Nendel, Max; Röckner, Michael

Working Paper
Upper envelopes of families of feller semigroups and viscosity solutions to a class of nonlinear cauchy problems

Center for Mathematical Economics Working Papers, No. 618

Provided in Cooperation with:
Center for Mathematical Economics (IMW), Bielefeld University

Suggested Citation: Nendel, Max; Röckner, Michael (2019) : Upper envelopes of families of feller semigroups and viscosity solutions to a class of nonlinear cauchy problems, Center for Mathematical Economics Working Papers, No. 618, Bielefeld University, Center for Mathematical Economics (IMW), Bielefeld, http://nbn-resolving.de/urn:nbn:de:0070-pub-29360132

This Version is available at:
http://hdl.handle.net/10419/201643

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.
If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Upper Envelopes of Families of Feller Semigroups and Viscosity Solutions to a Class of Nonlinear Cauchy Problems

Max Nendel and Michael Röckner
UPPER ENVELOPES OF FAMILIES OF FELLER SEMIGROUPS
AND VISCOSITY SOLUTIONS TO A CLASS OF NONLINEAR
CAUCHY PROBLEMS

MAX NENDEL1 and MICHAEL R"OCKNER2

ABSTRACT. In this paper we construct the smallest semigroup \mathcal{S} that dominates a given family of linear Feller semigroups. The semigroup \mathcal{S} will be referred to as the semigroup envelope or Nisio semigroup. In a second step we investigate strong continuity properties of the semigroup envelope and show that it is a viscosity solution to a nonlinear abstract Cauchy problem. We derive a condition for the existence of a Markov process under a nonlinear expectation for the case where the state space of the Feller processes is locally compact. The procedure is then applied to numerous examples, in particular nonlinear PDEs that arise from control problems for infinite dimensional Ornstein-Uhlenbeck processes and infinite dimensional Lévy processes.

Key words: Nisio semigroup, fully nonlinear PDE, viscosity solution, Feller process, nonlinear expectation

AMS 2010 Subject Classification: 47H20; 49L25; 60G20

1. Introduction and main results

For two (possibly nonlinear) semigroups $S = (S(t))_{t \geq 0}$ and $T = (T(t))_{t \geq 0}$ on a Banach lattice X we write $S \leq T$ if $S(t)x \leq T(t)x$ for all $t \geq 0$ and $x \in X$. For a nonempty index set Λ and a family $(S_\lambda)_{\lambda \in \Lambda}$ of semigroups on X we call a semigroup T an upper bound of S if $T \geq S_\lambda$ for all $\lambda \in \Lambda$. We call \mathcal{S} a least upper bound of $(S_\lambda)_{\lambda \in \Lambda}$ if \mathcal{S} is an upper bound of $(S_\lambda)_{\lambda \in \Lambda}$ and $\mathcal{S} \leq T$ for any other upper bound T of $(S_\lambda)_{\lambda \in \Lambda}$. Then, the very interesting question arises under which conditions the family $(S_\lambda)_{\lambda \in \Lambda}$ has a least upper bound. To the best of our knowledge this question has first been addressed by Nisio \cite{Nisio1980} for strongly continuous semigroups on the space of all bounded measurable functions, which is why we call the least upper bound \mathcal{S} of $(S_\lambda)_{\lambda \in \Lambda}$ the Nisio semigroup or the semigroup envelope of $(S_\lambda)_{\lambda \in \Lambda}$. Due to a Theorem of Lotz \cite{Lotz1972} it is known that strongly continuous semigroups on the space of all bounded measurable functions always have a bounded generator, which is why the result of Nisio is not applicable for most semigroups related to partial differential equations. However, using a similar approach to the one by Nisio on the space of bounded and uniformly continuous functions, Denk et al. \cite{Denk1994} proved the existence of a least upper bound for semigroups related to Lévy processes. In \cite{Nen德尔2018} the approach by Nisio has been used to characterize the generators of Markov chains with finite state space under
nonlinear expectations. In the present paper, we use the idea of Nisio in a more
general framework than Denk et al. in order to go beyond Lévy processes. Main
examples will be Ornstein-Uhlenbeck processes on real separable Hilbert spaces,
Geometric Brownian Motions, Lévy processes on real separable Hilbert spaces
and Koopman semigroups with semiflows in real separable Banach spaces.

A fundamental result from semigroup theory is the fact that for a strongly
continuous semigroup \(S = (S(t))_{t \geq 0} \) of linear operators with generator \(A \)
the function \(u(t) := S(t)x \) is a solution to the abstract Cauchy problem
\[
 u'(t) = Au(t) \quad \text{for } t \geq 0, \quad u(0) = u_0.
\]

Similar as in the work by Denk et al. [3] we show that the Nisio semigroup yields
a viscosity solution to the nonlinear Cauchy problem
\[
 u'(t) = Au(t) \quad \text{for } t \geq 0, \quad u(0) = u_0,
\]
where \(Au := \sup_{\lambda \in \Lambda} A\lambda u \) is the pointwise supremum of the generators of the
family of semigroups \((S_\lambda)_{\lambda \in \Lambda} \). On one hand, this is interesting from a structural
point of view since it shows that there is still a relation between the least upper
bound of a family of semigroups and the least upper bound of their generators.
On the other hand, this shows that Nisio semigroups are closely related to solu-
tions to optimal control problems in Mathematical Finance. Examples include
solutions to BSDEs (see e.g. Coquet et al. [1]), 2BSDEs or the \(G \)-heat equation
(cf. Peng [12],[13], Soner et al. [14],[15]), semigroups related to the geometric
\(G \)-Brownian Motion (cf. Epstein and Ji [5], Vorbrink [16]) and \(G \)-Lévy processes
(cf. Hu and Peng [6], Neufeld and Nutz [10], Denk et al. [3]). Against this back-
ground, under certain conditions, we derive a stochastic representation of Nisio
semigroup via stochastic processes under a nonlinear expectation, which gives a
link to robust finance and the pricing of contingent claims under ambiguity.

Throughout, we consider a nonempty index set \(\Lambda \), a fixed separable metric
space \((M, d) \) and a fixed weight function \(\kappa : M \to (0, \infty) \), which is assumed to be
continuous and bounded. Let \(C = C(M) \) be the space of all continuous functions
\(M \to \mathbb{R} \). We denote the space of all \(u \in C \) with norm
\[
\|u\|_\infty := \sup_{x \in M} |u(x)| < \infty
\]
by \(C_b \) and the space of all \(u \in C \) with seminorm
\[
\|u\|_{\text{Lip}} := \inf \{ L \geq 0 | \forall x, y \in M : |u(x) - u(y)| \leq Ld(x, y) \} < \infty
\]
by Lip. Finally, we denote the space of all \(u \in C \) with norm
\[
\|u\|_\kappa := \|\kappa u\|_\infty < \infty
\]
by \(C_\kappa \) and the closure of Lip_b := Lip \cap C_b in the space \(C_\kappa \) by \(UC_\kappa \). If \(\kappa \) is bounded
below by some positive constant, then \(C_\kappa = C_b \) and \(\| \cdot \|_\kappa \) is equivalent to \(\| \cdot \|_\infty \).
In this case, \(UC_\kappa \) is the closure of Lip w.r.t. \(\| \cdot \|_\infty \), which in most examples will be
the space \(UC_b \) of all bounded and uniformly continuous functions \(M \to \mathbb{R} \). For a
sequence \((u_n)_{n \in \mathbb{N}} \subset UC_\kappa \) and \(u \in UC_\kappa \) we write \(u_n \nearrow u \) as \(n \to \infty \) if \(u_n \leq u_{n+1} \)
for all $n \in \mathbb{N}$ and $u_n(x) \to u(x)$ as $n \to \infty$ for all $x \in M$. Analogously, we write $u_n \downarrow u$ as $n \to \infty$ if $u_n \geq u_{n+1}$ for all $n \in \mathbb{N}$ and $u_n(x) \to u(x)$ as $n \to \infty$ for all $x \in M$.

Definition 1.1.

a) We call a family $\mathcal{S} = (\mathcal{S}(t))_{t \geq 0}$ of possibly nonlinear operators a *Feller semigroup* if the following conditions are satisfied:

(i) $\mathcal{S}(t) : \text{UC}_\kappa \to \text{UC}_\kappa$ is continuous for all $t \geq 0$,

(ii) $\mathcal{S}(0)u = u$ and $\mathcal{S}(s+t)u = \mathcal{S}(s)\mathcal{S}(t)u$ for all $s, t \geq 0$ and $u \in \text{UC}_\kappa$,

(iii) $\mathcal{S}(t)$ is monotone and continuous from below for all $t \geq 0$, i.e. for any sequence $(u_n)_{n \in \mathbb{N}} \subset \text{UC}_\kappa$ and $u \in \text{UC}_\kappa$ with $u_n \uparrow u$ as $n \to \infty$ it holds $\mathcal{S}(t)u_n \uparrow \mathcal{S}(t)u$ as $n \to \infty$.

b) Let $D \subset \text{UC}_\kappa$. We then say that a Feller semigroup \mathcal{S} is *strongly continuous* on D if the map

$$[0, \infty) \to \text{UC}_\kappa, \quad t \mapsto \mathcal{S}(t)u$$

is continuous for all $u \in D$. If $D = \text{UC}_\kappa$, we say that \mathcal{S} is *strongly continuous*.

Remark 1.2. Let \mathcal{S} be a Feller semigroup and $D \subset \text{UC}_\kappa$ the set of all $u \in \text{UC}_\kappa$ such that

$$[0, \infty) \to \text{UC}_\kappa, \quad t \mapsto \mathcal{S}(t)u$$

is continuous. Then, by the semigroup property (ii), the set D is invariant under \mathcal{S}, i.e. $\mathcal{S}(t)u \in D$ for all $u \in D$ and all $t \geq 0$.

Throughout this work, we assume the following setup:

(A1) For all $\lambda \in \Lambda$ let S_λ be a Feller semigroup of linear operators.

(A2) There exist constants $\alpha, \beta \in \mathbb{R}$ such that

$$\|S_\lambda(t)u\|_\kappa \leq e^{\alpha t}\|u\|_\kappa \quad \text{and} \quad \|S_\lambda(t)u\|_{\text{Lip}} \leq e^{\beta t}\|u\|_{\text{Lip}}$$

for all $u \in \text{Lip}_b$, $\lambda \in \Lambda$ and $t \geq 0$.

The paper is structured as follows. In Section 2 we show the existence of the semigroup envelope \mathcal{S} of the family $S = (S_\lambda)_{\lambda \in \Lambda}$ under the assumptions (A1) and (A2). The main result of this section is Theorem 2.6. In Section 3 we first derive three conditions that guarantee the strong continuity of the semigroup envelope, which in turn yields viscosity solutions to a nonlinear abstract Cauchy problem. The main result of this section is Theorem 3.12. In Section 4 we derive some approximation results for the Nisio semigroup. In Section 5, we give a stochastic representation of the semigroup envelope via a stochastic process under a sublinear expectation. In Section 6 we apply the results from the sections 2, 3 and 5 to several examples.

2. Construction of the semigroup envelope

Throughout, we assume that the conditions (A1) and (A2) are satisfied. Let $u \in \text{UC}_\kappa$, $\lambda \in \Lambda$ and $t \geq 0$. Then, since $S_\lambda(t) : \text{UC}_\kappa \to \text{UC}_\kappa$ is continuous, we have that

$$\|S_\lambda(t)u\|_\kappa \leq e^{\alpha t}\|u\|_\kappa.$$
Hence,

\[(E_h u)(x) := \sup_{\lambda \in \Lambda} (S_{\lambda}(h)u)(x)\]

is well-defined for all \(x \in M\) and \(h \geq 0\). Moreover, we have the following:

Lemma 2.1. Let \(h \geq 0\).

a) For all \(u, v \in UC_\kappa\),

\[\|E_h u - E_h v\|_\kappa \leq e^{\alpha h} \|u - v\|_\kappa.\]

In particular, \(\|E_h u\|_\kappa \leq e^{\alpha h} \|u\|_\kappa\) for all \(u \in UC_\kappa\).

b) \(\|E_h u\|_{\text{Lip}} \leq e^{\beta h} \|u\|_{\text{Lip}}\) for all \(u \in \text{Lip}_b\).

c) The map \(E_h : UC_\kappa \to UC_\kappa\) is well-defined and Lipschitz continuous with Lipschitz constant \(e^{\alpha h}\).

d) \(E_h\) is sublinear, monotone and continuous from below for all \(h \geq 0\).

Proof.

a) Let \(u, v \in UC_\kappa\) and \(h \geq 0\).

\[\kappa(S_{\lambda}(h)u - E_h v) \leq \kappa(S_{\lambda}(h)u - S_{\lambda}(h)v) = \kappa S_{\lambda}(h)(u - v) \leq \|S_{\lambda}(h)(u - v)\|_\kappa \leq e^{\alpha h} \|u - v\|_\kappa\]

for all \(\lambda \in \Lambda\). Taking the supremum over all \(\lambda \in \Lambda\), we obtain that

\[\kappa(E_h u - E_h v) \leq e^{\alpha h} \|u - v\|_\kappa\]

and therefore, by a symmetry argument,

\[\|E_h u - E_h v\|_\kappa \leq e^{\alpha h} \|u - v\|_\kappa.\]

b) Let \(u \in \text{Lip}_b\) and \(x, y \in M\). Then,

\[(S_{\lambda}(h)u)(x) - (E_h u)(y) \leq (S_{\lambda}(h)u)(x) - (S_{\lambda}(h)u)(y) \leq e^{\beta h} \|u\|_{\text{Lip}}d(x, y).\]

Taking the supremum over all \(\lambda \in \Lambda\), we obtain that

\[(E_h u)(x) - (E_h u)(y) \leq e^{\beta h} \|u\|_{\text{Lip}}d(x, y)\]

and therefore, by a symmetry argument,

\[\|(E_h u)(x) - (E_h u)(y)\| \leq e^{\beta h} \|u\|_{\text{Lip}}d(x, y).\]

This shows that \(\|E_h u\|_{\text{Lip}} \leq e^{\beta h} \|u\|_{\text{Lip}}\).

c) By part b), we have that \(E_h u \in UC_\kappa\) for all \(u \in \text{Lip}_b\). Since \(\text{Lip}_b\) is dense in \(UC_\kappa\), part a) implies that \(E_h : UC_\kappa \to UC_\kappa\) is well-defined and Lipschitz continuous with Lipschitz constant \(e^{\alpha h}\).

d) All these properties directly carry over to the supremum.

\[\square\]

In the sequel, we consider finite partitions \(P := \{\pi \subset [0, \infty) : 0 \in \pi, |\pi| < \infty\}\) of the positive half line. The set of partitions with end-point \(t\) will be denoted by \(P_t\), i.e. \(P_t := \{\pi \in P : \max \pi = t\}\). Note that

\[P = \bigcup_{t \geq 0} P_t.\]
Let $u \in \text{UC}_\kappa$ and $\pi \in P \setminus \{\{0\}\}$. Then, there exist $0 = t_0 < t_1 < \ldots < t_m$ such that $\pi = \{t_0, t_1, \ldots, t_m\}$ and we set

$$E_\pi u := E_{t_1-t_0} \ldots E_{t_m-t_{m-1}} u.$$

Moreover, we set $E_{\{0\}} u := u$. Note that, by definition, $E_h = E_{\{0,h\}}$ for $h > 0$. Since E_h: $\text{UC}_\kappa \to \text{UC}_\kappa$ is well-defined, the map E_π: $\text{UC}_\kappa \to \text{UC}_\kappa$ is well-defined, too.

Lemma 2.2. Let $\pi \in P$.

a) E_π is a sublinear, monotone and continuous from below.

b) For all $u, v \in \text{UC}_\kappa$,

$$\|E_\pi u - E_\pi v\|_\kappa \leq e^{\max \alpha} \|u - v\|_\kappa.$$

In particular, E_π: $\text{UC}_\kappa \to \text{UC}_\kappa$ is well-defined and Lipschitz continuous with Lipschitz constant $e^{\max \alpha}$. Moreover,

$$\|E_\pi u\|_{\text{Lip}} \leq e^{\beta \max \alpha} \|u\|_{\text{Lip}}$$

for all $u \in \text{Lip}_b$.

Proof.

a) Since E_h is a sublinear, monotone and continuous from below for all $h \geq 0$, the same holds for E_π as these properties are preserved under compositions.

b) This follows from Lemma 2.1 and the behaviour of Lipschitz constants under composition.

Let $u \in \text{UC}_\kappa$. In the following, we consider the limit of $E_\pi u$ when the mesh size of the partition $\pi \in P$ tends to zero. For this, first note that for $h_1, h_2 \geq 0$ and $x \in M$ we have that

$$(E_{h_1+h_2} u)(x) = \sup_{\lambda \in \Lambda} (S_\lambda(h_1 + h_2)u)(x) = \sup_{\lambda \in \Lambda} (S_\lambda(h_1)S_\lambda(h_2)u)(x)$$

$$\leq \sup_{\lambda \in \Lambda} (S_\lambda(h_1)E_{h_2}u)(x) = (E_{h_1} E_{h_2} u)(x),$$

which implies the pointwise inequality

$$E_{\pi_1} u \leq E_{\pi_2} u \quad (2.1)$$

for $\pi_1, \pi_2 \in P$ with $\pi_1 \subset \pi_2$. In particular, for $\pi_1, \pi_2 \in P$ and $\pi := \pi_1 \cup \pi_2$ we have that $\pi \in P$ with

$$(E_{\pi_1} u) \vee (E_{\pi_2} u) \leq E_{\pi} u \quad (2.2)$$

Recall that we denote by P_t the set of all finite partitions with end point $t \geq 0$. For $t \geq 0$, $x \in M$ and $u \in \text{UC}_\kappa$ we define

$$(\mathcal{S}(t) u)(x) := \sup_{\pi \in P_t} (E_\pi u)(x).$$

Note that $\mathcal{S}(0) u = u$ for all $u \in \text{UC}_\kappa$. The family $\mathcal{S} = (\mathcal{S}(t))_{t \geq 0}$ is called the *semigroup envelope* or *Nisio semigroup* of the family $(S_\lambda)_{\lambda \in \Lambda}$. Let $t \geq 0$. Then,

$$\|\mathcal{S}(t) u - \mathcal{S}(t) v\|_\kappa \leq e^{\alpha t} \|u - v\|_\kappa$$
for all \(u, v \in UC_\kappa \) and
\[
\| S(t) \|_{\text{Lip}} \leq e^{\beta t} \| u \|_{\text{Lip}}
\]
due to Lemma 2.2. Therefore, the map \(S(t) : UC_\kappa \to UC_\kappa \) is well-defined and Lipschitz continuous with Lipschitz constant \(e^{\alpha t} \). Moreover, \(S(t) \) is sublinear, monotone and continuous from below. In the following, we show that the Nisio semigroup \(S \) is in fact a semigroup. We start with the following lemma.

Lemma 2.3. Let \(u \in UC_\kappa \) and \(t > 0 \). Then, there exists a sequence \((\pi_n)_{n \in \mathbb{N}} \subset P_t\) with
\[
E_{\pi_n} u \nearrow S(t)u \quad \text{as} \quad n \to \infty.
\]

Proof. Let \((x_k)_{k \in \mathbb{N}} \subset M\) such that the set \(\{x_k \mid k \in \mathbb{N}\} \) is dense in \(M \). Then, for every \(k \in \mathbb{N} \), there exists a sequence \((\pi^k_n)_{n \in \mathbb{N}} \subset P_t\) with \(\pi^k_n \subset \pi^k_{n+1} \) for all \(n \in \mathbb{N} \) and
\[
(E_{\pi^k_n} u)(x_k) \nearrow (S(t)u)(x_k) \quad \text{as} \quad n \to \infty.
\]
Now, let
\[
\pi_n := \bigcup_{k=1}^{n} \pi^k_n
\]
for all \(n \in \mathbb{N} \). Then, \(\pi^k_n \subset \pi_n \subset \pi_{n+1} \) for all \(n \in \mathbb{N} \) and \(k \in \{1, \ldots, n\} \). Hence,
\[
E_{\pi^k_n} u \leq E_{\pi_n} u \leq E_{\pi_{n+1}} u
\]
for all \(n \in \mathbb{N} \) and \(k \in \{1, \ldots, n\} \). Let
\[
(E_\infty v)(x) := \sup_{n \in \mathbb{N}} (E_{\pi_n} v)(x)
\]
for all \(v \in UC_\kappa \) and \(x \in M \). Then, by Lemma 2.2, the map \(E_\infty : UC_\kappa \to UC_\kappa \) is well-defined. In particular, \(E_\infty u : M \to \mathbb{R} \) is continuous and, by (2.3),
\[
E_{\pi_n} u \nearrow E_\infty u \quad \text{as} \quad n \to \infty.
\]
Again, by (2.3),
\[
(S(t)u)(x_k) = \lim_{n \to \infty} (E_{\pi^k_n} u)(x_k) \leq \lim_{n \to \infty} (E_{\pi_n} u)(x_k) = (E_\infty u)(x_k) \leq (S(t)u)(x_k)
\]
for all \(k \in \mathbb{N} \). Since, \(S(t)u \) and \(E_\infty u \) are both continuous and the set \(\{x_k \mid k \in \mathbb{N}\} \) is dense in \(M \), it follows that \(S(t)u = E_\infty u \), which shows that
\[
E_{\pi_n} u \nearrow S(t)u \quad \text{as} \quad n \to \infty.
\]

\[\square\]

Proposition 2.4 (Dynamic programming principle). For all \(s, t \geq 0 \) we have that
\[
S(s + t) = S(s)S(t).
\]

Proof. Let \(u \in UC_\kappa \). If \(s = 0 \) or \(t = 0 \) the statement is trivial. Therefore, let \(s, t > 0 \), \(\pi_0 \in P_{s+t} \) and \(\pi := \pi_0 \cup \{s\} \). Then, we have that \(\pi \in P_{s+t} \) with \(\pi_0 \subset \pi \). Hence, by (2.1), we get that
\[
E_{\pi_0} u \leq E_\pi u.
\]
Let $m \in \mathbb{N}$ and $0 = t_0 < t_1 < \ldots < t_m = s + t$ with $\pi = \{t_0, \ldots, t_m\}$ and $i \in \{1, \ldots, m\}$ with $t_i = s$. Then, we have that $\pi_1 := \{t_0, \ldots, t_i\} \in P_s$ and $\pi_2 := \{t_i - s, \ldots, t_m - s\} \in P_t$ with
\[
E_{\pi_1} = E_{t_1-t_0} \cdots E_{t_i-t_{i-1}}
\]
and
\[
E_{\pi_2} = E_{t_{i+1}-t_i} \cdots E_{t_m-t_{m-1}}.
\]
We thus get that
\[
E_{\pi_0} u \leq E_{\pi} u = E_{t_1-t_0} \cdots E_{t_m-t_{m-1}} u = (E_{t_1-t_0} \cdots E_{t_i-t_{i-1}})(E_{t_{i+1}-t_i} \cdots E_{t_m-t_{m-1}} u)
\]
\[
= E_{\pi_1} E_{\pi_2} u \leq E_{\pi_1}(\mathcal{J}(t)u) \leq \mathcal{J}(s)\mathcal{J}(t)u.
\]
Taking the supremum over all $\pi_0 \in P_{s+t}$, we get that $\mathcal{J}(s+t)u \leq \mathcal{J}(s)\mathcal{J}(t)u$.

Now, let $(\pi_n)_{n \in \mathbb{N}} \subset P_t$ with $E_{\pi_n} u \nearrow \mathcal{J}(t)u$ as $n \to \infty$ (see Lemma 2.3) and fix $\pi_0 \in P_s$. Then, for all $n \in \mathbb{N}$ we have that
\[
\pi_n' := \pi_0 \cup \{s + \tau: \tau \in \pi_n\} \in P_{s+t}
\]
with $E_{\pi_n'} = E_{\pi_0} E_{\pi_n}$. As E_{π_0} is continuous from below, we get that
\[
E_{\pi_0}(\mathcal{J}(t)u) = \lim_{n \to \infty} E_{\pi_0} E_{\pi_n} u = \lim_{n \to \infty} E_{\pi_n'} u \leq \mathcal{J}(s+t)u.
\]
Taking the supremum over all $\pi_0 \in P_s$, we get that $\mathcal{J}(s)\mathcal{J}(t)f \leq \mathcal{J}(s+t)f$. \hfill \Box

Remark 2.5. The semigroup \mathcal{J} is the least upper bound of the family $S = (S_\lambda)_{\lambda \in \Lambda}$. In fact, let T be an upper bound of the family S, i.e.
\[
(S_\lambda(t)u)(x) \leq (T(t)u)(x)
\]
for all $\lambda \in \Lambda$, $u \in UC_\kappa$, $t \geq 0$ and $x \in M$. Then, we have that
\[
(S_\lambda(h)u)(x) \leq (E_\lambda u)(x) \leq (T(h)u)(x)
\]
for all $\lambda \in \Lambda$, $u \in UC_\kappa$, $h \geq 0$ and $x \in M$. Consequently
\[
(S_\lambda(t)u)(x) \leq (E_\lambda u)(x) \leq (T(t)u)(x)
\]
for all $\lambda \in \Lambda$, $u \in UC_\kappa$, $t \geq 0$, $\pi \in P_t$ and $x \in M$. Taking the supremum over all $\pi \in P_t$, we obtain that
\[
(S_\lambda(t)u)(x) \leq (\mathcal{J}(t)u)(x) \leq (T(t)u)(x)
\]
for all $\lambda \in \Lambda$, $u \in UC_\kappa$, $t \geq 0$ and $x \in M$.

We conclude this section with the following main theorem.

Theorem 2.6. The family \mathcal{J} is a Feller semigroup of sublinear operators and the least upper bound of the family $S = (S_\lambda)_{\lambda \in \Lambda}$.

Proof. All properties except for the semigroup property follow directly from the definition of \mathcal{J} before Lemma 2.3. The semigroup property is exactly (2.4). The fact that \mathcal{J} is the least upper bound of the family S has been shown in the previous remark. \hfill \Box
3. Strong continuity and viscosity solutions

Let \(\mathcal{S} \) be the Feller semigroup from the previous section, i.e. the semigroup envelope of the family \((S_\lambda)_{\lambda \in \Lambda}\).

Lemma 3.1. Let \(u \in \text{UC}_\kappa \). Then, the following statements are equivalent:

(i) \(\lim_{h \to 0} \| \mathcal{S}(h)u - u \|_\kappa = 0 \).

(ii) The map

\[
[0, \infty) \to \text{UC}_\kappa, \quad t \mapsto \mathcal{S}(t)u
\]

is continuous.

Proof. Clearly, (ii) implies (i). Therefore, assume that \(\lim_{h \to 0} \| \mathcal{S}(h)u - u \|_\kappa = 0 \).

Let \(t \geq 0 \) and \(\varepsilon > 0 \). W.l.o.g. we may assume that in (A2) we have \(\alpha \geq 0 \). By assumption, there exists some \(\delta > 0 \) such that

\[
\| \mathcal{S}(h)u - u \|_\kappa < e^{-\alpha(t+1)} \varepsilon
\]

for all \(h \in [0, \delta) \). Now, let \(s \in [0, t+1] \) with \(|t - s| < \delta \). Then,

\[
\| \mathcal{S}(t)u - \mathcal{S}(s)u \|_\kappa = \| \mathcal{S}(t)\mathcal{S}(s)u - \mathcal{S}(t)u \|_\kappa \\
\leq e^{\alpha(t+1)} \| \mathcal{S}(t)u - u \|_\kappa < \varepsilon.
\]

\(\square \)

Remark 3.2. Let \(D \subset \text{UC}_\kappa \) and assume that \(\mathcal{S} \) is stongly continuous on \(D \). Then, \(\mathcal{S} \) is also strongly continuous on the closure \(\overline{D} \) of \(D \). In order to see this, let \((u_n)_{n \in \mathbb{N}} \subset D \) and \(u \in \text{UC}_\kappa \) with \(\| u_n - u \|_\kappa \to 0 \) as \(n \to \infty \). W.l.o.g. we may assume that \(\alpha \geq 0 \). Let \(\varepsilon > 0 \). Then, there exists some \(n_0 \in \mathbb{N} \) such that \(\| u_n - u \|_\kappa \leq \frac{\varepsilon}{3} e^{-\alpha} \). Since \(u_{n_0} \in D \), there exists some \(\delta \in (0, 1] \) such that \(\| \mathcal{S}(h)u_{n_0} - u_{n_0} \|_\kappa < \frac{\varepsilon}{3} \) for all \(h \in [0, \delta) \). Hence, for \(h \in [0, \delta) \), it follows that

\[
\| \mathcal{S}(h)u - u \|_\kappa \leq \frac{2\varepsilon}{3} + \| \mathcal{S}(h)u_{n_0} - u_{n_0} \|_\kappa < \varepsilon.
\]

By the previous lemma, it follows that the map \([0, \infty) \to \text{UC}_\kappa, \ t \mapsto \mathcal{S}(t)u\) is continuous.

In the previous lemma, we will give three conditions that imply the strong continuity of the semigroup \(\mathcal{S} \).

Proposition 3.3. Assume that for every \(\delta > 0 \) there exists a family of functions \((\varphi_x)_{x \in M} \subset \text{UC}_\kappa \) satisfying the following:

(i) \(0 \leq \varphi_x(y) \leq 1 \) for all \(y \in M \), \(\varphi_x(x) = 1 \), and \(\varphi_x(y) = 0 \) for all \(y \in M \) with \(d(x, y) \geq \delta \).

(ii) There exists some \(h_0 > 0 \) and a continuous function \(f: [0, h_0) \to [0, \infty) \) with \(f(0) = 0 \) such that, for all \(h \in [0, h_0) \) and \(x \in M \),

\[
(\mathcal{S}(h)(1 - \varphi_x))(x) \leq \frac{f(h)}{\kappa(x)}.
\]

If, additionally, \(S_\lambda(t)1 = 1 \) for all \(\lambda \in \Lambda \) and \(t \geq 0 \), where 1 denotes the constant 1-function, then \(\mathcal{S} \) is strongly continuous.
Proof. Let $u \in \text{Lip}_b \setminus \{0\}$ and $\varepsilon > 0$. Then, there exists some $\delta' > 0$ such that
\[|u(x) - u(y)| \leq \frac{\varepsilon}{2\|\kappa\|_\infty} \quad \text{for all } x, y \in M \text{ with } d(x, y) < \delta'. \]

By assumption, there exists a family $\varphi_x \in UC \subset UC_\kappa$ satisfying (i) and (ii) for $\delta = \delta'$. Since $f : [0, h_0) \to (0, \infty)$ is continuous, there exists some $h_1 \in (0, h_0)$ such that
\[f(h) < \frac{\varepsilon}{4\|u\|_\infty} \]
for all $h \in [0, h_1)$. Hence, for all $x \in M$ and all $h \in [0, h_1)$,
\[
\| (\mathcal{S}(h)u)(x) - u(x) \| \leq \| (\mathcal{S}(h)(u - u(x)))(x) \| \\
\leq \| \mathcal{I}(h)(\varphi_x |u - u(x)|)(x) \| + \| \mathcal{I}(h)(1 - \varphi_x)|u - u(x)|)(x) \\
\leq \frac{\varepsilon}{2\|\kappa\|_\infty} + 2\|u\|_\infty \| \mathcal{I}(h)(1 - \varphi_x)(x) \\
< \frac{\varepsilon}{\kappa(x)}.
\]

This shows that
\[\| \mathcal{S}(h)u - u \|_\kappa < \varepsilon \]
for all $h \in [0, h_1)$ and therefore, \mathcal{S} is strongly continuous on Lip_b. Since Lip_b is dense in UC_κ, Remark 3.2 imples that \mathcal{S} is strongly continuous. \hfill \Box

Throughout the rest of this section, we denote by $D_\Lambda \subset UC_\kappa$ the subspace of all $u \in UC_\kappa$ for which there exist $L_u \geq 0$ and $h_u > 0$ such that
\[\sup_{\lambda \in \Lambda} \| S_{\lambda}(h)u - u \|_\kappa \leq L_u h \]
for all $h \in [0, h_u)$.

Proposition 3.4. The semigroup \mathcal{S} is strongly continuous on $\overline{D_\Lambda}$. If D_Λ is dense in UC_κ, then \mathcal{S} is strongly continuous.

Proof. Let $u \in D_\Lambda$ and $0 \leq h_1 < h_2$ with $h_2 - h_1 < h_u$. Then, for all $x \in M$ and $\lambda_0 \in \Lambda$, we have that
\[
(S_{\lambda_0}(h_1)u)(x) - (\mathcal{E}_{h_2}u)(x) \leq (S_{\lambda_0}(h_1)u)(x) - (S_{\lambda_0}(h_2)u)(x).
\]
Taking the supremum over $\lambda_0 \in \Lambda$, we get that
\[
(\mathcal{E}_{h_1}u)(x) - (\mathcal{E}_{h_2}u)(x) \leq \sup_{\lambda \in \Lambda} \| (S_{\lambda}(h_1)u)(x) - (S_{\lambda}(h_2)u)(x) \|
\]
for all $x \in M$. By a symmetry argument, multiplying by $\kappa(x)$ and taking the supremum over all $x \in M$, we thus get that
\[\| \mathcal{E}_{h_1}u - \mathcal{E}_{h_2}u \|_\kappa \leq \sup_{\lambda \in \Lambda} \| S_{\lambda}(h_1)u - S_{\lambda}(h_2)u \|_\kappa. \]

Further, by assumption (A3),
\[
\| S_{\lambda}(h_1)u - S_{\lambda}(h_2)u \|_\kappa \leq e^{\alpha h_1} \| S_{\lambda}(h_2 - h_1)u - u \|_\kappa \leq L_u e^{\alpha h_1}(h_2 - h_1).
\]

Taking the supremum over all $\lambda \in \Lambda$, we obtain that
\[\| \mathcal{E}_{h_1}u - \mathcal{E}_{h_2}u \|_\kappa \leq L_u e^{\alpha h_1}(h_2 - h_1). \quad (3.1) \]
Next, we show that
\[
\|E_{\pi}u - u\|_\kappa \leq Lu e^{\alpha \max \pi} \max \pi
\]
for all \(\pi \in P \) with \(\max \pi \in [0, h_u) \) by an induction on \(\# \pi \in \mathbb{N} \). First, let \(\pi \in P \) with \(\# \pi = 1 \), i.e. \(\pi = \{0\} \). Then, we have that
\[
\|E_{\pi}u - u\|_\kappa = \|E_{\{0\}}u - u\|_\kappa = 0 = Lu e^{\alpha \max \pi} \max \pi.
\]
Now, let \(m \in \mathbb{N} \) and assume that (3.2) holds for all \(\pi \in P \) with \(\max \pi \in [0, h_u) \) and \(\# \pi = m \). Let \(\pi \in P \) with \(\# \pi = m + 1 \) and \(t_m := \max \pi \in [0, h_u) \). Then \(\pi' := \pi \setminus \{t_m\} \in P \) with \(\# \pi' = m \) and \(t_{m-1} := \max \pi' \in [0, t_m) \). We thus have that
\[
E_{\pi}u = E_{\pi'}E_{t_{m-1}}u
\]
and therefore, by induction hypothesis, (3.3) and (3.1), we get that
\[
\|E_{\pi}u - u\|_\kappa \leq \|E_{\pi'}E_{t_{m-1}}u - E_{\pi'}u\|_\kappa + \|E_{\pi'}u - u\|_\kappa \\
\leq e^{\alpha t_{m-1}}\|E_{t_{m-1}}u - u\|_\kappa + \|E_{\pi'}u - u\|_\kappa \\
\leq Lu e^{\alpha t_{m-1}}(t_m - t_{m-1}) + Lu e^{\alpha t_{m-1}}t_{m-1} \\
= Lu e^{\alpha t_m}t_m \leq Lu e^{\alpha \max \pi} \max \pi.
\]
By definition of the semigroup \(\mathcal{S} \) we thus obtain that
\[
\|\mathcal{S}(h)u - u\|_\kappa \leq Lu e^{\alpha h}h \to 0 \quad \text{as} \ h \to 0.
\]

Proposition 3.5. Assume that for every \(\delta > 0 \) there exists a family of functions \((\varphi_x)_{x \in M} \subset UC_\kappa \) satisfying the following:

(i) \(0 \leq \varphi_x(y) \leq 1 \) for all \(y \in M \), \(\varphi_x(x) = 1 \), and \(\varphi_x(y) = 0 \) for all \(y \in M \) with \(d(x, y) \geq \delta \),

(ii') There exist \(L \geq 0 \) and \(h_0 > 0 \) such that
\[
\sup_{\lambda \in \Lambda} \|S_\lambda(h) \varphi_x - \varphi_x\|_\kappa \leq Lh
\]
for all \(h \in [0, h_0) \) and \(x \in M \).

If, additionally, \(S_\lambda(t)1 = 1 \) for all \(\lambda \in \Lambda \) and \(t \geq 0 \), where \(1 \) denotes the constant 1-function, then \(\mathcal{S} \) is strongly continuous.

Proof. By assumption the family \((\varphi_x)_{x \in M} \) satisfies condition (i) from Proposition 3.3. We now verify that (ii') implies condition (ii) from Proposition 3.3. Observe that
\[
(\mathcal{E}_h(1 - \varphi_x))(y) \leq 1 - \varphi_x(y) + |(\mathcal{E}_h \varphi_x)(y) - \varphi_x(y)|
\]
for all \(h \in [0, h_0) \) and \(x, y \in M \). W.l.o.g. we assume that \(\alpha \geq 0 \) in (A2). Then, by (3.1), we thus obtain that
\[
(\mathcal{E}_\pi \mathcal{E}_h (1 - \varphi_x))(x) \leq (\mathcal{E}_\pi (1 - \varphi_x))(x) + \left(\mathcal{E}_\pi \left| \mathcal{E}_h \varphi_x - \varphi_x \right| \right)(x)
\]
\[
\leq (\mathcal{E}_\pi (1 - \varphi_x))(x) + \frac{e^{\alpha \delta}}{\kappa(x)} \| \mathcal{E}_h \varphi_x - \varphi_x \|_\kappa
\]
\[
\leq (\mathcal{E}_\pi (1 - \varphi_x))(x) + \frac{L e^{\alpha \delta}}{\kappa(x)}
\]
for all \(\pi \in P \) with \(\max \pi \in [0, h_0) \) and \(h \in [0, h_0) \). Inductively, it follows that
\[
(\mathcal{E}_\pi (1 - \varphi_x))(x) \leq 1 - \varphi_x(x) + \frac{L e^{\alpha \delta} \max \pi}{\kappa(x)}
\]
for all \(\pi \in P \) with \(\max \pi \in [0, h_0) \). Taking the supremum over all \(\pi \in P \) for \(h \in [0, h_0) \) yields that
\[
(S(h)(1 - \varphi_x))(x) \leq \frac{L e^{\alpha \delta} h}{\kappa(x)}.
\]
Therefore, setting \(f(h) := L e^{\alpha \delta} h \) for \(h \in [0, h_0) \), condition (ii) from Proposition 3.3 is satisfied and the strong continuity of \(S \) follows.

Let \(\lambda \in \Lambda \). Then, we denote by \(D_\lambda \subset \text{UC}_\kappa \) the space of all \(u \in \text{UC}_\kappa \) such that
\[
[0, \infty) \to \text{UC}_\kappa, \quad t \mapsto S_\lambda(t)u
\]
is continuous. We further denote by \(D(A_\lambda) \) the space of all \(u \in \text{UC}_\kappa \) for which
\[
A_\lambda u := \lim_{h \searrow 0} \frac{S_\lambda(h)u - u}{h} \in \text{UC}_\kappa
\]
exists. Notice that, by definition, \(D(A_\lambda) \subset D_\lambda \).

Remark 3.6. Let \(u \in \bigcap_{\lambda \in \Lambda} D(A_\lambda) \) with
\[
C_u := \sup_{\lambda \in \Lambda} \| A_\lambda u \|_\kappa < \infty.
\]
Then, it follows that (see e.g. [4, Lemma II.1.3])
\[
\| S_\lambda(h)u - u \|_\kappa \leq \int_0^h \| S_\lambda(s)A_\lambda u \|_\kappa \, ds \leq C_u e^{\alpha h} h
\]
for all \(\lambda \in \Lambda \). This shows that \(u \in D_\Lambda \). Moreover, since \(\sup_{\lambda \in \Lambda} \| A_\lambda u \|_\kappa < \infty \), it follows that
\[
(Au)(x) := \sup_{\lambda \in \Lambda} (A_\lambda u)(x)
\]
is well-defined for all \(x \in M \).

Lemma 3.7. Let \(u \in \bigcap_{\lambda \in \Lambda} D(A_\lambda) \) with
\[
\sup_{\lambda \in \Lambda} \| A_\lambda u \|_\kappa < \infty \quad \text{and} \quad \sup_{\lambda \in \Lambda} \| S_\lambda(h)A_\lambda u - A_\lambda u \|_\kappa \to 0 \quad \text{as} \ h \to 0.
\]
Then,
\[
\lim_{h \searrow 0} \left\| \frac{\mathcal{E}_h u - u}{h} - Au \right\|_\kappa = 0.
\]
In particular, $Au \in UC_\kappa$.

Proof. Let $\varepsilon > 0$. Then, by assumption, there exists some $h_0 > 0$ such that
$$\sup_{\lambda \in \Lambda} \| S_\lambda(s) A_\lambda u - A_\lambda u \|_\kappa \leq \varepsilon$$
for all $s \in [0, h_0]$. Hence, for all $h \in (0, h_0]$ it follows that
$$\left\| \frac{\mathcal{E}_h u - u}{h} - Au \right\|_\kappa \leq \sup_{\lambda \in \Lambda} \left\| \frac{S_\lambda(h) u - u}{h} - A_\lambda u \right\|_\kappa$$
$$= \sup_{\lambda \in \Lambda} \frac{1}{h} \left\| \int_0^h S_\lambda(s) A_\lambda u - A_\lambda u \, ds \right\|_\kappa$$
$$\leq \sup_{\lambda \in \Lambda} \frac{1}{h} \int_0^h \| S_\lambda(s) A_\lambda u - A_\lambda u \|_\kappa \, ds$$
$$\leq \varepsilon.$$

Lemma 3.8. Let $T : UC_\kappa \to UC_\kappa$ be sublinear and Lipschitz continuous. Further, let $v : [0, \infty) \to UC_\kappa$ be continuous. Then, $Tv : [0, \infty) \to UC_\kappa$, $t \mapsto T(v(t))$ is again continuous and
$$T \left(\int_0^t v(s) \, ds \right) \leq \int_0^t Tv(s) \, ds \quad \text{for all } t \geq 0.$$

Proof. It is clear that $Tv : [0, \infty) \to UC_\kappa$ is continuous. Let $t \geq 0$ and $u : [0, t] \to UC_\kappa$ be a step function, then $Tu : [0, t] \to UC_\kappa$, $s \mapsto T(u(s))$ is a step function and it follows that
$$T \left(\int_0^t u(s) \, ds \right) \leq \int_0^t Tu(s) \, ds,$$
where we used the fact that T is sublinear. Now, let $(v_n)_{n \in \mathbb{N}}$ be a sequence of step functions with $\lim_{n \to \infty} \sup_{s \in [0, t]} \| v_n(s) - v(s) \|_\kappa = 0$. The continuity of T implies that $\lim_{n \to \infty} \sup_{s \in [0, t]} \| Tv_n(s) - Tv(s) \|_\kappa = 0$ and therefore,
$$T \left(\int_0^t v(s) \, ds \right) = \lim_{n \to \infty} T \left(\int_0^t v_n(s) \, ds \right) \leq \lim_{n \to \infty} \int_0^t Tv_n(s) \, ds = \int_0^t Tv(s) \, ds.$$

Proposition 3.9. Let $u \in \bigcap_{\lambda \in \Lambda} D(A_\lambda)$ with
$$\sup_{\lambda \in \Lambda} \| A_\lambda u \|_\kappa < \infty \quad \text{and} \quad \sup_{\lambda \in \Lambda} \| S_\lambda(h) A_\lambda u - A_\lambda u \|_\kappa \to 0 \quad \text{as } h \to 0.$$

Then, $Au \in UC_\kappa$ and the following statements are equivalent:
(i) The map $[0, \infty) \to UC_\kappa$, $t \mapsto \mathcal{S}(t)Au$ is continuous,
(ii) $\lim_{h \to 0} \| \frac{\mathcal{S}(h) u - u}{h} - Au \|_\kappa = 0$.

Proof. By Lemma 3.7, we already know that $Au \in UC_\kappa$. Let D denote the set of all $v \in UC_\kappa$ such that the map $[0, \infty) \to UC_\kappa$, $t \mapsto \mathcal{S}(t)v$ is continuous. By Remark 3.6, $u \in D_\Lambda$. Therefore, by Proposition 3.4, $u \in D$ and, by Remark
1.2, \(\mathcal{S}(t)u \in D \) for all \(t \geq 0 \). Therefore, by Remark 3.2, statement (ii) implies statement (i). Therefore, assume that (i) is satisfied. By Lemma 3.7,
\[
\mathcal{A}u - \frac{\mathcal{S}(h)u - u}{h} \leq \mathcal{A}u - \frac{E_h u - u}{h} \to 0, \quad \text{as} \ h \searrow 0.
\]
Since the map \([0, \infty) \to \text{UC}_\kappa, t \mapsto \mathcal{S}(t)A u\) is continuous, it follows that
\[
\left\| \frac{1}{h} \int_0^h \mathcal{S}(s)A u \, ds - \mathcal{A}u \right\|_\kappa \to 0, \quad \text{as} \ h \searrow 0.
\]
Hence, it is sufficient to show that
\[
\mathcal{S}(t)u - u \leq \int_0^t \mathcal{S}(s)A u \, ds \tag{3.4}
\]
for all \(t \geq 0 \). Let \(t \geq 0 \) and \(h > 0 \). Then,
\[
E_h u - u = \sup_{\lambda \in \Lambda} S_\lambda(h)u - u = \sup_{\lambda \in \Lambda} \int_0^h S_\lambda(s)A_\lambda u \, ds
\]
\[
\leq \int_0^h \mathcal{S}(s)A u \, ds = \int_t^{t+h} \mathcal{S}(s-t)A u \, ds. \tag{3.5}
\]
Next, we prove that
\[
E_\pi u - u \leq \int_0^{\max \pi} \mathcal{S}(s)A u \, ds
\]
for all \(\pi \in P \) by an induction on \(m = \# \pi \). If \(m = 1 \), i.e. if \(\pi = \{0\} \), the statement is trivial. Hence, assume that
\[
E_{\pi'} u - u \leq \int_0^{\max \pi'} \mathcal{S}(s)A u \, ds
\]
for all \(\pi' \in P \) with \(\# \pi' = m \) for some \(m \in \mathbb{N} \). Let \(\pi = \{t_0, t_1, \ldots, t_m\} \) with \(0 = t_0 < t_1 < \ldots < t_m \) and \(\pi' := \pi \setminus \{t_m\} \). Then, it follows from (3.5) that
\[
E_{\pi} u - E_{\pi'} u \leq \mathcal{S}(t_{m-1})(E_{t_{m-1}-t_{m-1}} u - u)
\]
\[
\leq \mathcal{S}(t_{m-1}) \left(\int_{t_{m-1}}^{t_m} \mathcal{S}(s-t_{m-1})A u \, ds \right)
\]
\[
\leq \int_{t_{m-1}}^{t_m} \mathcal{S}(s)A u \, ds,
\]
where the last inequality follows from Lemma 3.8. By the induction hypothesis, we thus get that
\[
E_{\pi} u - u = (E_{\pi} u - E_{\pi'} u) + (E_{\pi'} u - u) \leq \int_{t_{m-1}}^{t_m} \mathcal{S}(s)A u \, ds + \int_0^{t_{m-1}} \mathcal{S}(s)A u \, ds
\]
\[
= \int_0^{\max \pi} \mathcal{S}(s)A u \, ds.
\]
In particular, for every \(\pi \in P_t \),
\[
E_{\pi} u - u \leq \int_0^t \mathcal{S}(s)A u \, ds.
\]
Taking the supremum over all $\pi \in P_t$ yields the assertion. \hfill \Box

Let \mathcal{D} denote the set of all $u \in \bigcap_{\lambda \in \Lambda} D(A_\lambda)$ with

$$\sup_{\lambda \in \Lambda} \|A_\lambda u\|_\kappa < \infty \quad \text{and} \quad \left\| \mathcal{A}(h)u - u - Au \right\|_\kappa \to 0 \quad \text{as} \quad h \to 0.$$

In the sequel, we are interested in viscosity solutions to the abstract differential equation

$$u'(t) = A u(t), \quad \text{for} \quad t > 0,$$

where we use the following notion of a viscosity solution.

Definition 3.10. We say that u is a \textit{viscosity subsolution} of the abstract differential equation

$$u'(t) = A u(t), \quad \text{for} \quad t > 0, \quad (3.6)$$

if $u: [0, \infty) \to \text{UC}_\kappa$ is continuous and for every $t > 0$ and $x \in M$ we have

$$(\psi'(t))(x) \leq (A\psi(t))(x)$$

for every differentiable $\psi: (0, \infty) \to \text{UC}_\kappa$ which satisfies $\psi(t) \in \mathcal{D}$, $(\psi(t))(x) = (u(t))(x)$ and $\psi(s) \leq u(s)$ for all $s > 0$.

Analogously, u is called a \textit{viscosity supersolution} of (3.6) if $u: [0, \infty) \to \text{UC}_\kappa$ is continuous and for every $t > 0$ and $x \in M$ we have

$$(\psi'(t))(x) \geq (A\psi(t))(x)$$

for every differentiable $\psi: (0, \infty) \to \text{UC}_\kappa$ which satisfies $\psi(t) \in \mathcal{D}$, $(\psi(t))(x) = (u(t))(x)$ and $\psi(s) \leq u(s)$ for all $s > 0$.

We say that u is a \textit{viscosity solution} of (3.6) if u is a viscosity subsolution and a viscosity supersolution.

Remark 3.11. In general it is not clear how rich the class of test functions for a viscosity solution from the previous definition is. However, in the examples in Section 6, we will see that often $\text{Lip}_k^b \subset \mathcal{D}$ with $k \in \{0, 1, 2\}$. For $\psi: (0, \infty) \times M \to \mathbb{R}$ differentiable w.r.t. t and $\partial_t \psi: (0, \infty) \times M \to \mathbb{R}$ uniformly w.r.t. x Lipschitz continuous in t with Lipschitz constant $L \geq 0$, we have

$$\sup_{x \in M} \left| \frac{\psi(t + h, x) - \psi(t, x)}{h} - \partial_t \psi(t, x) \right| \leq L h \to 0 \quad \text{as} \quad h \searrow 0$$

for all $t > 0$. Hence, if $\text{Lip}_k^b \subset \mathcal{D}$ for some $k \in \mathbb{N}_0$, then every function $\psi \in \text{Lip}_k^1((0, \infty) \times M)$ is differentiable as a map $(0, \infty) \to \text{UC}_\kappa$ and satisfies $\psi(t) \in \mathcal{D}$ for all $t > 0$. In most applications the class $\text{Lip}_k^1((0, \infty) \times M)$ of test functions is sufficiently large in order to obtain uniqueness of a viscosity solution.

We conclude this section with the following main theorem.

Theorem 3.12. Assume that \mathcal{S} is strongly continuous. Then, for every $u_0 \in \text{UC}_\kappa$, the function

$$u(t) := \mathcal{S}(t)u_0, \quad \text{for} \quad t \geq 0,$$
is a viscosity solution to the abstract initial value problem
\[
\begin{align*}
 u'(t) &= \mathcal{A}u(t), \quad \text{for } t > 0, \\
 u(0) &= u_0.
\end{align*}
\]

Proof. Fix \(t > 0 \) and \(x \in M \). We first show that \(u \) is a viscosity subsolution. Let \(\psi : (0, \infty) \to \text{UC}_\kappa \) differentiable with \(\psi(t) \in \mathcal{D}, \ (\psi(t))(x) = (u(t))(x) \) and \(\psi(s) \leq u(s) \) for all \(s > 0 \). Then, for every \(h \in (0, t) \), it follows from Theorem 2.4 that
\[
0 = \mathcal{I}(h) \mathcal{I}(t-h)u_0 - \mathcal{I}(t)u_0 = \mathcal{I}(h)u(t-h) - u(t) \\
\leq \mathcal{I}(h)\psi(t-h) - u(t) \leq \mathcal{I}(h)(\psi(t-h) - \psi(t)) + \mathcal{I}(h)\psi(t) - u(t) \\
= \mathcal{I}(h)\left(\frac{\psi(t-h) - \psi(t)}{h}\right) + \mathcal{I}(h)\psi(t) - \psi(t) + \frac{\psi(t) - u(t)}{h}.
\]
Let \(\varepsilon > 0 \). Then,
\[
\lim_{h \searrow 0} \left\| \mathcal{I}(h)\left(\frac{\psi(t-h) - \psi(t)}{h}\right) + \psi'(t) \right\|_\kappa
\]
and
\[
\lim_{h \searrow 0} \left\| \frac{\mathcal{I}(h)\psi(t) - \mathcal{A}\psi(t)}{h} \right\|_\kappa.
\]
Since \((u(t))(x) = (\psi(t))(x) \), it follows that
\[
0 \leq -\left(\psi'(t)\right)(x) + \left(\mathcal{A}\psi(t)\right)(x).
\]
To show that \(u \) is a viscosity supersolution, let \(\psi : (0, \infty) \to \text{UC}_\kappa \) differentiable with \(\psi(t) \in \mathcal{D}, \ (\psi(t))(x) = (u(t))(x) \) and \(\psi(s) \leq u(s) \) for all \(s > 0 \). By Theorem 2.4, for all \(h > 0 \) with \(0 < h < t \) we get
\[
0 = \mathcal{I}(t)u_0 - \mathcal{I}(h)\mathcal{I}(t-h)u_0 = \frac{u(t) - \mathcal{I}(h)u(t-h)}{h} \leq \frac{u(t) - \mathcal{I}(h)\psi(t-h)}{h} \\
= \frac{u(t) - \psi(t)}{h} + \frac{\psi(t) - \mathcal{I}(h)\psi(t)}{h} + \frac{\mathcal{I}(h)\psi(t) - \mathcal{I}(h)\psi(t-h)}{h} \\
\leq \frac{u(t) - \psi(t)}{h} + \frac{\psi(t) - \mathcal{I}(h)\psi(t)}{h} + \mathcal{I}(h)\left(\frac{\psi(t) - \psi(t-h)}{h}\right).
\]
Let \(\varepsilon > 0 \). Then,
\[
\lim_{h \searrow 0} \left\| \mathcal{I}(h)\left(\frac{\psi(t) - \psi(t-h)}{h}\right) - \psi'(t) \right\|_\kappa
\]
and
\[
\lim_{h \searrow 0} \left\| \frac{\psi(t) - \mathcal{I}(h)\psi(t)}{h} + \mathcal{A}\psi(t) \right\|_\kappa.
\]
Since \((u(t))(x) = (\psi(t))(x) \), we obtain that
\[
0 \leq -\left(\mathcal{A}\psi(t)\right)(x) + \left(\psi'(t)\right)(x).
\]
\[\square\]
4. APPROXIMATION OF THE SEMIGROUP ENVELOPE

Throughout this section, we assume that the map
\[[0, \infty) \rightarrow UC_\kappa, \quad h \mapsto \mathcal{E}_h u \]
is continuous for all \(u \in UC_\kappa \). Note that this assumption is, for example, implied by the condition that
\[\sup_{\lambda \in A} \| S_\lambda(h)u - u \|_\kappa \rightarrow 0 \quad \text{as} \quad h \rightarrow 0, \]
for all \(u \in \text{Lip}_h \), which, in most applications, is satisfied. The following lemma shows that \(\mathcal{E}_\pi \) depends continuously on the partition \(\pi \in P \).

Lemma 4.1. Let \(m \in \mathbb{N} \) and \(\pi = \{t_0, t_1, \ldots, t_m\} \in P \) with \(0 = t_0 < \ldots < t_m \). For each \(n \in \mathbb{N} \) let \(\pi_n = \{t^n_0, t^n_1, \ldots, t^n_m\} \in P \) with \(0 = t^n_0 < t^n_1 < \ldots < t^n_m \) and \(t^n_i \rightarrow t_i \) as \(n \rightarrow \infty \) for all \(i \in \{1, \ldots, m\} \). Then, for all \(u \in UC_\kappa \) we have that
\[\|\mathcal{E}_\pi u - \mathcal{E}_{\pi_n} u\|_\infty \rightarrow 0, \quad n \rightarrow \infty. \]

Proof. First note that the set of all partitions with cardinality \(m + 1 \) can be identified with the set
\[S^m := \{(s_1, \ldots, s_m) \in \mathbb{R}^m \mid 0 < s_1 < \ldots < s_m\} \subset \mathbb{R}^m. \]
Therefore, the assertion is equivalent to the continuity of the map
\[S^m \rightarrow UC_\kappa, \quad (s_1, \ldots, s_m) \mapsto \mathcal{E}_{\{0, s_1, \ldots, s_m\}} u. \quad (4.1) \]
Since the mapping
\[[0, \infty) \rightarrow UC_\kappa, \quad h \mapsto \mathcal{E}_h u \]
is continuous for all \(u \in UC_\kappa \) and \(\|\mathcal{E}_h u - \mathcal{E}_h v\|_\kappa \leq e^{oh}\|u - v\|_\kappa \) for all \(h \geq 0 \) and \(u, v \in UC_\kappa \), it follows that (4.1) is continuous. \(\square \)

Let \(u \in UC_\kappa \). In the following, we now consider the limit of \(\mathcal{E}_\pi u \) when the mesh size
\[|\pi|_\infty := \max_{j=1,\ldots,m} (t_{j} - t_{j-1}) \]
of the partition \(\pi = \{t_0, t_1, \ldots, t_m\} \in P \) with \(0 = t_0 < t_1 < \ldots < t_m \) tends to zero. For the sake of completeness, we define \(|\{0\}|_\infty := 0\). The following lemma shows that \(\mathcal{S}(t) u \) can be obtained by a pointwise monotone approximation with finite partitions letting the mesh size tend to zero.

Lemma 4.2. Let \(t \geq 0 \) and \((\pi_n)_{n \in \mathbb{N}} \subset P_t \) with \(\pi_n \subset \pi_{n+1} \) for all \(n \in \mathbb{N} \) and \(|\pi_n|_\infty \searrow 0 \) as \(n \rightarrow \infty \). Then, for all \(u \in UC_\kappa \),
\[\mathcal{E}_{\pi_n} u \nearrow \mathcal{S}(t) u \quad \text{as} \quad n \rightarrow \infty. \]

Proof. For \(t = 0 \) the statement is trivial. Therefore, assume that \(t > 0 \) and let
\[(\mathcal{E}_\infty u)(x) := \sup_{n \in \mathbb{N}} (\mathcal{E}_{\pi_n} u)(x) \]
for \(u \in UC_\kappa \) and \(x \in M \). As in the proof of Lemma 2.3, the map \(\mathcal{E}_\infty : UC_\kappa \rightarrow UC_\kappa \) is well-defined. Let \(u \in UC_\kappa \). Since \(\pi_n \subset \pi_{n+1} \) for all \(n \in \mathbb{N} \), it follows
\[\mathcal{E}_{\pi_n} u \nearrow \mathcal{E}_\infty u \quad \text{as} \quad n \rightarrow \infty. \]
Since \((\pi_n)_{n \in \mathbb{N}} \subset P_t\), we obtain that
\[
\mathcal{E}_\infty u \leq \mathcal{J}(t)u.
\]
Let \(\pi = \{t_0, t_1, \ldots, t_m\} \in P_t\) with \(m \in \mathbb{N}\) and \(0 = t_0 < t_1 < \ldots < t_m = t\). Since \(|\pi_n|_\infty \searrow 0\) as \(n \to \infty\), w.l.o.g. we may assume that \(#\pi_n \geq m + 1\) for all \(n \in \mathbb{N}\). Moreover, let \(0 = t_0^n < t_1^n < \ldots < t_m^n = t\) for all \(n \in \mathbb{N}\) with \(\pi'_n := \{t_0^n, t_1^n, \ldots, t_m^n\} \subset \pi_n\) and \(t_i^n \to t_i\) as \(n \to \infty\) for all \(i \in \{1, \ldots, m\}\). Then, by Lemma 4.1 b), we have that
\[
\|\mathcal{E}_\pi u - \mathcal{E}_{\pi'_n} u\|_\kappa \to 0 \quad \text{as} \quad n \to \infty.
\]
and therefore,
\[
\mathcal{E}_\infty u - \mathcal{E}_\pi u \geq \mathcal{E}_{\pi_n} u - \mathcal{E}_{\pi'_n} u \geq \mathcal{E}_\pi u - \mathcal{E}_\pi u \to 0 \quad \text{as} \quad n \to \infty.
\]
This shows that \(\mathcal{E}_\infty u \geq \mathcal{E}_\pi u\). Taking the supremum over all \(\pi \in P_t\) we thus get that \(\mathcal{E}_\infty u = \mathcal{J}(t)u\). \[\square\]

Corollary 4.3. For all \(t > 0\) there exists a sequence \((\pi_n)_{n \in \mathbb{N}} \subset P_t\) with
\[
\mathcal{E}_{\pi_n} u \nearrow \mathcal{J}(t)u
\]
as \(n \to \infty\) for all \(u \in \text{UC}_\kappa\).

Proof. Choose
\[
\pi_n = \left\{ \frac{kt}{2^n} \mid k \in \{0, \ldots, 2^n\} \right\} \quad \text{or} \quad \pi_n = \left\{ \frac{kt}{n!} \mid k \in \{0, \ldots, n!\} \right\}
\]
in Lemma 4.2. \[\square\]

Corollary 4.4. For all \(t \geq 0\) and \(u \in \text{UC}_\kappa\) we have that
\[
\mathcal{J}(t)u = \sup_{n \in \mathbb{N}} \mathcal{E}^n_{\pi_n} u = \lim_{n \to \infty} \mathcal{E}^{2n}_{\pi_n} u,
\]
where the supremum and the limit are to be understood pointwise.

5. **Stochastic representation**

In this section, we derive a stochastic representation for the semigroup envelope \(\mathcal{J}\) using sublinear expectations. We again assume that the conditions (A1) and (A2) are satisfied. We start with a short introduction into the theory of nonlinear expectations. For a measurable space \((\Omega, \mathcal{F})\), we denote the space of all bounded \(\mathcal{F}\)-measurable functions \(\Omega \to \mathbb{R}\) by \(L^\infty(\Omega, \mathcal{F})\). For two bounded random variables \(X, Y \in L^\infty(\Omega, \mathcal{F})\) we write \(X \leq Y\) if \(X(\omega) \leq Y(\omega)\) for all \(\omega \in \Omega\). For a constant \(\alpha \in \mathbb{R}\), we do not distinguish between \(\alpha\) and the constant function taking the value \(\alpha\). Throughout, we assume that \(S_\lambda(t)1 = 1\) for all \(t \geq 0\) and \(\lambda \in \Lambda\).

Definition 5.1. Let \((\Omega, \mathcal{F})\) be a measurable space. A functional \(\mathcal{E} : L^\infty(\Omega, \mathcal{F}) \to \mathbb{R}\) is called a *sublinear expectation* if for all \(X, Y \in L^\infty(\Omega, \mathcal{F})\) and \(\lambda > 0\)
\[
\begin{align*}
(i) & \quad \mathcal{E}(X) \leq \mathcal{E}(Y) \quad \text{if} \quad X \leq Y, \\
(ii) & \quad \mathcal{E}(\alpha) = \alpha \quad \text{for all} \quad \alpha \in \mathbb{R}, \\
(iii) & \quad \mathcal{E}(X + Y) \leq \mathcal{E}(X) + \mathcal{E}(Y) \quad \text{and} \quad \mathcal{E}(\lambda X) = \lambda \mathcal{E}(X).
\end{align*}
\]
We say that \((\Omega, \mathcal{F}, \mathcal{E})\) is a sublinear expectation space if there exists a set of probability measures \(\mathcal{P}\) on \((\Omega, \mathcal{F})\) such that

\[
\mathcal{E}(X) = \sup_{\mathcal{P} \in \mathcal{P}} \mathbb{E}_\mathcal{P}(X) \quad \text{for all } X \in \mathcal{L}^\infty(\Omega, \mathcal{F}),
\]

where \(\mathbb{E}_\mathcal{P}(\cdot)\) denotes the expectation w.r.t. to the probability measure \(\mathbb{P}\).

Definition 5.2. We say that \(\mathcal{S}\) is continuous from above on \(\mathcal{U}C_b\) if \(\mathcal{S}(t)u_n \downarrow \mathcal{S}(t)u\) for all \(t \geq 0\) and all \((u_n)_{n \in \mathbb{N}} \subset \mathcal{U}C_b\) with \(u_n \downarrow u \in \mathcal{U}C_b\) as \(n \to \infty\).

Remark 5.3.

a) Assume that \(M\) is compact. Then, by Dini’s lemma \(\mathcal{S}\) is continuous from above.

b) Assume that \(\mathcal{S}\) is continuous from above on \(\mathcal{U}C_b\). Then, by [2, Remark 5.4 c)], \(\mathcal{S}(t)\) uniquely extends to an operator \(\mathcal{S}(t): \mathcal{C}_{b} \to \mathcal{C}_{b}\), which is again continuous from above. Moreover, for every \(n \in \mathbb{N}\), \(v \in \mathcal{C}_{b}(M^{n+1})\) the mapping

\[
M^{n+1} \to \mathbb{R}, \quad (x_1, \ldots, x_n, x_{n+1}) \mapsto (\mathcal{S}(t)v(x_1, \ldots, x_n, \cdot))(x_{n+1})
\]

is bounded and continuous.

Continuity from above on \(\mathcal{U}C_b\) will be crucial for the existence of a stochastic representation. The following proposition gives a sufficient condition for the continuity from above on \(\mathcal{U}C_b\). Let \(\mathcal{U}C_0\) be the closure of the space \(\text{Lip}_c\) of all Lipschitz continuous functions with compact support w.r.t. the supremum norm \(\| \cdot \|_\infty\).

Proposition 5.4. Suppose that for every \(\delta > 0\) there exists a family of functions \((\varphi_x)_{x \in M} \subset \mathcal{U}C_0\) satisfying the following for all \(x \in M\):

1. \(\varphi_x(x) = 1\) and \(0 \leq \varphi_x \leq 1\),
2. \(\varphi_x \in \bigcap_{\lambda \in \Lambda} \mathcal{D}(A_{\lambda})\) with \(\sup_{\lambda \in \Lambda} \|A_{\lambda}\varphi_x\|_\kappa \leq \delta\).

Then, \(\mathcal{S}\) is continuous from above on \(\mathcal{U}C_b\).

Proof. Fix \(t > 0\), \(x \in M\) and \(\delta > 0\). Since \(\varphi_x(x) = 1\) and \(1 - \varphi_x \in \bigcap_{\lambda \in \Lambda} \mathcal{D}(A_{\lambda})\) with \(A_{\lambda}(1 - \varphi) = -A_{\lambda}\varphi\), it follows that

\[
(\mathcal{S}(t)(1 - \varphi_x))(x) \leq \frac{1}{k(x)} \|\mathcal{S}(t)(1 - \varphi_x) - (1 - \varphi_x)\|_\kappa \leq t \sup_{\lambda \in \Lambda} \|A_{\lambda}\varphi_x\|_\kappa \leq \frac{\delta t}{k(x)}.
\]

Let \((u_n)_{n \in \mathbb{N}} \subset \mathcal{U}C_b\) with \(u_n \downarrow 0\) as \(n \to \infty\) and \(\varepsilon > 0\). Then, there exists some \(\varphi_x \in \mathcal{U}C_0\) satisfying (i) and (ii) with \(\delta = \frac{\varepsilon k(x)}{2c}\), where \(c := \max \{1, \|u_1\|_\infty\}\). Then,

\[
\|u_n\|_\infty(\mathcal{S}(t)(1 - \varphi_x))(x) \leq \frac{\varepsilon}{2} \quad \text{for all } n \in \mathbb{N}.
\]

Moreover, there exists some \(n \in \mathbb{N}\) such that \(\|u_n\varphi_x\|_\kappa < \frac{\varepsilon}{2}\) since \(\varphi_x \in \mathcal{U}C_0\). Hence,

\[
(\mathcal{S}(t)u_n)(x) \leq \|u_n\|_\infty(\mathcal{S}(t)(1 - \varphi_x))(x) + (\mathcal{S}(t)(u_n\varphi_x))(x) < \varepsilon.
\]
This shows that \(\mathcal{S}(t)u_n \searrow 0 \) as \(n \to \infty \). Now, let \((u_n)_{n \in \mathbb{N}} \subset UC_b\) and \(u \in UC_b \) with \(u_n \searrow u \) as \(n \to \infty \). Then,

\[
|\mathcal{S}(t)u_n - \mathcal{S}(t)u| \leq \mathcal{S}(t)(u_n - u) \searrow 0 \quad \text{as} \quad n \to \infty.
\]

\[\square\]

Note that the existence of a function in \(\varphi_x \in UC_0 \) with \(\varphi_x(x) \neq 0 \) for all \(x \in M \) implies that \(M \) is locally compact. Thus, Proposition 5.4 is only applicable for locally compact \(M \). The following theorem is a direct consequence of [2, Theorem 5.6].

Theorem 5.5. Assume that \(M \) is a Polish space and that the semigroup \(\mathcal{S} \) is continuous from above on \(UC_b \). Then, there exists a quadruple \((\Omega, \mathcal{F}, (\mathcal{E}^x)_{x \in M}, (X_t)_{t \geq 0})\) such that

(i) \(X_t: \Omega \to M \) is \(\mathcal{F}\mathcal{B}\)-measurable for all \(t \geq 0 \),

(ii) \((\Omega, \mathcal{F}, \mathcal{E}^x) \) is a sublinear expectation space with \(\mathcal{E}^x(u(X_0)) = u(x) \) for all \(x \in M \) and \(u \in C_b \),

(iii) For all \(0 \leq s < t, n \in \mathbb{N}, 0 \leq t_1 < \ldots < t_n \leq s \) and \(v \in C_b(M^{n+1}) \),

\[
\mathcal{E}^x(v(X_{t_1}, \ldots, X_{t_n}, X_t)) = \mathcal{E}^x((\mathcal{S}(t-s)v(X_{t_1}, \ldots, X_{t_n}, \cdot))(X_s)).
\]

In particular,

\[
(\mathcal{S}(t)u)(x) = \mathcal{E}^x(u(X_t)).
\]

for all \(t \geq 0, x \in M \) and \(u \in C_b \).

The quadruple \((\Omega, \mathcal{F}, (\mathcal{E}^x)_{x \in M}, (X_t)_{t \geq 0})\) can be seen as a nonlinear Markov process, where (iii) is the nonlinear analogue of the Markov property.

6. Examples

For \(k \in \mathbb{N}_0 \), let \(Lip^k \) denote the space of all \(k \)-times differentiable functions with bounded and Lipschitz continuous derivatives up to order \(k \).

Example 6.1 (Koopman semigroups on real separable Banach spaces). We consider the case, where the state space \(M = X \) is a real separable Banach space. Let \(F: X \to X \) be Lipschitz continuous with Lipschitz constant \(L > 0 \). Then, we denote by \(\Phi_F: [0, \infty) \times X \to X \) the solution to the initial value problem

\[
\partial_t \Phi_F(t, x) = F(\Phi_F(t, x)), \quad t \geq 0,
\]

\[\Phi_F(0, x) = x\]

for all \(x \in X \). Then, \(\Phi_F \) defines a so-called continuous semiflow. Let \(\beta \in (0, \infty) \) with \(\beta \geq L \). Then,

\[
\|\Phi_F(t, x) - \Phi_F(t, y)\| \leq \|x - y\| + \beta \int_0^t \|\Phi_F(s, x) - \Phi_F(s, y)\| \, ds
\]

for all \(t \geq 0 \) and \(x, y \in X \). Hence, by Gronwall’s lemma,

\[
\|\Phi_F(t, x) - \Phi_F(t, y)\| \leq \|x - y\|e^{\beta t}
\]

(6.3)
for all $t \geq 0$ and $x, y \in X$. Let $C \in [1, \infty)$ with $C \geq \|F(0)\|$ and $\alpha = \max\{1, \beta\}$. Then, for all $t \geq 0$ and $x \in X$,

$$C + \|x\| + \|\Phi_F(t, x) - x\| \leq C + \|x\| + \alpha \int_0^t C + \|x\| + \|\Phi_F(s, x) - x\| \, ds.$$

Again, by Gronwall’s lemma, it follows

$$C + \|\Phi_F(t, x)\| \leq C + \|x\| + \|\Phi_F(t, x) - x\| \leq (C + \|x\|) e^{\alpha t}$$

(6.4)

for all $t \geq 0$ and $x \in X$. Let $\kappa(x) := (C + \|x\|)^{-2}$ for all $x \in X$. For $u \in C_\kappa$, $t \geq 0$ and $x \in X$, we then define

$$(S_F(t)u)(x) := u(\Phi_F(t, x)).$$

Then, for $u \in UC_\kappa$, $t \geq 0$ and $x \in X$,

$$\left| (S_F(t)u)(x) \right| \leq \|u\|_\kappa (C + \|\Phi_F(t, x)\|)^2 \leq \|u\|_\kappa (C + \|x\|)^2 e^{2\alpha t}$$

and therefore, $\|S_F(t)u\|_\kappa \leq e^{2\alpha t}\|u\|_\kappa$. On the other hand, by (6.4),

$$\left| (S_F(t)u)(x) - u(x) \right| \leq \|u\|_{\text{Lip}} \|\Phi_F(t, x) - x\| \leq \|u\|_{\text{Lip}} (C + \|x\|)(e^{\alpha t} - 1)$$

for all $u \in \text{Lip}_b$. Therefore, $\|S_F(t)u - u\|_\kappa \leq \|u\|_{\text{Lip}}(e^{\alpha t} - 1)$ for $u \in \text{Lip}_b$. By (6.3),

$$\left| (S_F(t)u)(x) - (S_F(t)u)(y) \right| \leq \|u\|_{\text{Lip}} \|x - y\|$$

for all $x, y \in X$ and $u \in \text{Lip}_b$. That is, $\|S_F(t)u\|_{\text{Lip}} \leq \|u\|_{\text{Lip}}$. For $u \in \text{Lip}^1_\kappa$, let

$$C_u := \|u\|_\infty + \|u\|_{\text{Lip}}$$

and $A_Fu \in C_\kappa$ be given by

$$(A_Fu)(x) := u'(x)F(x) \quad \text{for } x \in X.$$

Let $u \in \text{Lip}^1_\kappa$. Then, for all $t \geq 0$ and $x \in X$,

$$\left| (S_F(t)A_Fu)(x) - (A_Fu)(x) \right| \leq \frac{1}{\kappa(x)} C_u \alpha(e^{\alpha t} - 1)$$

and therefore,

$$\|S_F(t)A_Fu - A_Fu\|_\kappa \leq C_u \alpha(e^{\alpha t} - 1).$$

By the chain rule and the fundamental theorem of infinitesimal calculus, it follows that

$$\frac{(S_F(h)u)(x) - u(x)}{h} = \frac{1}{h} \int_0^h (S_F(s)A_Fu)(x) \, ds$$

for all $h > 0$, which implies that

$$\left\| \frac{S_F(h)u - u}{h} - A_Fu \right\|_\kappa \leq C_u \alpha(e^{\alpha h} - 1) \to 0 \quad \text{as } h \searrow 0.$$

Hence, for any nonempty set Λ of Lipschitz continuous functions $F : X \to X$ with

$$\sup_{F \in \Lambda} \left(\|F(0)\| + \sup_{x, y \in M} \frac{\|F(x) - F(y)\|}{\|x - y\|} \right) < \infty$$
the assumptions (A1) and (A2) are satisfied, the semigroup envelope S is strongly continuous and $\text{Lip}_b^1 \subset D$. By Theorem 3.12, we thus obtain that $u(t) := S(t)u_0$, for $t \geq 0$, defines a viscosity solution to the fully nonlinear PDE
\[
u(t, x) = \sup_{F \in \Lambda} \nabla u(t, x) F(x), \quad (t, x) \in (0, \infty) \times X,
\]
\[
u(0, x) = u_0(x), \quad x \in X.
\]
Moreover, if $X = \mathbb{R}^d$, the semigroup envelope S is continuous from above by Proposition 5.4. In this case, Theorem 5.5 implies the existence of a Markov process under a nonlinear expectation related to S. This Markov process can be viewed as a nonlinear drift process.

Example 6.2 (Geometric Brownian Motion). Let $M = \mathbb{R}$, $\mu \in \mathbb{R}$, $\sigma > 0$ and W a Brownian Motion on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Define
\[
X^x_t := \exp \left(t(\mu - \frac{\sigma^2}{2}) + \sigma W_t \right) x
\]
for $t \geq 0$ and $x \in \mathbb{R}$. Then, for $x \in \mathbb{R}$, the stochastic processes $(X^x_t)_{t \geq 0}$ is a solution to the SDE
\[
dX^x_t = \mu X_t \, dt + \sigma X^x_t \, dW_t, \quad X^x_0 = x.
\]
Let $\beta \geq 0$ with $\beta \geq \mu + \sigma^2$. Then,
\[
E \left(\left| X^x_t \right|^p \right) \leq |x| e^{ \left(\mu + (\frac{p-1}{2})\sigma^2 \right) t} \leq |x| e^{\beta t}
\]
for $p \in [2, 3]$ and $x \in \mathbb{R}$. By Young’s inequality and Ito’s isometry,
\[
1 + E \left(|X^1_t| - 1 \right)^2 \leq 1 + 4\beta \int_0^t 1 + E \left(|X^1_s| - 1 \right)^2 \, ds.
\]
By Gronwall’s lemma, it follows that
\[
E \left(|X^1_t| - 1 \right)^2 \leq e^{4\beta t} - 1.
\]
Let $\kappa(x) := (1 + |x|)^3$ for $x \in \mathbb{R}$ and $S = S_{\mu, \sigma}$ be given by
\[
(S(t)u)(x) := E \left(u(X^x_t) \right)
\]
for $u \in \text{UC}_{\kappa}$, $t \geq 0$ and $x \in \mathbb{R}$. Then, it follows that
\[
\|S(t)u\|_{\kappa} \leq \|u\|_{\kappa} e^{3\beta t}
\]
for $t \geq 0$ and $u \in \text{UC}_{\kappa}$. Moreover, for $u \in \text{Lip}_b$,
\[
\|u\|_{\text{Lip}} \leq e^{\beta t} \|u\|_{\text{Lip}}.
\]
and
\[
\|S(t)u - u\|_{\kappa} \leq \|u\|_{\text{Lip}} E \left(|X^1_t| - 1 \right) \leq \sqrt{e^{4\beta t} - 1} \to 0 \quad \text{as } t \to 0.
\]
Therefore, S is a strongly continuous Feller semigroup. For $u \in \text{Lip}_b^2$, let
\[
C_u := \max \{ \|u\|_{\infty}, \|u''\|_{\infty}, \|u''\|_{\text{Lip}} \}
\]
and $Au \in \text{UC}_{\kappa}$ be given by
\[
(Au)(x) := \mu xu'(x) + \frac{\sigma^2 x^2}{2} u''(x) \quad \text{for } x \in \mathbb{R}.
\]
Let $u \in \text{Lip}_b^2$. Then, for $h > 0$,
\[
|S(h)Au(x) - (Au)(x)| \leq \kappa(x)C_u\alpha \max \left\{ \sqrt{e^{4\beta h} - 1}, e^{4\beta h} - 1 \right\}
\]
and therefore,
\[
\|S(h)Au - (Au)\|_\kappa \leq C_u\alpha \max \left\{ \sqrt{e^{4\beta h} - 1}, e^{4\beta h} - 1 \right\}.
\]

By Ito’s formula, it follows that
\[
\frac{(S(h)u)(x) - u(x)}{h} = \frac{1}{h} \int_0^h (S(s)Au)(x) \, ds
\]
for all $h > 0$ and $x \in \mathbb{R}$, which implies that
\[
\left\| \frac{S(h)u - u}{h} - Au \right\|_\kappa \leq C_u\alpha \max \left\{ \sqrt{e^{4\beta h} - 1}, e^{4\beta h} - 1 \right\} \to 0 \quad \text{as} \quad h \downarrow 0.
\]

Hence, for any nonempty set Λ of tuples (μ, σ) with
\[
\sup_{(\mu,\sigma) \in \Lambda} (\mu + \sigma^2) < \infty
\]
the assumptions (A1) and (A2) are satisfied, the semigroup envelope S is strongly continuous and $\text{Lip}_b^2 \subset D$. By Theorem 3.12, we thus obtain that $u(t) := S(t)u_0$, for $t \geq 0$, defines a viscosity solution to the fully nonlinear Cauchy problem
\[
\begin{align*}
\frac{\partial u}{\partial t} &= \sup_{(\mu,\sigma) \in \Lambda} \mu x \partial_x u(t, x) + \frac{\sigma^2 x^2}{2} \partial_{xx} u(t, x), \quad (t, x) \in (0, \infty) \times \mathbb{R}, \\
\quad u(0, x) &= u_0(x), \quad x \in \mathbb{R}.
\end{align*}
\]
Moreover, the semigroup S is continuous from above by Proposition 5.4. The nonlinear Markov process related to S can be seen as a geometric G-Brownian Motion (cf. Theorem 5.5).

Example 6.3 (Ornstein-Uhlenbeck processes on separable Hilbert spaces). We consider the case where $M = H$ is a real separable Hilbert space and $\Gamma = \emptyset$. Let $m \in H$, $B \in L(H)$, $T(t) := e^{tB}$ for all $t \geq 0$, $C \in L(H)$ a trace class operator and W^C a Brownian Motion with covariance operator C on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. We define
\[
X_t^x := T(t)x + \int_0^t T(t-s)m \, ds + \int_0^t T(t-s) \, dW^C_s
\]
for $t \geq 0$ and $x \in H$. Then, for $x \in H$, the stochastic process $(X_t^x)_{t \geq 0}$ is a mild solution to the infinite-dimensional SDE
\[
dX_t^x = (BX_t^x + m) \, dt + dW_t^C, \quad X_0^x = x.
\]
Let $\alpha \geq 0$ with $\alpha \geq e^{2\|B\|}(\|B\|^2 + \|m\|^2 + \|C\|_{\text{tr}})$. Then, by Young’s inequality,
\[
1 + \mathbb{E}(\|X_t^x\|^2) \leq 1 + \|x\|^2 + 4e^{2\|B\|}(\|B\|^2\|x\|^2t^2 + \|m\|^2t^2 + \|C\|_{\text{tr}}t)
\leq (1 + \|x\|^2)e^{4\alpha t}.
for all \(x \in H \) and \(0 \leq t \leq 1 \). Moreover,

\[
\mathbb{E} \left(\| X_t - x \| \right) \leq e^{1/2} \| B \| \| x \| t + e^{1/2} \| m \| t + e^{1/2} \sqrt{\| C \| t} \leq (1 + \| x \|)3\sqrt{\alpha t}
\]

for all \(x \in H \) and \(0 \leq t \leq 1 \). Let \(\kappa := (1 + \| x \|^2)^{-1} \) and define \(S = S_{B,m,C} \) by

\[
(S(t)u)(x) := \mathbb{E} \left(u(X^x_t) \right)
\]

for \(x \in H, \ t \geq 0 \) and \(u \in C_\kappa \). Then,

\[
\| S(t)u \|_\kappa \leq e^{kt}\| u \|_\kappa \quad \text{for all} \quad u \in C_\kappa \quad \text{and} \quad t \geq 0
\]

and

\[
\| S(t)u \|_{\text{Lip}} \leq e^{\| B \| t}\| u \|_{\text{Lip}}.
\]

For \(u \in \text{Lip}^2 \) let

\[
C_u := \max \{ \| \nabla u \|, \| \nabla^2 u \|_{\infty}, \| \nabla^2 u \|_{\text{Lip}} \}
\]

and \(Au \in C_\kappa \) be given by

\[
(Au)(x) = \nabla u(x)(Bx + m) + \frac{1}{2} \text{tr} \left(C \nabla^2 u(x) \right)
\]

for \(x \in H \). Then, for \(h \in [0,1] \),

\[
\| S(h)Au - Au \|_\kappa \leq 3C_u \sqrt{\alpha^3 h}.
\]

By Ito’s formula it follows that

\[
\frac{1}{h} \int_0^h (S(s)Au)(x) \, ds = \frac{(S(h)u)(x) - u(x)}{h}
\]

for all \(h > 0 \) and \(x \in H \), which implies that

\[
\left\| \frac{S(h)u - u}{h} - Au \right\|_\kappa \leq 3C_u \sqrt{\alpha^3 h} \to 0 \quad \text{as} \ h \searrow 0.
\]

Hence, for any nonempty set \(\Lambda \) of triplets \((B, m, C) \) with

\[
e^{2\| B \| \left(\| B \|^2 + \| m \|^2 + \| C \|_{\text{tr}} \right)} \leq \alpha
\]

the assumptions (A1) and (A2) are satisfied, the semigroup envelope \(\mathcal{S} \) is strongly continuous on \(\text{Lip}^2 \). In order to show that \(\text{Lip}^2 \subset \mathcal{D} \), by the previous computations, it suffices to show that \(\mathcal{S} \) is strongly continuous. For this we invoke Proposition 3.5. Notice that \(\text{Lip}^2 \) is not dense in \(\text{Lip} \) if \(H \) is infinite dimensional. Let \(\delta > 0 \) and \(\varphi: [0, \infty) \to [0, 1] \) infinitely smooth with \(\varphi(s) = 1 \) for \(x \in \left[0, \frac{\delta}{2} \right] \) and \(\varphi(s) = 0 \) for \(s \in [\delta, \infty) \). For \(x, y \in H \), let \(\varphi_x(y) := \varphi(\| y - x \|) \). Then, \(\varphi_x \in \text{Lip}_b^2 \) with

\[
\| \nabla \varphi_x \|_{\infty} \leq \| \varphi' \|_{\infty} \quad \text{and} \quad \| \nabla^2 \varphi_x \|_{\infty} \leq \frac{3}{\delta} \| \varphi' \|_{\infty} + \| \varphi'' \|_{\infty} \quad \text{for all} \quad x \in M.
\]

Hence,

\[
\| A \varphi_x \|_\kappa \leq \frac{3\sqrt{\alpha}}{2\delta} \max \{ \| \varphi' \|_{\infty}, \| \varphi'' \|_{\infty} \} =: L
\]

for all \(x \in M \). Therefore, by Remark 3.6 and Proposition 3.5, the semigroup \(\mathcal{S} \) is strongly continuous. Altogether, we have shown that, for any nonempty set \(\Lambda \) of triplets \((B, m, C) \) with

\[
\sup_{(B,m,C) \in \Lambda} \left(\| B \|^2 + \| m \|^2 + \| C \|_{\text{tr}} \right) < \infty,
\]
the assumptions (A1) and (A2) are satisfied, the semigroup envelope \(\mathcal{S} \) is strongly continuous and \(\text{Lip}_b^2 \subset \mathcal{D} \). By Theorem 3.12, we thus obtain that \(u(t) := \mathcal{S}(t)u_0 \), for \(t \geq 0 \), defines a viscosity solution to the fully nonlinear PDE

\[
 u_t(t, x) = \sup_{(B, m, c) \in \Lambda} \nabla u(t, x)(Bx + m) + \frac{1}{2} \text{tr}(C \nabla^2 u(t, x)), \quad (t, x) \in (0, \infty) \times H,
\]

\[
 u(0, x) = u_0(x), \quad x \in H.
\]

If \(H = \mathbb{R}^d \), the semigroup \(\mathcal{S} \) is continuous from above by Proposition 5.4, which implies the existence of an O-U-process under a nonlinear expectation which represents \(\mathcal{S} \) (cf. Theorem 5.5).

Example 6.4 (Lévy Processes on abelian groups). Let \(M = G \) be an abelian group with a translation invariant metric \(d \) and \(\kappa(x) := 1 \) for all \(x \in M \). Let \((S(t))_{t \geq 0} \) be a Markovian convolution semigroup, i.e. a semigroup arising from a Lévy process. Then, \((S(t))_{t \geq 0} \) is a strongly continuous Feller semigroup of linear contractions (cf. [3]). Moreover, due to the translation invariance, \(\|S(t)u\|_{\text{Lip}} \leq \|u\|_{\text{Lip}} \) for all \(t \geq 0 \) and \(u \in \text{Lip}_b \). Now, let \((S_\lambda)_{\lambda \in \Lambda} \) be a family of Markovian convolution semigroups with generators \((A_\lambda)_{\lambda \in \Lambda} \). Then, the assumptions (A1) - (A2) are satisfied. We refer to [3] for examples, where the semigroup envelope is strongly continuous. In particular, all examples from [3] fall into our theory. In the case, where \(G = H \) is a real separable Hilbert space, we can improve the result obtained in [3, Example 3.3]. In this case, by the Lévy-Khintchine formula (see e.g. [7, Theorem 5.7.3]), every generator \(A \) of a Markovian convolution semigroup is characterized by a Lévy triplet \((b, \Sigma, \mu)\), where \(b \in H, \Sigma \in L(H) \) is a self-adjoint positive semidefinite trace-class operator and \(\mu \) is a Lévy measure on \(H \). For \(u \in \text{Lip}_b^2(H) \) and a Lévy triplet \((b, \Sigma, \mu)\), the generator \(A_{b, \Sigma, \mu} \) is given by

\[
 (A_{b, \Sigma, \mu}u)(x) = \langle b, \nabla u(x) \rangle + \frac{1}{2} \text{tr}(\Sigma \nabla^2 u(x)) + \int_H u(x + y) - u(x) - \langle \nabla u(x), h(y) \rangle \, d\mu(y)
\]

for \(x \in H \). Here, the function \(h: H \to H \) is defined by \(h(y) = y \) for \(\|y\| \leq 1 \), and \(h(y) = 0 \) whenever \(\|y\| > 1 \). Let \(\Lambda \) be a nonempty set of Lévy triplets. We assume that

\[
 C := \sup_{(b, \Sigma, \mu) \in \Lambda} \left(\|b\| + \|\Sigma\|_{\text{tr}} + \int_H 1 \wedge \|y\|^2 \, d\mu(y) \right) < \infty. \tag{6.5}
\]

Notice that (6.5) does not exclude any Lévy triplet a priori. Under (6.5), the semigroup envelope \(\mathcal{S} \) is strongly continuous on \(\text{Lip}_b^2 \). In order to show that \(\text{Lip}_b^2 \subset \mathcal{D} \), by the computations in [3], it suffices to show that \(\mathcal{S} \) is strongly continuous. For this we invoke Proposition 3.3. For \(\delta > 0 \), we choose the family \((\varphi_x)_{x \in H}\) as in the previous example. Since \((\mathcal{S}(t)v)(x) = (\mathcal{S}(t)v(x + .))(0) \) for all \(v \in \text{UC}_\kappa, x \in H \) and \(t \geq 0 \), it follows that

\[
 (\mathcal{S}(t)(1 - \varphi_x))(x) = (\mathcal{S}(t)(1 - \varphi_0))(0)
\]
for all \(x \in H \) and \(t \geq 0 \). Defining \(f(t) := (\mathcal{I}(t)(1 - \varphi_0))(0) \) for \(t \geq 0 \), it follows that \(f \) is continuous with \(f(0) = 0 \). Therefore, by Proposition 3.3, the semigroup \(\mathcal{I} \) is strongly continuous. Altogether, we have shown that under the condition (6.5), the assumptions (A1) and (A2) are satisfied, the semigroup envelope \(\mathcal{S} \) is strongly continuous and \(\text{Lip}_b^2 \subset \mathcal{D} \). By Theorem 3.12, we thus obtain that \(u(t) := \mathcal{I}(t)u_0 \), for \(t \geq 0 \), defines a viscosity solution to the fully nonlinear Cauchy problem

\[
\begin{align*}
&u_t(t, x) = \sup_{(b, \Sigma, \mu) \in \Lambda} \left(A_{b, \Sigma, \mu} u(t) \right)(x), \quad (t, x) \in (0, \infty) \times H, \\
u(0, x) &= u_0(x), \quad x \in H.
\end{align*}
\]

If \(H = \mathbb{R}^d \) and the set of Lévy measures within the set of Lévy triplets \(\Lambda \) is tight, the semigroup envelope \(\mathcal{S} \) is continuous from above, which implies the existence of a nonlinear Lévy process related to \(\mathcal{I} \). However, due to the translation invariance of the semigroups, the continuity from above is not necessary in order to obtain the existence of a Lévy process under a nonlinear expectation. The nonlinear Lévy process can be explicitly constructed via stochastic integrals w.r.t. Lévy processes with Lévy triplet contained in \(\Lambda \). We refer to [3, Proposition 5.12] for the details of the construction.

Example 6.5 (\(\alpha \)-stable Lévy processes). Consider the setup of the previous example, with \(G = \mathbb{R}^d \) for some \(d \in \mathbb{N} \) and let \(A_\alpha := -(-\Delta)^\alpha \) be fractional Laplacian for \(0 < \alpha < 1 \). Then, for any compact subset \(\Lambda \subset (0, 1) \), condition (6.5) is satisfied. Hence, the assumptions (A1) and (A2) are satisfied and the semigroup envelope \(\mathcal{S} \) is strongly continuous with \(\text{Lip}_b^2 \subset \mathcal{D} \). By Theorem 3.12, we thus obtain that \(u(t) := \mathcal{I}(t)u_0 \), for \(t \geq 0 \), defines a viscosity solution to the nonlinear Cauchy problem

\[
\begin{align*}
&u_t(t, x) = \sup_{\alpha \in \Lambda} -(-\Delta)^\alpha u(t, x), \quad (t, x) \in (0, \infty) \times \mathbb{R}^d, \\
u(0, x) &= u_0(x), \quad x \in \mathbb{R}^d.
\end{align*}
\]

The related nonlinear Lévy process can be interpreted as a \(\Lambda \)-stable Lévy process.

Example 6.6 (Mehler semigroups). Consider the case, where the state space \(M = H \) is a real separable Hilbert space and \(\kappa = 1 \). Let \((T, \mu) \) be a tuple consisting of a \(C_0 \)-semigroup \(T = (T(t))_{t \geq 0} \) of linear operators on \(H \) with \(\|T(t)\| \leq e^{at} \) for all \(t \geq 0 \) and some \(a \in \mathbb{R} \) and a family \(\mu = (\mu_t)_{t \geq 0} \) of probability measures on \(H \) such that

\[
\mu_0 = \delta_0 \quad \text{and} \quad \mu_{t+s} = \mu_s \ast \mu_t \circ T(s)^{-1} \quad \text{for all } s, t \geq 0.
\]

We then define the semigroup \(S = S_{(T, \mu)} \) by

\[
(S(t)u)(x) := \int_H u(T(t)x + y) \, d\mu_t(y)
\]

for \(u \in UC_b, \ t \geq 0 \) and \(x \in H \). Then, \(\|S(t)u\|_\infty \leq \|u\|_\infty \) for all \(u \in C_b \) and \(\|S(t)u\|_{\text{Lip}} \leq e^{at}\|u\|_{\text{Lip}} \) for \(u \in \text{Lip}_b \). Hence, for any nonempty family \(\Lambda \) of tuples \((T, \mu)\) with \(\|T(t)\| \leq e^{at} \) for all \(t \geq 0 \) the assumptions (A1) and (A2) are satisfied.
Example 6.7 (Bounded generators on ℓ^∞). Let $M = \mathbb{N}$ and $\kappa(i) = 1$ for all $i \in \mathbb{N}$. Let $(A_\lambda)_{\lambda \in \Lambda} \subset L(\ell^\infty)$ be a family of operators satisfying the positive maximum principle and
\[\sup_{\lambda \in \Lambda} \| A_\lambda \|_{L(\ell^\infty)} < \infty. \]
Here, we say that an operator $A \in L(\ell^\infty)$ satisfies the positive maximum principle if $A_{ii} < 0$ for all $i \in \mathbb{N}$ and $A_{ij} \geq 0$ for all $i, j \in \mathbb{N}$ with $i \neq j$. Then, the family $(A_\lambda)_{\lambda \in \Lambda}$ satisfies the assumptions (A1) and (A2) with $\mathcal{D} = \ell^\infty$. In particular, the semigroup envelope is strongly continuous. If $A_\lambda 1 = 0$ for all $\lambda \in \Lambda$, then the semigroup envelope admits a stochastic representation. This representation can be seen as a nonlinear Markov chain with state space \mathbb{N}.

Example 6.8 (Multiples of generators of Feller semigroups). Let A be the generator of a strongly continuous Feller semigroup $(S(t))_{t \geq 0}$ of linear operators. Assume that there exist constants $\alpha, \beta \in \mathbb{R}$ such that
\[\| S(t)u \|_\kappa \leq e^{\alpha t} \| u \|_\kappa \quad \text{and} \quad \| S(t)u \|_{\text{Lip}} \leq e^{\beta t} \| u \|_{\text{Lip}} \]
for all $u \in \text{Lip}_b$ and $t \geq 0$. For $\lambda \geq 0$ let $A_\lambda := \lambda A$ for all λ. Then, A_λ generates the semigroup S_λ given by $S_\lambda(t) := S(\lambda t)$ for all $t \geq 0$ and $\lambda \geq 0$. Then, for any compact set $\Lambda \subset [0, \infty)$ the family $(S_\lambda)_{\lambda \in \Lambda}$ satisfies the assumptions (A1) and (A2) with $D(A) \subset \mathcal{D}$ and the semigroup envelope is strongly continuous. Hence, by Theorem 3.12, we obtain that $u(t) := S(t)u_0$, for $t \geq 0$, defines a viscosity solution to the abstract Cauchy problem
\[
\begin{align*}
 u'(t) &= \sup_{\lambda \in \Lambda} \lambda Au(t), \quad \text{for } t > 0, \\
 u(0) &= u_0.
\end{align*}
\]

References

1Center for Mathematical Economics, Bielefeld University, 33615 Bielefeld, Germany

E-mail address: Max.Nendel@uni-bielefeld.de

2Faculty of Mathematics, Bielefeld University, 33615 Bielefeld, Germany

E-mail address: Roeckner@uni-bielefeld.de