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Abstract

We propose a straightforward algorithm to estimate large Bayesian time-varying

parameter vector autoregressions with mixture innovation components for each

coefficient in the system. The computational burden becomes manageable by ap-

proximating the mixture indicators driving the time-variation in the coefficients

with a latent threshold process that depends on the absolute size of the shocks.

Two applications illustrate the merits of our approach. First, we forecast the US

term structure of interest rates and demonstrate forecast gains relative to bench-

mark models. Second, we apply our approach to US macroeconomic data and find

significant evidence for time-varying effects of a monetary policy tightening.
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1 Introduction

In the last few years, economists in policy institutions and central banks were criticized

for not foreseeing the recent financial crisis that engulfed the world economy and led

to a sharp drop in economic activity. Critics argued that economists failed to predict

the crisis because models commonly utilized at policy institutions back then were too

simplistic. For instance, the majority of forecasting models adopted were (and possibly

still are) linear and low dimensional. The former implies that the underlying structural

mechanisms and the volatility of economic shocks are assumed to remain constant over

time – a rather restrictive assumption. The latter implies that only little information is

exploited which may be detrimental for obtaining reliable predictions.

In light of this criticism, practitioners started to adopt more complex models that

are capable of capturing salient features of time series commonly observed in macroe-

conomics and finance. These models are based on earlier research that provides consid-

erable evidence, at least for US data, that the influence of certain variables appears to

be time-varying (Stock and Watson, 1996; Cogley and Sargent, 2002, 2005; Primiceri,

2005; Sims and Zha, 2006). This raises additional issues related to model specifica-

tion and estimation. For instance, do all regression parameters vary over time? Or is

time variation just limited to a specific subset of the parameter space? Moreover, as is

the case with virtually any modeling problem, the question whether a given variable

should be included in the model in the first place naturally arises. Apart from deciding

whether parameters are changing over time, the nature of the process that drives the

dynamics of the coefficients also proves to be an important modeling decision.

In a recent contribution, Frühwirth-Schnatter and Wagner (2010) focus on model

specification issues within the general framework of state space models. Exploiting a

non-centered parametrization of the model allows them to rewrite the model in terms of

a constant parameter specification, effectively capturing the steady state of the process

along with deviations thereof. The non-centered parameterization is subsequently used

to search for appropriate model specifications, imposing shrinkage on the steady state

part and the corresponding deviations.

Recent research aims to discriminate between inclusion/exclusion of elements of

different variables and whether the associated regression coefficients are constant or

time-varying (Koop and Korobilis, 2012, 2013; Kalli and Griffin, 2014; Belmonte, Koop,

and Korobilis, 2014; Eisenstat, Chan, and Strachan, 2016). Another strand of the lit-

2



erature asks whether coefficients are constant or time-varying by assuming that the

innovation variance in the state equation is characterized by a change point process

(McCulloch and Tsay, 1993; Gerlach, Carter, and Kohn, 2000; Koop, Leon-Gonzalez,

and Strachan, 2009; Giordani and Kohn, 2008). The main drawback of this modeling

approach is the severe computational burden originating from the need to simulate ad-

ditional latent states for each parameter. This renders estimation of large dimensional

models like vector autoregressions (VARs) unfeasible. To circumvent such problems,

Koop, Leon-Gonzalez, and Strachan (2009) estimate a single Bernoulli random variable

to discriminate between time constancy and parameter variation for the autoregressive

coefficients, the covariances, and the log-volatilities, respectively. This assumption,

however, implies that either all autoregressive parameters change over a given time

frame, or none of them. Along these lines, Maheu and Song (2018) allow for simul-

taneous breaks in regression coefficients and volatility parameters. They show that

their multivariate approach is inferior to univariate change point models when out-of-

sample forecasts are considered and conclude that allowing for independent breaks in

each series is important.

In the present paper, we introduce a method that can be applied to a highly param-

eterized VAR model by combining ideas from the literature on latent threshold models

(Neelon and Dunson, 2004; Nakajima and West, 2013a,b; Zhou, Nakajima, and West,

2014; Kimura and Nakajima, 2016) to approximate the latent indicators during Markov

chain Monte Carlo (MCMC) sampling. As mentioned above, the main computational

hurdle stems from the necessity to apply forward-filtering backward-sampling (FFBS)

based algorithms to estimate the indicators that control the time-variation in the re-

gression coefficients.

The key contribution of this paper is to avoid the computationally intensive simu-

lation of the latent indicators by proposing a straightforward approximation to these

indicators and thus allow for estimation of large-scale models. In doing so, we mimic

the behavior of a standard mixture innovation model by setting the value of an indi-

cator equal to one if the absolute value of the parameter change exceeds a threshold

to be estimated. In that case, the corresponding state innovation variance is set to a

large value, allowing for large jumps in the regression coefficients. By contrast, if the

absolute changes are small (i.e., below the threshold), a state innovation variance close

to zero is adopted and the corresponding regression coefficient can be viewed as be-

ing constant over that certain stretch in time. Compared to existing algorithms, the
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additional costs of estimating the proposed model, henceforth labeled the threshold

time varying parameter (TTVP) model, is negligible. To assess systematically, in a data-

driven fashion, which predictors should be included in the model, we impose a set of

Normal-Gamma priors (Griffin and Brown, 2010) in the spirit of Bitto and Frühwirth-

Schnatter (forthcoming) on the initial state of the system. The TTVP code is bundled

in the R package threshtvp which is made available from the authors upon request.

We illustrate the empirical merits of our approach by carrying out two empirical

exercises. In the first exercise, we predict the US term structure of interest rates. The

proposed framework is benchmarked against several constant parameter Bayesian VAR

models with stochastic volatility (SV) and hierarchical shrinkage priors, time-varying

parameter VARs as well as a multivariate random walk with SV. Moreover, we follow

Diebold and Li (2006) and use a model based on the Nelson and Siegel (1987) three

factor model. The findings indicate that our proposed TTVP specification outperforms

all competing specifications for one-month-ahead as well as three-month-ahead predic-

tions. The forecasting gains appear to be especially pronounced during crises episodes.

In the second application, we use a medium-scale US macroeconomic dataset to

investigate the degree of time-variation in the macroeconomic responses to a contrac-

tionary monetary policy shock. We find evidence for abrupt changes of inflation re-

sponses. These show a considerable price puzzle during the 1960s which suddenly

disappears in the early 1980s. Effects on variables reflecting economic activity also

vary over time but do so more gradually. They are especially pronounced during the

aftermath of the global financial crisis in 2008/09 indicating evidence for increased

effectiveness of monetary policy.

The paper is structured as follows. Section 2 introduces the modeling approach,

the prior setup and the corresponding MCMC algorithm for posterior simulation. Sec-

tion 3 illustrates the behavior of the model by showcasing scenarios with no, few, and

many jumps in the state equation, alongside a standard TVP specification with sus-

tained movement. In Section 4, we predict the US term structure of interest rates.

In Section 5, we apply the model to a medium-scale US macroeconomic dataset and

investigate during which periods VAR coefficients display the largest amount of time-

variation; furthermore, we scrutinize the associated implications on dynamic responses

with respect to a monetary policy shock. Finally, Section 6 concludes.
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2 Econometric framework

In this section, we first introduce a univariate dynamic regression model that is capable

of discriminating between constant and time-varying parameters at each point in time.

This stylized framework is used to discuss the main ideas of the paper. We then subse-

quently generalize this model framework to the VAR case that is used in the empirical

applications.

2.1 A mixture innovation model

Consider the following dynamic regression model,

yt = x′
tβt + ut, ut ∼ N (0, σ2

t ), (2.1)

where xt is a K-dimensional vector of explanatory variables and βt = (β1t, . . . , βKt)
′

a vector of regression coefficients. The error term ut is assumed to be independently

normally distributed with (potentially) time-varying variance σ2
t . This model assumes

that the relationship between elements of xt and yt is not necessarily constant over

time, but changes subject to some law of motion for βt. Typically, researchers assume

that the jth element of βt, βjt (j = 1, . . . , K), follows a random walk process,1

βjt = βj,t−1 + ejt, ejt ∼ N (0, ϑj), (2.2)

with ϑj denoting the innovation variance of the latent states. Eq. (2.2) implies that

parameters evolve gradually over time, ruling out abrupt changes. While being con-

ceptually flexible, in the presence of only a few breaks in the parameters, this model

generates spurious movements in the coefficients that could be detrimental for the em-

pirical performance of the model (D’Agostino, Gambetti, and Giannone, 2013).

Thus, we deviate from Eq. (2.2) by specifying the innovations of the state equation

ejt to be a spike-and-slab mixture distribution. More concretely, let

ejt ∼ N (0, θjt), (2.3)

θjt = sjtϑj1 + (1− sjt)ϑj0, (2.4)

1A recent exception to this is Ročková and McAlinn (2018) who assume a stationary thresholded
AR(1) process to model the evolution of the coefficients.
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where ϑj1 (the slab variance) and ϑj0 (the spike variance) are state innovation variances

with ϑj1 ≫ ϑj0 and ϑj0 set close to zero. Furthermore, sjt is an indicator variable that

follows a Bernoulli distribution, i.e.,

sjt =











1 with probability pj,

0 with probability 1− pj.
(2.5)

This model is a relatively standard mixture innovation model (McCulloch and Tsay,

1993; Gerlach, Carter, and Kohn, 2000; Giordani and Kohn, 2008).2 Eq. (2.3) and

Eq. (2.4) state that if sjt equals one, we assume that the change in βjt is normally

distributed with zero mean and variance ϑj1. On the contrary, if sjt equals zero, the

innovation variance is set close to zero, effectively implying that βjt ≈ βj,t−1, i.e., almost

no change from period (t− 1) to t.

This modeling approach provides a great deal of flexibility, nesting a plethora of sim-

pler model specifications. The interesting cases are characterized by situations where

sjt = 1 only for some t. For instance, it could be the case that parameters tend to ex-

hibit strong movements at given points in time but stay constant for the majority of the

time. An unrestricted time-varying parameter model would imply that the parameters

are gradually changing over time, depending on the innovation variance in Eq. (2.2).

Another prominent case would be a structural break model with an unknown number

of breaks (for a Bayesian exposition, see e.g. Koop and Potter, 2007). Recently, this

framework has been extended by Uribe and Lopes (2017) who model the indicator as

a first-order two-state Markov process.

2.2 Mitigating the computational burden through thresholding

Unfortunately, estimation of the model described in the previous section is computa-

tionally cumbersome if K is large as in multivariate systems like VARs, even though

there exist several estimation strategies. One strand of the literature (see McCulloch

and Tsay, 1993) estimates the indicators conditional on the states using single-step

Gibbs updating within a larger MCMC algorithm. This, however, often results in poor

mixing properties of the algorithm since the states and the indicators are typically

highly correlated. The more recent literature (Gerlach, Carter, and Kohn, 2000) sim-

2The main difference is that the literature typically assumes that ϑj0 ≡ 0 for all j (for an exception,
see Carter and Kohn, 1994).
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ulates the indicators after integrating out the latent states using Kalman-filter-based

algorithms. Unfortunately, this procedure has to be repeated for each coefficient dur-

ing MCMC sampling, turning computationally prohibitive even for moderate K. Thus,

researchers often resort to models where only a small number of indicators is intro-

duced that determines the amount of time-variation for certain parts of the parameter

space in the system (for a VAR application, see, Koop, Leon-Gonzalez, and Strachan,

2009).

The key innovation of the present paper is to circumvent this issue by proposing

a relatively simple approximation that makes immediate use of the fact that Gibbs

sampling generates draws from the joint posterior by sampling from the full condition-

als. Similarly to the early literature on mixture innovation models mentioned above

(McCulloch and Tsay, 1993), we also condition on the states to simulate the indica-

tors sjt during MCMC simulation. However, instead of directly sampling from this full

conditional distribution, we introduce one additional auxiliary parameter per coeffi-

cient, the threshold dj, which in turn renders the indicators conditionally deterministic.

More concretely, in the lth iteration of our MCMC algorithm, after obtaining draws

{β(l)
jt }t=1,...,T conditional on draws of the indicators {s(l−1)

jt }t=1,...,T and the remaining

parameters, the corresponding realization of sjt is given through

s
(l)
jt =











1 if |∆β(l)
jt | > d

(l−1)
j ,

0 if |∆β(l)
jt | ≤ d

(l−1)
j ,

(2.6)

where d(l−1)
j denotes the (l − 1)th draw of a coefficient-specific threshold dj to be esti-

mated and ∆β
(l)
jt := β

(l)
jt −β

(l)
j,t−1. Eq. (2.6) indicates that if the absolute period-on-period

change of the lth draw of βjt exceeds the (l − 1)th draw of the threshold dj, we set

s
(l)
jt = 1 and thus use a large variance. By contrast, if the change in the current draws

of the parameter is too small, the innovation variance is set close to zero, effectively

implying that βjt ≈ βj,t−1. The detailed description of the MCMC sampler, along all

required full conditionals, can be found in Section 2.5.

Compared to a standard mixture innovation model that postulates sjt as a sequence

of independent Bernoulli variables, our approach, labeled the threshold mixture inno-

vation model, mimics this behavior by assuming that regime shifts are governed by a

deterministic law of motion, conditionally on the current draw of {βjt}t=1,...,T and dj.

The main advantage of our approach relative to standard mixture innovation models is
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that instead of having to estimate a full sequence of sjt for all j, the proposed frame-

work only relies on a single additional parameter per coefficient. This renders estima-

tion of high dimensional models such as vector autoregressions (VARs) feasible. The

additional computational burden turns out to be negligible relative to an unrestricted

TVP-VAR, see again Section 2.5 for more information.

Our model is also related to the latent thresholding approach put forward in Naka-

jima and West (2013a) within the time series context. However, while in their model

latent thresholding discriminates between the inclusion or exclusion of a given covari-

ate at time t, our model uses information on the changes in a given regression coef-

ficient to mimic the behavior of a mixture innovation model. In addition, while the

model proposed in Nakajima and West (2013a) assumes that the thresholded process

enters Eq. (2.1) directly, our approach is based on estimating a non-linear model for

the state equation. Nevertheless, notice that if the indicators are treated as augmented

data, our model is a conditionally linear Gaussian state space model and thus standard

algorithms can be used to estimate the latent states.

2.3 A multivariate extension with stochastic volatility

The model proposed in the previous subsection can be straightforwardly generalized to

the VAR case with multivariate SV by letting yt be an m-dimensional response vector.

In this case, Eq. (2.1) becomes

yt = x′
tβt + ut, (2.7)

with x′
t = {Im⊗z′

t}, where zt = (y′
t−1, . . . ,y

′
t−P )

′ includes the P lags of the endogenous

variables.3 The vector βt now contains the dynamic autoregressive coefficients with

dimensionK = m2P where each element follows the state evolution given by Eqs. (2.2)

to (2.6). The vector of white noise shocks ut is distributed as

ut ∼ N (0m,Σt). (2.8)

Hereby, 0m denotes an m-variate zero vector and Σt = VtHtV
′
t is a time-varying

variance-covariance matrix. The matrix Vt is a lower triangular matrix with unit di-

agonal and Ht = diag(eh1t , . . . , ehmt). We assume that the logarithm of the variances

3In the empirical application, we also include an intercept term which we omit here for simplicity.
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evolves according to

hit = µi + ρi(hi,t−1 + µi) + νit, i = 1, . . . ,m, (2.9)

where µi and ρi are equation-specific mean and persistence parameters and νit ∼

N (0, ζi) is an equation-specific white noise error with variance ζi. For the covariances

in Vt we impose a random walk state equation with spike-and-slab error variances in

analogy to Eq. (2.3) and Eq. (2.4).

Conditional on the ordering of the variables, it is straightforward to estimate the

model on an equation-by-equation basis, augmenting the ith equation with the con-

temporaneous values of the preceding (i− 1) equations, leading to a Cholesky-type de-

composition of the variance-covariance matrix. Thus, the ith equation (for i = 2, . . . ,m)

is given by

yit = z̃′
itβ̃it + uit. (2.10)

Here, z̃it = (z′
t, y1t, . . . , yi−1,t)

′ denotes the augmented vector of regressors, while β̃it =

(β′
it, ṽi1,t, . . . , ṽi,i−1,t)

′ is a vector of latent states with dimension Ki = mP + i− 1 where

β′
it refers to the coefficients associated with z′

t in the ith equation and ṽij,t denotes the

dynamic regression coefficients on the jth contemporaneous value in the ith equation.

Note that for the first equation we have z̃1t = zt and β̃1t = β1t. The law of motion of

the jth element of β̃it reads

β̃ij,t = β̃ij,t−1 + eij,t, eij,t ∼ N (0, θij,t). (2.11)

Hereby, θij,t is defined analogously to Eq. (2.4).

While not being order-invariant, this specific way of stating the model yields two

significant computational gains. First, the matrix operations involved in estimating the

latent state vector become computationally less cumbersome. Second, we can exploit

parallel computing and estimate each equation simultaneously on a grid.

2.4 Prior specification

We impose a Normal-Gamma prior (Griffin and Brown, 2010) on each element of β̃i0,

the initial state of the ith equation,

β̃ij,0|τij ∼ N

(

0,
2

λ2i
τ 2ij

)

, τ 2ij ∼ G(ai, ai), (2.12)
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for i = 1, . . . ,m and j = 1, . . . , Ki. Hereby, λ2i and ai are hyperparameters and τ 2ij de-

notes an idiosyncratic scaling parameter that applies an individual degree of shrinkage

on each element of β̃i0. The hyperparameter λ2i serves as an equation-specific shrink-

age parameter that shrinks all elements of β̃i0 that belong to the ith equation towards

zero while the local shrinkage parameters τij provide enough flexibility to also allow

for non-zero values of β̃ij,0 in the presence of a tight equation-specific prior. For the

equation-specific scaling parameter λ2i we impose a Gamma prior, λ2i ∼ G(b0, b1), with

b0 and b1 being hyperparameters chosen by the researcher. In typical applications we

specify b0 and b1 to render this prior effectively non-influential.

If the innovation variances of the observation equation are assumed to be con-

stant over time, we impose a Gamma prior on σ−2
i with hyperparameters c0 and c1,

i.e., σ−2
i ∼ G(c0, c1). By contrast, if stochastic volatility is introduced, we follow Kast-

ner and Frühwirth-Schnatter (2014) and impose a normally distributed prior on µi with

mean zero and variance 100, a Beta prior on ρi with (ρi+1)/2 ∼ B(aρ, bρ), and a Gamma

distributed prior on ζi ∼ G(1/2, 1/(2Bζ)).

In the paper at hand, we only estimate the slab variance ϑij,1 from the data and

set ϑij,0 = ξ × ϑ̂ij, where ϑ̂ij denotes the variance of the OLS estimate for automatic

scaling which we treat as a constant specified a priori. The multiplier ξ is set to a fixed

constant close to zero, effectively turning off any time-variation in the parameters. As

long as ϑij,0 is not chosen too large, the specific value of the spike variance proves to be

rather non-influential in the empirical applications that follow. Note that in principle,

also the spike variance ϑij,0 could be estimated from the data and a suitable shrinkage

prior could be employed to push ϑij,0 towards zero.

We use an Inverse-Gamma prior on the slab innovation variances in the state speci-

fication, i.e., ϑ−1
ij,1 ∼ G(rij,0, rij,1) for i = 1, . . . ,m and j = 1, . . . , Ki.4 Again, rij,0 and rij,1

denote scalar hyperparameters. This choice implies that we artificially bound ϑij,1 away

from zero, implying that in the upper regime we do not exert strong shrinkage. This is

in contrast to a standard time-varying parameter model, where this prior is usually set

rather tight to control the degree of time variation in the parameters (see, e.g., Prim-

iceri, 2005). It is noteworthy that in our model the degree of time variation is governed

4Of course, it would also be possible to use a (restricted) Gamma prior on ϑij,1 in the spirit of
Frühwirth-Schnatter and Wagner (2010). However, we have encountered some issues with such a prior
if the number of observations in the regime associated with sij,t = 1 is small. This stems from the fact
that the corresponding conditional posterior distribution is generalized inverse Gaussian, a distribution
that can be heavy tailed and under certain conditions leads to excessively large draws of ϑij,1.
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by the thresholding mechanism instead.

Finally, the prior specification of the baseline model is completed by imposing a

uniform distributed prior on the thresholds,

dij ∼ U(πij,0, πij,1), j = 1, . . . , Ki. (2.13)

Here, πij,0 and πij,1 denote the boundaries of the prior that have to be specified care-

fully. In our examples, we use πij,0 = 0.1 ×
√

ϑij,1 and πij,1 = 1.5 ×
√

ϑij,1. This prior

bounds the thresholds away from zero, implying that a certain amount of shrinkage is

always imposed on the autoregressive coefficients. Setting πij,0 = 0 for all i, j would

also be a feasible option but we found in simulations that being slightly informative on

the presence of a threshold improves the empirical performance of the proposed model

markedly. It is worth noting that even under the assumption that π0j > 0, our frame-

work performs well in simulations where the data is obtained from a non-thresholded

version of our model. This stems from the fact that in a situation where parameters are

expected to evolve smoothly over time, the average period-on-period change of βij,t is

small, implying that 0.1×
√

ϑij,1 is close to zero and the model effectively shrinks small

parameter movements to zero.

2.5 Posterior simulation

We sample from the joint posterior distribution of the model parameters by utilizing an

MCMC algorithm. Conditional on the thresholds dij, the remaining parameters can be

simulated in a straightforward fashion. After initializing the parameters using suitable

starting values we iterate between the following six steps.

1. We start with equation-by-equation simulation of the full history {β̃it}t=0,1,...,T for

each i by means of a standard forward filtering backward sampling algorithm

(Carter and Kohn, 1994; Frühwirth-Schnatter, 1994) while conditioning on the

remaining parameters of the model.

2. The reciprocals of the slab innovation variances, ϑ−1
ij,1, i = 1, . . . ,m, j = 1, . . . , Ki,

have conditional density

p(ϑ−1
ij,1|•) = p(ϑ−1

ij,1|dij, β̃ij,0:T ) ∝ p(β̃ij,0:T |ϑ
−1
ij,1, dij)p(dij|ϑ

−1
ij,1)p(ϑ

−1
ij,1), (2.14)
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where β̃ij,0:T = (β̃ij,0, . . . , β̃ij,T )
′. This is a Gamma distribution, i.e.,

ϑ−1
ij,1|• ∼ G

(

rij,0 +
Tij,1
2

+
1

2
, rij,1 +

∑T

t=1 sij,t(β̃ij,t − β̃ij,t−1)
2

2

)

, (2.15)

with Tij,1 =
∑T

t=1 sij,t denoting the number of time periods that feature time

variation in the jth parameter and the ith equation.

3. Combining the Gamma prior on τ 2ij with the Gaussian likelihood yields a General-

ized Inverted Gaussian (GIG) distribution

τ 2ij|• ∼ GIG

(

ai −
1

2
, β̃2

ij,0, aiλ
2
i

)

, (2.16)

where the density of GIG(κ, χ, ψ) is proportional to zκ−1 exp {− (χ/z + ψz)/ 2}.

To sample from this distribution, we use the R package GIGrvg (Leydold and Hör-

mann, 2015) implementing the efficient rejection sampler proposed by Hörmann

and Leydold (2013) for each i and j.

4. For each i, the global shrinkage parameter λ2i is sampled from a Gamma distribu-

tion given by

λ2i |• ∼ G

(

b0 + aiKi, b1 +
ai
2

Ki
∑

j=1

τ 2ij

)

. (2.17)

5. We update the thresholds by applying Ki Griddy Gibbs steps (Ritter and Tanner,

1992) per equation. Due to the structure of the model, the conditional distribu-

tion of ∆β̃ij,1:T is multivariate Gaussian, i.e.

p
(

∆β̃ij,1:T |dij, ϑij,0, ϑij,1

)

∝
T
∏

t=1

1
√

2πθij,t
exp

{

−
(β̃ijt − β̃ij,t−1)

2

2θij,t

}

. (2.18)

This expression can be straightforwardly combined with the prior in Eq. (2.13)

to evaluate the conditional posterior of dij at a given candidate point. The pro-

cedure is repeated over a fine grid of values that is determined by the prior and

an approximation to the inverse cumulative distribution function of the posterior

is constructed.5 Finally, this approximation is used to perform inverse transform

sampling.

5In all applications, we use an evenly spaced grid that contains 150 grid points.
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6. The coefficients of each of the the log-volatility equations and the corresponding

histories of the log-volatilities are sampled as in Kastner and Frühwirth-Schnatter

(2014) through the R package stochvol (Kastner, 2016). Under homoscedastic-

ity, σ−2
i is simulated from σ−2

i |• ∼ G
(

c0 + T/2, c1 +
∑T

t=1(yit − z′
itβ̃it)

2/2
)

.

After obtaining an appropriate number of draws, we discard the burn-in and base our

inference on the remaining draws from the joint posterior.

In comparison with standard TVP-VARs, Step (5) is the only additional MCMC step

needed to estimate the proposed TTVP model. Moreover, this update is computation-

ally cheap, increasing the amount of time needed to carry out the analysis conducted

in Section 5 by around five percent. For larger models (i.e., with m being around 15)

this step becomes slightly more intensive but, relative to the additional computational

burden introduced by applying the FFBS algorithm in Step (1), its costs are still com-

parably small relative to the overall computation time needed.

In the applications that follow, we draw 30 000 samples and discard the first 25 000

draws as burn-in.6 Generally speaking, mixing and convergence properties of our pro-

posed algorithm are similar to standard Bayesian TVP-VAR estimators. In other words,

the sampling of the thresholds does not seem to substantially increase the autocorrela-

tion of the remaining MCMC draws. Concerning the threshold parameters themselves,

we also observe rapid mixing. Appendix A provides some selected convergence criteria

for the application to US macroeconomic data.

3 An illustrative example

In this section, we illustrate our approach by means of a rather stylized example that

emphasizes how well the mixture innovation component for the state innovations per-

forms when applied to different simulated scenarios.

For demonstration purposes it proves to be convenient to work with the following

simple data generating process (DGP) with K = 1 and m = 1:

yt = x′11,tβ11,t + u1t, u1t ∼ N (0, 0.12),

β11,t = β11,t−1 + e11,t, e11,t ∼ N (0, s11,t × 0.12),

6In all applications considered we found that already a small fraction of this burn-in appears to be
sufficient to achieve convergence to the stationary distribution.
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where s11,t ∈ {0, 1} is chosen to yield paths which are characterized by no (s11,t ≡ 0 for

all t), few, and many breaks, as well as a standard TVP DGP (s11,t ≡ 1 for all t). Finally,

independently for all t = 1, . . . , 500, we generate x11,t ∼ U(−1, 1).

In order to assess how different models perform in recovering the latent processes,

we run a standard TVP model, a mixture innovation model estimated using the al-

gorithm outlined in Gerlach, Carter, and Kohn (2000), and our TTVP model. To ease

comparison between the models, we impose a similar prior setup for all models. Specif-

ically, for σ−2
1 we set c0 = 0.01 and c1 = 0.01, implying a rather vague prior. For the

shrinkage part on β11,0 we set λ21 ∼ G(0.01, 0.01) and a1 = 0.1, effectively applying

heavy shrinkage on the initial state of the system. The prior on ϑ11,1 is specified as in

Nakajima and West (2013a), i.e., ϑ−1
11,1 ∼ G(3, 0.03). To complete the prior setup for the

TTVP model we set π11,0 = 0.1×
√

ϑ11,1 and π11,1 = 1.5×
√

ϑ11,1. Finally, ξ is set equal

to 0.01.

[Fig. 1 about here.]

Fig. 1 displays the evolution of the 98 percent posterior credible intervals of the

latent state vectors for standard TVP models (gray), mixture innovation models (blue)

and TTVP models (red) along with the actual evolution of the state vector (green).

Each panel of Fig. 1 is based on a single realization from the DGP.

At least three interesting findings emerge. First, note that our approach captures pa-

rameter movements rather well, signaling large jumps for virtually all time points that

feature a structural break in the corresponding parameter. The TVP model also tracks

the actual movement of the states well but does so with much more high frequency

variation. This is a direct consequence of the inverted Gamma prior on the state inno-

vation variances that, artificially, rules out cases where ϑ11,1 equals zero, irrespective

of the information contained in the likelihood (see Frühwirth-Schnatter and Wagner,

2010, for a general discussion of this issue).

Second, investigating posterior uncertainty reveals that our approach succeeds in

shrinking the posterior variance. This is due to the fact that in periods where the true

value of β11,t is constant, our model successfully assumes that the estimate of the co-

efficient at time t is also constant, whereas the TVP model imposes a certain amount

of time variation. This generates additional uncertainty that inflates the posterior vari-

ance, possibly leading to imprecise inference. The standard mixture innovation model
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is also capable of reducing uncertainty effectively, but at a much larger computational

cost as compared to our proposed modeling approach.

Third, contrasting the findings of the TTVP specification with the results obtained

from a standard mixture innovation model provides some evidence that our approxima-

tion works rather well if the DGP is characterized by not more than a moderate amount

of jumps. By contrast, if the DGP features sustained movement, our approach pushes

the majority of the high frequency variations to zero. This stems from the fact that we

are slightly informative on the specific value of the threshold, effectively ruling out the

case where the threshold is zero. Notice, however, that while the posterior distribu-

tion of the standard mixture innovation model converges to the posterior distribution

of the TVP specification, the corresponding posterior uncertainty also rises sharply. We

conjecture that especially in forecasting applications, capturing large swings in the pa-

rameters could be sufficient to adequately describe key relations in the data while the

reduction in parameter uncertainty could ultimately lead to more precise predictions.

To sum up, the TTVP model detects change points in the parameters in situations

where the actual number of breaks is small, moderate and large. In situations where

the DGP suggests that the actual threshold equals zero, our approach still captures

most of the medium to low frequency noise but shrinks small movements that might,

in any case, be less relevant for econometric inference. For cases characterized by a

low number of breaks, our proposed approximation closely tracks the standard mix-

ture innovation approach, whereas small but frequent movements tend to be shrunk

more rigorously. We conclude by noting that this set of illustrating examples provides

evidence in favor of our approach within a small-dimensional setting only. However,

comparing TTVP to a standard mixture innovation model in high dimensions is un-

wieldy due to the tremendous additional computational burden.

4 Forecasting the US term structure of interest rates

The first empirical application deals with predicting the US term structure of interest

rates. Forecasting the term structure appears to be an important task for policy makers

and practitioners alike. Central banks are interested in how their policy interventions

impact the different segments of the term structure and how these movements transmit

into the real economy. From a forecasting perspective, precise predictions are necessary

for various tasks such as active portfolio management, risk management, as well as
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general policy analysis.

Several attempts have been made to predict the term structure of interest rates

with a wide range of different models (see, among many others, Diebold and Li, 2006;

Mönch, 2008, 2012; Favero, Niu, and Sala, 2012; Carriero, Kapetanios, and Marcellino,

2012; Carriero, Clark, and Marcellino, 2014; Byrne, Cao, and Korobilis, 2017). The

majority of these contributions, however, focuses exclusively on evaluating point pre-

dictions while ignoring higher moments of the underlying predictive distribution. In

addition, most studies typically assume that the model parameters are constant over

time. Some recent exceptions are Bianchi, Mumtaz, and Surico (2009); Mumtaz and

Surico (2009); Koopman, Mallee, and Van der Wel (2010); Carriero, Clark, and Mar-

cellino (2014); Byrne, Cao, and Korobilis (2017). In the paper at hand, we apply the

TTVP model to predict the term structure of interest rates and benchmark it against

various competing model specifications.

4.1 Data overview, model specification, and design of the forecasting exercise

We use monthly Fama-Bliss zero coupon yields obtained from the Chicago Booth Center

for Research in Security prices (CRSP) database as well as the dataset described in

Gürkaynak, Sack, and Wright (2007). The data spans the period from 1960:M01 to

2014:M12 and the maturities included are 1, 2, 3, 4, 5, 7, and 10 years.7 Moreover,

we include P = 3 lags of the endogenous variables. The prior setup is similar to the

one adopted in the previous section. More specifically, for all applicable i and j, we

use the following values for the hyperparameters. For the shrinkage part on the initial

state of the system, we again set λ2i ∼ G(0.01, 0.01) and ai = 0.1. For the parameters of

the log-volatility equation we use µi ∼ N (0, 102), ρi+1
2

∼ B(25, 5), and ζi ∼ G(1/2, 1/2).

The prior on the thresholds are set equal to πij,0 = 0.1×
√

ϑij,1 and πij,1 = 1.5×
√

ϑij,1.

Finally, we assess the impact of different choices for the prior on ϑij,1 as well as ξ in

Table 1.

Our forecasting design is recursive. For an initial estimation period, in our case

1960:M01 to T0 = 1999:M08, we compute predictions for the next three months via

Monte Carlo integration. More concretely, for each of the l = 1, . . . , 5000 MCMC draws

from the posterior distribution, we start by predicting β
(l)
T0+n for n = 1, 2, 3. This is

achieved by first drawing an indicator s(l)ij,T0+n for all i, j from a Bernoulli distribution

7The data for the maturities one up to five years are based on the CRSP data while the data for
maturities seven and ten years are taken from the Gürkaynak, Sack, and Wright (2007) database.
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with success probability T (l)
ij,1/T0. Using this indicator, we compute θ(l)ij,T0+n and thus infer

whether the predicted change is effectively zero or not. This information enables us to

recursively calculate β
(l)
T0+n utilizing the state evolution in Eq. (2.2). Next, we construct

V
(l)
T0+n through the corresponding elements in β

(l)
T0+n and then predict the log-volatilities

using Eq. (2.9) to compute Σ
(l)
T0+n. Finally, we obtain predictions for yT0+n by drawing

from N
(

x′
T0+nβ

(l)
T0+n,Σ

(l)
T0+n

)

.

After obtaining these, we expand the initial estimation sample by one month and re-

peat this procedure until the end of the sample is reached. This yields a sequence of 184

multivariate predictive densities for each of the three predictive horizons. Forecasts are

then evaluated using log predictive scores (LPSs) for a model of interest and a bench-

mark model. The LPS is a widely used metric to measure density forecast accuracy (see,

e.g., Geweke and Amisano, 2010).

4.2 Competing models

As the benchmark model, we use a TVP-VAR with SV employing the prior setup de-

scribed in Primiceri (2005). We, moreover, include three additional constant param-

eter VAR models, namely a Minnesota-type VAR (Doan, Litterman, and Sims, 1984),8

a Normal-Gamma (NG) VAR (Huber and Feldkircher, 2018) and a VAR coupled with

a stochastic search variable selection (SSVS) prior (George, Sun, and Ni, 2008). For

the SSVS VAR, we set the scaling parameters associated with the two Gaussian mixture

components of the prior using the semi-automatic approach described in George, Sun,

and Ni (2008). This implies that the prior standard deviation for the slab component is

ten times the corresponding OLS standard deviation while for the spike component it

is one tenth of the OLS standard deviation.

Moreover, and given its success in forecasting the term structure, we also bench-

mark our unrestricted multivariate model specifications against the model proposed in

Diebold and Li (2006) based on the three factor Nelson Siegel (NS) framework (Nelson

and Siegel, 1987). The NS approach imposes a factor structure on the yields,

it(̺) = Lt +
1− e−̺α

̺α
St +

(

1− e−̺α

̺α
− e−̺α

)

Ct +mt(̺). (4.1)

Here, it(̺) denotes the yield at maturity ̺, Lt is a factor that controls the level, St deter-

8This specific implementation follows Koop and Korobilis (2010) but, following Giannone, Lenza, and
Primiceri (2012), estimates the hyperparameters using two Metropolis Hastings steps.

17



mines the slope, and Ct represents the curvature factor of the yield curve. Moreover, we

let mt(̺) denote a pricing error. The parameter α controls the shape of the factor load-

ings in Eq. (4.1) and is set to α = 0.0609 to maximize the loading on Ct (for a discussion

of this particular choice, see Diebold and Li, 2006). In what follows, we estimate the

latent factors Lt, St, and Ct by OLS. These factors are then included in yt = (Lt, St, Ct)
′

and a VAR with a Minnesota prior is estimated (labeled NS-VAR). Moreover, we also es-

timate a TTVP-NS-VAR model to assess whether allowing for time-variation in the state

equation of the factors pays off.9 Notice that since Eq. (4.1) is a standard measurement

equation, we forecast the yield curve by using the VAR state equation to compute the

predictions in terms of the factors and then map it back to the yields using the factor

loadings.

All models, including the random walk, feature stochastic volatility. In order to

assess the impact of different prior hyperparameters on ϑij,1 and the impact of ξ, we

estimate the TTVP model over a grid of meaningful values.

4.3 Forecasting results

Table 1 shows the results for one-month- and three-months-ahead forecasts. We start

by considering the joint forecasting performance, provided in the rightmost column of

Table 1, for the one-month-ahead forecast horizon. Here we observe that all models

improve upon the standard TVP-VAR with SV by large margins. This clearly suggests

that a standard TVP-VAR model equipped with inverted Gamma priors on the state

innovation variances seems to overfit the data which, in turn, translates into a weak out-

of-sample predictive performance. Comparing the predictive performance of our TTVP

model across different choices for ξ reveals that this parameter appears to be highly

influential. If the hyperparameter is set too large, too little shrinkage is introduced and

the forecasting performance deteriorates. Considering the different choices of ξ shows

that smaller values are typically accompanied by larger improvements in LPSs. Notice

that the choice of r0 and r1 tends to play only a minor role compared to the scaling

parameter ξ.

We first focus on the evaluation of the joint density forecasts over all maturities and

the one-step ahead forecast horizon. Here we see that the TTVP approach improves

forecast performance over all constant parameter VARs as well as the models based

9For this specification, we use the prior setup described above and set r0 = 3, r1 = 0.03 and ξ = 0.001.
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Table 1: Log predictive Bayes factors relative to TVP-VAR over the hold-out period
1999:M09 to 2014:M12. Numbers greater than zero indicate that a given model
outperforms the benchmark. The final column refers to the joint density forecast-
ing performance, while the other columns refer to the univariate margins. Bold
figures indicate the best performing model for each column and horizon.

1Y 2Y 3Y 4Y 5Y 7Y 10Y joint

One-month-ahead

TTVP-VAR: ξ = 0.1, r0 = 3, r1 = 0.03 -107.1 -92.1 -67.0 -41.3 11.5 22.0 10.8 2595.2
TTVP-VAR: ξ = 0.1, r0 = 1.5, r1 = 1 -159.0 -122.5 -79.7 -40.8 15.0 40.5 33.0 2713.0
TTVP-VAR: ξ = 0.1, r0 = 0.001, r1 = 0.001 -115.4 -100.9 -73.8 -44.7 8.7 23.8 14.0 2696.2
TTVP-VAR: ξ = 0.01, r0 = 3, r1 = 0.03 -22.3 -10.4 20.2 50.3 97.9 61.1 46.7 2927.3
TTVP-VAR: ξ = 0.01, r0 = 1.5, r1 = 1 25.3 21.0 40.2 64.9 106.1 70.7 55.3 2943.2
TTVP-VAR: ξ = 0.01, r0 = 0.001, r1 = 0.001 -6.3 6.2 32.5 59.0 102.4 74.0 59.5 2899.7
TTVP-VAR: ξ = 0.001, r0 = 3, r1 = 0.03 28.5 20.7 40.3 65.3 108.3 74.0 60.0 2976.1

TTVP-VAR: ξ = 0.001, r0 = 1.5, r1 = 1 28.2 21.5 40.4 65.4 107.9 71.7 57.8 2953.3
TTVP-VAR: ξ = 0.001, r0 = 0.001, r1 = 0.001 28.5 22.0 40.9 65.7 108.3 73.0 59.0 2952.9
NS-TTVP-VAR -26.6 -17.5 20.5 57.7 110.1 101.0 82.8 2655.8

NS-VAR -61.6 -39.9 8.8 53.1 109.8 125.0 119.3 2681.0
Minnesota-type VAR 22.7 18.8 26.7 3.6 4.5 138.0 128.7 2660.2
NG VAR 35.4 22.5 19.2 -45.0 -50.6 141.9 136.1 2505.9
SSVS VAR -30.8 -51.9 -38.5 -13.6 37.8 42.3 41.0 1308.8
Random walk 35.3 22.8 31.6 14.8 20.1 141.0 135.0 2656.0

Three-months-ahead

TTVP-VAR: ξ = 0.1, r0 = 3, r1 = 0.03 -279.4 -225.4 -181.0 -164.7 -163.8 -175.1 -148.8 625.2
TTVP-VAR: ξ = 0.1, r0 = 1.5, r1 = 1 -330.0 -257.7 -194.8 -162.2 -160.4 -164.2 -123.5 809.4
TTVP-VAR: ξ = 0.1, r0 = 0.001, r1 = 0.001 -283.3 -229.3 -182.2 -161.2 -160.6 -168.0 -137.9 786.8
TTVP-VAR: ξ = 0.01, r0 = 3, r1 = 0.03 -82.7 -34.3 19.2 40.2 35.6 -14.6 16.3 1214.9
TTVP-VAR: ξ = 0.01, r0 = 1.5, r1 = 1 8.3 36.4 73.8 85.8 82.7 40.6 71.8 1293.2
TTVP-VAR: ξ = 0.01, r0 = 0.001, r1 = 0.001 -52.7 0.7 50.1 62.6 56.8 14.8 45.2 1194.1
TTVP-VAR: ξ = 0.001, r0 = 3, r1 = 0.03 14.8 36.4 72.5 87.2 81.7 41.1 71.9 1333.4

TTVP-VAR: ξ = 0.001, r0 = 1.5, r1 = 1 15.5 39.0 75.1 88.6 84.3 42.8 73.9 1312.2
TTVP-VAR: ξ = 0.001, r0 = 0.001, r1 = 0.001 16.0 39.1 75.0 88.5 84.2 43.3 74.3 1313.3
NS-TTVP-VAR -30.6 5.0 56.8 84.3 82.0 39.1 67.6 1038.5

NS-VAR -74.4 -20.2 43.7 80.1 83.3 46.5 80.6 1016.3
Minnesota-type VAR -1.2 36.8 69.1 61.4 32.0 29.2 66.5 1005.7
NG VAR 17.3 40.1 58.4 10.4 -29.7 16.0 59.8 863.0
SSVS VAR -86.5 -74.2 -44.9 -27.7 -28.2 -55.8 -20.3 -614.7
Random walk 17.0 39.4 68.4 54.5 17.9 28.7 69.1 975.7

on the NS approach. The NS-VAR ranks second while the VAR with the hierarchical

Minnesota prior ranks third. Using the TTVP framework in combination with the NS

factors also produces predictions that are competitive to the remaining constant pa-

rameter specifications. Contrasting the differences between the random walk and the

Minnesota prior shows that both yield similar predictions. This is because the hierar-

chical Minnesota prior exerts strong shrinkage towards a random walk process.

Considering the three-months-ahead joint predictive densities yields similar insights.

The TTVP models continue to fare well, outperforming both the TVP-VAR with SV, the

constant parameter VARs as well as the NS models. It is noteworthy that for multi-step
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forecasting, the SSVS VAR shows the weakest performance across all models consid-

ered, leading to a forecast performance that is even inferior compared to the bench-

mark.

Zooming into the marginal results for the different maturities shows that for the

short as well as for the long end of the yield curve, most constant parameter models

seem to outperform their time-varying parameter competitors and the models based on

the NS factors for the one-month-ahead forecast horizon. For 1Y and 2Y maturities, the

random walk as well as the NG VAR generate the most precise predictions, improving

slightly upon the single best performing TTVP specification. The particularly strong

predictive performance of the random walk for the short end of the yield curve has

been found in several contributions on predicting interest rates (Diebold and Li, 2006;

Carriero, Kapetanios, and Marcellino, 2012). This finding, however, does not carry over

to maturities between three and five years. There, we find that our proposed framework

as well as the NS models excel, clearly outperforming the competitors. Interestingly,

for five year maturities we find that estimating a small-scale factor model with time-

varying parameters and mixture innovations yields the strongest performance. Again,

when considering multi-step-ahead forecasts, we find a rather similar picture, with

models that perform well in terms of one-step-ahead forecasting also doing well when

three-step-ahead forecasts are considered.

[Fig. 2 about here.]

Finally, we investigate whether the predictive performance varies with time. Fig. 2

displays the evolution of the one-step-ahead LPSs vis-á-vis the TVP-VAR with SV spec-

ification. At least two interesting patterns over time emerge. We find that during

the financial crisis in 2008/2009, all competing models’ performance increase sharply

against the benchmark specification. In addition, a pronounced jump in relative fore-

casting performance is also visible during the second half of 2011, a period character-

ized by the US debt ceiling crisis of 2011. Our conjecture is that this is driven by a) the

ability to rapidly adjust regression coefficients and thus allow for changing transmission

mechanisms in a flexible way and b) the fact that the TVP-VAR with SV overfits the data

severely and appears to be incapable of handling large shocks to the term structure.

To sum up, this section highlights that using our TTVP approach generally pays off

when used to predict the US term structure of interest rates. When considering the

joint density forecasting performance, we find that this model framework improves
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sharply against the competing models used. If the forecaster’s goal is to predict only

certain segments of the yield curve, we find that for the short and the long end of the

term structure, linear VARs with SV as well as the random walk with SV outperform

our modeling approach. For three up to five year maturities, TTVP models with and

without a factor structure on the yields outperform all remaining models.

5 Structural breaks in US macroeconomic data

We complement the forecasting exercise by investigating the effects of a monetary pol-

icy shock. For that purpose we use a standard US macroeconomic data set, employed

among others in Smets and Wouters (2007), Geweke and Amisano (2012) and Amisano

and Geweke (2017). Data are on a quarterly basis, span the period from 1947Q2 to

2014Q4, and comprise the log differences of consumption, investment, real GDP, hours

worked, consumer prices and real wages. Last, and as a policy variable, we include

the Federal Funds Rate (FFR) in levels. The prior setup mirrors the one used in the

preceding section but sets ξ = 0.01/6.10 Following Primiceri (2005), we include P = 2

lags of the endogenous variables.

In the next section, we start by proposing a global measure of time-variation in the

VAR coefficients and then move on to analyze macroeconomic relations by means of

impulse response analysis in Section 5.2.

5.1 Detecting time-variation in reduced form coefficients

We start by examining the posterior mean of the determinant of the time-varying

variance-covariance matrix of the innovations in the state equation (Cogley and Sar-

gent, 2005). Using the determinant of the process innovation variance-covariance ma-

trix yields a comprehensive measure of time-variation in the autoregressive parameters.

Showing the evolution of the states in βt itself is, given the large dimensionality of the

state space, not feasible. The corresponding measure is computed as follows. For each

draw of Ωit = diag(θi1,t, . . . , θiKi,t) we compute the exponential of the demeaned log-

arithm of the determinant. Large values of this measure point towards a pronounced

degree of time-variation in the autoregressive coefficients of the corresponding equa-

tions. The results are provided in Fig. 3 for each equation and the full system.

10This value is based on running a forecasting exercise using this dataset and a hold-out period of 45
years. Specific results are available from the authors upon request.
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[Fig. 3 about here.]

For all variables, our model produces at least one prominent spike during the sam-

ple period indicating a structural break. Most spikes in the determinant occur around

1980, when then Fed chairman Paul Volcker sharply increased short-term interest rates

to fight inflation. Other breaks relate to the dot-com bubble in the early 2000s (con-

sumption), the oil price crisis and stock market crash in the early 1970s (hours worked)

and another oil price related crisis in the early 1990s. Also, the transition from posi-

tive interest rates to the zero lower bound in the midst of the global financial crisis

is indicated by a spike in the determinant. That we can relate spikes to historical

episodes of financial and economic distress lends further confidence in the modeling

approach. Albeit among these periods, the early 1980s seem to have constituted by

far the most severe rupture for the US economy, the analysis reveals several further,

variable-dependent structural breaks. A model that assumes common dynamics of the

coefficients would not be able to pick these up, which emphasizes the flexibility of the

proposed approach.

5.2 Impulse responses to a monetary policy shock

In this section, we examine the dynamic responses of a set of macroeconomic variables

to a contractionary monetary policy shock. The monetary policy shock is calibrated as a

100 basis point (bp) increase in the FFR and identified using a Cholesky ordering with

the variables appearing in exactly the same order as mentioned above. This ordering is

in the spirit of Christiano, Eichenbaum, and Evans (2005) and has been subsequently

used in the literature (see Coibion, 2012, for an excellent survey).

We proceed in two stages. First, we show slices of impulse responses for the four-

step, eight-step and 12-step-ahead forecast horizon. This allows us to get an overall

impression of the time variation in the impulse response functions. In the second stage

we zoom in and provide the full set of impulse responses for two subsets of the sample,

namely the pre-Volcker period from 1947Q4 to 1979Q1 and the rest of the sample.

All impulse response functions are calculated assuming that the shocks to the states

are set to their expected value, i.e., zero. Hence, we follow Primiceri (2005); Cogley

and Sargent (2005); Koop, Leon-Gonzalez, and Strachan (2009), among many oth-

ers, and neglect the fact that parameters might be changing over the impulse response

horizon. The assumption that parameters remain constant over the impulse response

22



horizon is, moreover, consistent with the literature on bounded rationality and learning

(see Kreps, 1998). Compared to dynamic forecasts, this simpler strategy is computa-

tionally less involved and in light of the fact that our model detects rather few (but

large) structural breaks, appears to be reasonable.

[Fig. 4 about here.]

[Fig. 5 about here.]

In Fig. 4 and Fig. 5, we report the overall effects of a monetary tightening. As

investment growth decelerates, the growth rate of hours worked and output decreases.

These results are reasonable from an economic perspective. Also, estimated effects on

output growth and inflation are comparable to those of Baumeister and Benati (2013)

who use a TVP-VAR framework and US data. Results on consumption growth and real

wages are accompanied by large credible intervals.

Looking at time variation, the results indicate stronger (i.e., more negative) effects

of monetary policy for the most recent part of our sample period. More precisely,

and starting in the late 1990s, effects on consumption, investment and output growth

gradually decrease until the end of our sample period. Most interestingly, though,

are the responses of inflation. They sharply increase in the late 1960s, resulting in

a pronounced price puzzle, remain constant in the 1970s and start declining strongly

with the onset of the Volcker-period. This pattern is also mirrored in the responses of

real wage growth, which is only negative during the period of pronounced inflation

effects, while positive during the rest of the sample period. The results in Fig. 4 and

Fig. 5 thus reveal time variation in the effects of a monetary policy shock and – more

importantly – that these are variable specific and can be both gradual and abrupt.

We next zoom in and focus on two sub-sets of the sample, namely the pre-Volcker

period from 1947Q4 to 1979Q1 and the rest of the sample.11 The time-varying impulse

responses – as functions of horizons – are displayed in Fig. 6. We investigate whether

the size and the shape of responses varies between and within the two sub-samples. For

that purpose, we show median responses over the first sample split in the top row and

for the second part of the sample in the bottom row. Impulse responses that belong to

the beginning of a sample split are depicted in light yellow, those that belong to the end

11The split into two sub-sets is conducted for interpretation purposes only. For estimation, the entire
sample has been used.
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of the sample period in dark red. To fix ideas, if the size of a response increases con-

tinuously over time, we should see a smooth darkening of the corresponding impulse

from light yellow to dark red.

[Fig. 6 about here.]

Considering the first sub-period from 1947Q4 to 1979Q1, one of the variables that

shows a great deal of variation in magnitudes is the response of inflation. Here, effects

become increasingly positive the further one moves from 1947Q4 to 1979Q1 and the

shades of the responses turn continuously darker. While overall credible sets for the

sub-sample are wide, positive responses for inflation and thus the price puzzle are

estimated over the period from the mid-1960s to the beginning of the 1980s (see also

Fig. 4). A similar picture arises when looking at consumption growth. During the

first sample split, effects become increasingly more negative, but responses are only

precisely estimated for the period from the mid-1960s to the beginning of the 1980s.

This might be explained by the fact that the monetary policy driven increase in inflation

spurs consumption since saving becomes less attractive.

In the bottom panel of Fig. 6, we focus on the results over the more recent second

sample split from 1979Q2 to 2014Q4. Paul Volcker’s fight against inflation had some

bearings on overall macroeconomic dynamics in the USA. With the onset of the 1980s,

the aforementioned price puzzle starts to disappear (in the sense that effects are sur-

rounded by wide credible sets and median responses turn increasingly negative). There

is also a great deal of time variation evident in other responses which are mostly be-

coming more negative. Put differently, the effectiveness of monetary policy seems to

be higher in the more recent sample period than before. This can be seen by effects

on growth in hours worked, investment and output. That the effects of a hypothetical

monetary policy shock on output growth are particular strong after the crisis corrob-

orates findings of Baumeister and Benati (2013) and Feldkircher and Huber (2016).

The latter argue that this is related to the zero lower bound period: after a prolonged

period of unaltered interest rates, a deviation from the (long-run) interest rate mean

can exert considerable effects on the macroeconomy.

6 Closing remarks

This paper puts forth a novel approach to estimating large-scale time-varying param-

eter models with mixture innovations in a Bayesian framework. We propose approx-
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imating the indicators that control which mixture component to use by a threshold

process where the threshold variable is the absolute period-on-period change of the

corresponding states. This implies that if the (proposed) change is sufficiently large,

the corresponding variance is set to a value greater than zero. Otherwise, it is set close

to zero which implies that the states remains virtually constant between two points

in time. Our framework is capable of discriminating between a plethora of compet-

ing specifications, most notably models that feature moderately many, few, or even no

structural breaks in the regression parameters.

The merits of our approach are illustrated by two applications. The first application

serves as a means to assess the forecasting capabilities of the proposed model while the

second model illustrates how the framework can be used to perform structural analysis.

In the first application, we show that our model performs well when used to predict the

US term structure of interest rates. Our results indicate that the model yields precise

forecasts, especially so during more volatile times such as witnessed in 2008 and during

the debt ceiling crisis in 2011. For that period, the forecast gain over simpler models is

particularly high.

For the second application, we turn to US macroeconomic data. We investigate

whether reduced-form parameters vary over time by considering the time-varying de-

terminant of the posterior variance-covariance matrix of the state innovations. This

analysis suggests several variable specific structural breaks in the reduced form rela-

tionships, with the Volcker period marking the most severe rupture for the US economy.

Examining the effects of a contractionary monetary policy shock, we see considerable

time variation in structural impulse responses. Our results indicate abrupt changes of

effects on inflation. More specifically, we find significant evidence for a severe price

puzzle during episodes of the pre-Volcker period, whereas the puzzle disappears in

the second half of our sample. Effects on other variables such as output and invest-

ment growth as well as growth in hours worked change more gradually, reaching a

trough during the period after the global financial crisis. For that period, a hypothetical

deviation from the zero lower bound would create pronounced effects on the wider

economy. These findings highlight the importance to account for different dynamics of

the underlying variables in order to adequately capture the complex interaction of the

macroeconomy – a salient feature of our modeling framework.

As a potential avenue of further research, the proposed framework can be extended

by introducing another prior on the scaling factors that is used to determine the spike
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variance. The scaling factor could be defined on a discrete grid and this, combined

with a uniform prior, would lead to a tractable conditional posterior distribution. This

would further reduce the additional input from the researcher and improve the practi-

cability of our approach for a wide range of different applications in macroeconomics

and finance.
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A Convergence and mixing properties

Here, we assess convergence of our proposed algorithm for the US macroeconomic

dataset. As mentioned in the main part of the paper, convergence characteristics closely

resemble those typically reported when standard TVP-VARs with SV are used. To assess

mixing and convergence properties of the thresholds, Table 2 shows the empirical dis-

tribution of inefficiency factors and the Raftery and Lewis (1992) diagnostic of the total

number of runs required to achieve a certain level of precision. The parameters of the

diagnostic are specified as in Primiceri (2005).12

The table indicates that inefficiency factors across equations appear to be favorable

(i.e., well below 50) for all covariates. Notice that the marginal posteriors of selected

thresholds feature estimated inefficiency factors of one, indicating virtually no autocor-

relation. Considering the required number of runs to achieve a certain level of precision

reveals that this is far below the actual number of iterations in practically all cases.

Table 2: Empirical distribution across covariates within an equation of selected conver-
gence metrics for the thresholds: US macroeconomic data.

Inefficiency factors Required number of runs
Low10 Median High90 Min Max Low10 Median High90 Min Max

consumption 1 1 5 1 7 928 1375 2913 907 3945
investment 1 7 13 1 31 2222 3112 4725 1162 4746
output 1 1 1 1 2 922 968 2788 907 6360
hours 1 1 2 1 7 928 2129 3538 907 5064
inflation 1 1 14 1 16 1094 2270 4319 922 4780
real wage 1 9 19 1 49 1415 2825 4606 1242 5415
interest rate 1 1 10 1 19 922 1242 2896 922 3390

12The quantiles are set equal to 0.025, the desired degree of accuracy is 0.025, and the probability of
achieving the required accuracy is 0.95.
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Fig. 1: Evolution of the actual state vector (sold green) along with the 98 percent posterior credible intervals of the TVP model
(gray shaded area), the TTVP model (red shaded area) and a standard mixture innovation model (blue shaded area).
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Fig. 6: Posterior median impulse response functions over two sample splits, namely
the pre-Volcker period (1947Q4 to 1979Q1) and the rest of the sample period
(1979Q2 to 2014Q4). The coloring of the impulse responses refer to their timing:
light yellow stands for the beginning of the sample split, dark red stands for the
end of sample split. For reference, 68% credible intervals over the average of the
sample period provided (dotted black lines).
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