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Time-varying parameter (TVP) models have the potential to be over-parameterized, particularly when
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1 Introduction

Time-varying parameter (TVP) regressions and Vector Autoregressions (VARs) have enjoyed great popularity

among econometricians in recent years as a way of modelling the parameter change that occurs in many macroe-

conomic and financial time series variables. These are state space models which have been found to work well in

forecasting (e.g. D’Agostino et al., 2013) and been successfully used for structural economic analysis in a changing

environment (e.g. Cogley and Sargent, 2005; Primiceri, 2005). They are flexible and capable of modelling almost

any nonlinear relationship between explanatory and dependent variables. However, this flexibility comes at a cost:

TVP models can be over-parameterized and suffer from the curse of dimensionality, particularly when the number

of potential explanatory variables is large. This can lead to very good in-sample fit, but poor out-of-sample forecast

performance.

There is a large and growing literature that proposes various methods for overcoming these over-parameterization

concerns using Bayesian methods (see, among others, Frühwirth-Schnatter and Wagner, 2010; Belmonte et al., 2014;

Kalli and Griffin, 2014; Kowal et al., 2017; Uribe and Lopes, 2017; Rockova and McAlinn, 2017; Koop and Korobilis,

2018; Bitto and Frühwirth-Schnatter, 2019; Huber et al., 2019; Eisenstat et al., 2019). These papers propose different

approaches to obtain more precise inference. Much of this literature uses hierarchical global-local shrinkage priors.

A key property of these priors is that they ensure shrinkage in the sense that they pull coefficients towards zero.

However, they do not impose them to be exactly zero and, thus, estimation uncertainty remains. In contrast

to shrinkage approaches, selection approaches seek to choose a single sparse specification. That is, they select a

particular set of explanatory variables and, by doing so, impose coefficients on non-selected explanatory variables

to be zero.1

Which is better: shrinkage or sparsity? The answer to this question depends on the empirical application.

In the case of constant coefficient regressions and VARs, there is debate among Bayesian econometricians as to

whether models are sparse (in which case sparsification methods are appropriate) or dense (in which case shrinkage is

appropriate). For instance, Giannone et al. (2017) considers a range of data sets in macroeconomics, microeconomics

and finance and finds evidence mostly in favor of dense models, a finding reinforced by Cross et al. (2019). But

why not do both? This is exactly what recent papers such as Hahn and Carvalho (2015) propose. That is, first

shrinkage is done using a Bayesian global-local shrinkage prior and then sparsification is done on the resulting

estimates. Such an approach could add the benefits of sparsity (i.e. the reduction in estimation error that is

important for improving forecasts) along with the benefits of shrinkage which are so useful with dense data sets.

1In the Bayesian literature, there are some global-local priors, such as the spike and slab prior, which do select variables, but these
are less popular since Markov Chain Monte Carlo (MCMC) algorithms tend to mix poorly.
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Until recently, one reason not to do both was computation. Bayesian inference with hierarchical shrinkage priors

requires computationally-burdensome MCMC methods. Adding a second sparsification step can greatly increase

the burden (i.e. this step often uses cross-validation methods for choosing key tuning parameters which can be

computationally costly). However, a recent paper, Ray and Bhattacharya (2018), proposes a very simple algorithm,

the signal adaptive variable selector (SAVS), for doing the sparsification step. This involves no tuning parameters

and is computationally trivial. Ray and Bhattacharya (2018) provides a theoretical justification for SAVS and

shows it to have good empirical performance in simulated and real data contexts.

The papers cited in the preceding paragraph all relate to constant coefficient regression or VAR models rather

than the TVP state space models which are the focus of this paper. We develop Bayesian methods for inference and

forecasting in TVP regressions and TVP-VARs which both shrink and sparsify. The shrinkage step can be done

using any of the hierarchical shrinkage priors that have been used with TVP regressions. In this paper, we use the

Dirichlet-Laplace prior (see Bhattacharya et al., 2015), a fully hierarchical variant of the stochastic search variable

selection prior (see George and McCulloch, 1993; Ishwaran and Rao, 2005; George et al., 2008), the Horseshoe (see

Carvalho et al., 2010), the Bayesian Lasso of Park and Casella (2008) and the Normal-Gamma prior of Griffin and

Brown (2010). The sparsity step is done using the SAVS method of Ray and Bhattacharya (2018).

Another extension we make in this paper relative to the shrink-then-sparsify methods of Hahn and Carvalho

(2015) and Ray and Bhattacharya (2018) is that we allow for uncertainty in the sparsified estimates. That is,

Hahn and Carvalho (2015) and Ray and Bhattacharya (2018) take the posterior mean from the shrinkage step and

use only this in the sparsification step. We sparsify every MCMC draw in the shrinkage step, thus allowing for

parameter uncertainty. Our methods are illustrated with simulated and real data and we find them to improve

estimation accuracy and forecast performance.

The remainder of this paper is organized as follows: Section 2 discusses various global-local shrinkage priors in

the context of the regression model with constant coefficients. It describes how the sparsification strategy of Ray

and Bhattacharya (2018) works in the regression model. Section 3 extends these methods to TVP regressions and

TVP-VARs. Section 4 investigates the performance of our methods relative to non-sparsified alternatives using

simulated data from a range of sparse and dense TVP regressions. Section 5 carries out a forecasting exercise using

TVP-VARs. A comparison of forecasts which are both shrunk and sparsified to those which are only shrunk shows

the benefits of doing both. Section 6 concludes the paper and a technical appendix provides further details on the

specific prior setup and the posterior simulation algorithms.
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2 Shrinkage and Sparsification in Regression Models

In this section we describe the shrinkage and sparsification methods for regression which we build on in this paper.

In the next section, we will show how they can be adapted for dynamic regressions and multiple equation models

such as VARs. Consider the regression model:

yt = β′Xt + εt, (1)

for t = 1, . . . , T where yt is a scalar dependent variable, Xt is a K × 1 vector of explanatory variables and β is a

K-dimensional vector of regression coefficients. The errors are assumed to be independent and follow a zero mean

Gaussian distribution with variance σ2
ε .

When K is large relative to T , Bayesians increasingly use hierarchical priors so as to induce shrinkage. Global-

local shrinkage priors are particularly popular (see, e.g., Polson and Scott, 2010). These contain shrinkage that is

both global (i.e. common to all parameters) and local (i.e. specific to each parameter). We consider priors which

can be represented as scale mixtures of Gaussians. In particular, for the jth regression coefficient we assume:

βj ∼ N(0, φjλ), φj ∼ f, λ ∼ g. (2)

Global shrinkage is controlled by λ while φj handles the shrinkage of coefficient j. f and g are mixing densities

and many different choices have been proposed for them. In this paper, we consider the Horseshoe (HS) prior of

Carvalho et al. (2010), the Bayesian Lasso (Lasso) of Park and Casella (2008), the Normal-Gamma (NG) prior of

Griffin and Brown (2010), the Dirichlet-Laplace (DL) prior of Bhattacharya et al. (2015) and the Normal- mixture

of Inverse Gamma (NMIG) prior of Ishwaran and Rao (2005), which is a variant of the stochastic search variable

selection (SSVS) prior of George and McCulloch (1993, 1997). All of these are global-local shrinkage priors and

differ from one another only in the choices of f and g. In addition, and unless otherwise noted, we use a weakly

informative inverted Gamma prior on σ2
ε with hyperparameters dσ = eσ = 0.01.

Using any of these global-local shrinkage priors, MCMC methods can be used to carry out posterior inference and

calculate the posterior mean, β̂. This estimate has been shrunk, but not sparsified. Even though many elements

of β̂ will be near zero, they will not be precisely zero and there will be estimation uncertainty associated with

them. Sparsification, as used in Hahn and Carvalho (2015) and Ray and Bhattacharya (2018), proceeds by taking

β̂ and setting small elements in it to zero. We first define the SAVS estimate and then offer some explanation and
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motivation for it. The SAVS estimate is

γj = sign(β̂j) ||Xj ||−2max
(

|β̂j | ||Xj ||2 − κj , 0
)

, (3)

with Xj denoting the jth column of a T ×K matrix X = (X1, . . . ,XT )
′, (x)+ = max(x, 0) and sign(x) returns the

sign of x. Note that this is a soft-thresholding approach where all values of γj below a certain value are set to zero

and that it only acts on the posterior mean.

The sparsified estimate depends on tuning parameters, κj , which determine the thresholds for each coefficient.

Various approaches to selecting these have been proposed in the literature including computationally-intensive

approaches such as cross-validation. However, a recent paper, Ray and Bhattacharya (2018), comes up with a

surprisingly simple solution. This is to set:

κj =
1

|β̂j |2
. (4)

This choice implies a penalty for the jth variable which is ranked in inverse-squared order relative to the magnitude

of the jth coefficient. With this choice of thresholds, the SAVS estimate is trivial to calculate.

To provide some motivation for the SAVS estimate note that (3) can be obtained by first solving an optimization

problem akin to the Lasso:

γ = arg min
γ







1

2

∥

∥

∥Xβ̂ −Xγ

∥

∥

∥

2

2
+

K
∑

j=1

κj |γj |







. (5)

Equation (5) tries to find a sparse coefficient vector γ that is close to β̂ while introducing a penalty in case of

non-zero elements in γ.

The typical way to solve this optimization problem is using a coordinate descent algorithm (Friedman et al.,

2007). But, as shown in Ray and Bhattacharya (2018), if you initialize this algorithm at β̂ and then do one iteration

you get precisely the simple algorithm described in (3) and (4). It is also noted in Ray and Bhattacharya (2018)

that convergence almost always occurs after one iteration and, hence, stopping after one iteration is a sensible thing

to do.

One key shortcoming of computing the SAVS estimate is that uncertainty quantification about γ is not possible

and computing non-linear functions of γ calls for Monte Carlo integration techniques. Ray and Bhattacharya (2018)

highlight that one potential solution to this issue is to replace β̂ with a draw from the full conditional posterior

distribution of β. This is an insight we build upon in the context of the TVP models which are the focus of this

paper.
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3 Shrinkage and Sparsification in TVP Models

In this section, we develop methods for shrinkage and sparsification in state space models such as the TVP regression

and the TVP-VAR. This is achieved using the non-centered parameterization of Frühwirth-Schnatter and Wagner

(2010). We emphasize that the algorithms below do the sparsification at each draw from the MCMC algorithm,

allowing for treatment of uncertainty in the shrinkage step. Thus, the algorithms are averaging over different

sparsified estimators in a manner similar to Bayesian model averaging.

3.1 The TVP Regression Model

The TVP regression model used in this paper takes the form:

yt = β′
tXt + εt

βt = βt−1 +wt,

where all definitions are the same as in (1) except that βt are dynamic (time-varying) regression coefficients which

follow a random walk with wt ∼ N(0K ,V ), where V = diag(v1, . . . , vK) denotes the variance-covariance matrix of

the state innovations while vj (j = 1, . . . ,K) is a process innovation variance associated with the jth coefficient.

The non-centered parameterization of this model is given by:

yt =β′
0Xt + β̃′

t

√
V Xt + εt,

β̃t =β̃t−1 + ηt, ηt ∼ N(0K , IK).

with the jth element of β̃t given by β̃jt =
βjt−βj0√

vj
and

√
V = diag(

√
v1, . . . ,

√
vK). This equation can be written as:

yt = α′Zt + εt, (6)

whereby α = (β′
0,
√
v1, . . . ,

√
vK)′, Zt = [X ′

t, (β̃t ⊙Xt)
′]′ and ⊙ denotes element-wise multiplication. Conditional

on knowing the full history of the states in β̃t, (6) resembles a standard regression model with a (partially) latent

covariate vector Zt.

Well-developed MCMC methods exist to carry out Bayesian posterior and predictive inference in state space

models such as the TVP regression model under various priors. In this paper, we simulate the full history of

the normalized dynamic regression coefficients {β̃t}Tt=1 using the forward-filtering backward-sampling algorithm
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proposed in Carter and Kohn (1994) and Frühwirth-Schnatter (1994). Conditional on β̃t, (6) is a standard regression

model, implying that we can simulate α from a Gaussian full conditional posterior distribution and σ2
ε from an

inverted Gamma distribution. The corresponding moments take standard forms and are presented in Appendix B.

We propose to do shrinkage on α using the global-local mixture priors mentioned in the previous section and

described in Appendix A. That is, conditional on a draw of the full history of the states, {β̃t}Tt=1, we have the

regression model given in (6), and shrinkage can be done exactly as described in the preceding section. For each

of the global-local mixture priors we consider, MCMC methods for drawing α and σ2
ε , conditional on draws of the

states exist. For the Dirichlet-Laplace prior we follow the methods of Bhattacharya et al. (2015). For the NMIG

specification, we adopt the algorithm proposed in Ishwaran and Rao (2005) while for the Horseshoe, the MCMC

algorithm developed in Makalic and Schmidt (2016) is used. Since the Normal-Gamma prior nests the Bayesian

Lasso, we adopt the algorithm put forth in Griffin and Brown (2010) (see Appendix A for further details).

Every draw of α, denoted as α(n), from any of the MCMC algorithms is sparsified using SAVS. Applying the

SAVS estimator in (3) to each draw from the posterior of α yields:

γj
(n) = sign

(

α
(n)
j

)

||Zj ||−2
(

|α(n)
j | ||Zj ||2 − κj

)

+
, for n = 1, . . . , N (7)

where Zj denotes the jth column of Z = (Z1, . . . ,ZT )
′, κj = |α(n)

j |−2 and N denotes the number of post burn-in

MCMC draws. This procedure effectively allows for uncertainty quantification and the computation of potentially

non-linear functions of the sparsified parameters. Thus, one can think of our proposed procedure as an approximate

MCMC algorithm which draws from the sparsified conditional posterior p(γ|α,Z).2 Hence, forecasts produced will

average over different sparsified models. That is, one MCMC draw will lead to one particular sparsified model which

is used for forecasting, another draw may choose another sparsified model to produce forecasts. Hence, what we

are proposing is similar in spirit to Bayesian model averaging. Of course, it is possible to use the SAVS algorithm

directly on the posterior mean of α as is done by Hahn and Carvalho (2015) and Ray and Bhattacharya (2018).

This would be similar in spirit to a Bayesian model selection strategy where a single sparsified model was chosen for

forecasting. But this would ignore model uncertainty and, in addition, would be problematic since Zt is partially

latent.

Another point worth emphasizing about our algorithm is that it is fast. Relative to the computational time

required to do MCMC, adding the SAVS step increases the computational burden by a trivial amount. For any

empirical specification where MCMC is possible, our proposed algorithm is also possible. Of course, if K is too

2The algorithm is approximate since σ2
ε
does not play a role in the SAVS algorithm. If desired, after each sparsification, one could

take a draw of σ2
ε
conditional on the sparsified estimates.
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large, then MCMC methods may be computationally infeasible. In such a case, variational Bayesian methods may

be a practical alternative (see Koop and Korobilis, 2018). But with variational Bayes methods, the SAVS algorithm

would be applied on the approximate posterior mean and model uncertainty ignored.3

3.2 The TVP-VAR

The shrink-then-sparsify algorithm we propose for the TVP regression can be extended to handle the TVP-VAR

in a straightforward fashion. The idea is to transform the TVP-VAR so that the error covariance matrix in

the measurement equation is diagonal. Then the TVP regression algorithm of the preceding sub-section can be

applied one equation at a time. Equation-by-equation estimation of VARs is done in several recent papers using

transformations similar to the one used here (see, e.g., Carriero et al., 2016; Kastner and Huber, 2017; Koop

et al., 2019) and the reader is refered to these papers for further details about the computational advantages of

this approach. With macroeconomic data it is often important to add stochastic volatility, which leads us to the

TVP-VAR-SV specification described in this section.

Let yt be an M × 1 vector of endogenous variables for t = 1, . . . , T . The TVP-VAR-SV can be written as:

yt = (IM ⊗Xt)βt + εt, (8)

where Xt = (y′

t−1, . . . ,y
′

t−P , 1)
′ contains the P lags of yt and an intercept, βt is the vector K = M(MP + 1)

coefficients at time t which is assumed to evolve according to a multivariate random walk. The errors are independent

over time with εt ∼ N(0M ,Σt). Σt is the time-varying error covariance matrix with

Σt = UtHtU
′
t .

Let Ut denote a lower uni-triangular matrix and Ht = diag(eh1t , . . . , ehMt). The M(M − 1)/2 free elements in Ut

follow independent random walks while the hjt’s are log-volatilities that follow AR(1) processes,

hjt = µj + ρj(hjt−1 − µj) + ηt, ηt ∼ N(0, σ2
η). (9)

Here, we let µj denote the unconditional mean, ρj the persistence parameter and σ2
η the error variance of the log-

volatility process. The prior specification on the parameters of the log-volatility equation closely follows Kastner and

3It would be possible to surmount this drawback of variational Bayes by first using variational Bayes to obtain an approximation to
the posterior and then applying the SAVS algorithm to draws from this approximation. But this would be computationally demanding,
thus undermining the main advantage of variational Bayes.
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Frühwirth-Schnatter (2014). Specifically, we use a zero mean Gaussian prior with variance 102 on µj , a Beta prior

on
ρj+1

2 ∼ B(25, 5) and a Gamma prior on σ2
η ∼ G(1/2, 1/2). The Gamma prior translates into a Gaussian prior on

±ση with zero mean and unit variance. In the MCMC algorithm, the full history of hjt as well as the parameters of

equation (9) are obtained using the algorithm proposed in Kastner and Frühwirth-Schnatter (2014). This algorithm

exploits the centered and non-centered parameterization of the non-linear state space model to increase sampling

efficiency and samples the full history of the log-volatilities from a (T − 1)-dimensional multivariate Gaussian.

As noted in Carriero et al. (2016); Kastner and Huber (2017); Koop et al. (2019), computation is greatly

simplified if the model is transformed so that the errors in different equations are independent of one another. This

can be achieved by augmenting the ith equation in the system with the contemporaneous values of the first i − 1

elements in yt. That is, if yit is the ith variable (for i > 1), we can write the TVP-VAR-SV as a set of M unrelated

TVP regressions:

yit = X ′
tβit +

i−1
∑

j=1

uij,tyjt + ηit, ηit ∼ N(0, ehit), (10)

where ηit and ηjt are independent for i 6= j, βit denotes the elements of βt in the ith equation and uij,t are the

elements of U−1
t for i = 2, . . . ,M ; j = 1, . . . , i− 1.

We then write the TVP-VAR-SV using the non-centered parameterization. For equation i we obtain:

yit = X ′
tβi0 + (

√

V
β
i Xt)

′β̃it +

i−1
∑

j=1

uij,0yjt +

i−1
∑

j=1

√

vuij ũij,tyjt + ηit, ηit ∼ N(0, ehit). (11)

Here, we let
√

V
β
i = diag

(

√

vβi1, . . . ,
√

vβiK

)

and
√

vuij denotes the standard deviation of the error in the random

walk state equation for the jth VAR coefficient in the ith equation. Similarly,
√

vuij is the standard deviation for

the random walk state equation for the elements of Ut. Thus, β̃it and ũij,t are the states for equation i and the

shocks in the corresponding state equations have unit standard deviation.

Since the errors in the different equations are independent of one another, estimation of one equation at a

time using the algorithm of the preceding sub-section, including the SAVS step detailed in (7), can be done.

Computation is also sped up since parallelization is feasible. Note also that, since the coefficients in U−1
t are

appearing as regression coefficients in (10), these can also be shrunk and sparsified. In large TVP-VARs, where

there are many such error covariance terms, this is potentially beneficial for forecasting purposes. Notice that we do

not only obtain a sparse error covariance matrix but also allow for testing whether the corresponding free elements

are time-varying or constant.
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4 Evidence Using Artificial Data

In this section, we present evidence on the performance of the proposed methodology using artificial data generated

from different TVP regression models. Across the different data generating processes (DGPs), the covariates are

drawn from a Uniform distribution bounded between −1 and 1. The βt’s are generated using the non-centered

parameterization with β0 ∼ N(0K , 0.12IK) and ±√
vj ∼ N(0, 0.12), j = 1, . . . ,K, while differing percentages of the

elements in α are randomly set to zero. The measurement error variance σ2
ε is set equal to 0.12.

Before presenting results using repeated samples, the main features of sparsification are illustrated in Figure 1.

The results in the three panels of the figure are based on the Horseshoe prior and use three different single artificial

data sets obtained by simulating T = 400 observations from a large (K = 30) dynamic regression model. Figure

1(a) plots posterior features of βjt against time for a case where it is zero (i.e. the DGP is one where jth regressor is

not selected) using a non-sparsified and sparsified estimator. Note that the sparsified estimator is precisely correct,

it sets βjt = 0 with probability one. Thus, it exactly coincides with the true value and cannot be seen in Figure

1(a). The non-sparsified posterior distribution, although the posterior mean is very close to the correct value, has a

credible interval that is non-negligible. This reflects estimation uncertainty and could spill over into poor forecast

performance using the non-sparsified posterior. The performance of the SAVS algorithm when βjt is a non-zero

constant (i.e. the DGP is one where βjt = βjt−1 for all t) is shown in Figure 1(b). In this case, the posterior

distributions of the sparsified and non-sparsified models almost coincide. Notice, however, that the credible sets are

constant over time for the sparsified model, indicating that the corresponding element in
√
V is set equal to zero

throughout all iterations of the MCMC algorithm. In contrast, Figure 1(c) illustrates a case where βjt is non-zero

and time-varying. Notice that the sparsified and non-sparsified posterior distributions are close to being identical.

In this case, it is not desirable to sparsify the corresponding elements in α and the SAVS algorithm is not doing so.

Thus, regardless of whether a coefficient is zero, a non-zero constant or time-varying, this figure indicates that our

methods estimate it well. They work better than the non-sparsified alternative in cases where there is sparsity and

equally well in non-sparse cases.

Table 1 presents evidence for the importance of sparsification and shrinkage in TVP regression models using

different data configurations, priors, numbers of regressors and sample sizes. The DGP described above is modified

to reflect varying degrees of sparsity. These different sparsity levels are labeled sparse (with 90% zeros in α),

moderate (with 70% zeros) and dense (with 30% zeros). To assess how our techniques perform across model

dimensions and length of time series involved, we consider variants of each sparsity level with K = 5, 15 and 30

explanatory variables and T = 250 and 400 observations. The latter are typical values in quarterly and monthly
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Figure 1: Sparsified and non-sparsified posteriors of βjt for a large time-varying parameter model

(a) DGP with βjt = 0 for all t (b) DGP with βjt = βjt−1 for all t (c) DGP with βjt time-varying

0 100 200 300 400

−
0
.0

3
−

0
.0

2
−

0
.0

1
0
.0

0
0
.0

1
0
.0

2
0
.0

3

0 100 200 300 400

0
.1

5
0
.2

0
0
.2

5
0
.3

0
0
.3

5

0 100 200 300 400

−
1

0
1

2
3

4
5

6

Notes: The dark blue line denotes the true βjt over time, the gray shaded area represents 5th and 95th credible
sets of the posterior of βjt under a HS prior. Purple lines represent 5th and 95th credible sets of the sparsified
posterior.

macroeconomic data sets. For each DGP, we generate 100 artificial data sets and then run each through a sparsified

and non-sparsified algorithm using each of the five global-local shrinkage priors listed in Section 2. We also include a

non-informative prior (labelled Flat in the table) which does not do shrinkage. Posterior medians of βt are produced

and the absolute value of the difference between these and the true value used in the DGP is calculated. The figures

in Table 1 are averages taken over three dimensions: i) the 100 simulated data sets, ii) time and iii) the K elements

of βt.

Table 1 shows the value of sparsification, particularly with sparse DGPs. With the latter, mean absolute errors

(MAEs) are lower than their non-sparsified counterpart for every prior and choice for T and K. But even in

moderately dense specifications, sparsification lowers MAEs in most cases. In the dense specification, sparsification

does not improve upon the single best performing non-sparsified model specification. However, in that situation,

accuracy differences are found to be negligible.

The benefits of shrinking and sparsifying increase with the number of explanatory variables. Note, for instance,

that the unsparsified Flat prior model does not perform that poorly when K = 3 and 15, but displays a weak

performance when K = 30. In fact, when K = 3, the Flat prior works quite well with the sparse specification,

provided sparsification is done. This indicates that there are some cases where sparsification is more important

than shrinkage.
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Table 1: Mean absolute errors between the true realization of the βts and the posterior median

Non-sparsified Sparsified
Sparsity level Flat DL Lasso NG HS NMIG Flat DL Lasso NG HS NMIG

Small (K = 5)
T = 250

Dense 7.97 7.51 8.08 7.33 7.65 7.91 7.85 7.91 8.33 7.48 7.72 8.28
Moderate 4.66 4.59 4.47 4.97 4.27 3.62 4.06 4.53 4.29 5.11 4.30 3.75
Sparse 3.63 3.05 3.46 2.73 3.48 3.33 2.84 2.96 3.04 2.58 3.15 3.17

T = 400

Dense 7.57 7.14 6.89 6.40 7.65 7.03 7.45 7.65 7.15 6.42 7.91 7.46
Moderate 4.41 4.10 4.27 5.13 3.89 4.42 3.94 4.08 4.21 5.05 4.17 4.53
Sparse 2.90 2.74 3.40 2.80 2.44 3.43 2.26 2.64 2.93 2.70 2.19 3.23

Medium (K = 15)
T = 250

Dense 11.60 10.88 9.51 9.39 8.72 9.76 11.32 11.78 9.18 9.24 8.83 10.07
Moderate 3.46 3.98 5.22 3.27 3.64 3.03 2.29 3.48 4.84 2.88 3.39 2.90
Sparse 3.21 1.81 2.44 2.09 1.84 2.04 2.02 1.40 1.48 1.79 1.63 1.55

T = 400

Dense 9.87 10.77 9.60 8.19 8.44 8.72 9.61 11.50 9.70 8.07 8.95 9.41
Moderate 2.93 3.09 3.78 3.62 3.86 3.83 1.99 2.72 3.00 3.20 3.67 3.57
Sparse 2.30 2.14 2.37 1.75 1.27 1.90 1.23 1.89 1.96 1.51 1.08 1.39

Large (K = 30)
T = 250

Dense 15.40 14.18 14.30 12.84 13.97 12.32 15.04 15.14 13.64 12.88 14.06 12.64
Moderate 5.24 3.48 3.84 3.26 2.44 2.38 4.27 2.83 2.74 2.64 2.04 2.11
Sparse 2.53 1.33 2.48 1.36 1.72 1.67 1.17 0.79 1.59 0.97 1.59 1.07

T = 400

Dense 13.71 12.48 12.29 13.50 12.39 11.68 13.33 13.27 11.83 13.22 12.17 12.06
Moderate 4.73 3.43 3.71 4.06 2.64 2.27 3.73 2.79 2.69 3.92 2.38 1.76
Sparse 1.78 1.36 1.47 1.32 0.52 1.43 0.63 0.75 0.60 0.89 0.44 0.78

Notes: The mean is taken over time, over all parameters and over all artificial data sets. All mean absolute errors are multiplied
by 100. Flat refers to a dynamic regression model with a loosely informative prior, DL to the Dirichlet-Laplace prior, Lasso to the
Bayesian Lasso, NG to the Normal-Gamma prior, HS to the Horseshoe, and NMIG to the Normal-mixture of Inverse Gamma prior.

The choice of T has little impact on the results. In a regression model with constant parameters, we would

expect sparsification to be less important as the sample size increases since, with longer time series, the estimation

error would decrease. However, with TVP regressions, the number of parameters is also increasing with the sample

size which negates this effect. Thus, even with large numbers of observations, the researcher working with TVP

models can still benefit from sparsification.

With regards to the different global-local shrinkage priors, no clear pattern emerges where one performs consis-

tently the best across different specifications. When K = 30 and the DGP is sparse, DL (for T = 250) and HS (for

T = 400) models that are sparsified are the best performers. When K = 30 and the DGP is dense, the accuracy of

both, the DL and the HS prior deteriorates slightly while the unsparsified NMIG model shows the best performance.
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Notice that in this situation, accuracy differences across the sparsified and non-sparsified NMIG specification are,

however, quite small.

From this discussion it is apparent that identifying a default prior choice is difficult. One key take away from

this analysis, however, is that if the DGP is sparse, flexible shrinkage specifications such as the HS, the DL and

the NMIG prior in combination with the SAVS algorithm provide accurate parameter estimates. Overall, the table

tells a story of the importance of both shrinkage and sparsity, especially in large models, with the precise choice of

shrinkage prior being of lesser importance.

In the next step, we assess how well the SAVS algorithm identifies true zeros in α. Table 2 shows average

hit rates that measure the percentage of correctly estimated zeros using the SAVS algorithm. From this table,

we observe that irrespective of the priors used, our approach works well in identifying the true level of sparsity.

For sparse situations, the fraction of correctly identified zeros is often above 95% for most shrinkage priors and

model sizes considered. In the case of a Flat prior, we observe values just above 90%, which is remarkable but still

well below the percentages observed for the different shrinkage specifications under scrutiny. This slightly weaker

performance can be traced back to the fact that without shrinkage, values in α are not pushed to zero and the

corresponding penalty κj is too small. Consistent with the findings in Table 1, we find no discernible differences

in performance across the different shrinkage priors, with all of them displaying a strong performance. In fact, in

a sparse setting with K = 30, the SAVS algorithm identifies almost all zeros correctly, with hit rates being above

99%.

To sum up, this discussion highlights that sparsification improves estimation accuracy. These improvements

tend to increase with model size and the level of sparsity of the DGP. Among the set of competing shrinkage priors,

we find no single best performing specification. In terms of correctly predicting zeros in α, we found that SAVS

works well across all shrinkage priors considered, often correctly identifying above 99% of the zeros. At this point,

and before proceeding to the empirical application, it is worth emphasizing that our analysis only considers whether

our shrink-then-sparsify approach improves accuracy of point estimates, ignoring a potential bias-variance tradeoff.

One key finding is that applying SAVS never significantly decreases estimation accuracy and correctly predicts a

large fraction of true zeros. In light of Figure 1, this indicates that, by zeroing out shrunk coefficients, our approach

strongly reduces parameter uncertainty.
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Table 2: Average hit rates of the SAVS algorithm across different prior specifications

Sparsity level Flat DL Lasso NG HS NMIG
Small (K = 5)

T = 250

Dense 86.50 73.60 81.30 79.90 78.70 79.60
Moderate 88.40 93.10 92.00 94.10 91.80 91.40
Sparse 90.40 96.10 96.40 96.70 96.40 94.00

T = 400

Dense 85.60 74.80 80.20 83.10 81.50 74.90
Moderate 89.60 92.90 93.40 94.90 93.40 91.10
Sparse 91.70 97.40 96.10 97.60 97.30 95.60

Medium (K = 15)
T = 250

Dense 79.17 77.63 79.37 80.03 79.07 78.23
Moderate 83.93 97.97 95.70 97.87 96.50 96.47
Sparse 91.23 99.17 98.00 99.17 99.47 98.97

T = 400

Dense 82.57 80.40 82.27 82.97 80.73 78.33
Moderate 87.00 98.33 96.47 97.70 96.73 96.67
Sparse 93.97 99.67 98.83 99.57 99.73 98.97

Large (K = 30)
T = 250

Dense 68.57 72.57 76.05 76.05 76.47 75.38
Moderate 72.40 98.83 95.42 97.75 96.93 97.13
Sparse 85.12 99.70 97.73 99.62 99.62 99.55

T = 400

Dense 71.30 78.50 78.35 79.23 77.80 76.37
Moderate 80.68 99.17 96.32 98.57 97.17 97.38
Sparse 91.60 99.82 98.35 99.80 99.65 99.53

Notes: The mean is computed over all parameters and artificial data sets. Flat
refers to a dynamic regression model with a loosely informative prior, DL to the
Dirichlet-Laplace prior, Lasso to the Bayesian Lasso, NG to the Normal-Gamma
prior, HS to the Horseshoe, and NMIG to the Normal-mixture of Inverse Gamma
prior.

5 Forecasting US Macroeconomic Variables

In this section we present results from a forecasting exercise using US quarterly macroeconomic data taken from

the FRED-QD database (see McCracken and Ng, 2016) that span the period from 1959Q1 to 2017Q4. We focus on

forecasting GDP, inflation (based on the GDP deflator) and the Fed Funds rate (henceforth labeled focus variables).

Table 4 provides details on the specific variables included alongside transformations used.

We use the TVP-VAR-SV of Sub-section 3.2 combined with the same set of global-local shrinkage priors as in

the preceding section. The only specification we do not consider here is the TVP-VAR-SV with a flat prior since

this model performs poorly in out-of-sample forecasting and large dimensions.
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For each prior, we use non-sparsified and sparsified versions of the model in order to produce the forecasts. We

forecast with small (M = 3), medium (M = 8) and large (M = 20) data sets and set the lag length equal to 2.

Thus, the dimension of the state space in the TVP-VAR-SVs ranges from being moderate to huge. Our forecast

evaluation begins in 1997Q1 and runs to the end of the sample. We use root mean squared forecast errors (RMSEs)

to evaluate the quality of the point forecasts and average log predictive likelihoods (LPLs) to evaluate the quality

of predictive densities. Both are benchmarked relative to a VAR-SV with DL prior, a specification that works well

for US macroeconomic data (see Kastner and Huber, 2017). This is identical to the TVP-VAR-SV with DL prior

except that the DL prior now applies directly to the constant VAR coefficients while
√

V
β
i and

√

vuij are set equal

to zero for all i, j. The VAR is transformed to allow for equation-by-equation estimation as described in Sub-section

3.2.

Before presenting the results of our forecasting exercise, we present Figure 2 which sheds light on which variables

our algorithm is choosing to predict the focus variables. This figure is produced using the large data set and the HS

prior. Previously, we have discussed how doing sparsification for each MCMC draw shares similarities with Bayesian

model averaging. For one draw a certain sparsified model will be used to forecast, at another draw a different model

will be used. This feature allows us to calculate posterior inclusion probabilities (PIPs) for each variable. The

PIP for a given coefficient is the proportion of MCMC draws for which the coefficient is not set to zero. Figure

2 is a heatmap of these PIPs at the end of the sample. Remember that, in the non-centered parameterization of

the TVP-VAR-SV (see equation (11)), there are coefficients which appear on the initial states which are constant

coefficients. The upper panel of the figure relates to these. The remaining coefficients determine whether there is

time-variation relative to the constant coefficients. The lower half of the figure relates to these.

Figure 2 shows that our methods are inducing a high degree of sparsity in the TVP-VAR-SV in that most of the

PIPs are near zero. However, a few of them are not. In terms of the VAR coefficients there is only one coefficient

which is always selected (i.e. has a PIP of one). This is the first lag of the 1-year Treasury Bill rate in the equation

for the Fed Funds rate. However, an appreciable number of other predictors have PIPs that are substantially above

zero but much less than one. In terms of the error covariance matrix, a similar pattern emerges. There is only one

error covariance term which is non-zero in every MCMC draw.4 This is the covariance between the errors in the

equations for two different inflation measures. However, there are several other error covariances with PIPs that

are substantially above zero, even if they are below one. We stress that such a finding would not be possible if we

were to use the SAVS algorithm directly on the posterior mean as opposed to using it on each MCMC draw. In the

former case every PIP would be either zero or one with no values in between.

4Note that the other green areas refer to the diagonal elements of Ut.
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These patterns are consistent with those found in Giannone et al. (2017) who conclude ”there seems to be a lot of

uncertainty about whether certain predictors should be included in the model, which results into their selection only

in a subset of the posterior draws. These findings reflect a substantial degree of collinearity among many predictors

that carry similar information, hence complicating the task of structure discovery. In sum, model uncertainty is

pervasive and the best prediction is obtained as a weighted average of several models.” These features seem to be

exactly what our algorithm is uncovering in an automatic fashion.

Finally, it is worth noting that there is evidence of time variation in several of the coefficients and our algorithm

is automatically deciding which ones to allow to be time-varying. That is most of the PIPs which are appreciably

above zero in the top half of the figure are also above zero in the bottom half. This pattern indicates a non-zero

coefficient zero which is time varying. But our method also allows for a coefficient to be non-zero but constant.

There are some cases which provide evidence of this. For instance, in the GDP growth equation the first lag of

SP500 stock returns has a PIP which is appreciably above zero in the top half of the figure, but is much closer to

zero in the bottom half of the figure. This pattern indicates support for a constant coefficient on this predictor.

The evidence in Figure 2 suggests that shrinking then sparsifying is working in a sensible fashion. But the

key test of our methodology is how well it forecasts. Table 3 presents the results of our forecasting exercise. A

comparison of each set of sparsified forecasts to its non-sparsified counterpart shows the benefits of our shrink-

then-sparsify strategy, particularly in large models. For M = 8 and M = 20, sparsification leads to substantial

improvements in both RMSEs and LPLs in almost every case. These improvements are particularly noticeable for

GDP forecasting for the one-step-ahead forecasts. In general, the benefits of sparsification are largest when using

the DL or Lasso priors. For M = 3 the benefits of sparsification are less pronounced. In terms of RMSEs, there

seems to be no benefits of sparsification, although it does lead to slight improvements in the density forecasts even

for this already fairly parsimonious case. This smaller accuracy premium from sparsification can be traced back

to the fact that, in small models, the increases in the predictive variance that arise from posterior uncertainty

surrounding shrunk estimates are small relative to the variance contribution arising from the reduced-form shocks.

In larger models, parameter uncertainty eventually accumulates and this seems to be detrimental for forecasting

accuracy.

In relation to the benchmark VAR-SV model, it is interesting to note that it is inferior to the TVP-VAR-SV

models for the small and medium data sets. Clearly, addition of time-variation in the VAR coefficients helps improve

forecasts in these cases. However, in the large data set, the evidence is mixed. In this case, the RMSEs produced

by the TVP-VAR-SV are substantially better than those produced by the VAR-SV. However, the density forecasts

16



Figure 2: Heatmaps of posterior inclusion probabilities (PIPs) for the three focus variables in t = 2017 : Q4

PIPs for Constant Coefficients (βi0 and uij,0 in equation 11)

yt−1 yt−2 Elements of U0

0.0

0.2

0.4

0.6

0.8

1.0

G
D

P
C

1
G

D
P

C
T

P
I

F
E

D
F

U
N

D
S

G
D

P
C

1

P
C

E
C

C
9
6

F
P

Ix

G
C

E
C

1

IN
D

P
R

O

C
E

1
6
O

V

U
N

R
A
T

E

C
E

S
0
6
0
0
0
0
0
0
0
7

H
O

U
S

T

P
E

R
M

IT

P
C

E
C

T
P

I

G
D

P
C

T
P

I

C
P

IA
U

C
S

L

C
E

S
0
6
0
0
0
0
0
0
0
8

F
E

D
F

U
N

D
S

G
S

1

G
S

1
0

T
O

T
R

E
S

N
S

N
O

N
B

O
R

R
E

S

S
.P

.5
0
0

0.0

0.2

0.4

0.6

0.8

1.0

G
D

P
C

1

P
C

E
C

C
9
6

F
P

Ix

G
C

E
C

1

IN
D

P
R

O

C
E

1
6
O

V

U
N

R
A
T

E

C
E

S
0
6
0
0
0
0
0
0
0
7

H
O

U
S

T

P
E

R
M

IT

P
C

E
C

T
P

I

G
D

P
C

T
P

I

C
P

IA
U

C
S

L

C
E

S
0
6
0
0
0
0
0
0
0
8

F
E

D
F

U
N

D
S

G
S

1

G
S

1
0

T
O

T
R

E
S

N
S

N
O

N
B

O
R

R
E

S

S
.P

.5
0
0

0.0

0.2

0.4

0.6

0.8

1.0

G
D

P
C

1

P
C

E
C

C
9
6

F
P

Ix

G
C

E
C

1

IN
D

P
R

O

C
E

1
6
O

V

U
N

R
A
T

E

C
E

S
0
6
0
0
0
0
0
0
0
7

H
O

U
S

T

P
E

R
M

IT

P
C

E
C

T
P

I

G
D

P
C

T
P

I

C
P

IA
U

C
S

L

C
E

S
0
6
0
0
0
0
0
0
0
8

F
E

D
F

U
N

D
S

G
S

1

G
S

1
0

T
O

T
R

E
S

N
S

N
O

N
B

O
R

R
E

S

S
.P

.5
0
0

PIPs for Time-Varying Coefficients (vβij and vuij in equation 11)
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are not. This could be due to the fact that there is typically a tradeoff between model dimension and parameter

change. In small models, there is often a need for a high degree of parameter change to adequately fit patterns

in the data and alleviate potential omitted variable biases. But in larger models, the information provided by the

additional variables can fit these patterns, leaving less of a role for parameter change. Thus, in high dimensional

cases the VAR-SV might be adequate and the extra flexibility provided by a TVP-VAR-SV may not be required.

Of course, if the correct specification has a zero coefficient, the non-sparsified approach would try and estimate the

time-varying coefficient to be constant over time. But, as illustrated in Figure 1, estimation uncertainty (although

reduced) would still exist which could potentially hurt the forecasting performance of our approach. Sparsification

as done in this paper clearly helps, but in the large data set there are still some cases where the VAR-SV is superior.

In such cases, a simple extension of our shrink-then-sparsify approach could help. In this paper, we have focused

on sparsifying α in equation (6). But any function of the parameters of a model could be sparsified in the same

manner and, in particular, sparsifying the change in the states would be possible. This would lead to the constancy

of a coefficient over certain periods in time while allowing for movements in other points in time when this kind of

sparsification is applied.

The results in Table 3 highlight that, when the full hold-out period is considered, sparsification improves pre-

dictive accuracy relative to a non-sparsified model specification. The magnitude of these improvements, however,

depends on model size. In the next step, we ask whether accuracy differences could also be specific to certain periods

in time. To this end, Figure 3(a) shows the evolution of the log predictive Bayes factor between the sparsified and

non-sparsified large-scale TVP-VAR-SV with the HS prior over the hold-out period.5 This Bayes factor is obtained

by evaluating the one-step-ahead predictive density for the three focus variables jointly after integrating out the

remaining variables. To investigate whether the gains in density forecasting performance stem from capturing higher

order moments in the predictive distribution or from a more precise point forecast, Figure 3(b) shows cumulative

squared one-step-ahead forecast errors averaged across the focus variables over time.

Figure 3(a) indicates that accuracy premia from sparsification tend to vary significantly over the business cycle.

During expansionary stages, sparsification yields modest (in the case of the medium-sized model) to sustained (in the

case of the large model) improvements in density forecasting performance relative to the non-sparsified competitor.

For the small-scale TVP-VAR-SV, accuracy gains are more muted during expansionary periods. During recessions,

in contrast, sparse models tend to be outperformed by their non-sparsified counterparts. Our conjecture is that this

5Comparable figures for other shrinkage priors reveal similar patterns. Thus. for the sake of brevity, we discuss the results for the
HS prior exclusively.
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Table 3: Relative root mean square errors (RMSEs) to a large BVAR-SV with a DL prior: 1997Q4 to 2017Q4

Non-sparse Sparse

DL Lasso NG HS MNIG DL Lasso NG HS MNIG

Small (m = 3)
One-step-ahead

GDPC1 0.516 0.528 0.526 0.523 0.517 0.526 0.529 0.53 0.533 0.524
(0.209) (0.188) (0.194) (0.2) (0.223) (0.228) (0.231) (0.227) (0.222) (0.229)

GDPCTPI 0.86 0.868 0.867 0.861 0.87 0.883 0.915 0.912 0.903 0.89
(0.134) (0.125) (0.122) (0.125) (0.125) (0.114) (0.075) (0.076) (0.085) (0.105)

FEDFUNDS 0.837 0.858 0.843 0.83 0.832 0.814 0.827 0.826 0.818 0.827
(0.495) (0.466) (0.509) (0.547) (0.554) (0.542) (0.564) (0.583) (0.604) (0.603)

Four-step-ahead

GDPC1 0.512 0.512 0.51 0.507 0.533 0.547 0.543 0.545 0.548 0.545
(0.516) (0.501) (0.507) (0.514) (0.529) (0.542) (0.553) (0.545) (0.547) (0.537)

GDPCTPI 0.986 0.979 0.981 0.981 0.986 0.988 0.987 0.986 0.983 0.987
(0.091) (0.099) (0.098) (0.099) (0.088) (0.081) (0.072) (0.071) (0.073) (0.079)

FEDFUNDS 0.745 0.753 0.745 0.743 0.758 0.763 0.734 0.738 0.742 0.769
(0.457) (0.431) (0.454) (0.495) (0.488) (0.466) (0.468) (0.477) (0.505) (0.499)

Medium (m = 8)
One-step-ahead

GDPC1 0.659 0.647 0.651 0.619 0.534 0.491 0.497 0.494 0.487 0.469
(0.056) (0.081) (0.091) (0.14) (0.199) (0.237) (0.273) (0.273) (0.277) (0.273)

GDPCTPI 0.874 0.867 0.858 0.86 0.859 0.876 0.912 0.907 0.908 0.881
(0.106) (0.126) (0.134) (0.137) (0.147) (0.132) (0.064) (0.074) (0.089) (0.124)

FEDFUNDS 0.854 0.872 0.856 0.824 0.82 0.78 0.785 0.79 0.79 0.785
(0.273) (0.327) (0.408) (0.552) (0.464) (0.401) (0.546) (0.581) (0.646) (0.593)

Four-step-ahead

GDPC1 0.616 0.63 0.62 0.587 0.535 0.553 0.549 0.548 0.552 0.551
(0.22) (0.272) (0.297) (0.377) (0.438) (0.524) (0.545) (0.547) (0.533) (0.513)

GDPCTPI 0.985 0.98 0.979 0.98 0.984 0.995 0.983 0.987 0.983 0.985
(-0.001) (0.058) (0.068) (0.096) (0.086) (0.07) (0.025) (0.033) (0.054) (0.067)

FEDFUNDS 0.831 0.837 0.814 0.747 0.742 0.771 0.738 0.734 0.735 0.75
(0.262) (0.297) (0.372) (0.46) (0.372) (0.417) (0.443) (0.46) (0.448) (0.368)

Large (m = 20)
One-step-ahead

GDPC1 1.013 0.851 0.875 0.816 0.676 0.662 0.573 0.551 0.531 0.513
(-0.351) (-0.32) (-0.196) (-0.002) (0.068) (-0.067) (-0.004) (0.096) (0.207) (0.209)

GDPCTPI 1.123 1.157 1.17 1.031 0.909 1.011 1.063 1.133 0.941 0.912
(-0.054) (-0.016) (-0.015) (0.034) (0.064) (0.018) (0.011) (-0.024) (0.014) (0.033)

FEDFUNDS 1.264 1.655 1.442 1.055 0.865 1.036 1.561 1.418 0.891 0.783
(-0.55) (-0.692) (-0.473) (0.229) (0.17) (-0.313) (-0.556) (-0.295) (0.559) (0.559)

Four-step-ahead

GDPC1 0.893 0.73 0.627 0.513 0.529 0.654 0.557 0.556 0.545 0.567
(-1.185) (-1.039) (-0.598) (0.191) (0.361) (-0.332) (-0.167) (0.174) (0.57) (0.534)

GDPCTPI 1.063 1.116 1.136 1.022 0.997 1.018 1.034 1.163 0.994 0.987
(-0.81) (-0.652) (-0.331) (0.003) (0.055) (-0.283) (-0.261) (-0.123) (0.003) (0.038)

FEDFUNDS 0.937 1.229 1.269 0.812 0.856 0.86 0.844 1.001 0.815 0.835
(-1.452) (-1.489) (-1.037) (0.082) (0.089) (-0.723) (-0.916) (-0.488) (0.267) (0.228)

Notes: Numbers in parentheses refer to the average log predictive likelihoods (LPLs) vis-á-vis the BVAR-SV with a DL prior.
DL refers to a TVP-VAR-SV with a Dirichlet-Laplace prior, Lasso to the Bayesian Lasso, NG to the Normal-Gamma prior,
HS to the Horseshoe, and NMIG to the Normal-mixture of Inverse Gamma prior.

stems from the fact that during turbulent times, the sparsified predictive distributions feature a smaller variance,

making it harder to capture outlying observations and thus translating in lower log predictive likelihoods.

Our conjecture is confirmed when focusing on point forecasts. In terms of point predictions, we observe that

forecast errors are almost identical in the period up to the global financial crisis. During the recession in 2008/2009,

forecast errors increase markedly but slightly less so for the sparsified model and for the medium and large dataset.

This suggests that the drop in the log predictive Bayes factor is mainly driven by higher order moments, implying

that while the accuracy of the point prediction increases, adverse movements in the corresponding predictive variance

offset this gain.
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Figure 3: Performance differences between a sparsified and non-sparsified TVP-VAR-SV with a HS prior

(a) Evolution of log predictive Bayes factor (sparse versus non-sparse)
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(b) Evolution of cumulative squared forecast errors
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Notes: The log-predictive Bayes factor between the sparsified and non-sparsified model is obtained by considering
the joint one-step-ahead predictive density for the three focus variables and the squared forecast errors are averages
across the one-step-ahead forecast errors for the focus variables. The black line in panel (b) refers to the sparsified
squared forecast error while the red line denotes the non-sparsified model. The gray shaded areas refer to NBER
reference recessions in the US.

6 Conclusions

Global-local shrinkage priors have enjoyed great popularity in over-parameterized regressions and VARs involving

large numbers of variables. And, increasingly, they have been used with TVP versions of these models which are

potentially even more over-parameterized. Use of such priors can potentially reduce estimation error and improve
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forecasts. However, estimation error is not completely eliminated and it is possible that further improvements in

forecasting performance can be achieved by adding an additional sparsification step to shrunk estimates. In this

paper, we have developed methods for doing so. In an artificial data exercise, we have shown that our shrink-then-

sparsify approach to TVP regression leads to more accurate estimates for a variety of DGPs. Particularly large

gains are found in sparse DGPs. In a macroeconomic forecasting exercise, adding sparsification to shrinkage also

leads to substantial improvements in forecast performance.
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Appendix A Global-local Shrinkage Priors

The first four sub-sections of this appendix provide relevant details on the prior setup, briefly discussing key features

of the used priors, hyperparameter choices used, and relevant information necessary to perform posterior inference.

A.1 The Dirichlet-Laplace Prior

The DL prior, originally proposed in Bhattacharya et al. (2015), assumes that each element in α, αj (j = 1, . . . , 2K),

follows a Gaussian distribution,

αj |ωj , ξj , λ ∼ N(0, ωjξ
2
j ζ

2),

with

ωj ∼ E(1/2), ξj ∼ D(a, . . . , a), ζ ∼ G(2Ka, 1/2)

where ωj is a variable-specific scaling parameter that features an exponentially distributed prior, with E denoting

the exponential distribution, ξj denotes yet another local shrinkage parameter with ξ = (ξ1, . . . , ξ2K)′ being bounded

to the (2K−1)-dimensional simplex (i.e. ξj ≥ 0 and
∑

j ξj = 1). We use a Dirichlet distributed prior with intensity

parameter a on ξj . Finally, ζ is a global shrinkage term that follows a Gamma distribution. Notice that the

relationship between this prior hierarchy and the general form provided in equation (2) can be seen by defining

φj = ωjξ
2
j and λ = ζ2.

Bhattacharya et al. (2015) show within the stylized normal means problem that the optimal value of a is specified

to be (2K)−(1+ϕ) with ϕ being a positive number close to zero. Since this hyperparameter plays a crucial role in

determining the shrinkage behavior of the DL prior, we estimate it using a prior which is a uniform distribution

that is bounded between (2K)−1 and 1/2.

Posterior simulation can be carried out using a slightly modified variant of the MCMC algorithm proposed in

Bhattacharya et al. (2015). The full conditional posterior distribution of ωj follows an inverse Gaussian distribution:

ωj |αj , ξj , ζ ∼ iG

(

ζ
ξj
|αj |

, 1

)

.
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The global shrinkage parameter ζ follows a generalized inverted Gaussian (GIG) distribution,

ζ|α, ξ ∼ GIG



2K(a− 1), 1, 2

2K
∑

j=1

|αj |
ξj



 .

Moreover, we draw the second set of local scaling parameters ξj by introducing auxiliary variables Tj that follow a

GIG distribution:

Tj |a, αj ∼ GIG(a− 1, 1, 2|αj |).

We then set ξj = Tj/
∑2K

i=1 Ti to obtain a valid draw from the full conditional posterior of ξj .

To simulate from the conditional posterior of a, we employ a Metropolis Hastings algorithm with a Gaussian

proposal distribution truncated between (2K)−1 and 1/2. The variance of the proposal distribution is tuned during

the first 20 percent of the burn-in stage of the MCMC sampler such that the acceptance rate is between 20 and 40

percent.

A.2 The Normal-Gamma Prior and the Lasso

As compared to the DL prior, the NG prior proposed in Griffin and Brown (2010), consists of a single group of

idiosyncratic scaling factors φj and a global shrinkage parameter λ = 1/λ̃. We assume that each αj follows a zero

mean Gaussian distribution a priori:

αj |φj , λ̃ ∼ N(0, φj), φj |λ̃ ∼ G(ϑ, ϑλ̃/2), λ̃ ∼ G(dλ̃, eλ̃).

Here, we let ϑ denote a hyperparameter that controls the tail behavior of the prior, with smaller values of ϑ

leading to heavier tails and increasing mass is placed on zero while larger value do the opposite. dλ̃ and eλ̃ are

hyperparameters that control the overall degree of shrinkage, with values close to zero implying heavy shrinkage

towards zero.

One key feature of the NG prior is that it nests the Bayesian Lasso of Park and Casella (2008) by setting ϑ = 1.

Since ϑ plays a crucial role, we follow Griffin and Brown (2010) and Huber and Feldkircher (2019) and introduce

an Exponential prior on ϑ:

ϑ ∼ Exp(ϑ).

ϑ is set equal to 1, pushing the prior towards the Bayesian Lasso. Moreover, we set dλ̃ = eλ̃ = 10−4, implying a

disperse prior on λ̃ and thus being consistent with heavy shrinkage (by allowing large values of λ̃).
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The hierarchical structure of the prior yields closed-form full conditionals for φj and λ̃. The local scaling

parameters φj follow a GIG distribution:

φj |λ̃, αj ∼ GIG

(

ϑ− 1

2
, ϑλ̃, α2

j

)

.

For the global shrinkage parameter, we obtain a Gamma-distributed full conditional posterior distribution:

λ̃|φ1, . . . , φ2K , ϑ ∼ G

(

dλ̃ + ϑ2K, eλ̃ +
ϑ

2

2K
∑

i=1

φi

)

.

Finally, we obtain draws from the conditional posterior of ϑ by setting up a random walk MH algorithm in terms

of log ϑ (see Griffin and Brown, 2010).

A.3 The Horseshoe Prior

For the HS prior of Carvalho et al. (2010), we consider the representation based on auxiliary variables proposed in

Makalic and Schmidt (2016). The corresponding prior hierarchy is given by

αj |λ, φj ∼ N(0, φjλ), φj ∼ G−1(1/2, 1/νj), λ ∼ G−1(1/2, 1/ϕ),

whereby νj and ϕ denote auxiliary variables and G−1 denotes the inverse Gamma distribution. The auxiliary

variables also follow inverse Gamma distributions,

ν1, . . . , ν2K , ϕ ∼ G−1(1/2, 1).

This representation of the HS prior allows for straightforward updating of the local and global scaling parameters

and involves sampling from inverted Gamma distributions exclusively. The corresponding full conditional posterior

distributions are

φj |αj , λ, νj ∼ G−1

(

1,
1

νj
+

α2
j

2λ

)

λ|αj , φj , ϕ ∼ G−1

(

2K + 1

2
,
1

ϕ
+

1

2

2K
∑

i=1

α2
i

φj

)

.
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The conditional posteriors of the auxiliary variables are given by

νj |φj ∼ G−1

(

1, 1 +
1

φ2
j

)

,

ϕ|λ ∼ G−1

(

1, 1 +
1

λ

)

.

A.4 The Normal-mixture of Inverse Gamma Prior

The NMIG prior of Ishwaran and Rao (2005) extends the original SSVS prior proposed in George and McCulloch

(1993, 1997) along several dimensions. To set the stage, we use a mixture of Gaussians prior distribution on αj :

αj |δj , τ2j ∼ N(0, τ2j )δj +N(0, cτ2j )(1− δj),

where δj denotes a Bernoulli random variable with prior probability Prob(δj = 1) = p while c is a constant close

to zero and τ2j is a coefficient-specific scaling factor. Following Ishwaran and Rao (2005), we specify an inverse

Gamma prior on τ2j and a Beta distributed prior on p:

τ2j ∼ G−1(dτ , eτ ),

p ∼ B(dp, ep),

with dτ , eτ , dp and ep denoting hyperparameters. Notice that this specification implies conditional prior indepen-

dence between the indicators δj . However, the common prior inclusion probability p serves as a common factor,

implying that marginally, the indicators are dependent.

Ishwaran and Rao (2005) notice that after integrating out τ2j and p, the two components in the prior follow

t-distributions. The hyperparameter dτ controls the degrees of freedom of the marginal prior while the variances

are given by ceτ/dτ (for the spike component) and eτ/dτ (for the slab component). In the empirical applications,

we set ep = dp = 1, implying a Uniform prior on p and c = 2.5/105. Moreover, we set dτ = 5, leading to 10 degrees

of freedom and eτ = 4. This is the benchmark prior setup as specified in Malsiner-Walli and Wagner (2011).
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For this prior specification, all conditional posterior distributions are available in closed form. The full-

conditional posterior of δj follows a Bernoulli distribution with posterior probability pj given by:

pj = Prob(δj = 1|αj , τ
2
j , p) =

1
τ2
j

exp
(

− 1
2

α2
j

τ2
j

)

1
τ2
j

exp
(

− 1
2

α2
j

τ2
j

)

p+ 1
cτ2

j

exp
(

− 1
2

α2
j

cτ2
j

)

(1− p)
.

The scaling factors τ2j follow an inverted Gamma distribution

τ2j |α2
j , δj ∼ G−1

(

dτ +
1

2
, eτ +

α2
j

δj + (1− δj)c

)

.

Finally, the posterior distribution of p is a Beta distribution:

p|δ1, . . . , δ2K ∼ B



dp +

2K
∑

j=1

δj , ep + 2K −
2K
∑

j=1

δj



 .

Appendix B Full Conditional Posterior Simulation

For the dynamic regression models used in the main body of the text we use a relatively standard MCMC algorithm.

Since we estimate the TVP-VAR-SV on an equation-by-equation basis, we describe the MCMC algorithm for the

TVP regression model only. However, it is worth noting that all priors described in the previous subsection are

specified to be equation-specific. This implies that instead of having a single global shrinkage parameter λ, each

equation features its own global (equation-specific) shrinkage parameter. Moreover, one additional difference is

that the dynamic regression model in Section 3 features homoscedastic errors. In the TVP-VAR case, we allow for

stochastic volatility, implying that the MCMC algorithm differs slightly.

Our posterior simulator cycles between the following steps:

1. Simulate the full-history of β̃t, conditional on the remaining parameters, using the forward-filtering backward-

sampling algorithm proposed in Carter and Kohn (1994) and Frühwirth-Schnatter (1994) while exploiting the

non-centered parameterization.

2. Sample the error variances from an inverted Gamma full conditional posterior distribution:

σ2
ε |• ∼ G−1

(

dσ + T/2, eσ +
1

2

T
∑

t=1

(yt −α′Zt)
2

)

.
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where the • indicates conditioning on all parameters and the data.

3. Conditional on {β̃t}Tt=1 and σ2
ε , the conditional posterior of α takes a multivariate Gaussian form:

α|• ∼ N(α,Ω),

with

Ω = (σ−2
ε Z ′Z +Ω−1)−1,

α = Ω
(

σ−2
ε Z ′y

)

where Z is a T × 2K matrix with the tthrow equal to Z ′
t. Likewise, y = (y1, . . . , yT )

′ is a T -dimensional

vector. Ω denotes a diagonal prior variance-covariance matrix with typical element depending on the specific

shrinkage prior chosen.

4. Depending on the global-local shrinkage prior adopted, construct the matrix Ω based on the conditional

posterior distributions outlined in Appendix A.

In case we use a stochastic volatility specification for the error variances, we use the algorithm proposed in Kastner

and Frühwirth-Schnatter (2014) and implemented in the R package stochvol (Kastner, 2016). For the VAR case,

the main steps of this algorithm remain identical except that the different steps of the algorithm can be interpreted

as being specific to a given equation of the model. In all applications, we repeat this algorithm 30, 000 times and

discard the first 15, 000 draws as burn-in.
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Appendix C Data Appendix

FRED Mnemonic Description Transformation Codes SMALL MEDIUM LARGE

GDPC1 Real Gross Domestic Product 5 x x x
PCECC96 Real Personal Consumption Expenditures 5 x x
FPIx Real private fixed investment 5 x x
GCEC1 Real Government Consumption Expenditures and Gross Investment 5 x
INDPRO IP:Total index Industrial Production Index (Index 2012=100) 5 x
CE16OV Civilian Employment (Thousands of Persons) 5 x x
UNRATE Civilian Unemployment Rate (Percent) 2 x
CES0600000007 Average Weekly Hours of Production and Nonsupervisory Employees: Goods-Producing 2 x x
HOUST Housing Starts: Total: New Privately Owned Housing Units Started 5 x
PERMIT New Private Housing Units Authorized by Building Permits 5 x
PCECTPI Personal Consumption Expenditures: Chain-type Price Index 6 x
GDPCTPI Gross Domestic Product: Chain-type Price Index 6 x x x
CPIAUCSL Consumer Price Index for All Urban Consumers: All Items 6 x
CES0600000008 Average Hourly Earnings of Production and Nonsupervisory Employees: 6 x x
FEDFUNDS Effective Federal Funds Rate (Percent) 2 x x x
GS1 1-Year Treasury Constant Maturity Rate (Percent) 2 x
GS10 10-Year Treasury Constant Maturity Rate (Percent) 2 x
TOTRESNS Total Reserves of Depository Institutions 6 x
NONBORRES Reserves Of Depository Institutions, Nonborrowed 7 x
S.P.500 S&Ps Common Stock Price Index: Composite 5 x

Notes: Transformation codes for a series y: (1) no transformation, (2) first differences δyt, (3) double differences ∆2yt (4) logarithmic
transform log yt, (5) difference of the logarithm ∆ log yt, (6) double difference of the logarithm ∆2 log yt, and (7) ∆(yt/yt−1 − 1).

Table 4: Data description
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