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Abstract

This paper proposes a hierarchical modeling approach to perform stochastic model specification in

Markov switching vector error correction models. We assume that a common distribution gives rise

to the regime-specific regression coefficients. The mean as well as the variances of this distribution

are treated as fully stochastic and suitable shrinkage priors are used. These shrinkage priors enable to

assess which coefficients differ across regimes in a flexible manner. In the case of similar coefficients,

our model pushes the respective regions of the parameter space towards the common distribution. This

allows for selecting a parsimonious model while still maintaining sufficient flexibility to control for sud-

den shifts in the parameters, if necessary. In the empirical application, we apply our modeling approach

to Euro area data and assume that transition probabilities between expansion and recession regimes

are driven by the cointegration errors. Our findings suggest that lagged cointegration errors have pre-

dictive power for regime shifts and these movements between business cycle stages are mostly driven

by differences in error variances.
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1 Introduction

We propose a hierarchical multivariate regime switching model that allows for detecting which parameters

differ across regimes. This model, a Markov switching vector error correction model (MS-VECM), explicitly

discriminates between short- and long-run dynamics and potentially allows for time-varying transition

probabilities that depend on the cointegration error. We assess whether parameters differ across regimes

by using novel shrinkage priors that have recently been utilized in finite mixture modeling (see Yau and

Holmes, 2011; Malsiner-Walli et al., 2016).

The literature on Bayesian estimation of Markov switching (MS) models is voluminous (see, among

many others, Chib, 1996; Kim and Nelson, 1998; Kaufmann, 2000; Sims et al., 2008; Kaufmann, 2015;

Droumaguet et al., 2017). By contrast, contributions that explicitly deal with the Bayesian estimation of

MS-VECMs is comparatively sparse (Martin, 2000; Paap and Van Dijk, 2003; Jochmann and Koop, 2015).

Most of these contributions use Bayesian shrinkage priors to enable reliable and efficient estimation. These

priors are typically specified in the spirit of standard Minnesota priors (Doan et al., 1984; Sims and Zha,

1998) and symmetric across regimes. One implication is that coefficients are pushed towards a stylized

prior model (like a multivariate random walk), irrespective of the regime and what the (regime-specific)

likelihood suggests. For instance, a regression parameter may be zero in one regime, but different in

another. Such a situation is effectively ruled out as both coefficients are pushed to zero.

In this paper, we circumvent such issues by proposing a novel hierarchical modeling approach that has

originally been proposed in the literature on finite mixture models (see Yau and Holmes, 2011; Malsiner-

Walli et al., 2016). We estimate an MS-VECM assuming that the regime-specific coefficients arise from a

common distribution. The mean of this common distribution is treated as unknown and estimated from

the data. Using Normal-Gamma shrinkage priors (Griffin and Brown, 2010) on the variance-covariance

matrix of the common distribution enables us to gain an understanding on what covariates drive the cor-

responding regime allocation. When compared to the existing literature, our approach allows for flexibly

testing which coefficients (or sets of them) should differ across regimes while pushing similar coefficients

towards a common mean. In addition, we follow the literature on MS models with time-varying transition

probabilities (see, among others, Filardo, 1994; Kim and Nelson, 1998; Kaufmann, 2015) and assume that

the transition probability matrix is time-varying and depends on the lagged cointegration errors.

For an empirical illustration, we estimate a Euro area business cycle model that discriminates between

business cycle expansions and contractions. An additional empirical novelty of our approach is that we

test whether deviations of macroeconomic fundamentals from their long-run equilibrium values impact

the transition probabilities between business cycle stages. The empirical results suggest that our model

successfully replicates Euro area business cycle behavior. Moreover, we find that deviations of output

and credit from their long-run fundamentals have predictive power for the transition probabilities. When

considering differences in parameters across regimes, our findings are threefold. First, we find that short-

run adjustment coefficients do not differ across regimes. This is evidenced by strong shrinkage towards

the common mean, leaving only little room for regime-specific deviations. Second, the autoregressive

coefficients also display relatively little variation across regimes. For some equations, however, we find

that selected coefficients do differ between expansionary and recessionary stages. Third, and finally, we

find that the variance-covariance matrix of the shocks differs markedly across regimes. This indicates that
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the regime allocation is strongly driven by differences in error variances and, to some extent, changes in

the VAR coefficients.

The remainder of the paper is organized as follows. Section 2 outlines the proposed idea by means

of a simple switching regression model while Section 3 presents the MS-VECM model as well as the prior

set-up. Section 4 first gives an overview of the dataset used and subsequently shows the empirical results.

The last section summarizes and concludes the paper.

2 A simple hierarchical model

In this section we outline the main idea on how to determine whether coefficients differ across regimes

within a simple regression model. Subsequently, we generalize the stylized example to a multivariate

non-linear error correction model.

We set the stage by assuming that a scalar time series {y}Tt=1 follows a switching regression model

(Goldfeld and Quandt, 1973),1

yt = β1St
x1t + β2St

x2t +σSt
ηt , ηt ∼N (0, 1), (1)

with x j t being exogenous covariates and β jSt
(for j = 1, 2) the associated regression coefficients while σ2

St

denotes the error variance. We assume that St denotes an indicator that takes values 0, . . . , R and follows

a first-order Markov process.2

The Bayesian literature typically uses Gaussian priors on β jSt
,

β jSt
∼N (0,τ j), (2)

where τ j denotes a fixed prior scaling for coefficient j. Notice that τ j is regime invariant and the prior is

centered on zero. In time series applications and for non-stationary data, it is common practice that the

prior on the first lag of yt is centered on unity, while for higher lag orders the prior mean is set equal to

zero.

The symmetric prior in Equation 2 translates into a prior on the standardized distance between coeffi-

cients. For illustration, we compute the prior distance between β jk and β jl for k 6= l,

β jk − β jlp
2
∼N (0,τ j). (3)

If τ j is close to zero, the corresponding coefficients do not differ significantly across regimes. However, they

are simultaneously strongly pushed to zero. Thus, while such a prior is able to push selected coefficients

towards homogeneity, it is not capable of handling cases where coefficients are non-zero but at the same

time appear to be the same across regimes.

As a solution, we follow Yau and Holmes (2011) and assume that the regime-specific coefficients arise

from a common distribution,

β jSt
∼N (β j ,τ j). (4)

1For textbook introductions, see Kim and Nelson (1999) and Frühwirth-Schnatter (2006).
2The arguments we provide below hold for any law of motion of St .
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The common mean β j is treated as unknown and estimated from the data. It is noteworthy that if τ j is

close to zero, β jSt
is pushed to β j across all regimes. Computing the standardized distance between β jk

and β jl yields Equation 3 and the same intuition applies. However, instead of pulling β jSt
to zero for all

regimes, this specification shrinks towards parameter homogeneity. Equation 4 can be interpreted as a

Gaussian hierarchical prior on β jSt
.

In what follows, we use shrinkage priors on τ j to test the existance of significant differences across

regimes. Specifically, we assume that τ j arises from a Gamma distribution,

τ j ∼ G (d0, d1), (5)

with d0 and d1 being hyperparameters. This specification has been introduced by Griffin and Brown (2010)

within a regression context and subsequently adopted by Malsiner-Walli et al. (2016) to determine variable

relevance in finite mixture models. Using a Gamma prior allows for shrinking τ j to zero if necessary, and

thus permits selecting whether parameters differ across regimes.

3 Econometric framework

In Section 3.1, we first discuss the multivariate MS error correction specification while Section 3.2 discusses

the prior choice and Section 3.3 briefly summarizes the main steps necessary to perform posterior inference.

3.1 A non-linear vector error correction model

The simple model outlined in the previous section is now generalized to a MS-VECM with two regimes.

We opt for two regimes since we are interested in developing a model of the Euro area that encompasses

several stylized facts about business cycles, namely pronounced co-movement of macroeconomic quantities

over the business cycle as well as the distinction between expansionary and recessionary stages (Burns and

Mitchell, 1946). Moreover, our proposed framework explicitly aims at discriminating between short- and

long-run dynamics.

We assume that the first difference of a m-dimensional vector of macroeconomic time series {yt}Tt=1

follows a MS-VECM with P lags,

∆yt = λSt
b′yt−1 +

P
∑

p=1

BpSt
∆yt−p +HSt

ηt , ηt ∼N (0,Im). (6)

Here we let λSt
be an m× r matrix of short-run adjustment coefficients, b is an m× r matrix of long-run

relations and BpSt
are m×m coefficient matrices associated with the pth lag of ∆yt . Furthermore, HSt

is

the lower Cholesky factor of a regime-specific variance-covariance matrixΣSt
=HSt

H ′St
and St is a discrete

Markov process that takes values zero or unity detailed below. In what follows we rewrite Equation 6 as

∆yt =ASt
xt +HSt

ηt , (7)
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whereby ASt
= (λSt

,B1St
, . . . ,BPSt

) is a m× K matrix of stacked coefficients with K = r +mP. Moreover,

xt = (w
′
t ,∆y

′
t−1, . . . ,∆y′t−P)

′ and wt = b′yt−1 denoting the r cointegration errors.3 Notice that Equation

7 is a standard multivariate regression model conditional on b. We explicitly rule out the possibility of

breaks in b since they are assumed to be long-run fundamental relations and thus not subject to abrupt

changes. However, there exist studies which allow for non-linearities in the cointegration relationship (see,

for instance, Martin, 2000; Bec and Rahbek, 2004; Koop et al., 2011; Jochmann and Koop, 2015).

The transition probabilities of St , Prob(St = j|St−1 = i,γ,wt) = pi j,t , are specified to be time-varying

and depend on the (lagged) cointegration error through a set of regression coefficients in wt . More pre-

cisely, the matrix of transition probabilities is given by

Pt =

�

p00,t p01,t

p10,t p11,t

�

. (8)

The rows of Equation 8 sum to unity for all i and t. Following the literature on early warning Markov

switching models (Filardo, 1994; Kim and Nelson, 1998; Amisano and Fagan, 2013; Huber and Fischer,

2018), we assume that the transition probabilities are parameterized using a probit specification,4

pi j,t = Φ(c0i + γ′wt), (9)

with c0i denoting a regime-specific intercept term and Φ denotes the cumulative distribution function of the

standard normal distribution. The jth element in γ measures the sensitivity of the transition probabilities

with respect to the jth cointegration error, w j t . Following Amisano and Fagan (2013), we postulate that

γ is time-invariant while the intercept term depends on the prevailing regime. Using the latent variable

representation of the probit model yields

z∗t = c0i + γ′wt + ut , ut ∼N (0,1). (10)

For identification purposes, the error variance is set equal to unity.

Before proceeding to the prior specification it is worth noting that λ and b are not identified since they

enter Equation 6 as a product. We achieve identification by using the linear normalization b = (Ir ,Ξ
′)′

with Ξ being a (m− r)× r matrix of coefficients. This choice is clearly not invariant to the ordering of the

elements yt but ensures that the model is exactly identified.5

3.2 Prior specification

The model outlined in the previous section is heavily parameterized and we thus adopt a Bayesian approach

to estimation and inference. Consistent with the discussion in Section 2 we assume that the common

distribution that gives rise to aSt
= vec(ASt

) follows a multivariate Gaussian distribution,

aSt
∼N (a,Ω), (11)

3For notational simplicity we suppress the dependence of wt on b.
4In the case of more than two regimes, a potential alternative would be a logit specification (Kaufmann, 2015; Billio et al., 2016).
5Another potential choice would be to identify the space spanned by the cointegrating vectors and introduce a restriction on this
space (Strachan, 2003; Koop et al., 2009).
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where Ω = diag(τ1, . . . ,τK) is a diagonal variance-covariance matrix with variances τ j . Analogous to

Section 2, τ j determines the similarity between elements in a0 and a1. For instance, if only the short-run

adjustment coefficients differ across regimes, the corresponding elements in Ω will be rather large whereas

for the remaining coefficients, the associated τ js will be close to zero.

Following Malsiner-Walli et al. (2016) we specify a Gaussian prior on a and the Gamma prior outlined

in Equation 5 for all j,

a∼N (a,Ω), (12)

τ j ∼ G (d0, d1). (13)

Hereby, we let a denote the K-dimensional prior mean vector and Ω is a K × K prior variance-covariance

matrix. In what follows, we specify a = 0 and Ω = 103 × IK to obtain a weakly informative prior on

a. For τ j , it is worth emphasizing that if d0 = 1, we obtain the Bayesian Lasso (Park and Casella, 2008)

used in Yau and Holmes (2011) while if d0 < 1 increasing prior mass is placed on zero while the tails

of the marginal prior become heavier (Malsiner-Walli et al., 2016). In our empirical application, we set

d0 = d1 = 0.1 to strongly center the prior on zero and allow for heavy tails.

The prior set-up described in Equations 11 to 13 effectively allows for detecting what elements in aSt

differ across regimes and which of them appear to be homogeneous over distinct business cycle stages.

Especially in light of a moderate to large number of time series in yt as well as a moderate number of lags

P, the number of parameters per regime is large relative to the length of a typical dataset. In the presence

of multiple regimes, however, this problem is even more severe and shrinkage is necessary to obtain reliable

parameter estimates. Our flexible hierarchical model specification enables for flexible shrinkage towards

homogeneity while at the same time provides sufficient flexibility to allow for differences in the state-

specific coefficients.

For ξ = vec(Ξ), the v = (m− r)r free elements of b, we use a Gaussian prior,

ξ ∼N (0,ζ× Iv), (14)

where ζ is a prior hyperparameter that controls the tightness of the prior. We set ζ = 1, which is a fairly

uninformative choice given the scale of our data. In principle, it would also be possible to elicit a prior

directly on the cointegrating space (Strachan, 2003). Here, we follow the traditional approach since we

are interested in directly interpreting the corresponding cointegration error.

Following Frühwirth-Schnatter (2006), Malsiner-Walli et al. (2016) and Huber and Zörner (2017), we

use a hierarchical Wishart prior on Σ−1
St

,

Σ
−1
St
∼W (S, s), (15)

S ∼W (Q, q). (16)
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The prior hyperparameters are specified such that (see Frühwirth-Schnatter, 2006; Malsiner-Walli et al.,

2016)

s = 2.5+
m− 1

2
, (17)

q = 0.5+
m− 1

2
, (18)

Q=
100s

s
diag(σ̂2

1, . . . , σ̂2
m). (19)

Here we let σ̂2
j

denote the OLS variance obtained by running a univariate autoregressive model of order P.

This choice implies that the all of the regime-specific variance-covariance matrices stem from a common

distribution, similar to the case for aSt
outlined above.

Finally, we use Gaussian priors on Γ = (c0i ,γ
′)′,

Γ ∼N (0,V ), (20)

with V = 10 × Ir+1 to introduce relatively little prior information on Γ . Decreasing the prior variance

would lead to a situation where the researcher suspects that transition probabilities do not depend on wt

and tend to be time-invariant.

3.3 Full conditional posterior simulation

The model outlined in the previous sections features a joint posterior density that is intractable. Fortunately,

however, all full conditional posterior distributions take a well known form and are thus amenable to

perform Gibbs sampling. In this section, we briefly summarize the steps involved in order to obtain a valid

draw from the joint posterior, focusing attention on the non-standard parts while providing references for

the full conditionals that are standard.

Conditional on a suitable set of starting values, our Markov chain Monte Carlo (MCMC) algorithm

cycles through the following steps:

1. Sample a j ( j = 0,1) conditional on the remaining parameters and the states from a K-dimensional

multivariate Gaussian distribution. The corresponding moments take a standard form (Zellner,

1973).

2. Simulate ξ from a Gaussian posterior distribution conditional on the remaining parameters, states

and a set of identifying assumptions. The precise formulas can be found in Villani (2001) and Huber

and Zörner (2017).

3. The common mean a is simulated conditional on a0,a1 and Ω from a Normal distribution, with ⊙
indicating point-wise multiplication,

a|a0,a1,Ω ∼N (a,Ω⊙Ω)
Ω = (2IK +Ω

−1)−1,

a= Ω (a0 +a1),
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4. Draws from the conditional posterior of τ j are obtained by noting that p(τ j|a0,a1) follows a gener-

alized inverted Gaussian (GIG) distribution,

τ j |a,a0,a1 ∼ GIG
 

d0 − 1,
1
∑

j=0

(a j −a)2, 2d1

!

. (21)

5. Draw Σ−1
j

(for j = 0,1) from a Wishart conditional posterior distribution given by

Σ
−1
j |a0,a1, ST ,S,D ∼W (S j , s j)

S j = S +
1

2

∑

t:St= j

(∆yt − A jx
′
t)(∆yt − A jx

′
t)
′,

s j = s+ N j/2

whereby ST = (S1, . . . , ST )
′ denotes the full history of the states, D the data and N j = #(t : St = j),

that is, the number of observations in regime j.

6. The common scaling matrix for the Wishart prior S is simulated from its Wishart distributed condi-

tional distribution,

S|a0,a1 ∼W (S, q)

S =Q+

1
∑

j=0

Σ
−1
j ,

q = q+ 2s.

7. Simulate the full history of the states ST as well as the transition probabilities using the algorithm

outlined in Kim and Nelson (1998) and adopted in Amisano and Fagan (2013).

8. Estimate the full history of z∗t and Γ using the algorithm proposed in Albert and Chib (1993).

We repeat this algorithm 85,000 times where the first 50,000 draws are discarded as burn-in. Convergence

is assessed using standard trace plots as well as inefficiency factors and the Raftery and Lewis (1992)

diagnostic. All measures point toward rapid convergence for most parts of the parameter space under

scrutiny.

4 Empirical application

In this section, we estimate a medium-scale empirical model for the Euro area that explicitly discriminates

between business cycle phases of expansion and recession. In the next section (Section 4.1) we briefly

outline key model specification and identification issues as well as the dataset adopted. We then proceed

by specifying the cointegration rank in Section 4.2. In Sections 4.3 and 4.4 key properties of our model

are analyzed.
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r = 1 2 3 4 5

DIC -7877 -8086 -7905 -7953 -8033
SD 70 81 92 132 129

Table 1: Selecting the cointegration rank using the DIC and the numerical standard errors (SD), respect-
ively.

4.1 Data overview and model specification

For the empirical application we use a subset of the data provided in Gambetti and Musso (2017). The

dataset employed is comprised of six quarterly Euro area time series ranging from Q1:1985 to Q4:2011.

Variables included are real gross domestic product (GDP), the growth rate of the harmonized index of

consumer prices (CP), the non-financial private sector loan volume (outstanding amounts of loans granted

by financial intermediaries to households and non-financial corporations, labeled CR), the GDP to loans

ratio (Loans), a composite lending rate (weighted average of lending rates for loans to households and

non-financial corporations, abbreviated as LR) and a short-term interest rate (three-month Euribor up to

August 2007, afterwards the Euro Repo rate for secured interbank lending, abbreviated as STIR).

Due to the normalization assumption on b, the ordering of the variables in yt plays a crucial role. Here,

we use the following ordering

yt = (CR, GDP, DP, Loans, LR, STIR)′. (22)

As is standard in the literature for quarterly data, we choose P = 4 lags in the empirical specification.

This translates into five lags of yt if the model is written in terms of a MS-VAR in levels. Moreover, we

include an intercept term that is consequently included in a and thus also originates from the common

distribution in Equation 11. Furthermore, notice that the model is not identified with respect to the labeling

of the states. Here, we achieve identification by assuming that the conditional mean of the equation for

GDP growth is higher for St = 0. This is achieved by implementing a rejection step in the MCMC algorithm.

4.2 Selecting the cointegration rank

In this section we specify the cointegration rank r of the MS-VECM. For this purpose, we rely on the deviance

information criterion (DIC, Spiegelhalter et al., 2002) and choose the r that minimizes the DIC. Since our

model is a latent variable model, we need to decide on whether to use the conditional likelihood (i.e.

conditional on the latent states) or integrate out the latent states to obtain the complete data likelihood.

Here, we follow the latter approach because the complete data likelhood is readily available as a byproduct

of the filtering recursions of our algorithm.

Based on the results reported in Table 1 that depicts the mean level as well as numerical standard errors

of the DIC. These quantities are obtained by re-estimating the model for each cointegration rank 100 times

and computing the DIC. The table indicates that r = 2 minimizes the DIC with differences for ranks higher

than unity appearing to be rather small, especially when viewed in light of the numerical standard errors

provided.

The posterior distributions of the two cointegration errors that are subsequently used to inform the

transition distributions are depicted in Figure 1. Notice that the first error can be interpreted as the devi-

ation of credit from its long-run equilibrium value determined by the remaining elements in yt . By contrast,
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(a) First cointegration error
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(b) Second cointegration error
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Fig. 1: Posterior distribution of cointegration errors.

the second error can be considered to be the deviation of output from a long-run equilibrium value and

is thus related to the output gap. The first cointegration error, shown in Figure 1(a), indicates that credit

was below its equilibrium value during the first third of the sample. From 1992 onwards, we observe that

credit quickly reverted towards its long-run fundamental value and then subsequently overshoot it until the
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Fig. 2: Credit growth and filtered probabilities of being in the expansion or recession state.

Notes: The red line indicates the actual credit growth rate and the grey shaded area the posterior mean probability of the recession
state.

beginning of the 2000s. From around 2001 onwards, the figure suggests that credit persistently remained

above zero up to the beginning of the global financial crisis where it, again, dropped below zero.

Considering the second cointegration error in Figure 1(b) suggests that output was below its long-run

equilibrium in the second half of the eighties while being approximately in equilibrium from 1988 to 1991.

In 1992, we find that output dropped below its long-run equilibrium value. This is probably due to the

crisis of the European Exchange Rate Mechanism (ERM) that led to a recession across a large number of

EU member states. Afterwards, we find that output slightly remained above equilibrium until the global

financial crisis led to a sharp decline in real activity. At this point, it is worth emphasizing that our goal is

not to provide an accurate measure of the output gap. In order to obtain a more reliable estimate of the

output gap, yt needs to be augmented with additional macroeconomic and financial quantities.

4.3 Regime allocation and time-varying transition distributions

In this section, we first consider the corresponding posterior regime allocation and the transition probab-

ilities. Figure 2 depicts the smoothed state probabilities of being in the recession state as a grey shaded

area, while credit growth is indicated in red.

Our model tracks several periods of economic stress rather well. The two most dominant recessions

in our sample, namely the area-wide recession due to the ERM crisis as well as the global financial crisis

in 2008/2009, are captured by our model. We also find several periods during the midst of the 1980s

that have been identified to be within a recessionary regime. These spikes in recession probabilities can

be attributed to rather high levels of inflation in several member states, contractionary monetary policy,

as well as the end of the Cold War. It is noteworthy that credit growth typically declines before economic

downturns. This phenomenon is particularly evident in the years 1986, 1992 and the beginning of the Great

Recession in 2007 and 2008. This is in line with Borio and Lowe (2004), who argue that the emergence

and severity of crises is tightly linked to the availability of credit in a given economy.
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Evidence for time variation in the posterior mean of the transition probabilities is reported in Figure 3,

where the grey shaded area refers to the smoothed probability of being in the recession state. The red and

blue lines are based on the time-varying off-diagonal elements of the transition probability matrix, which

indicate the probability of entering a recession at time t when being in the expansion state in t − 1 (that

is, Prob(St = 1|St−1 = 0)) and vice versa.

From 1993 onwards, a period of relative stability emerges, evidenced by a decline in the probability of

moving into a recession when being in an expansion until the end of 1997. This period ends abruptly in

1998 with a surging probability of a recessionary phase. Arguably, this reflects the burst of the US-based

dot-com bubble and the 9/11 terror attacks in 2001 and subsequent transmission to the economies of the

Euro area. Interestingly, the smoothed probability of the recession state exhibits only a minor reaction,

suggesting that a European recession was avoided. Subsequently, we again observe a period of compar-

atively low probability of entering a crisis when being in an expansion. The peak around the year 2008

marks the beginning of the Great Recession and the emerging European debt crisis.

4.4 Do parameters differ across regimes?

The key novelty of our proposed approach is that it allows for flexible testing what coefficients differ across

regimes. In order to assess differences in parameters, we rely on two visual tools that enable assessing how

much shrinkage is introduced as well as how large deviations of aSt
from a are.

The first visual assessment is based on considering the posterior mean of the log posterior of τ j . Figure

4 presents the scaling parameters associated with the short-run adjustment coefficients in λSt
and across

equations. The left panel (a) of Figure 4 shows the variance parameters associated with the adjustment

terms of the first cointegration error while the right panel (b) of the figure displays the scaling parameters

related to the second column of λSt
.
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Fig. 4: Posterior mean of the log posterior of the scaling parameters across equations: Adjustment coeffi-
cients associated with the cointegration errors.

Across equations, we find that the scaling parameters are all close to zero and display relatively little

variation. This finding holds true for both cointegration errors, suggesting that all elements in λSt
are

strongly pushed towards the common mean. Thus, the figure clearly suggest that the way the economy ad-

justs to departures from long-run equilibrium values appears to be independent of the prevailing economic

regime. From a modeling perspective, the key point to take away from Figure 4 is that a regime-invariant

λ= λ0 = λ1 seems to suffice.

Next we investigate whether the coefficients associated with the lagged endogenous variables differ

across regimes. Figure 5 shows the scaling parameters for each autoregressive coefficient as well as for the

intercept term across equations.

For most equations, our results indicate that differences in coefficients are rather small. This overall

conclusion stems from the fact that most log scalings are small, with some being almost equal to zero. For

some equations, however, we find that the amount of shrinkage introduced on the standardized distances is

considerable smaller for the first lag of credit (see panels (b), (c), and (e) of Figure 5), providing evidence

that these macroeconomic quantities react differently to lagged changes in credit growth. Notice that

differences of order two to four on the log-scale hint towards substantial differences in the amount of

shrinkage introduced.

One shortcoming of the analysis presented in Figures 4 and 5 is that it is not invariant with respect

to the scaling in yt (and its changes). To provide some evidence on the quantitative differences in the

autoregressive coefficients, we compute the posterior mean of the distance between regime-specific coeffi-

cients and the underlying common distribution. The results are reported in Figure 6 with values between

-0.05 and 0.05 being zeroed out. We find comparatively large differences for the Loans and short-term

interest rate equation. Minor deviations are also apparent in the case of GDP and CP, while the lending rate

and loan volume do not differ across regimes. Note that the two states closely mirror each other, and, for

instance, positive deviations in the expansionary regime are typically accompanied by negative differences

in the recession state.

Finally, we consider whether the variance-covariance matrices differ across regimes. To this end, Figure

7 presents a boxplot of the marginal posterior distributions of the log determinant (a), the log trace (b)

and the log maximum eigenvalue (c) of the variance-covariance matrix for the recessionary as well as for

the expansionary regime. Two findings are worth emphasizing. First, considering the posterior median
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Fig. 6: Difference of posterior means between state-specific coefficients and the common distribution.
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Fig. 7: Posterior distribution of the log determinant of the regime-specific variance-covariance matrices

To sum up, while we find that differences in the regression coefficients in a0 and a1 are rather small,

our results provide strong evidence that error variance-covariance matrices differ sharply across regimes.

Our modeling approach thus stochastically selects a model where only selected VAR coefficients differ while

the short-run adjustment coefficients appear to be regime invariant. By contrast, our findings indicate that

the regime allocation is mainly driven by differences in the variance-covariance matrices and this, to some

extent, corroborates findings presented in Sims and Zha (2006).

5 Closing remarks

In this paper, we propose a hierarchical Markov switching model that allows for assessing what coeffi-

cients should differ across regimes. The specific model, a MS vector error correction model, discriminates

between short- and long-run dynamics and assumes that the transition probability matrix of the under-

lying Markov process is time-varying. We assume that the autoregressive coefficients, the error variance-

covariance matrices as well as the short-run adjustment coefficients differ across regimes and arise from

a common distribution. Moreover, another novel feature of our model is that the transition distributions

are parameterized using a simple binary probit model with the (lagged) cointegration errors included as

covariates.

The modeling approach is then highlighted using a medium-scale Euro area dataset. Our empirical

model discriminates between expansionary and recessionary business cycle stages and allows for assessing

whether transition probabilities do vary over time. Considering the posterior mean estimates for the filtered
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probabilities indicates that our model succeeds in replicating business cycle features of the Euro area. In

addition, we investigate what coefficients differ across regimes and how this impacts the actual regime

allocation.

Our findings suggest that using the proposed approach succeeds in reproducing dominant Euro area

recessions and, moreover, show that deviations of output and credit from their long-run fundamentals drive

the transition between regimes. Considering what parameters should differ across regimes, the proposed

hierarchical model suggests that short-run adjustment coefficients can be assumed to be regime-invariant

while selected VAR coefficients should differ across expansions and recessions. Error variances, however,

tend to differ sharply and predominantly account for the corresponding regime allocation.
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