenthesis. Time
dummies are included (but not reported) in all specifications. * p < .1, ** p < .05, *** p < .01
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investment to demand shocks. Additionally, as expected the interaction between
volatility and sales growth is significant and negative.

4.2.2 Main Estimation: Double Exponential Jump Diffusion

In line with our model, for our main estimation we fit a double exponential jump
diffusion on the residuals, giving us six parameters per firm:

(
λdi , λ

u
i , σi, µi, η1i, η2i

)
.

The mean and standard deviation across firms of the estimated parameters are
given in Table 3 for both MMLE and DE estimation techniques. For consistency
with the previous section, we use the MMLE parameter set for the second-stage
estimation13. The jump asymmetry modeled by DEJD allows us to distinctly char-
acterize firm investment behaviour for negative and positive jumps. We therefore
estimate (35) for this set of parameters.

Table 3: Mean parameter estimates across firms, double exponential jump diffusion

µ σ η1 η2 λu λd

(MMLE) 0.003 0.054 4.0832 4.138 3.619 3.707
(0.052) (0.017) (1.234) (1.267) (0.568) (0.508)

(DE) −0.002 0.039 3.560 3.640 3.963 4.034
(0.009) (0.017) (1.614) (1.552) (0.587) (0.570)

Firm volatility is represented by σ and negative and positive jump frequencies
are represented by λd and λu. The mean positive jump size is given by 1/η1 and
for negative jumps by 1/η2. In (35) we have three interaction terms of significance,
in addition to volatility (σi ×∆Yit) we separately observe the responsiveness of
firm investment to demand for negative jumps (λdi × ∆Yit) and positive jumps
(λui × ∆Yit). Table 2 column (3) shows the estimation results. We see that the
firm fundamental variables are correctly signed and significant. More importantly,
we find that the volatility and negative jump frequency interaction terms are
negative and significant thus indicating that the firm response of investment to
demand shocks is indeed lower at not only higher levels of volatility but also higher
frequency of negative jumps. This is in line with the (T2) implication of our
model. Unsurprisingly, we find the positive jump frequency interaction term to be
insignificant. This is consistent with our model which states that positive jumps
have a significant negative impact on the (dis)investment threshold at very high
levels of volatility and positive impact at low levels of volatility. The insignificance
of this interaction term could imply that the underlying volatility for our panel
of firms is not high or low enough to capture the effect of the positive jumps
effect. In column (4) we split our sample based on the firm’s growth rate as
measured by the five year annual sales growth. The third testable implication

13Second-stage estimates with DE parameters yields similar results and is therefore again
omitted.
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(a) Volatility (σ)

(b) Negative jump frequency (λd)

(c) Positive jump frequency (λu)

Figure 8: Marginal effects of a demand shock for different components of uncertainty
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of our model (T3) states that firms with low growth would be at a much higher
disadvantage than medium to high growing firms. The uncertainty interaction
terms for the low growing firms are negative and significant, thus confirming that
these firms are more sensitive to jumps and volatility than medium and high
growth firms. In order to further explore these results, in Figure 8 we show the
marginal effects of a change in sales growth on the firm investment rate for different
components of uncertainty. In part (a) we see a decrease in the impact effect of
sales growth for increasing levels of volatility. Similarly in part (b), for varying
levels of underlying volatility, we observe the dampening effect of a demand shock
for increasing frequency of negative jumps. Finally in part (c) we analyze the
dynamics of positive jumps. Coherently with (T4), we find that for low levels
of volatility positive jumps can indeed have a beneficial effect on the impact of
a demand shock on firm investment. For higher levels of volatility, this effect
becomes negative.

4.3 Robustness Checks

Liquidity and financial constraints play a fundamental role in influencing firm
behaviour. There is a voluminous literature studying how a firm’s investment
decision is influenced by the financing frictions it faces14. If a firm is financially
constrained they are more prone to the effects of uncertainty, thus magnifying
their sensitivity to investment decisions. In this section, we examine the robust-
ness of the jumps, volatility and investment relationship by splitting our sample
based on measures of financial constraints.

Firm size has been shown to play an important role in firm value and there
is considerable evidence that small firms face sizeable growth and financing con-
straints due to restricted access to external finance15. Schiffer and Weder (2001)
show that small firms regularly report greater growth barriers relative to medium
or large firms. Additionally Beck et al. (2006) show that size is one of the most
reliable predictors of firms’ financing obstacles, in both developed and develop-
ing countries. Another popular measure of financial constraint is the Kaplan and
Zingales (KZ) index16 which combines several accounting and market firm char-
acteristics. A higher index value suggests a firm is more constrained. The five
variables, along with the signs of their coefficients in the KZ index, are: cash
flow (negative), the market to book ratio (positive), leverage (positive), dividends
(negative), and cash holdings (negative). Therefore using size and KZ index we
split our sample into terciles.

Defining firm size as the natural logarithm of the book value of assets, we
classify firms in the bottom tercile as small and those in top tercile as large17. In

14See Fazzari et al. (1988); Whited (1992); Froot et al. (1993); Kaplan and Zingales (1995);
Gomes (2001); Denis and Sibilkov (2009)

15Beck and Demirgüç-Kunt (2006); Berger and Udell (1998); Galindo and Schiantarelli (2003)
16Kaplan and Zingales (1995); Lamont et al. (2001)
17Adhering to the literature, we exclude firms in the middle tercile from our analysis. The use
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Table 4, column (a) we observe the negative jump frequency interaction term to
be significant and negative for small firms while being insignificant for the large
firms, thus confirming it is mainly small firms that are impacted by the jump’s
dampening effect of a demand shock on the investment rate. Additionally the
volatility interaction term for both small and large firms is negative and signifi-
cant. However it is interesting to observe that for volatility there is significantly
greater negative effect on investment for large firms relative to small firms. Bulan
(2005) provides a possible explanation by highlighting the use of capital intensive
technologies in bigger firms. Their presence could imply the inability to substitute
labour for capital, which affects the degree of irreversibility of the invested capital
i.e. in response to a demand shock it is difficult for the firm to vary its produc-
tion inputs. Hence larger firms can be considered more "irreversible" than small
firms thus revealing a greater negative effect compared to small firms. For the KZ
index we classify as constrained firms those ranked in the top tercile while those
in the bottom tercile are classified as unconstrained. In column (b), we see that
negative jumps have a significant negative impact on the response of investment
to demand shocks for constrained firms, while the effect for unconstrained firms
is insignificant. We also find both the volatility interaction terms to be significant
and negative, with the constrained firms having a greater significance.

The influence of lagged investment rate on current investment is a well doc-
umented result in the investment literature (Gilchrist and Himmelberg (1995);
Gilchrist et al. (2014); Eberly et al. (2012)). Accordingly, in column (c) we con-
sider a dynamic specification of the form:

Iit
Kit−1

= β0
Iit−1

Kit−2

+ β1∆Yit + β2
CFit
Kit−1

+ β3
CFit−1

Kit−2

+ β4Sizeit +

β5qit + β6 (σi ×∆Yit) + β7(λdi ×∆Yit) + β8 (λui ×∆Yit) +

αi + τt + εit. (36)

We estimate (36) using system GMM (Arellano and Bover (1995); Blundell and
Bond (1998)) which combines a system of equations in first differences using suit-
ably lagged levels of endogenous variables as instruments (similar to Arellano-Bond
first differenced estimator), with equations in levels for which lagged differences
of endogenous variables are used as instruments. Unobserved firm specific effects
are eliminated from the first-differenced transformation. Again we find that our
key results for jumps, volatility and short run investment dynamics to be robust.

5 Conclusions
In this paper we investigate the effect of different sources of uncertainty on firm
investment dynamics. We present a model of optimal investment and disinvest-
ment with partial irreversibility for a firm that faces stochastic business conditions

of terciles, although not necessary is in line with convention. See Farre-Mensa and Ljungqvist
(2016)

28



Ta
bl
e
4:

Sa
m
pl
e
Sp

lit
s

&
D
yn

am
ic

In
ve
st
m
en
t
Sp

ec
ifi
ca
ti
on

(a
)

D
ep
.v
ar
.:
I i
t/
K
it
−

1
Si
ze

Sa
le
s
gr
ow

th
(∆
Y
it
)

0.
33
6∗
∗∗

(0
.1
22
)

C
as
h
F
lo
w

(
C
it

K
it
−

1
)

-0
.0
24
2

(0
.0
32
7)

La
gg
ed

ca
sh

flo
w

(C
it
−

1

K
it
−

2
)

0.
08
25
∗∗
∗

(0
.0
30
9)

To
bi
n’
s
q
(q
it
)

0.
03
33
∗∗
∗

(0
.0
16
6)

S
iz
e i
t

0.
15
5∗
∗∗

(0
.0
48
5)

Si
ze
(s
m
al
l)
×

V
ol
at
ili
ty
×

sa
le
s
gr
ow

th
-0
.1
22
∗

(s
iz
es i
t
×
σ
i
×

∆
Y
it
)

(0
.0
72
2)

Si
ze
(b
ig
)
×

V
ol
at
ili
ty
×

sa
le
s
gr
ow

th
-0
.3
02
∗∗

(s
iz
eb i
t
×
σ
i
×

∆
Y
it
)

(0
.1
46
)

Si
ze
(s
m
al
l)
×

N
eg
at
iv
e
ju
m
p
fr
eq
.
×

sa
le
s
gr
ow

th
-0
.1
09
∗∗

(s
iz
es i
t
×
λ
d i
×

∆
Y
it
)

(0
.0
52
3)

Si
ze
(b
ig
)
×

N
eg
at
iv
e
ju
m
p
fr
eq
.
×

sa
le
s
gr
ow

th
-0
.0
47
7

(s
iz
eb i
t
×
λ
d i
×

∆
Y
it
)

(0
.0
43
0)

Si
ze
(s
m
al
l)
×

P
os
it
iv
e
ju
m
p
fr
eq
.
×

sa
le
s
gr
ow

th
0.
02
99

(s
iz
es i
t
×
λ
u i
×

∆
Y
it
)

(0
.0
50
7)

Si
ze
(b
ig
)
×

P
os
it
iv
e
ju
m
p
fr
eq
.
×

sa
le
s
gr
ow

th
-0
.0
17
4

(s
iz
eb i
t
×
λ
u i
×

∆
Y
it
)

(0
.0
51
0)

N
21
12

(b
)

D
ep
.v
ar
.:
I i
t/
K
it
−

1
F
in
.
C
on

st
.

Sa
le
s
gr
ow

th
(∆
Y
it
)

0.
35
9∗
∗∗

(0
.1
36
)

C
as
h
F
lo
w

(
C
it

K
it
−

1
)

-0
.0
03
95

(0
.0
32
4)

La
gg
ed

ca
sh

flo
w

(C
it
−

1

K
it
−

2
)

0.
08
23
∗∗
∗

(0
.0
29
4)

To
bi
n’
s
q
(q
it
)

0.
02
66
∗

(0
.0
13
6)

S
iz
e i
t

0.
08
62
∗∗

(0
.0
38
3)

un
co
ns
tr
ai
ne
d
×

V
ol
at
ili
ty
×

sa
le
s
gr
ow

th
-0
.1
49
∗

(f
in
.c
on
st
u it
×
σ
i
×

∆
Y
it
)

(0
.0
84
8)

co
ns
tr
ai
ne
d
×

V
ol
at
ili
ty
×

sa
le
s
gr
ow

th
-0
.1
52
∗∗

(f
in
.c
on
st
c it
×
σ
i
×

∆
Y
it

(0
.0
71
7)

un
co
ns
tr
ai
ne
d
×

N
eg
at
iv
e
ju
m
p
fr
eq
.
×

sa
le
s
gr
ow

th
-0
.0
23
9

(f
in
.c
on
st
u it
×
λ
d i
×

∆
Y
it
)

(0
.0
86
3)

co
ns
tr
ai
ne
d
×

N
eg
at
iv
e
ju
m
p
fr
eq
.
×

sa
le
s
gr
ow

th
-0
.1
02
∗∗
∗

(f
in
.c
on
st
c it
×
λ
d i
×

∆
Y
it
)

(0
.0
33
2)

un
co
ns
tr
ai
ne
d
×

P
os
it
iv
e
ju
m
p
fr
eq
.
×

sa
le
s
gr
ow

th
-0
.0
56
9

(f
in
.c
on
st
u it
×
λ
u i
×

∆
Y
it
)

(0
.0
86
2)

co
ns
tr
ai
ne
d
×

P
os
it
iv
e
ju
m
p
fr
eq
.
×

sa
le
s
gr
ow

th
0.
02
03

(f
in
.c
on
st
c it
×
λ
u i
×

∆
Y
it
)

(0
.0
26
3)

N
20
91

(c
)

D
ep
.v
ar
.:
I i
t/
K
it
−

1
D
yn

am
ic

Sa
le
s
gr
ow

th
(∆
Y
it
)

0.
90
5∗
∗∗

(0
.2
51
)

C
as
h
F
lo
w

(
C
it

K
it
−

1
)

-0
.0
60
4

(0
.0
60
1)

La
gg
ed

ca
sh

flo
w

(C
it
−

1

K
it
−

2
)

0.
13
9∗
∗∗

(0
.0
52
1)

To
bi
n’
s
q
(q
it
)

0.
12
0∗

(0
.0
69
5)

S
iz
e i
t

-0
.0
40
3

(0
.0
47
0)

La
gg
ed

In
ve
st
m
en
t
(I
it
−

1
/K

it
−

2
)

0.
09
73
∗∗
∗

(0
.0
30
7)

V
ol
at
ili
ty
×

sa
le
s
gr
ow

th
-0
.3
62
∗∗
∗

(σ
i
×

∆
Y
it
)

(0
.1
31
)

N
eg
at
iv
e
ju
m
p
fr
eq
.
×

sa
le
s
gr
ow

th
-0
.2
73
∗∗
∗

(λ
d i
×

∆
Y
it
)

(0
.0
90
9)

P
os
it
iv
e
ju
m
p
fr
eq
.
×

sa
le
s
gr
ow

th
0.
06
45

(λ
u i
×

∆
Y
it
)

(0
.0
63
6)

H
an

se
n
(p
−
v
a
lu
e)

0.
39
5

Se
co
nd

-o
rd
er

se
ri
al

co
rr
el
at
io
n
(p
−
v
a
lu
e)

0.
07
05

T
hi
rd
-o
rd
er

se
ri
al

co
rr
el
at
io
n
(p
−
v
a
lu
e)

0.
01
72

N
31
94

N
o
te
:
B
o
ot
st
ra
p
p
ed

st
an

d
ar
d
er
ro
rs

cl
u
st
er
ed

at
th
e
fi
rm

le
ve
l
sh
ow

n
in

p
ar
en
th
es
is
.
T
im

e
d
u
m
m
ie
s
ar
e
in
cl
u
d
ed

(b
u
t
n
ot

re
p
or
te
d
)
in

al
l
sp
ec
ifi
ca
ti
on

s.
F
or

d
y
n
am

ic
sp
ec
ifi
ca
ti
on

w
e
u
se

S
y
st
em

G
M
M
.

T
w
o-
st
ep

es
ti
m
at
or
s
th
at

ar
e
as
y
m
p
to
ti
ca
ll
y
ro
b
u
st

to
b
ot
h

h
et
er
os
ke
d
as
ti
ci
ty

an
d

se
ri
al

co
rr
el
at
io
n
,
an

d
w
h
ic
h

u
se

th
e
fi
n
it
e-
sa
m
p
le

co
rr
ec
ti
on

p
ro
p
os
ed

b
y

?.
T
h
e
in
st
ru
m
en
ta
l
va
ri
ab

le
s
u
se
d

in
th
e

fi
rs
t-
d
iff
er
en
ce
d
eq
u
at
io
n
s
ar
e

I
i
t
−

2
K

i
t
−

3
,

I
i
t
−

3
K

i
t
−

4
,

C
i
t
−

2
K

i
t
−

3
,

C
i
t
−

3
K

i
t
−

−
4
,
S
iz
e
i
t
−

3
,
S
iz
e
i
t
−

4
,

∆
Y
i
t
−

2
an

d
∆
Y
i
t
−

3
.
In

th
e
le
ve
l
eq
u
at
io
n
s

∆
I
i
t
−

1
K

i
t
−

2
,

∆
C
i
t
−

1
K

i
t
−

2
,

∆
S
iz
e
i
t
−

1
an

d
∆

∆
Y
i
t
−

1
.
*
p
<
.1
,
**

p
<
.0

5
,
**
*

p
<
.0

1

29



driven by a jump diffusion, allowing us to incorporate discontinuous uncertainty
related to information arrival, sudden changes and large shocks. This framework
allows us to study the effect of uncertainty on the investment and disinvestment
thresholds, and we discover that the presence of jumps can drastically increase
the area in which it is not profitable for a firm to invest. We discover that the
investment rate is reduced by an increase in the frequency of negative jumps, and
that firms disinvest quicker in order to protect themselves from the possibility of
a large negative jump that would cause shutdown of operations. We also find
that positive jumps can have an ambiguous effect depending on the underlying
volatility. We show that firms with lower growth are more affected by discontin-
uous uncertainty than firms with medium to high growth. These results imply
that the standard Gaussian framework consistently underestimates the negative
effect of uncertainty on firm investment decisions. We test the model implications
on a panel of UK firm-level data dating from 2003 to 2018: we first estimate the
jump diffusion parameters for each firm for both Gaussian and Double Exponen-
tial jump diffusions by means of multinomial maximum likelihood and differential
evolution techniques, and subsequently we estimate investment equations on our
panel of firms. We show that our empirical findings are in line with the theoretical
implications of the model.
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A Derivation of the profit function
Assume each firm has a Cobb-Douglas production function with decreasing returns
to scale of the form

Qt = ωtK
α
t L

β
t

where we have productivity ωt, capital K and labor L. The firm faces an isoelastic
demand curve with elasticity (ε)

Qt = BtP
−ε
t

where B is a demand shifter. These can be combined into a revenue function

Rt(ω,B,K,L) = B
1
ε
t ω

1− 1
ε

t K
α(1− 1

ε
)

t L
β(1− 1

ε
)

t

Now let us denote a = α
(
1− 1

ε

)
and b = β

(
1− 1

ε

)
: we obtain

X1−a−b
t = B

1
ε
t ω

1− 1
ε

t

where X now combines the firm demand and productivity. We assume labour to
be a flexible factor of production that can be instantaneously adjusted, and thus
the firm chooses L to maximize their instantaneous profit at every instant t:

π(X,K) = max
Lt

(X1−a−b
t Ka

t L
b
t − wLt)

=

(
b

w

) b
1−b

X
1− a

1−b
t K

a
1−b
t

= hXγ
t K

1−γ
t
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B Proof of Proposition 1
Using the Ito-Levy formula for a geometric Lévy process we have

d ln(Xt) =

(
µ− 1

2
σ2

)
dt+ λ

∫
Ω

[
ln[Xt(1 + z)]− ln(Xt)−X−1

t zXt

]
F (dz) +

+ σdWt +

[
ln[Xt(1 + z)]− ln(Xt)

]
(dNt − λdt)

which is the sum of the geometric drift, the expectation of the jump magnitudes
and the sum of two martingales. The dynamics of the capital stock when invest-
ment is zero are given by d log(Kt) = −δdt, therefore

d ln

(
Xt

Kt

)
=

(
µ+ δ − 1

2
σ2

)
dt+ σdWt +

+ λ

∫
Ω

[
ln[Xt(1 + z)]− ln(Xt)−X−1

t zXt

]
F (dz) +

+

[
ln[Xt(1 + z)]− ln(Xt)

]
(dNt − λdt) (37)

We can now consider the variable st = Xt/Kt, as demand scaled by capital (firm
size). Adding and subtracting log(Kt) and dividing Xt by Kt in the jump parts
of (37) one can immediately recognize that st evolves according to the geometric
Lévy process

dst = (µ+ δ) stdt+ σstdWt + st−

∫
Ω

zÑ(dt, dz)dt (38)

C Proof of Proposition 2
The solution of the homogeneous part is:

qH(st) = Ãsγt −B → VH(Xt, Kt) = AXγ
t K

1−γ
t −BKt

which implies a general solution of the form

q(st) = Ãsγt −B + C̃1s
ξ1
t + C̃2s

ξ2
t

↓
V (Xt, Kt) = AXγ

t K
1−γ
t −BKt + C1X

ξ1
t K

1−ξ1
t + C2X

ξ2
t K

1−ξ2
t

For the homogeneous part, substituting the guess yields

qH(st) = Ãsγt −B → VH(Xt, Kt) = AXγ
t K

1−γ
t −BKt

which implies a general solution of the form
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q(st) = Ãsγt −B + C̃1s
ξ1
t + C̃2s

ξ2
t

↓
V (Xt, Kt) = AXγ

t K
1−γ
t −BKt + C1X

ξ1
t K

1−ξ1
t + C2X

ξ2
t K

1−ξ2
t

For the homogeneous part, substituting the guess yields

Ã =
(1− γ)a

ρ+ δ − λφ(z)− γ
(
µ+ δ − σ2

2

)
− γ2 σ2

2

B =
M

ρ+ δ

where the jump parts are given by the probability integrals

φ(z) =

∫
Ω

[
(1 + z)γ − 1− γz

]
F (dz)

φ1(z) = γ

∫
Ω

zF (dz)

φ2(z) =

∫
Ω

[1− (1 + z)γ]F (dz)

Note that since γ < 1, the fact that the integral is bounded below at -1 guarantees
real solutions. The complementary solution solves

[
ρ+ δ + λ

∫
Ω

(
1− (1 + z)γ

)
F (dz)

]
q(st) =

st

(
µ+ δ − λγ

∫
Ω

zF (dz)

)
q′(st) + s2

t

σ2

2
q′′(st)

Trying a solution of the form q(s) = sξ allows to obtain the two roots

ξ2,1 =
1

σ2

[(
σ2

2
− µ− δ + λφ1(z)

)
± (39)

±

√(
µ+ δ − λφ1(z)− σ2

2

)2

+ 2σ2 [ρ+ δ + λφ2(z)]


where we have φ1(z) = γ

∫
Ω
zF (dz) and φ2(z) =

∫
Ω

[1− (1 + z)γ]F (dz). y means of
the superposition principle we obtain the solution for the marginal value of capital

q(st) = Ãsγt −B + C1s
ξ1
t + C2s

ξ2
t . (40)

In (40), Ãsγt is the value of the assets in place and C1s
ξ1
t + C2s

ξ2
t is the value of

the investment options, the first for disinvestment and the second for investment.
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Integrating in K yields the form of the solution for the value function

V (Xt, Kt) = AXγ
t K

1−γ
t −BKt + C1X

ξ1
t K

1−ξ1
t + C2X

ξ2
t K

1−ξ2
t + CK

where the constants Ã, B are given (41) and (42). Using the natural boundary
condition V (0, 0) = 0 one easily obtains CK = 0. Note that coherently with what
shown before, it is homogeneous of degree one, i.e. V (s) = V (X,K)/K.

Ã =
(1− γ)a

ρ+ δ − λφ(z)− γ
(
µ+ δ − σ2

2

)
− γ2 σ2

2

(41)

B =
M

ρ+ δ
(42)

where the jump part is given by the probability integral

φ(z) =

∫
Ω

[
(1 + z)γ − 1− γz

]
F (dz).

Note that since γ < 1, the fact that the integral is bounded below at -1 guarantees
real solutions. The complementary solution solves

[
ρ+ δ + λ

∫
Ω

(
1− (1 + z)γ

)
F (dz)

]
q(st) =

st

(
µ+ δ − λγ

∫
Ω

zF (dz)

)
q′(st) + s2

t

σ2

2
q′′(st)

Trying a solution of the form q(s) = sξ gives

[
ρ+ δ + λ

∫
Ω

(
1− (1 + z)γ

)
F (dz)

]
sξ

= ξ

(
µ+ δ − λγ

∫
Ω

zF (dz)

)
sξ + ξ(ξ − 1)

σ2

2
sξ

which allows to obtain the two roots

ξ2,1 =
1

σ2

[(
σ2

2
− µ− δ + λφ1(z)

)
± (43)

±

√(
µ+ δ − λφ1(z)− σ2

2

)2

+ 2σ2 [ρ+ δ + λφ2(z)]


where we have φ1(z) = γ

∫
Ω
zF (dz) and φ2(z) =

∫
Ω

[1−(1+z)γ]F (dz). In (40), Ãsγt
is the value of the assets in place and C1s

ξ1
t +C2s

ξ2
t is the value of the investment
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options, the first for disinvestment and the second for investment.

Integrating in K yields the form of the solution for the value function

V (Xt, Kt) = AXγ
t K

1−γ
t −BKt + C1X

ξ1
t K

1−ξ1
t + C2X

ξ2
t K

1−ξ2
t + CK

and using a natural boundary condition V (0, 0) = 0 we immediately obtain CK =
0, which satisfies homogeneity as required.

D Data
• CAPEXit represents the capital expenditures of a firm i.e. the funds used to

acquire fixed assets other than those associated with acquisitions. It includes
additions to property, plant and equipment and investments in machinery
and equipment. Datastream item WC04601

• DISPit represents disposal of fixed assets i.e. the amount a company re-
ceived from the sale of property, plant and equipment. Datastream item
WC04351

Iit = CAPEXPit −DISPit

• Kit represents the firm capital stock taken as the net property and plant
equipment. Datastream item WC02501.

• Yit represents net sales i.e. gross sales and other operating revenue less
discounts, returns and allowances. Datastream item WC01001.

• Cit represents cash flow i.e. funds from operations - the sum of net income
and all non-cash charges or credits. Datastream item WC04201.

• qit represents Tobin’s Q i.e. market value of assets by replacement value of
assets which can be calculated with market capitalization (WC08001), total
liabilities (WC03351) and common equity (WC03501)

• Sizeit: total assets representing the sum of total current assets, long term
receivables, investment in unconsolidated subsidiaries, other investments, net
property plant and equipment and other assets. Datastream item WC02999.

• Kaplan-Zingales Index: −1.002 × cash flowit
property, plant and equipment (net)it−1

+ 0.283 ×
qit + 3.139× total debtit

total capitalit
− 39.368× dividends paidit

property, plant and equipment (net)it−1
− 1.315×

cash holdingsit
property, plant and equipment (net)it−1

– Total debt represents all interest bearing and capitalized lease obliga-
tions. It is the sum of long and short term debt. Datastream item
WC03255
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– Total capital represents the total investment in the company. It is
the sum of common equity, preferred stock, minority interest, long-
term debt, non-equity reserves and deferred tax liability in untaxed
reserves. For insurance companies policyholders’ equity is also included.
Datastream item WC03998

– Dividends paid represent the total common and preferred dividends
paid to shareholders of the company. Datastream item WC04551

– Cash holdings represents the sum of cash and short term investments.
Datastream item WC02001

All financial variables have been deflated by the GDP deflator (base year: 2010)
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