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Abstract

In this study we investigate the link between the job search channels that workers use

to find employment and the probability of occupational mismatch in the new job. Our spe-

cific focus is on differences between native and immigrant workers. We use data from the

German Socio-Economic Panel (SOEP) over the period 2000-2014. First, we document that

referral hiring via social networks is the most frequent single channel of generating jobs in

Germany; in relative terms referrals are used more frequently by immigrant workers com-

pared to natives. Second, our data reveals that referral hiring is associated with the highest

rate of occupational mismatch among all channels in Germany. We combine these findings

and use them to develop a theoretical search and matching model with two ethnic groups of

workers (natives and immigrants), two search channels (formal and referral hiring) and two

occupations. When modeling social networks we take into account ethnic and professional

homophily in the link formation. Our model predicts that immigrant workers face stronger

risk of unemployment and often rely on recommendations from their friends and relatives as

a channel of last resort. Furthermore, higher rates of referral hiring produce more frequent

occupational mismatch of the immigrant population compared to natives. We test this pre-

diction empirically and confirm that more intensive network hiring contributes significantly

to higher rates of occupational mismatch among immigrants. Finally, we document that the

gaps in the incidence of referrals and mismatch rates are reduced among second generation

immigrants indicating some degree of integration in the German labour market.
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1 Introduction

In this study we investigate the link between the methods of job search that workers use to find

employment and the probability of occupational mismatch in the new job. According to multiple

empirical studies the most common search methods include private and public employment

agencies, direct applications to job advertisements posted in newspapers and internet as well as

help from friends and relatives. Following the literature we define referral hiring via the network

of friends and relatives as an informal search channel, whereas employment agencies and direct

applications form a formal channel of job search. The primary question that we address in

this study is whether both search channels are equally efficient in generating good matches. By

good matches we mean jobs in the original occupation corresponding to the professional training

and education of the worker. Empirical evidence shows that changing the occupation is often

associated with lower wages and higher job instability1, thus new jobs involving occupational

mismatch can be seen as low quality matches. Moreover, we analyze if the efficiency of the search

channel is the same for different demographic groups, with a particular focus on differences

between native and immigrant workers.

In our empirical estimation we use data from the German Socio-Economic Panel (SOEP)

over the period 2000-2014. This is a household survey which includes detailed information about

worker characteristics, the job search method which was used to find the job as well as some

characteristics of the employer. The data also includes subjective evaluation of the worker if

the current job corresponds to his/her professional training or not. We use this information to

form a proxy variable for occupational mismatch. In the first step, we document that referral

hiring via social networks is the most frequent single channel of generating jobs in Germany. But

there are large differences in the utilization of this channel between native and foreign workers.

Whereas 31.5% of German workers found their current job by recommendation, this fraction is

43.8% for immigrant workers living in Germany. Note, however, that this difference doesn’t fully

compensate immigrant workers for the lower chances of finding jobs via the formal channel, so

the average risk of unemployment is higher for immigrants. This finding is particularly important

in the view of the result by Bentolila et al. (2010) that referral hiring via social networks often

generates mismatch between occupational choices of workers and their professional training.

Intuitively, this means that social networks often serve as a method of last resort for workers

and allows them to avoid unemployment at the cost of lower wages in the mismatch occupation.

Hence we ask a question whether a more intensive utilization of social networks can lead to more

frequent occupational mismatch of immigrant workers?

To address this question we develop a theoretical search and matching model with two ethnic

groups of workers (natives N and immigrants I), two search channels (formal and referral hiring)

and two occupations. This is a second step in our research. Half of the workers have initial

professional training in occupation A but they can also perform jobs in occupation B, which

is associated with occupational mismatch. The situation is symmetric in the two occupations.

Depending on the ethnic background (N or I) and professional training (A or B) there are four

distinct worker groups in the model. Thus workers in a given group have social links within their

own group but also with workers in the other three groups. When modeling social networks

1Wolbers (2003), Allen and De Weert (2007), Robst (2007)
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we take into account ethnic and professional homophily. Intuitively, this means that foreign

(native) workers have a larger fraction of other foreign (native) workers in their social network.

Following the definition by Jackson (2010) ethnic bias in the formation of social networks can

be characterized as homophily by choice since workers with similar ethnic background have

common language, traditions and history. In contrast, occupational bias in the formation of

social networks is homophily by opportunity since workers from the same profession/occupation

are likely to have studied or worked together in the past.

In our model firms with open positions either make their vacancies public and try to fill the

job in a formal way or contact one of the employees in their occupation and ask this employee

to recommend a friend. In this latter case the position can be filled by referral hiring as work-

ers transmit vacancy information to their unemployed social contacts. Whereas referral hiring

is modeled endogenously, the processes of formal hiring and job destruction are based on the

exogenous transition rates. In the numerical example of the model we choose these transition

rates by targeting some of the key endogenous variables in the model, such as the unemploy-

ment rates and the rates of referral hiring observed in the German data. In order to incorporate

the evidence by Bentolila et al. (2010) we normalize the rate of occupational mismatch gener-

ated by the formal channel to zero and investigate relative differences in the mismatch rates of

native and immigrant workers generated by social networks. Our model predicts that higher

rates of referral hiring among immigrants produce more frequent occupational mismatch of the

immigrant population. One condition for this result is that the gap in the job destruction rates

between native and immigrant workers is not too large which is satisfied for a realistic param-

eter setting motivated by the data. From a theoretical perspective the gap in mismatch rates

strongly depends on the degree of professional homophily characterizing social networks and on

the incidence of referrals but is not sensitive to the overall network size.

In the third step we validate the result by Bentolila et al. (2010) with the German dataset

(SOEP) and test the main prediction of our model. Our data reveals that referral hiring is

associated with the highest rate of occupational mismatch among all channels in Germany. It is

equal to 53.5%, whereas the rate of occupational mismatch associated with direct applications

to a vacancies advertised in internet is equal to 31.4%. Even though these rates are based on

subjective evaluations of workers there is a remarkable difference in the observed frequencies

which confirms the result by Bentolila et al. (2010) and the underlying setup of our theoretical

model. Further, the data shows that immigrant workers have a significantly higher probability

of occupational mismatch (57%) than native workers (42%) which is compatible with the main

prediction of our model. However, it is not only this negative link between being a foreigner

and the probability of a good match that we want to test, but the underlying mechanism of the

model based on the search channel. So we included both binary variables for the immigration

status and for referral hiring as a successful search channel into the logistic panel regression with

a probability of a good match as predicted outcome. Our estimation shows that the negative

marginal effect of the immigration indicator is reduced once we control for the job search channel

which confirms our predictions that at least a part of the higher probability of mismatch in the

group of foreign workers is explained by more frequent referral hiring.

In the last step we quantify the contribution of more intensive network hiring in the group of

foreign workers to higher rates of occupational mismatch in this group. In order to achieve this
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goal we perform a Blinder-Oaxaca decomposition of differences in the occupational mismatch

between native and foreign workers based on the linear probability model. Differences in the en-

dowments between natives and foreigners including the job search channel jointly explain about

a half of the gap in the mismatch rates between the two groups, that is 7.6% out of 15.5%. Most

of this endowment effect (6.7% out of 7.6%) is explained by the lower education of foreign work-

ers and by the industry effects. Intuitively, this means that foreign workers are overrepresented

in industries with lower education and associated with higher rates of occupational mismatch

such as transportation and trade. Nevertheless, the remaining 0.9% of the endowment effect

is due to the less efficient search channels used by foreign workers. Thus the fact that foreign

workers rely intensively on the support from their social networks contributes significantly to

the higher rate of occupational mismatch of foreigners even though this effect is quantitatively

smaller than the effect of classical explanatory factors such as education and industry.

1.1 Related literature

This paper is closely related to the literature on referral hiring, occupational mismatch and

immigration. Even though bilateral relationships between these three components are reasonably

well investigated, our study is a first theoretical and empirical attempt analyzing an integral

relationship between all three components.

First, we contribute to the literature on referral hiring and match quality. Here a positive

effect of referrals on match quality is highlighted by Montgomery (1991), Kugler (2003), Dust-

mann et al. (2016) and Galenianos (2013). The seminal study by Montgomery (1991) finds that

employers relying on referrals from high ability workers try to mitigate the adverse-selection

problem. Assuming that the current high ability worker will refer to an own type high ability

worker, the workers hired through referrals are paid higher wages. The result is driven by the

fact that social contacts tend to occur among workers with similar characteristics (homophily

by ability), and that a worker will refer only well-qualified applicants, since his/her reputation

is at stake. Whereas, Dustmann et al. (2016) distinguish between informal and formal search

methods and build a model of ethnic networks. They predict that the probability of a minority

worker from a particular ethnic group to be hired is positively related to the share of existing

minority workers from that group in the firm. According to them workers hired through informal

search methods initially get higher wages since the match-specific productivity is more uncertain

when using formal methods, rather than informal methods. Kugler (2003) argues that employers

which use informal methods in hiring are enabled to reduce their monitoring cost, and to pay

lower efficiency wages because referees exert peer pressure on the referred workers. As a result,

well-connected workers are matched to well-paid jobs.

Although most of the studies find that referrals increase the probability for the worker to

be hired, Pistaferri (1999), Addison and Portugal (2002), Bentolila et al. (2010) and Zaharieva

(2018) find negative wage effect of referrals. Our results are inline with the findings highlighted by

Bentolila et al. (2010) for the United States. Even though social contacts reduce unemployment

duration by about 1-3 months, they are associated with wage discounts of at least 2.5% due

to occupational mismatch. This evidence reveals a trade-off from using social contacts in the

job search: even though social contacts lead faster to new jobs and allow workers to leave

unemployment, these jobs are more likely to be associated with occupational mismatch and lower
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wages. Pellizzari (2010) uses data from the European Community Household Panel (ECHP)

and finds that in the European Union premiums and penalties to finding jobs through personal

contacts are equally frequent and are of about the same size. Furthermore, he argues that wage

penalties may be a result of mismatching, since they disappear with tenure. The advantage of

our data compared to Bentolila et al. (2010) and Pellizzari (2010) is that it includes a direct

indicator for occupational mismatch reported by the survey respondents. Furthermore, the goal

of our study is to understand differences between native and immigrant workers in the use of

social contacts and labour market outcomes, which was not done in the previous literature.

The studies by Zaharieva (2018) and Horvath (2014) develop theoretical models to study

labour market outcomes of using social networks. Both studies introduce professional homophily

into social networks which means that workers in a given profession have many friends and

acquaintances from the same profession. Both authors document occupational mismatch being

associated with the use of social networks in the job search. Moreover, the mismatch is decreasing

with an increasing level of professional homophily. This is intuitive since a larger number of social

contacts from the same profession make it more likely that a job referral will lead to a good match

in this profession. Another two studies by Lancee (2016) and Alaverdyan (2018) incorporate

ethnic homophily of social networks in their analysis which means that workers tend to have

more friends of the same ethnic origin. To the best of our knowledge the model developed in the

present paper is the first one that includes both dimensions of network homophily taking into

account ethnic and professional characteristics of workers.

Second, our study is closely related to the literature on referral hiring and immigration.

Immigrants are more likely to find their jobs through referrals compared to natives according

to Drever and Hoffmeister (2008), Lancee (2016), Alaverdyan (2018). Other studies consider

subgroups of immigrants from different countries of origin. For example, Ooka and Wellman

(2006) investigate the importance of social networks in relation to the job search strategies of

five immigrant groups living in Toronto. They find that Jewish immigrants have the highest rate

of using personal contacts when searching for jobs (54%) followed by Italians (51%), Germans

(45%), British (44%) and Ukrainians (40%). Elliot (2001) considers recent Latino immigrants to

the United States. He finds that 81.1% of recent immigrants from this group were hired through

the informal channel. The fraction is somewhat smaller for established immigrants (more than 5

years since arrival to the US) and equal to 72.8%. It falls down to 61.9% for Latino individuals

born in the US. For comparison, the fraction of native US nationals finding jobs via the informal

channel is 51.1%. These results indicate that referral hiring is a particularly important job

search channel for recent immigrants in the United States but its importance declines with time

as immigrant workers learn the local language and assimilate in the destination country.

Battu et al. (2011) find a similar assimilation effect of immigrant workers in the United

Kingdom. They provide evidence that the less assimilated the ethnic unemployed workers are

the more likely they are to use their network as their main method of job search. Moreover, they

report that ethnic workers who obtained their current job as a result of their personal network

are in a lower level job as a result. Again this indicates the fact that faster accession to jobs

provided by social networks comes along with a wage penalty and worse job quality emphasized

above. We complement this research direction by documenting that also in Germany the highest

incidence of referrals is observed in the group of direct (first generation) immigrants (41.9%),
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followed by the indirect (second generation) immigrants (35.6%) and German nationals (30.3%).

Moreover, we link these differences to the match quality of obtained jobs.

Third, we contribute to the debate on immigration and occupational mismatch. There

is a vast literature on occupational mismatch distinguishing between vertical and horizontal

mismatch. Vertical mismatch is observed when the worker is over- or underqualified for the

occupation employed. While horizontal mismatch applies to the situation when the field of

education of the worker does not correspond to the education required for the job (see Wolbers

(2003), Allen and De Weert (2007) and Robst (2007)). Wolbers (2003) considers data on school

graduates in Western European economies and finds that school-leavers from humanities, arts

and agriculture are more likely to be mismatched than those from engineering, manufacturing,

business and law. Robst (2007) finds similar results for college graduates in the United States

and shows that 27-47% of workers in arts, social sciences, psychology, languages and biology are

mismatched. He also reports that horizontal mismatch is associated with a wage loss of 10%.

More recent studies in this field compare the outcomes of native and immigrant workers. For

example, Chiswick and Miller (2008) and Chiswick and Miller (2010) report lower returns to

schooling for foreign-born workers compared to natives in the U.S. and Australia respectively

and explain this outcome with low international transferability of immigrant’s human capital

skills implying more frequent skill mismatch of foreign-born workers. Aleksynska and Tritah

(2013) consider a large set of European countries and find that immigrants are more likely to

be both under- and overeducated than the native born for the jobs that they perform. How-

ever, immigrants outcomes converge to those of the native born with the years of labor market

experience. In our data we also observe this type of integration in the German labour market.

Piracha and Vadean (2013) present an overview of this literature and show that the percentage

of correctly matched immigrant employees is, for example, about 5.0% lower compared to native

employees in Denmark and reaches up to 15.6% in the United States. The only exceptions are

Finland and Italy, where the mismatch incidence seems to be higher for natives. They also

point out that different measurement methods often lead to significantly different estimates of

incidence rates. In particular, mismatch is more frequent when self-reported rather than when

objective measures are used. Our empirical estimates for Germany are similar to the U.S. with

the percentage of correctly matched immigrant employees 15.5% lower compared to natives. We

contribute to this literature by explicitly comparing job search channels of workers and mismatch

outcomes associated with these channels which was not done before. Moreover, we show that

referral hiring generates occupational mismatch more frequently than other search strategies

and it is this channel which is more often used by immigrant workers contributing to stronger

occupational mismatch of this group.

Finally, there are several additional results that we obtain from the data. In particular, we

document that educated workers are substantially less likely to use social contacts as intermedi-

aries in the job search. Male workers are referred more often by their social contacts than female

workers. This finding is generally consistent with the idea that women lack professional networks

compared to men. It is also supported by the previous empirical research for the United States

summarized in Marsden and Gorman (2001) and by Behtoui (2008) for women in Sweden. In

addition, jobs in smaller companies are more frequently filled via social networks. This result is

inline with the recent evidence in Rebien et al. (2017) using German firm-level data.
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The study proceeds as follows: in section 2 we describe the data and estimate regressions

for the probability of finding a job via referrals. We use this empirical evidence to motivate our

theoretical model which is developed and described in section 3. In section 4 we use empirical

data to test new theoretical predictions of the model. More specifically, in this section we carry

out the Blinder-Oaxaca decomposition of differences in the occupational mismatch rates between

native and foreign workers. Section 5 concludes the paper.

2 Empirical Evidence

In this section we describe our empirical data and analyze which factors can explain the risk

of unemployment. We also explore the search channels used by workers to find employment.

We use this empirical evidence to build up a job search model with two ethnic worker groups,

two professional occupations and two different search channels: direct formal applications and

referral hiring via social networks. The model is developed and presented in section 3. We also

use predicted values of the key variables from this section to provide a realistic numerical example

allowing us to illustrate the underlying economic mechanism of the model. In particular, we use

the estimated unemployment rates and the fractions of workers who found their job through

referrals by citizenship and migration background.

2.1 Estimation of unemployment rates

In this subsection we estimate unemployment rates for different worker groups by using em-

pirical data from the German Socio-Economic Panel (SOEP). SOEP is a longitudinal study of

households and individuals, which covers nearly 11,000 households, and about 30,000 individ-

uals annually. Our sample covers data on 213592 individuals from SOEP 2000-2014. Among

a wide range of questions regarding personal characteristics and employment data respondents

are asked about their employment status and labour force status. The dependent variable

EMPi,t is binary, and takes values {0, 1} based on the answers to the above-mentioned ques-

tions. EMPi,t equals 1 if individual i is in full-time employment, marginal, regular or irregular

part-time employment at time t. While EMPi,t equals 0 if individual i is non-working and

registered unemployed at time t. Disabled individuals in sheltered employment, the individuals

in military/community service, on maternity leave and in training program are excluded from

the data. In addition, we exclude those non-working individuals which are older than 65, which

are working past 7 days, those which have regular second job or occasional second job.

MIGi,t is a variable indicating the nationality of individuals. We define an individual to

be foreign citizen if the person has foreign citizenship, and German citizen if the person has

German citizenship. So, variable MIGi,t equals 1 if the ith individual is a foreign citizen at

time t, and it is equal to 0 if the ith individual is a German citizen at time t. Additionally,

MIGBACKi,t indicates the migration background of individuals based on their place of birth.

If the respondent is born in another country, then the respondent is considered to have a direct

migration background. If the respondent is born in Germany, but one of the respondent’s parents

has a migration background, then the respondent is considered to have an indirect migration

background. While when there is no information about the respondent’s migration background,

then the respondent is classified as a German national.
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Table 1: Percentage of unemployed individuals by citizenship\migration background.

Citizenship\
Unemployed(%) Unemployed Employed Total Total(%)

Migration background

Foreign Citizens 14.81% 2569 14772 17341 8.12%
German Citizens 7.86% 15421 180830 196251 91.88%

Direct migrants 13.30% 3784 24677 28461 13.32%
Indirect migrants 10.04% 1221 10941 12162 5.69%
German nationals 7.51% 12985 159984 172969 80.98%

According to the descriptive statistics presented in Table 1, 14.81% of foreign citizens are

unemployed, compared to 7.86% for German citizens. While, 13.30% of direct migrants, 10.04%

of indirect migrants, and 7.51% of German nationals are unemployed. So, the difference in

unemployment rates between direct migrants and German nationals is higher than the difference

between indirect migrants and German nationals. This might possibly be explained by partial

assimilation of indirect migrants and better language skills, compared to direct migrants.

The descriptive statistics presented in Table 1 show that foreign citizens are more likely

to be unemployed, but the reason may be due to different characteristics of the groups. To

control for differences in the observable characteristics we regress EMPi,t on different variables

sequentially adding the following variables to the regression equation. EDUi,t shows the amount

of the ith individual’s education or training in years at time t computed by the SOEP.2 The

values of EDUi,t range from 7 to 18. The ith individual’s age at time t is denoted by AGEi,t.

The dummy variable FEMALEi,t takes value 1 if the ith individual is female at time t. The

categorical variable MARSTi,t shows the marital status of the ith individual at time t. It has

5 categories: married/living with a partner, single, widowed, divorced, and separated (legally

married). Another categorical variable STATEi,t indicates the German federal state in which the

household of the ith individual was located at the time of the survey. And finally, NCHILDi,t

shows the number of persons in the household of the ith individual under the age of 18 at

time t. When the dependent variable is binary this study uses logistic regression model for

estimations, and likelihood-ratio test to choose between regression equations. After adding each

variable to the regression equation a likelihood-ratio test is conducted to see if the variable

added contributes statistically significantly to the regression. The main estimation results of

the regression equations are presented in Table 2. The detailed estimation results with the

coefficients of all variables are presented in Table 13 in Appendix I.

Table 2: Employment rates: logistic regression

Variables Dependent variable: EMP

(1) (2) (3) (4) (5) (6) (7) (8)

EDU 0.315∗∗∗ 0.314∗∗∗ 0.315∗∗∗ 0.324∗∗∗ 0.371∗∗∗ 0.371∗∗∗ 0.368∗∗∗ 0.344∗∗∗

(76.14) (76.09) (76.17) (76.99) (80.91) (80.81) (80.55) (75.31)

AGE 0.00225∗∗ 0.00225∗∗ -0.0110∗∗∗ -0.00943∗∗∗ -0.00971∗∗∗ -0.0171∗∗∗ -0.0186∗∗∗

(3.24) (3.25) (-13.46) (-11.28) (-11.56) (-18.52) (-20.06)

FEMALE -0.138∗∗∗ -0.107∗∗∗ -0.113∗∗∗ -0.115∗∗∗ -0.122∗∗∗ -0.134∗∗∗

(-8.71) (-6.59) (-6.86) (-6.98) (-7.37) (-8.09)

Continued on next page

2for detailed description see Helberger (1988) and Schwarze et al. (1991)
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Variables Dependent variable: EMP

(1) (2) (3) (4) (5) (6) (7) (8)

MARST(Reference: Married)

[2] Single -0.867∗∗∗ -0.769∗∗∗ -0.774∗∗∗ -0.957∗∗∗ -1.003∗∗∗

(-39.95) (-34.43) (-34.54) (-39.67) (-41.38)

[3] Widowed -0.323∗∗∗ -0.300∗∗∗ -0.298∗∗∗ -0.346∗∗∗ -0.370∗∗∗

(-5.60) (-5.15) (-5.12) (-5.93) (-6.33)

[4] Divorced -0.770∗∗∗ -0.743∗∗∗ -0.747∗∗∗ -0.807∗∗∗ -0.839∗∗∗

(-32.41) (-30.85) (-30.94) (-33.04) (-34.18)

[5] Separated -0.752∗∗∗ -0.748∗∗∗ -0.748∗∗∗ -0.801∗∗∗ -0.815∗∗∗

(-16.98) (-16.62) (-16.60) (-17.70) (-17.94)

NCHILD -0.175∗∗∗ -0.167∗∗∗

(-20.25) (-19.22)

MIG -0.652∗∗∗

(-24.68)

STATE v v v v

Survey year t v v v

Constant -1.311∗∗∗ -1.406∗∗∗ -1.349∗∗∗ -0.542∗∗∗ -1.115∗∗∗ -1.050∗∗∗ -0.520∗∗∗ -0.125

(-28.11) (-25.53) (-24.25) (-9.04) (-14.31) (-12.72) (-6.01) (-1.42)

LR test(Prob> χ2) 0.0012 0.00 0.00 0.00 0.00 0.00 0.00

Observations 213592 213592 213592 213592 213592 213592 213592 213592

Pseudo R2 0.062 0.062 0.063 0.081 0.116 0.117 0.120 0.125

Standard errors are in parentheses: ∗
p < 0.05, ∗∗

p < 0.01, ∗∗∗
p < 0.001

Table 2 reveals that education is positively associated with the employment probability. Also

married workers are more likely to be employed. In contrast, being a female reduces the prob-

ability of employment. The negative and statistically significant coefficient of variable MIGi,t

indicates that foreign citizens are less likely to be employed. The predicted probabilities of being

employed for two otherwise-average individuals’ are 94.84% for German citizens, and 90.55% for

foreign citizens. So the risk of unemployment is 5.16% for the first group and 9.45% for the sec-

ond group. We use these predicted values of the unemployment rates in the numerical example

of the model in section 3. The results of the likelihood-ratio tests suggest that all the above-

mentioned variables should be added to the regression equation. When variable MIGBACKi,t

is added to the regression equation instead of MIGi,t, the qualitative result doesn’t change3.

The predicted probabilities of being employed for otherwise-average individuals’ from the three

groups are the following: 95.27% for German nationals, 92.37% for indirect migrants and 90.53%

for direct migrants. The predicted probability of being employed for indirect migrants is closer

to the probability for German nationals, compared to direct migrants, which indicates some de-

gree of assimilation. Note that in all regressions the predicted probabilities are estimated at the

average values of control variables. Next we analyze the incidence of different search channels

used by workers to find employment with a particular focus on referral hiring.

2.2 Estimation of referral hiring

The respondents of the SOEP survey who started their current job within the previous two

years answer the question how they found their current job. One of the possible answers is that

information about the job was provided by friends or relatives of the respondent. We classify

these cases as referral hiring (informal channel). Other search channels such as the federal

3The coefficients for this regression are available on demand from the authors.
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employment office, an advertisement in the internet or newspaper, a job-center (ARGE) and

a private recruitment agency are classified as formal channels. The value of the corresponding

dummy variable REFi,t equals 1 if the ith individual found the job via a referral from some

friend or relative, and it equals 0 if the ith individual used a formal channel to find the job.

Table 3: Percentage of individuals who found their job through referrals by citizenship\migration
background.

Citizenship\ Found job through Found job through
Total Total(%)

Migration background referrals(%) Referrals Formal chan.

Foreign Citizens 43.84% 648 830 1478 7.72%
German Citizens 31.48% 5562 12108 17670 92.28%

Direct migrants 41.91% 873 1210 2083 10.88%
Indirect migrants 35.58% 528 956 1484 7.75%
German nationals 30.86% 4809 10772 15581 81.37%

According to the descriptive statistics presented in Table 3, 43.84% of foreign citizens found

their job through referrals, compared to 31.48% for German citizens. Following a different defi-

nition 41.91% of direct migrants, 35.58% of indirect migrants, and 30.86% of German nationals

obtained help from their friends and relatives. So, the difference in the proportion of individuals

who found their job through referrals between indirect migrants and German nationals is lower

than the difference between direct migrants and German nationals.

In the next step REFi,t is regressed on a set of control variables to test if the differences

in referral hiring are due to the different characteristics of the two groups. In addition to vari-

ables indicating the individuals’ education, age, gender, state of residence, and survey year the

following variables are sequentially added to the regression equation. FSIZEi,t is a categorical

variable with four categories showing the size of the firm in which the ith individual is employed

at time t. The categories are: less than 20 employees, 20 to 200, 200 to 2000, and more than

2000 employees. Another categorical variable INDi,t indicates the industry of ith individual at

time t. INDi,t has 9 categories: Agriculture, Energy, Mining, Manufacturing, Construction,

Trade, Transport, Bank/Insurance, and Services. The categorical variable TOJCHi,t has 5 cat-

egories and indicates which kind of job change preceded the current employment of individual

i. The categories of TOJCHi,t are the following: first job, job after break, job with new em-

ployer, company taken over, changed job at the same firm. Last, the Standard International

Socio-Economic Index of Occupational Status developed by Ganzeboom et al. (1992) is used to

control for the occupational status. ISEI index reflects individual’s socio-economic status based

on information about this individual’s income, education, and occupation. ISEIi,t index takes

values in the range between 16 and 90.

To see if the independent variable contributes significantly to the regression a likelihood-ratio

test was conducted for all new control variables. The main estimation results are presented in

Table 4. While the detailed estimation results with the coefficients of all variables are presented

in Table 14 in Appendix II.
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Table 4: Estimation results of referral hiring.

Variables Dependent variable: REF

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

EDU -0.106∗∗∗ -0.106∗∗∗ -0.0988∗∗∗ -0.0798∗∗∗ -0.0707∗∗∗ -0.0641∗∗∗ -0.0643∗∗∗ -0.0649∗∗∗ -0.0291∗∗∗ -0.0290∗∗∗

(-17.48) (-17.33) (-16.05) (-12.68) (-10.80) (-9.67) (-9.62) (-9.75) (-3.63) (-3.62)

AGE -0.00291∗ -0.00287∗ -0.00436∗∗ -0.00414∗∗ -0.00271 -0.00267 -0.00233 -0.00296 -0.00297

(-2.11) (-2.08) (-3.13) (-2.97) (-1.74) (-1.72) (-1.48) (-1.88) (-1.89)

MIG 0.374∗∗∗ 0.373∗∗∗ 0.361∗∗∗ 0.346∗∗∗ 0.338∗∗∗ 0.345∗∗∗ 0.332∗∗∗ 0.327∗∗∗

(6.67) (6.60) (6.38) (6.06) (5.78) (6.00) (5.77) (5.68)

FSIZE(Reference: GE 2000)

[1] LT 20 0.719∗∗∗ 0.711∗∗∗ 0.519∗∗∗ 0.520∗∗∗ 0.511∗∗∗ 0.456∗∗∗ 0.460∗∗∗

(15.07) (14.67) (10.38) (10.37) (10.19) (9.01) (9.07)

[2] GE 20 LT 200 0.385∗∗∗ 0.378∗∗∗ 0.196∗∗∗ 0.199∗∗∗ 0.187∗∗∗ 0.150∗∗ 0.149∗∗

(7.82) (7.62) (3.84) (3.88) (3.65) (2.90) (2.88)

[3] GE 200 LT 2000 0.149∗∗ 0.162∗∗ 0.0410 0.0418 0.0352 0.0210 0.0190

(2.67) (2.89) (0.71) (0.73) (0.61) (0.36) (0.33)

IND v v v v v v

TOJCH(Reference: First job)

Job After Break -0.278∗∗∗ -0.278∗∗∗ -0.318∗∗∗ -0.345∗∗∗ -0.339∗∗∗

(-4.67) (-4.66) (-5.29) (-5.73) (-5.61)

Job With New Employer 0.129∗ 0.128∗ 0.149∗∗ 0.136∗ 0.135∗

(2.39) (2.37) (2.73) (2.49) (2.48)

Company Taken Over -1.527∗∗∗ -1.526∗∗∗ -1.529∗∗∗ -1.550∗∗∗ -1.555∗∗∗

(-10.17) (-10.16) (-10.17) (-10.30) (-10.33)

Changed Job, Same Firm -1.671∗∗∗ -1.672∗∗∗ -1.680∗∗∗ -1.669∗∗∗ -1.670∗∗∗

(-15.09) (-15.09) (-15.15) (-15.04) (-15.05)

STATE v

Survey year t v v v

ISEI -0.0102∗∗∗ -0.0103∗∗∗

(-7.94) (-7.99)

FEMALE -0.0745∗

(-2.10)

Constant 0.580∗∗∗ 0.671∗∗∗ 0.556∗∗∗ -0.0279 -0.215∗ -0.0652 -0.0266 -0.0602 0.0143 0.0662

(7.64) (7.69) (6.26) (-0.28) (-1.97) (-0.58) (-0.18) (-0.50) (0.12) (0.53)

LR test(Prob> χ2) 0.0344 0.00 0.0275 0.00 0.00 0.5708 0.00 0.00 0.00

Observations 19148 19148 19148 19148 19148 19148 19148 19148 19148 19148

Pseudo R2 0.013 0.014 0.015 0.028 0.030 0.058 0.058 0.060 0.062 0.062

Standard errors are in parentheses: ∗
p < 0.05, ∗∗

p < 0.01, ∗∗∗
p < 0.001

Table 4 shows that referral hiring is more important for less educated workers and it is more

widespread in smaller firms. First employment and jobs with new employers are more likely

to be generated by means of referral hiring. Moreover, the negative coefficient of the dummy

variable FEMALEi,t indicates that female workers are less likely to be hired through referrals

than male workers. The results of likelihood-ratio tests suggest that except STATEi,t all the

above-mentioned variables should be added to the regression equation.

The positive and statistically significant coefficient of variable MIGi,t indicates that foreign

citizens are more likely to find their jobs through referrals. The predicted probabilities of finding

a job through referral for two otherwise-average individuals’ are 29.72% for German citizens, and

36.96% for foreign citizens. We use these values in the numerical example of the model in section

3. When variable MIGBACKi,t is added to the regression equation instead of MIGi,t predicted

probabilities of finding a job through referrals for otherwise-average individuals’ from the three

groups are the following: 29.26% for German nationals, 36.47% for direct migrants, and 32.36%
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for indirect migrants4. Thus, the predicted probability of finding a job through referrals for

indirect migrants is closer to the probability for German nationals, compared to direct migrants.

In the next step we use this empirical evidence to develop a theoretical search and matching

model capturing differences in the unemployment rates and job search strategies of native and

foreign workers. We use this model to address a question if differences in the search strategies

may contribute to differences in the match qualities between the two groups.

3 The Model

In this section we develop a search and matching model with two occupations, two search chan-

nels (formal search and network referrals) and two ethnic worker groups (natives and foreigners).

The model incorporates the fact that foreign workers rely more often on their social networks

when searching for jobs which was documented in the previous section. It also allows for dif-

ferent unemployment rates of the two ethnic worker groups. The objective of developing this

model is to analyze the impact of referral hiring on occupational mismatch of native and foreign

workers. In addition, we use the model to understand the implications of other factors such as

network characteristics and labour market properties for the link between network hiring and

occupational mismatch.

Consider a model with two professional groups of infinitely lived risk neutral workers and

two occupations. Workers of type A obtained training in occupation A, which is their primary

occupation, but they can also work in occupation B, which is a mismatch occupation for them.

In a similar way, occupation B is a primary occupation for type B workers, whereas there is

mismatch if type B workers are employed in occupation A. Each group of workers is a continuum

of measure 1. In each professional group there is a fraction h of foreign workers F and a fraction

1 − h of native workers N . Hence there are four demographic groups in the economy {N,A},

{F,A}, {N,B} and {F,B}.

Consider native type i individuals, i = A,B. Each person can be unemployed (uiN ), employed

and well matched in the original occupation (mi
N ) or mismatched and employed in another

occupation (xiN ). The same holds for foreign type i individuals with corresponding notation uiF ,

mi
F and xiF , so we get:

uiN +mi
N + xiN = 1− h uiF +mi

F + xiF = h

In addition, let eij , i = A,B and j = N,F denote all employed workers of type j and profession

i, both matched and mismatched, that is:

eiN = mi
N + xiN eiF = mi

F + xiF

Let vA and vB denote exogenous stocks of open vacancies in occupations A and B respectively.

There are two channels of job search: formal applications and referrals via the social network

(informal channel). Only unemployed workers are searching for a job, so there is no on-the-job

search. We follow the assumption of Bentolila et al. (2010) and assume that workers always send

their formal applications to vacancies in their original occupation. This assumption is based on

4The coefficients for this regression are available on demand from the authors.
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the empirical evidence that social networks generate occupational mismatch more frequently

than formal search. We verify this assumption for Germany in section 4. Even though in reality

formal applications can also lead to mismatch, we normalize it to zero to investigate the relative

difference in mismatch rates generated by the two search channels.

To simplify the model occupations A and B are assumed to be symmetric. Let λN and λF

denote the job-finding rates of native and foreign workers via the formal channel in each of the

two occupations. Variables δN and δF denote the job destruction rates of native and foreign

workers in each of the two occupations. These rates do not depend on the way the worker found

the job and do not depend on the occupation. Nevertheless, we allow for possible differences in

the job stability of native and foreign workers. Since the focus of our study is on referral hiring

we assume that the rates λN , λF , δN and δF are exogenously given. To model referral hiring

let n denote the number of social contacts in the networks of workers. We assume that the

network size n is the same for all individuals. Furthermore, social networks exhibit professional

and ethnic homophily. A more detailed composition of social networks is described in the next

subsection.

3.1 Social networks

Consider a native type A individual. This person has some social contacts within his/her group,

let their number be denoted by nAA
NN . In addition, this person knows some foreign workers from

the same occupation, let their number be denoted by nAA
NF . In the same way there are some links

between this person and individuals in occupation B, let them be denoted by nAB
NN and nAB

NF .

Here the former number stands for the links to native type B workers and the latter number for

the links to foreign type B workers. So in general every native person of type A has contacts

within each of the four demographic groups. Given that the total number of contacts for one

person is denoted by n we get:

nAA
NN + nAA

NF + nAB
NN + nAB

NF = n

The composition of social networks is illustrated on figure 1. Next consider foreign type A

workers. Their contacts within the group are denoted by nAA
FF and their contacts with native

type A workers are denoted by nAA
FN . Variables nAB

FN and nAB
FF stand for the links to native and

foreign workers in occupation B respectively, so we get:

nAA
FN + nAA

FF + nAB
FN + nAB

FF = n

Social networks exhibit professional and ethnic homophily. In general, homophily refers to

the fact that people are more prone to maintain relationships with others who are similar to

themselves. There can be homophily by age, race, gender, religion, ethnicity or professional

occupation and it is generally a robust observation in social networks (see McPherson et al.

(2001) for an overview of research on homophily). The focus of this paper is on the latter

two types of homophily by ethnicity and occupation. Jackson (2010) distinguishes between

homophily due to opportunity and due to choice. In this respect, homophily by occupation is

likely to arise due to the fact that workers with the same profession studied or worked together
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Figure 1: Composition of social networks

in the beginning of their career. Thus it is rather a limited opportunity of meeting workers

from different professions which generates homophily rather than an explicit choice. In contrast,

homophily by ethnicity is likely to be a choice outcome since workers with similar ethnicity/origin

share common background, values and traditions which makes their communication easier.

Let γ ∈ [0.5..1] denote the degree of professional homophily, identical for all workers. This

means that every worker has a fraction γ of contacts in the same occupation and a fraction 1−γ

of contacts in the other occupation. This means:

nAA
NN + nAA

NF = γn nAA
FN + nAA

FF = γn

In the extreme case when γ = 1 workers in different occupations are completely disconnected.

The opposite case γ = 0.5 corresponds to random matching without homophily. This is due to

the fact that both professional groups A and B are equally large.

In addition, social networks are characterized by ethnic homophily, let τ ≥ h denote the

fraction of foreign individuals in the network of a foreign person. So we get:

nAA
FN = (1− τ)γn nAA

FF = τγn nAB
FN = (1− τ)(1− γ)n nAB

FF = τ(1− γ)n

This is the network composition of foreign type A workers parametrized by γ and τ . Furthermore,

social networks should be balanced. The total number of links from native individuals of type A

to foreigners of type A given by (1−h)nAA
NF should be the same as the total number of links from

foreign individuals of type A to natives of type A given by hnAA
FN . Moreover, the total number

of links from native individuals of type B to foreign individuals of type A, that is (1 − h)nBA
NF ,

should be the same as the number of links from foreign individuals of type A to native individuals

of type B given by hnAB
FN . This means:

(1− h)nAA
NF = hnAA

FN (1− h)nBA
NF = hnAB

FN
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Inserting nAA
FN = (1− τ)γn and nAB

FN = (1− τ)(1− γ)n we get:

nAA
NF = h(1−τ)γn

1−h
nAA
NN =

(1− 2h+ hτ)γn

1− h

nBA
NF = h(1−τ)(1−γ)n

1−h
nBA
NN =

(1− 2h+ hτ)(1− γ)n

1− h

This is a consistent network composition of native type A workers parametrized by γ and τ .

To obtain the last equation we used the fact that the two occupations are symmetric and

nBA
NN + nBA

NF = (1 − γ)n. These equations show that if τ ≥ h, that is the fraction of foreign

contacts in the networks of foreigners τ is larger than their population fraction h, then it also

holds that the fraction of native contacts in the networks of natives (1 − 2h + hτ)/(1 − h) is

larger than their population fraction 1− h because (1− 2h+ hτ)/(1− h) > 1− h. Thus ethnic

homophily should be seen as a two-sided process.

Note an important special case when τ = h. This is a situation when foreign and native

workers are randomly mixed and create links with each other. So there is no ethnic homophily

and both groups have a fraction h of foreigners in their networks (nAA
NF = nAA

FF = hγn) and a

fraction 1− h of natives (nAA
NN = nAA

FN = (1− h)γn).

Further, symmetry between the two occupations implies the same composition of social

networks for type B workers, so that nBB
FN = nAA

FN , nBB
FF = nAA

FF , n
BA
FN = nAB

FN , nBA
FF = nAB

FF and

nBB
NN = nAA

NN , nBB
NF = nAA

NF , n
BA
NN = nAB

NN , nBA
NF = nAB

NF . In order to illustrate the composition of

social networks in our model we complement this subsection with a small example.

Example of network composition: Let γ = τ = 0.6, n = 50 and h = 0.2. This means that

the fraction of foreign workers in the economy is 20%. Then we get the following composition

of networks:

nAA
FN = 12 nAA

FF = 18 nAB
FN = 8 nAB

FF = 12

nAA
NF = 3 nAA

NN = 27 nAB
NF = 2 nAB

NN = 18

Both foreign and native workers know 30 contacts in their own occupation and 20 contacts in

the other occupation. This is because γ = 30/50 = 0.6. But the ethnic composition of social

networks is very different. Whereas the networks of native workers are very extreme with only

3 links to foreign workers and 27 links to other native workers in their occupation, the networks

of foreign workers are more equal with 12 links to native workers and 18 links to other foreign

workers in the same occupation. The reason for this effect is twofold. On the one hand, foreign

workers are a minority in the labour market which implies that native workers are much less

likely to meet a foreigner and create a contact than the other way round. Even if matching

was balanced with respect to ethnic belonging we would expect that native workers know only

0.2 · 30 = 6 foreign workers and 24 other natives in their occupation. On the other hand, the

distribution becomes even more extreme with ethnic homophily, since τ = 0.6.

As we emphasized in the introduction, there are many empirical studies showing that referrals

from social contacts are important in the job search process. Our example reveals that the

situation of native and foreign workers is asymmetric in this respect. Whereas foreign workers

are likely to receive important vacancy information from their native and foreign friends, foreign

contacts are unlikely to be an important source of job-related information for native workers. In
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the next subsection we analyze more specifically how vacancy information is transmitted in the

market and derive referral probabilities for all demographic groups.

3.2 Transition rates

In this subsection we derive endogenous network transition rates from unemployment to jobs

for all worker groups. Recall that λN and λF are the exogenous job-finding rates via the formal

channel. By assumption formal applications always lead to jobs in the original occupation. In

contrast, network referrals can lead to both types of jobs in the original occupation and in the

mismatch occupation. Let µAA
N and µAA

F denote the network job-finding rates of native and

foreign workers of type A in occupation A respectively. In addition, let µAB
N and µAB

F denote

network job-finding rates leading to mismatch jobs in occupation B. The structure of worker

flows and the corresponding job-finding rates are presented on figure 2. The network job-finding

rates are illustrated by the dashed arrows.

uAN uBN

uBFuAF

µBA
NµAB

N

vB

λN

µAA
F µBB

F

λN

vA

µBB
N

λF λF

µAA
N

µAB
F µBA

F

Figure 2: Structure of the labour market

Consider vacancies in occupation A. With an exogenous probability s firms with open vacan-

cies in this occupation contact one of the incumbent type A employees and ask this employee to

recommend a friend for the open position. It is intuitive to think that firms only ask those em-

ployees who are properly matched to the job, these are workers mA
N and mA

F . So with probability

mA
j /(m

A
N +mA

F ) the firm contacts the employee with ethnic origin j = N,F .

Further we assume that every contacted type A employee is first considering his/her unem-

ployed friends of the same type. Only if all type A friends are employed the person considers

unemployed contacts of type B. Some rationale for this assumption could be that well matched

type A workers in occupation A are more productive than mismatched type B workers. Among

type A contacts the person has nAA
jN native friends and nAA

jF foreign friends. So with probability

[eAN/(1−h)]n
AA
jN all native friends of this employee are employed and with probability [eAF /h]

nAA
jF all
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foreign friends of this employee are also employed. This means that 1−[eAN/(1−h)]n
AA
jN [eAA

F /h]n
AA
jF

is a probability that this employee can recommend at least one unemployed friend searching for

the job. So the number of network matches between type A vacancies and type A native workers

recommended by the employee j = N,F is:

MAA
jN = svA

mA
j

mA
N +mA

F

(

1−
[ eAN
1− h

]nAA
jN
[eAF
h

]nAA
jF

)

nAA
jN ·

uA
N

1−h

nAA
jN ·

uA
N

1−h
+ nAA

jF ·
uA
F

h

where the last term is a probability that a randomly chosen unemployed type A friend of the

employee is native. In the special case without ethnic homophily (τ = h) we get nAA
jN = (1−h)γn

and nAA
jF = hγn, j = N,F . So the above expression can be simplified as:

MAA
jN = svA

mA
j

mA
N +mA

F

(

1−
[ eAN
1− h

](1−h)γn[eAF
h

]hγn

)

uAN
uAN + uAF

In a similar way, the number of network matches between type A vacancies and type A foreign

workers recommended by the employee j = N,F is given by:

MAA
jF = svA

mA
j

mA
N +mA

F

(

1−
[ eAN
1− h

]nAA
jN
[eAF
h

]nAA
jF

)

nAA
jF ·

uA
F

h

nAA
jN ·

uA
N

1−h
+ nAA

jF ·
uA
F

h

where the last term is a probability that a randomly chosen unemployed type A friend of employee

j is a foreigner. We can see that the total number of good matches between type A vacancies

and type A unemployed native workers per unit time is given by MAA
NN + MAA

FN . In addition,

the total number of good matches between type A vacancies and type A unemployed foreign

workers per unit time is MAA
NF + MAA

FF . Given that the stocks of searching unemployed native

and foreign workers are uAN and uAF the network transition rates into the original occupation for

native and foreign workers can be calculated as:

µAA
N =

MAA
NN +MAA

FN

uAN
µAA
F =

MAA
NF +MAA

FF

uAF

That is the flow probability of finding a job by recommendation in the primary occupation is

given by the ratio between the total number of good matches in this occupation and the total

number of searching workers separately for each ethnic group. Here we account for all possible

situations including cases when native workers are recommended by their foreign friends and

vice verse. Lemma 1 presents our results for the special case when τ = h.

Lemma 1: Network transition rates within the original occupation are the same for native

and foreign workers in the absence of ethnic homophily (τ = h), that is µAA ≡ µAA
N =µAA

F and:

µAA =
svA

uAN + uAF

(

1−
[ eAN
1− h

](1−h)γn[eAF
h

]hγn

)

The same is true in occupation B, that is µBB
N = µBB

F .

Proof: Appendix.

In the special case when social networks do not exhibit ethnic homophily and τ = h the
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composition of networks is the same among native and foreign workers. This means that both

groups have a fraction h of foreigners and a fraction 1 − h of natives among their occupation-

specific contacts. So the probability of hearing about a job via the network in their primary

occupation is the same for both groups.

Next consider occupation B. With the same probability s firms with open vacancies vB ask

one of the incumbent type B employees to recommend a friend. Recall that workers of type B

have native (nBB
jN ) and foreign friends (nBB

jF ) in their occupation. This gives rise to matchesMBB
jN

and MBB
jF in a similar way as above. However, with probability [eBN/(1 − h)]n

BB
jN [eBF /h]

nBB
jF the

employee doesn’t have any unemployed type B friends. Recall that this employee also has native

(nBA
jN ) and foreign friends (nBA

jF ) in occupation A. So the employee is considering unemployed

type A friends. With probability (1 − [eAN/(1 − h)]n
BA
jN [eAF /h]

nBA
jF ) the employee knows at least

one unemployed type A person who is searching for a job, so a new match is created. Let MAB
jN

denote the number of matches between type A native workers recommended by their type B

friends with ethnic origin j = F,N :

MAB
jN =

svB ·mB
j

mB
N +mB

F
︸ ︷︷ ︸

(1)

[ eBN
1− h

]nBB
jN
[eBF
h

]nBB
jF

︸ ︷︷ ︸

(2)

(

1−
[ eAN
1− h

]nBA
jN
[eAF
h

]nBA
jF

)

︸ ︷︷ ︸

(3)

nBA
jN ·

uA
N

1−h

nBA
jN ·

uA
N

1−h
+ nBA

jF ·
uA
F

h
︸ ︷︷ ︸

(4)

Here the first term is the probability that the firm is asking a type B employee with ethnic

origin j = N,F to recommend a friend. The second term corresponds to the probability that

this employee doesn’t have any unemployed type B friends. The third term is the probability

that this employee knows at least one unemployed type A friend. And finally the last term is

the probability that a randomly chosen unemployed type A friend of the employee is native.

In the special case without ethnic homophily (τ = h) we know that nBA
jN = (1 − h)(1 − γ)n

and nBA
jF = h(1− γ)n. So the above expression can be written as:

MAB
jN =

svB ·mB
j

mB
N +mB

F

[ eBN
1− h

](1−h)γn[eBF
h

]hγn

(

1−
[ eAN
1− h

](1−h)(1−γ)n[eAF
h

]h(1−γ)n
)

uAN
uAN + uAF

Finally, the number of network matches between type B vacancies and type A foreign workers

recommended by the employee j = N,F is:

MAB
jF =

svB ·mB
j

mB
N +mB

F

[ eBN
1− h

]nBB
jN
[eBF
h

]nBB
jF

(

1−
[ eAN
1− h

]nBA
jN
[eAF
h

]nBA
jF

)

nBA
jF ·

uA
F

h

nBA
jN ·

uA
N

1−h
+ nBA

jF ·
uA
F

h

where the last term is the probability that a randomly chosen unemployed type A friend of

employee B is a foreigner. Given the number of matches, the network transition rates into the

mismatch occupation for native and foreign workers are given by:

µAB
N =

MAB
NN +MAB

FN

uAN
µAB
F =

MAB
NF +MAB

FF

uAF

Note here that both native and foreign social contacts can potentially lead to the mismatch

job. Transition rates for type B workers µBB
N , µBB

F , µBA
N and µBA

F can be found symmetrically.
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Lemma 2 provides a summary of our results on the mismatch transition rates in the special case

when τ = h.

Lemma 2: Network transition rates to the mismatch occupation are the same for native and

foreign workers in the absence of ethnic homophily (τ = h), that is µAB ≡ µAB
N =µAB

F and:

µAB =
svB

uAN + uAF

[ eBN
1− h

](1−h)γn[eBF
h

]hγn

(

1−
[ eAN
1− h

](1−h)(1−γ)n[eAF
h

]h(1−γ)n
)

The same is true in occupation B, that is µBA
N = µBA

F .

Proof: similar to lemma 1.

Lemma 2 shows that if there are no differences in the composition of social networks between

native and foreign workers and everyone has a population fraction h of foreign friends and 1−h

of native friends in the network, then there are no differences in the mismatch transition rates

between the two ethnic groups.

3.3 Equilibrium

In this subsection we analyze the dynamics of unemployment and matched employment for all

worker groups and characterize the steady state of the model. The dynamics of unemployment

uAN and matched employment mA
N for native type A workers can be written as:

u̇AN = δN (1− h− uAN )− uAN (λN + µAA
N + µAB

N )

ṁA
N = (λN + µAA

N )uAN − δNmA
N

Here δN (1 − h − uAN ) corresponds to employed type A workers losing jobs at rate δN , so it is

the inflow into unemployment for native type A workers. At the same time the term uAN (λN +

µAA
N + µAB

N ) is the outflow of these workers from unemployment. It reflects the fact that there

are three possibilities of finding a job: by means of a formal application at rate λN and with

a help of friends/relatives at rate µAA
N + µAB

N . In the second equation the term (λN + µAA
N )uAN

corresponds to native type A workers finding jobs in their primary occupation, while δNmA
N is

the outflow of workers from this group due to job losses.

We have two similar equations for foreign workers:

u̇AF = δF (h− uAF )− uAF (λF + µAA
F + µAB

F ) = 0

ṁA
F = (λF + µAA

F )uAF − δFm
A
F = 0

In the steady state the outflow of workers from a given state should be equal to the inflow of

workers into this state, so we set u̇AN = 0, ṁA
N = 0, u̇AF = 0 and ṁA

F = 0. So the steady-state

distributions of workers across the three states are given by:

uAF =
δFh

δF + λF + µAA
F + µAB

F

mA
F =

(λF + µAA
F )h

δF + λF + µAA
F + µAB

F

xAF = h− uAF −mA
F

(1)

uAN =
δN (1− h)

δN + λN + µAA
N + µAB

N

mA
N =

(λN + µAA
N )(1− h)

δN + λN + µAA
N + µAB

N

xAN = 1− h− uAN −mA
N
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Consider the simplified case without ethnic homophily, that is τ = h. From lemmas 1 and 2 we

know that the network transition rates in this case are the same for native and foreign workers,

so that µAA = µAA
N = µAA

F and µAB = µAB
N = µAB

F . From the empirical evidence presented

in section 2 we also know that foreign workers rely more often on their social networks when

searching for jobs, so the fraction of network hires is higher for foreign workers:

RN =
(µAA + µAB)

(λN + µAA + µAB)
<

(µAA + µAB)

(λF + µAA + µAB)
= RF

In our model we can capture this evidence by setting λN > λF . Intuitively, this means the

following. If foreign workers face larger difficulties in the formal job search then referrals via

social networks become a more important employment generating channel for foreign workers

compared to natives. Several explanations for λN > λF could be that there is more uncertainty

associated with foreign training and education, worse language proficiency of foreigners and/or

discrimination against ethnic minorities. Next we compare the mismatch rates of the two worker

groups and see that:

xAN
1− h

=
µAB

δN + λN + µAA + µAB
<

xAF
h

=
µAB

δF + λF + µAA + µAB
if δN + λN > δF + λF

This condition requires that δF − δN < λN − λF . Thus if the difference in the job destruction

rates is not too large, then our model predicts higher mismatch rates of foreign workers compared

to natives. There are two underlying processes that generate this prediction. On the one hand,

empirical evidence from section 2 shows that network referrals are more important for foreign

workers compared to natives. On the other hand, we incorporate the empirical evidence from

Bentolila et al. (2010) that referral hiring leads more often to mismatch jobs compared to the

formal search channel. Our model shows that a combination of these processes leads to the fact

that foreign workers are more often mismatched in the equilibrium than native workers.

The above prediction is derived for the special case when τ = h. In order to understand

the situation in the more realistic case with ethnic homophily in the next subsection we set

parameters to those observed in the German data and perform a detailed numerical analysis of

model properties.

3.4 Numerical results

In this subsection we analyze model predictions in the more general case when social networks

exhibit some degree of ethnic homophily. For this purpose we choose values of the exogenous

parameters inline with existing empirical research. We also target several empirical variables

reported in section 2. Given that the two sectors are symmetric we set v = vA = vB. Further

note that the search intensity of firms s and the vacancy rate v are inseparable in the model

and can only be determined as a product sv. From now on we consider sv as a single param-

eter. With this simplification the vector of exogenous parameters used in the model includes

{λN , λF , δN , δF , sv, τ, γ, n, h}.

Iftikhar and Zaharieva (2019) analyzed the size of foreign population in Germany over the

period 2005-2016. They find that even though the fraction of foreign citizens was below 10% in

Germany in this period, the fraction of individuals with immigration background was 18.2% in
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2005 and it increased to 19.7% in 2013. Given that social networks are likely to evolve along

the ethnic background rather than formal citizenship we set h = 0.2. Further this study shows

that the average job duration of native workers in Germany was stable in the considered period

and equal to 12 years. Given that the standard time unit in search and matching models is 1

quarter, we set δN = 0.02, which corresponds to the average job duration of native workers equal

to 1/0.02 = 50 quarters. The average job duration for immigrant workers is substantially lower

and close to 10 years. So we set δF = 0.03 to capture the difference. Intuitively, this means that

the jobs of foreign and immigrant workers are less stable compared to native workers.

We do not observe the size and homophily of social networks in labour market statistics.

Cingano and Rosolia (2012) report that the median number of social connections between in-

dividuals in Italy is about 32. Glitz (2017) reports a comparable number for Germany with

approximately 43 social contacts. In related theoretical studies Stupnytska and Zaharieva (2017)

use 40 as the average network size, while it is 50 in Cahuc and Fontaine (2009). Zaharieva (2018)

shows that the optimal diversification of social networks between two occupations strongly de-

pends on the unemployment benefits and the mismatch wage relative to the wage in the primary

occupation. Lower unemployment benefits and higher mismatch wages make social contacts

outside the primary occupation more valuable and the optimal homophily parameter is low and

close to 0.6 in this case. For this study we set n = 30 and γ = 0.6 as a starting point of the

numerical investigation but we also perform comparative statics analysis with respect to both

parameters and summarize the implications of the model for γ ∈ [0.5..1] and n ∈ [30..50].

In order to determine the remaining 4 parameters {λN , λF , sv, τ} we use our results from

section 2 and target the following 4 endogenous variables: uN/(1 − h) = 0.052, uF /h = 0.094,

RN = 0.297 and RF = 0.370. Due to the symmetry assumption we use the same values in both

occupations. These endogenous variables show that the unemployment rate of foreign/migrant

workers is higher than the unemployment rate of native workers. Moreover, native workers rely

less often on their social networks. Recall that Rj , j = N,F is the fraction of referral hires out

of new matches, which is given by:

RN =
(µAA

N + µAB
N )uAN

(λN + µAA
N + µAB

N )uAN
RF =

(µAA
F + µAB

F )uAF
(λF + µAA

F + µAB
F )uAF

Using these two expressions and equations (1) for the equilibrium unemployment rates we find

values of parameters {λN , λF , sv, τ} summarized in table 5.

Table 5: Exogenous parameters and target variables

Parameter Value Target and Source

λN 0.256 Unemployment rate uN/(1− h) = 0.052, GSOEP
λF 0.182 Unemployment rate uF /h = 0.094, GSOEP
sv 0.008 Fraction of network hires RN = 0.297, GSOEP
τ 0.290 Fraction of network hires RF = 0.370, GSOEP

We can see that λN = 0.256 > λF = 0.182. This means that small differences in the job

destruction rates between native and foreign workers (δN = 0.02 < δF = 0.03) are alone not

sufficient to generate empirically observed differences in the unemployment rates between these

21



two groups. So we can conclude that higher unemployment rates of foreign and immigrant

workers in Germany are not only due to the lower stability of jobs occupied by the latter group

but also due to lower chances of being hired upon a formal application. This result is inline

with the experimental evidence presented in Kaas and Manger (2012). Moreover, we can see

that τ = 0.290 > h = 0.2. This means that social networks compatible with empirical evidence

exhibit a moderate degree of ethnic homophily in Germany. Note that the average fraction of

foreigners in the networks of native workers is h(1 − τ)/(1 − h) = 0.1775, that is 17.75%. The

equilibrium values of endogenous variables for our parameter choices are presented in table 6.

Table 6: Equilibrium values of endogenous variables

Native workers Foreign workers
Variable Value Variable Value Variable Value Variable Value

uAN/(1− h) 0.052 µAA
N 0.086 uAF /h 0.094 µAA

F 0.085
mA

N/(1− h) 0.891 µAB
N 0.022 mA

F /h 0.838 µAB
F 0.022

xAN/(1− h) 0.057 RA
N 0.297 xAF /h 0.068 RA

F 0.370

Table 6 shows that the mismatch probability of natives xAN/(1 − h) is equal to 5.7% and it

is lower compared to 6.8% for foreign workers. This numerical finding confirms our previous

prediction that larger dependence of foreign workers on their social networks leads to more

frequent mismatch of foreigners. We have already shown this in the special case when τ = h

but it also holds in the more realistic case with ethnic homophily (τ > h). In the next step we

perform comparative statics analysis with respect to the compound parameter sv. Parameter s

is driving the intensity of referral hiring in the model, if s = 0 firms don’t use referrals to hire

workers, in contrast, when s is large referral hiring dominates the formal search channel.

Figure 3: Left panel: Unemployment rates of native and foreign workers (uN/(1−h) and uF /h)
in the benchmark setting. Right panel: Fractions of network hires for native and foreign workers
(RN and RF ) in the benchmark setting

Our results are presented on figure 3. The left panel shows changes in the unemployment
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rates of the two ethnic groups. Finding jobs becomes easier for both groups when s is increasing.

For example, both unemployment rates are two times smaller when sv = 0.015 compared to the

case without referral hiring sv = 0. Even though the relative change is similar, the absolute

drop in the unemployment rate of foreign workers is more pronounced compared to natives. The

right panel of this figure shows changes in the fraction of referral hires RN and RF . Since formal

applications of foreign workers are less successful compared to natives (λF < λN ) informal hiring

via networks becomes more important for foreigners. So we can see that RF > RN for all realistic

values of sv. To some extent referral hiring is a channel compensating the disadvantaged group

for lower employment chances associated with formal applications.

Figure 4: Left panel: Mismatch rates of native and foreign workers (xAN/(1 − h) and xAF /h),
benchmark. Right panel: Mismatch rates of native and foreign workers (xAN/(1− h) and xAF /h)
for different values of δF

The left panel of figure 4 shows changes in the mismatch rates of the two ethnic groups.

The fraction of mismatched foreign workers is higher than the fraction of mismatched native

workers for all values of sv and the relative difference is increasing with more intensive referral

hiring. Note that both rates start at zero, this is due to the normalization of mismatch to 0 in

the absence of network hiring.

In section 3.3 we considered a simplified case without ethnic homophily and proved that

foreign workers are more often mismatched if δF − δN < λN − λF . Note that this condition

holds for the chosen parameter values. In order to understand the importance of this condition

also in the more general case of ethnic homophily we increase parameter δF and illustrate the

corresponding changes in both mismatch rates on the right panel of figure 4. We can see that

with extreme values of δF the model may generate situations when the mismatch rate of native

workers is higher than the mismatch of foreigners. If δF is extremely high than the jobs of

foreign workers are very unstable and their unemployment rate is increasing very rapidly with

the higher job destruction rate. In this situation very few foreign workers are employed in

matched or mismatched employment as most of them are unemployed, so it may even happen

that native workers are more often mismatched. However, this situation is not compatible with
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the realistic parameter values of δF .

Finally, we perform comparative statics analysis with respect to parameters γ and n since

our empirical data is not sufficient to determine their values. Our results are illustrated on figure

5. We can see that the gap in the mismatch rates of foreign and native workers is decreasing

with higher values of occupation homophily γ. This is intuitive since higher values of γ imply

larger occupational segregation of workers, so the mismatch rates of both groups decrease and

fall down to 0 when γ = 1. This is the case of complete occupational segregation. At the same

time changes in the size of social networks n don’t have strong implications for the relative

difference in the mismatch rates of the two worker groups.

Figure 5: Left panel: Mismatch rates of native and foreign workers for different values of γ.
Right panel: Mismatch rates of native and foreign workers for different values of n

To sum up, our theoretical analysis suggests that stronger reliance of foreign workers on

referral hiring could be one of the reasons contributing to stronger occupational mismatch of

foreigners compared to native workers. In the next section we continue our empirical analysis

and test this theoretical prediction. We also test the underlying assumption of our model that

referral hiring generates more occupational mismatch than formal search methods suggested by

Bentolila et al. (2010).

4 Empirical testing

In this section we estimate the probabilities of occupational mismatch for different worker groups

and discuss our findings. The main goal of our empirical analysis is to find answers to the

following questions. Do the social networks generate more occupational mismatch compared to

the formal search channels? Are foreign workers more likely to be mismatched compared to

German workers? If yes, how much of the gap in mismatch rates between the two groups can

be explained by stronger utilization of social networks by foreign workers?
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4.1 Estimation of occupational mismatch

First, let us define occupational mismatch. The respondents who found their current job within

the previous two years answer the question if they were educated of trained for their current

position. The corresponding binary variable MATCHi,t takes value 1, if the ith person answers

that his or her position is the same as the profession for which he or she was educated or trained,

thus the person is considered to be well matched. MATCHi,t takes value 0, if the i
th respondent

is mismatched at time t. The respondents who are currently in training or have no previous

training, are dropped from the sample. As a result descriptive statistics presented in Table 7

below is slightly different from the descriptive statistics presented in Table 3.

Descriptive statistics presented in Table 7 shows that foreign citizens are 15.51% more likely

to be mismatched compared to German citizens. Furthermore, 56.33% of direct migrants are

mismatched, while 42.00% of German nationals and 42.34% of indirect migrants are mismatched.

The numbers for referral hiring have slightly changed due to the smaller sample size compared

to section 2 but the qualitative conclusion is the same. So, migrants are more likely to find a

job through referrals, and to be mismatched.

Next we investigate the job search channels in more details. The categorical variable CHANi,t

shows the channel through which individual i found his or her current job at time t. Workers are

considered to have found their job through public employment agency if they respond that they

found their current job through Employment Office, Job-Center, or Personal Service Agentur.

They are considered to have found their job through other search channels if they respond that

they found their current job by applying on chance, returned to former employer, or found a

job through other search channels. The corresponding descriptive statistics are presented in

Table 7. This table shows that referral hiring is a single most import search channel generating

jobs in Germany, followed by newspapers, public employment agencies and direct applications

in internet.

Table 7: Descriptive statistics of MATCHi,t, REFi,t, and

CHANi,t by citizenship\migration background.

German Foreign German Direct Indirect Overall

citizens citizens national migrants migrants

MATCH

Yes 57.56% 42.05% 58.00% 43.67% 57.66% 56.56%

No 42.44% 57.95% 42.00% 56.33% 42.34% 43.44%

REF

Formal channels 69.57% 58.05% 70.07% 59.14% 67.54% 68.82%

Referrals 30.43% 41.95% 29.93% 40.86% 32.46% 31.18%

CHAN

Public emp. agency 9.41% 10.73% 9.46% 10.68% 8.24% 9.50%

Private emp. agency 1.27% 1.66% 1.21% 1.92% 1.45% 1.30%

Newspaper 12.65% 14.15% 12.72% 13.11% 12.50% 12.74%

Internet 7.90% 4.59% 7.74% 7.03% 7.95% 7.68%

Referrals 30.43% 41.95% 29.93% 40.86% 32.46% 31.18%

Other 38.34% 26.93% 38.94% 26.41% 37.40% 37.59%

Observations 14754 1025 13183 1564 1032 15779

Percentage 93.50% 6.50% 83.55% 9.91% 6.54% 100%
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Descriptive statistics for the control variables are presented in Table 15 in Appendix III.

Besides statistics about the overall sample, Table 15 includes descriptive statistics separately

for German citizens, foreign citizens, German nationals, direct and indirect migrants, to better

understand the differences between these groups.

Table 8 shows that for all worker groups referrals lead most often to mismatch compared to

all other search channels. Moreover, finding a job through the public employment agency leads

to the second lowest percentage of good matches among the search channels. In contrast, finding

a job through internet leads to the lowest percentage of mismatches for all the groups except

indirect migrants. To sum up, our descriptive statistics shows that foreign citizens are more

likely to be mismatched compared to German citizens, and compared to other search channels,

referrals lead more often to occupational mismatch. Also, referrals reduce the probability of a

good match for all groups, but relatively more so for foreign citizens.

Table 8: Descriptive statistics of MATCHi,t by search chan-

nels for different worker groups.

Public Private Newspaper Internet Referrals Other Formal Referrals Overall

emp. agency emp. agency channels

MATCH

Yes 47.97% 55.12% 53.61% 68.56% 46.46% 65.69% 61.13% 46.46% 56.56%

No 52.03% 44.88% 46.39% 31.44% 53.54% 34.31% 38.87% 53.54% 43.44%

MATCH: German citizens

Yes 48.52% 55.85% 54.07% 68.58% 47.73% 66.53% 61.87% 47.73% 57.56%

No 51.48% 44.15% 45.93% 31.42% 52.27% 33.47% 38.13% 52.27% 42.44%

MATCH: Foreign citizens

Yes 40.91% 47.06% 47.59% 68.09% 33.26% 48.55% 48.40% 33.26% 42.05%

No 59.09% 52.94% 52.41% 31.91% 66.74% 34.31% 51.60% 66.74% 57.95%

MATCH: German nationals

Yes 48.44% 53.75% 54.44% 69.61% 48.18% 66.86% 62.20% 48.18% 58.00%

No 51.56% 46.25% 45.56% 30.39% 51.82% 33.14% 37.80% 51.82% 42.00%

MATCH: Direct migrants

Yes 40.72% 53.33% 44.88% 63.64% 35.68% 50.61% 49.19% 35.68% 43.67%

No 59.28% 46.67% 55.12% 36.36% 64.32% 49.39% 50.81% 64.32% 56.33%

MATCH: Indirect migrants

Yes 55.29% 73.33% 56.59% 62.20% 46.87% 66.32% 62.84% 46.87% 57.66%

No 44.71% 26.67% 43.41% 37.80% 53.13% 33.68% 37.16% 53.13% 42.34%

Observations 1499 205 2011 1212 4920 5932 10859 4920 15779

Percentage 9.50% 1.30% 12.74% 7.68% 31.18% 37.59% 68.82% 31.18% 100%

Further, MATCHi,t is regressed sequentially on different control variables. As before we

conduct the likelihood-ratio test for each set of control variables. The corresponding regression

output and likelihood ratios are presented in table 95. The results of likelihood-ratio tests suggest

that among the control variables only the dummy variable indicating gender of the individual

should not be added to the regression equation. Our results reveal that higher education is

positively associated with the probability of a good match. At the same time we can see that

workers in smaller firms are more likely to perform a job corresponding to their initial training,

whereas workers in larger firms are more frequently mismatched. Furthermore, jobs obtained

5Table 16 presented in Appendix IV includes all the coefficients of control variables.
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after a long break are often associated with mismatch.

Table 9: Estimation results of occupational mismatch.

Variables Dependent variable: MATCH

(1) (2) (3) (4) (5) (6) (7) (8) (9)

EDU 0.230∗∗∗ 0.229∗∗∗ 0.217∗∗∗ 0.207∗∗∗ 0.210∗∗∗ 0.209∗∗∗ 0.209∗∗∗ 0.110∗∗∗ 0.110∗∗∗

(33.32) (33.05) (29.97) (28.08) (28.23) (27.87) (27.72) (12.48) (12.48)

AGE -0.0251∗∗∗ -0.0258∗∗∗ -0.0233∗∗∗ -0.0236∗∗∗ -0.0234∗∗∗ -0.0240∗∗∗ -0.0240∗∗∗ -0.0240∗∗∗

(-15.85) (-16.04) (-13.91) (-14.07) (-13.90) (-14.15) (-13.95) (-13.95)

IND v v v v v v v

TOJCH(Reference: First job)

Job After Break -0.432∗∗∗ -0.440∗∗∗ -0.442∗∗∗ -0.433∗∗∗ -0.370∗∗∗ -0.370∗∗∗

(-4.60) (-4.68) (-4.69) (-4.57) (-3.83) (-3.82)

Job With New Employer -0.179∗ -0.180∗ -0.194∗ -0.204∗ -0.171 -0.171

(-1.97) (-1.98) (-2.13) (-2.22) (-1.83) (-1.83)

Company Taken Over 0.761∗∗∗ 0.773∗∗∗ 0.772∗∗∗ 0.768∗∗∗ 0.822∗∗∗ 0.821∗∗∗

(5.40) (5.48) (5.46) (5.42) (5.72) (5.71)

Changed Job, Same Firm 0.163 0.200 0.193 0.197 0.150 0.149

(1.54) (1.87) (1.80) (1.83) (1.37) (1.36)

FSIZE(Reference: GE 2000)

[1] LT 20 0.155∗∗ 0.173∗∗ 0.184∗∗∗ 0.359∗∗∗ 0.360∗∗∗

(2.92) (3.24) (3.42) (6.52) (6.52)

[2] GE 20 LT 200 0.0266 0.0462 0.0569 0.166∗∗ 0.166∗∗

(0.50) (0.86) (1.06) (3.04) (3.04)

[3] GE 200 LT 2000 0.00808 0.0214 0.0250 0.0676 0.0676

(0.14) (0.37) (0.43) (1.14) (1.13)

STATE v v v v

Survey year t v v v

ISEI 0.0299∗∗∗ 0.0299∗∗∗

(21.02) (21.02)

FEMALE -0.00608

(-0.16)

Constant -2.649∗∗∗ -1.723∗∗∗ -1.430∗∗∗ -1.210∗∗∗ -1.306∗∗∗ -1.228∗∗∗ -1.326∗∗∗ -1.583∗∗∗ -1.579∗∗∗

(-30.21) (-16.52) (-12.42) (-8.42) (-8.60) (-7.84) (-8.08) (-9.45) (-9.27)

LR test(Prob> χ2) 0.00 0.00 0.00 0.0026 0.0002 0.0521 0.00 0.8761

Observations 15779 15779 15779 15779 15779 15779 15779 15779 15779

Pseudo R2 0.059 0.070 0.085 0.093 0.093 0.095 0.097 0.118 0.118

Standard errors are in parentheses: ∗
p < 0.05, ∗∗

p < 0.01, ∗∗∗
p < 0.001

In the next step, MIGi,t is added to the regression equation. The coefficients are presented

in Table 10 and the marginal effects are contained in squared brackets. Column (2) indicates

that the coefficient on MIGi,t is negative and statistically significant, this means that foreign

citizens are more likely to be mismatched inline with the descriptive statistics. The correspond-

ing marginal effect reveals that foreign workers have 10% lower probability of being well matched

in the job. This empirical evidence confirms our theoretical prediction from section 3. How-

ever, it is not only this negative link between being a foreigner and the probability of a good

match that we want to test, but the underlying mechanism of the model based on the search

channel. So we continue and add variable REFi,t to the regression equation in column (3). The

coefficient of REFi,t is negative and statistically significant. This indicates that workers hired

through referrals are more likely to be mismatched compared to those who are hired through

the formal channel. Thus our empirical data confirms the model by Bentolila et al. (2010) and

our assumption underlying the theoretical model in section 3.
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Note, that after adding REFi,t to the regression equation the coefficient on MIGi,t becomes

smaller in absolute value and the marginal effect of this variable is reduced from 10% down to

9.3%. Intuitively, this means the following. The fact that foreign workers rely more often on

referral hiring explains a part of the negative link (0.7%) between being a foreigner and the

probability of a good match. This result confirms the mechanism described by our theoretical

model. However, the coefficient onMIGi,t stays negative and statistically significant after adding

REFi,t. This indicates that there are also other important reasons for the higher probability of

mismatch in the group of foreign workers going beyond the search channel and not covered by

our model.

Next, we empirically check if the two search channels exhibit different efficiency rates when

used by different worker groups. Efficiency here refers to the probability of a good match. We

do so by adding an interaction term MIGi,t × REFi,t into the regression, see column (4). The

likelihood-ratio test suggests that MIGi,t × REFi,t should not be included into the regression

equation since this variable is not significant. This means that referrals have equally low efficiency

in generating good matches irrespective of the applicant’s ethnic belonging.

When CHANi,t is added to the regression equation instead of REFi,t, the results are the

following (see column (5)). The coefficients on REFi,t and MIGi,t are again negative and

statistically significant. As in the descriptive statistics, referrals lead most often to mismatch

compared to other search channels. Other search channels which are positively associated with

mismatch are newspapers and the public employment agency. When we use detailed information

about the search channel we can see that the marginal effect of variable MIG is reduced even

further from 9.3% down to 9%. This means the following. The fact that foreign workers rely

more often on newspapers and the public employment agency explains another 0.3% difference

in the probability of mismatch between native and foreign workers. In specification (6) we

additionally include the interaction terms between MIGi,t and CHANi,t, but none of these

interaction terms is statistically significant. Moreover, the likelihood-ratio test suggests that

the interaction terms should not be included to the regression equation. Again this shows that

different search channels have similar match qualities when used by native and foreign workers.

It is rather so that foreign workers are more likely to rely on search channels with lower efficiency,

like referral hiring and employment agency.

Table 10: Estimation results of occupational mismatch by

citizenship and search channels.

Variables Dependent variable: MATCH

(1) (2) (3) (4) (5) (6)

MIG -0.400∗∗∗ -0.375∗∗∗ -0.372∗∗∗ -0.365∗∗∗ 0.0144

[-0.099] [-0.093] [-0.092] [-0.090] [0.003]

REF -0.422∗∗∗ -0.421∗∗∗

[-0.103] [-0.103]

MIG × REF -0.00707

[-0.002]

CHAN (Reference: Internet)

Public emp. agency -0.325∗∗∗ -0.316∗∗∗

[-0.078] [-0.076]

Private emp. agency -0.258 -0.252

[-0.062] [-0.060]

Continued on next page
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Variables Dependent variable: MATCH

(1) (2) (3) (4) (5) (6)

Newspaper -0.235∗∗ -0.233∗∗

[-0.056] [-0.056]

Referrals -0.530∗∗∗ -0.513∗∗∗

[-0.129] [-0.125]

Other 0.017 0.0428

[0.004] [0.010]

MIG × CHAN(Reference: MIG × Internet)

MIG × Public empl. agency -0.296

[-0.072]

MIG × Private empl. agency -0.267

[-0.065]

MIG × Newspaper -0.196

[-0.048]

MIG × Referrals -0.397

[-0.097]

MIG × Other -0.551

[-0.134]

Control variables v v v v v v

Time FE v v v v v v

Constant -1.583∗∗∗ -1.480∗∗∗ -1.285∗∗∗ -1.285∗∗∗ -1.123∗∗∗ -1.136∗∗∗

LR test(Prob> χ2) 0.00 0.00 0.9612 0.00 0.5276

Observations 15779 15779 15779 15779 15779 15779

Pseudo R2 0.118 0.119 0.125 0.125 0.127 0.127

Marginal effects are in squared brackets. Marginal effects for factor levels is the discrete change from the base level.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Control variables in table 10 include age, education, industry, Standard International Socio-

Economic Index of Occupational Status of individuals, firm size with 4 categories, state of

residence, survey year, and the type of job change.6

In Table 11 we substitute binary variableMIGi,t with a more detailed variableMIGBACKi,t

containing three categories. Column (2) shows that the coefficient for direct migrants is neg-

ative and statistically significant, while the coefficient for indirect migrants is not statistically

significant. This means that compared to German nationals direct migrants are less likely to be

well matched, while indirect migrants can not be statistically distinguished from native German

workers. The marginal effect shows that direct migrants are 8.7% more likely to be mismatched

than German nationals. Next, REFi,t is added to the regression in column (3). The negative and

statistically significant coefficient of referrals suggests that referral hiring leads to good matches

less often compared to hiring through formal search channels. We can see that the marginal

effect is again reduced from 8.7% down to 8%. This confirms our earlier conclusion that 0.7%

of the differences in mismatch rates between migrant and native workers is due to the fact that

migrants rely more often on their social networks. Now we can additionally conclude that this

effect is largely generated by direct migrants. The interaction terms in column (4) are again

insignificant.

Further, we include a more detailed variable CHANi,t instead of a binary indicator REFi,t for

the search channel. The marginal effect of being a direct migrant falls from 8% down to 7.7%, so

this regression confirms the fact that additional 0.3% difference in the probabilities of mismatch

6Table 17 presented in Appendix V includes all the coefficients of control variables.
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is due to the fact that direct migrants use less efficient search channels such as newspapers and

services of the public employment agency more often than native German workers. At this step

we decided not to include the interaction terms between the search channels and MIGBACKi,t

as none of the interaction terms was significant in the previous regressions.

Table 11: Estimation results of occupational mismatch using

migration background and search channels.

Variables Dependent variable: MATCH

(1) (2) (3) (4) (5)

MIGBACK (Reference: German national)

Direct migrant -0.351∗∗∗ -0.324∗∗∗ -0.321∗∗∗ -0.314∗∗∗

[-0.087] [-0.080] [-0.079] [-0.077]

Indirect migrant -0.120 -0.110 -0.122 -0.106

[-0.029] [-0.027] [-0.030] [-0.026]

Referrals -0.420∗∗∗ -0.421∗∗∗

[-0.103] [-0.103]

MIGBACK × REF (Reference: German national × Formal channels)

Direct migrant × referrals -0.00752

[-0.002]

Indirect migrant × referrals 0.0370

[0.009]

Chan (Reference: Internet)

Public emp. agency -0.329∗∗∗

[-0.079]

Private emp. agency -0.255

[-0.061]

Newspaper -0.243∗∗

[-0.058]

Referrals -0.534∗∗∗

[-0.130]

Other 0.00896

[0.002]

Control variables v v v v v

Time FE v v v v v

Constant -1.583∗∗∗ -1.485∗∗∗ -1.293∗∗∗ -1.293∗∗∗ -1.125∗∗∗

LR test(Prob> χ2) 0.00 0.00 0.9666 0.00

Observations 15779 15779 15779 15779 15779

Pseudo R2 0.118 0.119 0.125 0.125 0.127

Marginal effects are in parentheses. Marginal effects for factor levels is the discrete change from the base level.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Control variables in Table 11 include age, education, industry, Standard International Socio-

Economic Index of Occupational Status of individuals, firm size with 4 categories, state of

residence, survey year, and the type of job change.7

4.2 Blinder-Oaxaca Decomposition

In the previous subsection we found that search channels have a significant effect on the proba-

bility of being well matched. Also, the probability of being well matched is different for German

7Table 18 presented in Appendix VI includes all the coefficients of control variables.
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and foreign citizens. The goal of this section is to quantify how much of the difference in mis-

match rates between the two groups can be explained by differences in the search channels. For

this purpose we use the Blinder-Oaxaca decomposition applied to the linear probability model

of the outcome variable MATCHi,t
8. This decomposition is based on the following equation:

ŶN − ŶF = (X̄N − X̄F )
′B̂N

︸ ︷︷ ︸

Endowment effect (explained)

+ X̄ ′
F (B̂N − B̂F )

︸ ︷︷ ︸

Coefficient effect (unexplained)

(2)

Here ŶN is the estimated proportion of well matched German citizens, and ŶF is the es-

timated proportion of well matched foreign citizens. X̄N and X̄F are the vectors of average

characteristics (endowments) of German and foreign citizens respectively. B̂N and B̂F are the

estimated coefficient vectors for the two groups. Note, that in the above-mentioned two-fold

decomposition the coefficients of the majority group are assumed to be nondiscriminatory. The

first element on the right-hand side shows differences in the proportions of well matched workers

stemming from different endowments of the two worker groups. This includes observable individ-

ual characteristics, such as education, gender and age, but also the search channel. The second

element on the right-hand side shows remaining differences in the proportions of well-matched

workers which can not be explained by the regression.

The estimation results of the Blinder-Oaxaca decomposition are presented in Table 12.

Table 12: Estimation results of Blinder-Oaxaca decomposition by citizenship.

Coefficient Std.Err. Coefficient Std.Err.

German citizens 0.5756∗∗∗ 0.0041 German citizens 14754
Foreign citizens 0.4205∗∗∗ 0.0157 Foreign citizens 1022
Difference 0.1551∗∗∗ 0.0163 Observations 15776

Endowment effect 0.0756∗∗∗ 0.0067 Coefficient effect 0.0796∗∗∗ 0.0151

Public emp. ag. 0.00031 0.00028 Public emp. ag. 0.00028 0.00490
Private emp. ag. 0.00002 0.00011 Private emp. ag. 0.00027 0.00164
Newspapers 0.00004 0.00017 Newspapers -0.00318 0.00588
Internet 0.00143∗∗ 0.00053 Internet -0.00349 0.00296
Referrals 0.00760∗∗∗ 0.00146 Referrals 0.00535 0.01370
Other 0.00614∗∗∗ 0.00128 Other 0.01801 0.00982
Firm size -0.00428 0.00122 Firm size -0.00470 0.00644
Industry 0.00984∗∗∗ 0.00258 Industry 0.07943 0.05027
TOJCH 0.00336 0.00152 TOJCH 0.04663∗ 0.02383
State -0.00566∗ 0.00257 State -0.04982 0.03364
Time 0.00017 0.00119 Time -0.00308 0.00690
Education 0.02558∗∗∗ 0.00293 Education -0.02489 0.08296
Age -0.00592∗∗∗ 0.00177 Age -0.08710 0.05564
ISEI 0.03697∗∗∗ 0.00354 ISEI -0.08702∗ 0.04400
∗
p < 0.05, ∗∗

p < 0.01, ∗∗∗
p < 0.001

The estimated fraction of well matched German citizens is 57.56%, and the estimated fraction of

well matched foreign citizens is 42.05%. So the difference is equal to 15.51%. We already know

these numbers from Table 7. The decomposition shows that the endowment effect is equal to

8Blinder-Oaxaca decomposition was conducted using ”oaxaca” command in the statistical program Stata. See
details at Jann et al. (2008).
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7.56%, while the unexplained coefficient effect is 7.96%. Thus our regression can explain roughly

a half of the observable difference in the mismatch rates between foreign and German workers.

We can see that two variables that explain the largest part of the gap in mismatch rates

are education and the ISEI index of occupational prestige. This means that foreign workers in

Germany are less educated on average, and overrepresented in low skill jobs with low occupational

prestige. At the same time these jobs are associated with higher mismatch probability compared

to high skill jobs with high occupational prestige. Combined together these effects explain

2.6% + 3.7% = 6.3% out of the endowment effect equal to 7.6%. This effect is reduced by 0.6%

because German workers are older on average and the probability of mismatch is increasing with

age. At the same time foreign workers are overrepresented in industries with higher occupational

mismatch (such as transportation and trade), which explains another 1% of the endowment

effect. So the part of the endowment effect which is due to differences in the industry and

observable worker characteristics can be estimated as 6.7/7.6 = 88.2%. Finally, Table 12 shows

that additional 0.9% of the endowment effect are explained by the fact that foreign workers use

less efficient search channels compared to German workers. So the part of the endowment effect

which is due to the different search channels can be estimated as 0.9/7.6 = 11.8%. Note that

most of this effect is because of the more intensive referral hiring in the group of foreign workers

(0.76% out of 0.9) with only a small contribution of the internet (0.14 out of 0.9).

To conclude, first, both the estimations and the Blinder-Oaxaca decomposition results show

that there is significant difference in the proportions of good matches between German citizens

and foreign citizens equal to 15.1%. Second, those who are matched through referrals are

more likely to be mismatched compared to those who are matched through formal channels.

Moreover, the results of the Blinder-Oaxaca decomposition show that explanatory variables

used in the estimation account for about a half of the total gap in mismatch rates, which is the

endowment effect. And finally, the fact the foreign workers use less efficient search channels, such

as referral hiring, account for 11.8% of the endowment effect with the remaining gap attributed

to education, occupational prestige, age and industry differences.

5 Conclusion

In this study we investigate the link between the job search channels and occupational mismatch

with a specific focus on differences between native and immigrant workers. We use data from the

German Socio-Economic Panel (SOEP) over the period 2000-2014. First, we find that referral

hiring via social networks is the most frequent single channel of generating jobs in Germany.

Moreover, this channel is used more frequently by immigrant workers rather than natives. This

could be due to the higher risk of unemployment that immigrant workers are confronted with

and larger difficulties of finding jobs in a formal way. In this case social networks and referral

hiring serve as a channel of last resort for the immigrant population.

We combine this empirical evidence with the finding by Bentolila et al. (2010) that referral

hiring generates more occupational mismatch than formal search. The reason is that workers

tend to send formal applications to jobs in their primary occupation, whereas friends and relatives

providing job recommendations often work in different occupations giving rise to occupational

mismatch. We incorporate this empirical evidence into a search and matching model with two
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ethnic worker groups (natives and immigrants), two occupations and two search channels (formal

applications and informal network hiring). Job recommendations are given by employed workers

to the unemployed friends in their social network. We assume that all workers have the same size

of social networks, but their composition differs across groups. In particular, we take into account

that social networks exhibit ethnic and professional homophily meaning biased link formation

towards friends with the same ethnicity and from the same profession. Our model predicts

that more intensive utilisation of referal hiring leads to more frequent occupational mismatch

of immigrant workers. One condition for this result is that the gap in the job destruction rates

between native and immigrant workers is not too large which is satisfied for a realistic parameter

setting motivated by the data. From a theoretical perspective this result strongly depends on

the degree of professional homophily characterising social networks but it is not sensitive to the

network size.

Next we test the underlying assumption of the model and find empirical support for the fact

that referral hiring generates more occupational mismatch than formal search. The data reveals

that referral hiring is the least efficient job creating channel in terms of match quality among

public and private employment agencies, specialised newspapers, direct applications in internet

and other channels. Further, we test the theoretical prediction of our model that differences in

the incidence of referral hiring between native and immigrant workers contribute significantly

to the gap in mismatch rates between these groups. To achieve this goal we perform a Blinder-

Oaxaca decomposition. The overall gap in the mismatch rates is equal to 15.5%. Roughly a

half of this effect (7.6%) can be explained by observable differences in the endowments between

native and immigrant workers including the search channel. We find that differences in the search

strategies explain about 1% of the gap in the mismatch rates. This effect is significant with the

remaining gap (6.6%) attributed to education, age and industry differences. This confirms our

theoretical prediction that at least a part of the mismatch gap between native and immigrant

workers is due to the less efficient job search channels used by immigrant workers.
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7 Appendix

Proof of lemma 1: Without ethnic homophily we know that nAA
jN = (1− h)γn and nAA

jF = hγn,
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Further we can also rewrite variables MAA
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so that µAA
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F .

Appendix I. Estimation results: employment rates.

Table 13: Estimation results of employment rates, full table.

Variables Dependent variable: EMP

(1) (2) (3) (4) (5) (6) (7) (8)

EDU 0.315∗∗∗ 0.314∗∗∗ 0.315∗∗∗ 0.324∗∗∗ 0.371∗∗∗ 0.371∗∗∗ 0.368∗∗∗ 0.344∗∗∗

(76.14) (76.09) (76.17) (76.99) (80.91) (80.81) (80.55) (75.31)

AGE 0.00225∗∗ 0.00225∗∗ -0.0110∗∗∗ -0.00943∗∗∗ -0.00971∗∗∗ -0.0171∗∗∗ -0.0186∗∗∗

(3.24) (3.25) (-13.46) (-11.28) (-11.56) (-18.52) (-20.06)

FEMALE -0.138∗∗∗ -0.107∗∗∗ -0.113∗∗∗ -0.115∗∗∗ -0.122∗∗∗ -0.134∗∗∗

(-8.71) (-6.59) (-6.86) (-6.98) (-7.37) (-8.09)

MARST(Reference: Married)

Continued on next page
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Variables Dependent variable: EMP

(1) (2) (3) (4) (5) (6) (7) (8)

[2] Single -0.867∗∗∗ -0.769∗∗∗ -0.774∗∗∗ -0.957∗∗∗ -1.003∗∗∗

(-39.95) (-34.43) (-34.54) (-39.67) (-41.38)

[3] Widowed -0.323∗∗∗ -0.300∗∗∗ -0.298∗∗∗ -0.346∗∗∗ -0.370∗∗∗

(-5.60) (-5.15) (-5.12) (-5.93) (-6.33)

[4] Divorced -0.770∗∗∗ -0.743∗∗∗ -0.747∗∗∗ -0.807∗∗∗ -0.839∗∗∗

(-32.41) (-30.85) (-30.94) (-33.04) (-34.18)

[5] Separated -0.752∗∗∗ -0.748∗∗∗ -0.748∗∗∗ -0.801∗∗∗ -0.815∗∗∗

(-16.98) (-16.62) (-16.60) (-17.70) (-17.94)

Number of -0.175∗∗∗ -0.167∗∗∗

Children in HH (-20.25) (-19.22)

Foreign -0.652∗∗∗

citizen (-24.68)

STATE (Reference: Schleswig-Holstein)

[2] Hamburg 0.0557 0.0557 0.0475 0.129

(0.64) (0.64) (0.54) (1.46)

[3] Lower Saxony 0.202∗∗∗ 0.201∗∗∗ 0.208∗∗∗ 0.218∗∗∗

(3.73) (3.71) (3.82) (4.00)

[4] Bremen -0.437∗∗∗ -0.437∗∗∗ -0.454∗∗∗ -0.434∗∗∗

(-4.65) (-4.65) (-4.83) (-4.60)

[5] North-Rhine 0.0425 0.0429 0.0376 0.0980∗

-Westfalia (0.86) (0.87) (0.76) (1.98)

[6] Hessen 0.267∗∗∗ 0.268∗∗∗ 0.258∗∗∗ 0.337∗∗∗

(4.63) (4.65) (4.47) (5.81)

[7] Rheinland-Pfalz 0.328∗∗∗ 0.329∗∗∗ 0.334∗∗∗ 0.359∗∗∗

(5.35) (5.37) (5.43) (5.83)

[8] Baden 0.586∗∗∗ 0.588∗∗∗ 0.591∗∗∗ 0.719∗∗∗

-Wuerttemberg (10.83) (10.85) (10.91) (13.14)

[9] Bavaria 0.618∗∗∗ 0.618∗∗∗ 0.609∗∗∗ 0.648∗∗∗

(11.77) (11.76) (11.58) (12.30)

[10] Saarland 0.259∗∗ 0.259∗∗ 0.228∗ 0.267∗∗

(2.82) (2.82) (2.48) (2.89)

[11] Berlin -0.599∗∗∗ -0.598∗∗∗ -0.603∗∗∗ -0.555∗∗∗

(-10.26) (-10.24) (-10.28) (-9.45)

[12] Brandenburg -0.903∗∗∗ -0.903∗∗∗ -0.916∗∗∗ -0.933∗∗∗

(-16.34) (-16.34) (-16.53) (-16.84)

[13] Mecklenburg -0.854∗∗∗ -0.854∗∗∗ -0.870∗∗∗ -0.894∗∗∗

-Vorpommern (-13.97) (-13.96) (-14.17) (-14.57)

[14] Saxony -0.678∗∗∗ -0.679∗∗∗ -0.700∗∗∗ -0.722∗∗∗

(-12.95) (-12.95) (-13.34) (-13.74)

[15] Saxony-Anhalt -0.939∗∗∗ -0.941∗∗∗ -0.963∗∗∗ -0.985∗∗∗

(-17.05) (-17.07) (-17.44) (-17.84)

[16] Thuringia -0.717∗∗∗ -0.717∗∗∗ -0.741∗∗∗ -0.766∗∗∗

(-12.87) (-12.87) (-13.27) (-13.70)

Survey year t (Reference: 2000)

2001 -0.00268 0.000226 -0.000699

(-0.06) (0.01) (-0.02)

2002 -0.0289 -0.0264 -0.0326

(-0.65) (-0.59) (-0.73)

2003 -0.149∗∗∗ -0.145∗∗ -0.153∗∗∗

(-3.39) (-3.28) (-3.45)

2004 -0.194∗∗∗ -0.190∗∗∗ -0.198∗∗∗

(-4.40) (-4.32) (-4.49)

2005 -0.174∗∗∗ -0.172∗∗∗ -0.179∗∗∗

(-3.87) (-3.83) (-3.96)

2006 -0.187∗∗∗ -0.185∗∗∗ -0.198∗∗∗

(-4.23) (-4.19) (-4.46)

2007 0.00179 0.00295 -0.00986

(0.04) (0.06) (-0.21)

2008 0.129∗∗ 0.132∗∗ 0.118∗

Continued on next page

37



Variables Dependent variable: EMP

(1) (2) (3) (4) (5) (6) (7) (8)

(2.65) (2.69) (2.42)

2009 0.0803 0.0861 0.0713

(1.69) (1.81) (1.49)

2010 -0.146∗∗∗ -0.0740 -0.0926∗

(-3.44) (-1.74) (-2.17)

2011 0.0131 0.0887∗ 0.0681

(0.30) (2.06) (1.57)

2012 0.0223 0.0986∗ 0.0796

(0.52) (2.28) (1.84)

2013 -0.0788 -0.00783 0.0347

(-1.94) (-0.19) (0.85)

2014 -0.0157 0.0551 0.0868∗

(-0.37) (1.28) (2.02)

Constant -1.311∗∗∗ -1.406∗∗∗ -1.349∗∗∗ -0.542∗∗∗ -1.115∗∗∗ -1.050∗∗∗ -0.520∗∗∗ -0.125

(-28.11) (-25.53) (-24.25) (-9.04) (-14.31) (-12.72) (-6.01) (-1.42)

LR test(Prob> χ2) 0.0012 0.00 0.00 0.00 0.00 0.00 0.00

Observations 213592 213592 213592 213592 213592 213592 213592 213592

Pseudo R2 0.062 0.062 0.063 0.081 0.116 0.117 0.120 0.125

Standard errors are in parentheses: ∗
p < 0.05, ∗∗

p < 0.01, ∗∗∗
p < 0.001

Appendix II. Estimation results: referral hiring.

Table 14: Estimation results of referral hiring, full table.

Variables Dependent variable: REF

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

EDU -0.106∗∗∗ -0.106∗∗∗ -0.0988∗∗∗ -0.0798∗∗∗ -0.0707∗∗∗ -0.0641∗∗∗ -0.0643∗∗∗ -0.0649∗∗∗ -0.0291∗∗∗ -0.0290∗∗∗

(-17.48) (-17.33) (-16.05) (-12.68) (-10.80) (-9.67) (-9.62) (-9.75) (-3.63) (-3.62)

AGE -0.00291∗ -0.00287∗ -0.00436∗∗ -0.00414∗∗ -0.00271 -0.00267 -0.00233 -0.00296 -0.00297

(-2.11) (-2.08) (-3.13) (-2.97) (-1.74) (-1.72) (-1.48) (-1.88) (-1.89)

Foreign 0.374∗∗∗ 0.373∗∗∗ 0.361∗∗∗ 0.346∗∗∗ 0.338∗∗∗ 0.345∗∗∗ 0.332∗∗∗ 0.327∗∗∗

citizen (6.67) (6.60) (6.38) (6.06) (5.78) (6.00) (5.77) (5.68)

FSIZE(Reference: GE 2000)

[1] LT 20 0.719∗∗∗ 0.711∗∗∗ 0.519∗∗∗ 0.520∗∗∗ 0.511∗∗∗ 0.456∗∗∗ 0.460∗∗∗

(15.07) (14.67) (10.38) (10.37) (10.19) (9.01) (9.07)

[2] GE 20 LT

200

0.385∗∗∗ 0.378∗∗∗ 0.196∗∗∗ 0.199∗∗∗ 0.187∗∗∗ 0.150∗∗ 0.149∗∗

(7.82) (7.62) (3.84) (3.88) (3.65) (2.90) (2.88)

[3] GE 200 0.149∗∗ 0.162∗∗ 0.0410 0.0418 0.0352 0.0210 0.0190

LT 2000 (2.67) (2.89) (0.71) (0.73) (0.61) (0.36) (0.33)

IND(Reference: Services)

[1] Agriculture -0.0130 -0.0125 0.00331 0.00233 -0.102 -0.128

(-0.10) (-0.10) (0.03) (0.02) (-0.80) (-1.01)

[2] Energy -0.357 -0.300 -0.299 -0.273 -0.254 -0.274

(-1.78) (-1.46) (-1.46) (-1.33) (-1.24) (-1.33)

[3] Mining 0.420 0.552 0.538 0.515 0.490 0.451

(1.03) (1.31) (1.27) (1.21) (1.15) (1.06)

[4]

Manufacturing

0.152∗∗ 0.120∗ 0.119∗ 0.111∗ 0.0997∗ 0.0751

(3.12) (2.43) (2.40) (2.23) (2.01) (1.47)

[5]

Construction

0.0173 -0.0130 -0.00487 -0.0157 -0.0414 -0.0818

(0.33) (-0.24) (-0.09) (-0.30) (-0.77) (-1.44)

[6] Trade 0.226∗∗∗ 0.184∗∗∗ 0.186∗∗∗ 0.181∗∗∗ 0.191∗∗∗ 0.187∗∗∗

(5.18) (4.18) (4.21) (4.10) (4.30) (4.22)

[7] Transport 0.168∗ 0.138 0.142∗ 0.128 0.111 0.0816
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Variables Dependent variable: REF

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

(2.39) (1.93) (1.98) (1.78) (1.54) (1.11)

[8]

Bank,Insurance

-0.205∗ -0.0971 -0.0978 -0.111 -0.0447 -0.0530

(-2.03) (-0.94) (-0.94) (-1.07) (-0.43) (-0.51)

TOJCH(Reference: First job)

Job After -0.278∗∗∗ -0.278∗∗∗ -0.318∗∗∗ -0.345∗∗∗ -0.339∗∗∗

Break (-4.67) (-4.66) (-5.29) (-5.73) (-5.61)

Job With New 0.129∗ 0.128∗ 0.149∗∗ 0.136∗ 0.135∗

Employer (2.39) (2.37) (2.73) (2.49) (2.48)

Company -1.527∗∗∗ -1.526∗∗∗ -1.529∗∗∗ -1.550∗∗∗ -1.555∗∗∗

Taken Over (-10.17) (-10.16) (-10.17) (-10.30) (-10.33)

Changed Job, -1.671∗∗∗ -1.672∗∗∗ -1.680∗∗∗ -1.669∗∗∗ -1.670∗∗∗

Same Firm (-15.09) (-15.09) (-15.15) (-15.04) (-15.05)

STATE(Reference: Schleswig-Holstein)

[2] Hamburg -0.00578

(-0.04)

[3] Lower -0.0863

Saxony (-0.80)

[4] Bremen -0.0680

(-0.33)

[5] North-Rhine -0.000841

-Westfalia (-0.01)

[6] Hessen -0.0279

(-0.25)

[7] Rheinland- -0.0504

Pfalz (-0.42)

[8] Baden- -0.0547

Wuerttemberg (-0.52)

[9] Bavaria -0.0266

(-0.26)

[10] Saarland 0.0321

(0.18)

[11] Berlin -0.00456

(-0.04)

[12]Brandenburg -0.0533

(-0.44)

[13]Mecklenburg -0.318∗

-Vorpommern (-2.24)

[14] Saxony -0.110

(-0.98)

[15] Saxony- -0.0240

Anhalt (-0.20)

[16] Thuringia 0.0714

(0.59)

Survey year t (Reference: 2000)

2001 -0.0160 -0.0135 -0.0131

(-0.22) (-0.18) (-0.18)

2002 -0.0761 -0.0720 -0.0700

(-0.98) (-0.92) (-0.90)

2003 0.0891 0.0956 0.0961

(1.11) (1.19) (1.20)

2004 -0.0186 -0.0178 -0.0200

(-0.23) (-0.22) (-0.25)

2005 0.0636 0.0653 0.0628

(0.78) (0.80) (0.77)

2006 0.00971 0.00428 0.00188

(0.12) (0.05) (0.02)

2007 0.210∗∗ 0.205∗∗ 0.205∗∗

(2.71) (2.65) (2.65)
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Variables Dependent variable: REF

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

2008 0.150 0.145 0.145

(1.92) (1.85) (1.85)

2009 0.160∗ 0.163∗ 0.161∗

(2.06) (2.09) (2.07)

2010 -0.218∗∗ -0.224∗∗ -0.222∗∗

(-2.58) (-2.65) (-2.62)

2011 -0.150 -0.154 -0.151

(-1.73) (-1.76) (-1.73)

2012 -0.119 -0.132 -0.130

(-1.33) (-1.47) (-1.44)

2013 -0.163 -0.159 -0.156

(-1.81) (-1.76) (-1.73)

2014 -0.0529 -0.0680 -0.0595

(-0.69) (-0.89) (-0.77)

ISEI -0.0102∗∗∗ -0.0103∗∗∗

(-7.94) (-7.99)

FEMALE -0.0745∗

(-2.10)

Constant 0.580∗∗∗ 0.671∗∗∗ 0.556∗∗∗ -0.0279 -0.215∗ -0.0652 -0.0266 -0.0602 0.0143 0.0662

(7.64) (7.69) (6.26) (-0.28) (-1.97) (-0.58) (-0.18) (-0.50) (0.12) (0.53)

LR test(Prob> χ2) 0.0344 0.00 0.0275 0.00 0.00 0.5708 0.00 0.00 0.00

Observations 19148 19148 19148 19148 19148 19148 19148 19148 19148 19148

Pseudo R2 0.013 0.014 0.015 0.028 0.030 0.058 0.058 0.060 0.062 0.062

Standard errors are in parentheses: ∗
p < 0.05, ∗∗

p < 0.01, ∗∗∗
p < 0.001

Appendix III. Descriptive statistics of variables used as control variables.

Table 15: Descriptive statistics of control variables.

German Foreign German Direct Indirect Overall

citizens citizens nationals migrants migrants

EDU 12.92 11.65 12.96 12.01 12.57 12.84

AGE 35.15 36.26 36.42 37.33 31.59 36.19

IND

Agriculture 1.54% 1.85% 1.61% 1.53% 0.97% 1.56%

Energy 1.00% 0.29% 0.99% 0.58% 1.07% 0.95%

Mining 0.13% 0.20% 0.14% 0.13% 0.00% 0.13%

Manufacturing 13.98% 17.66% 13.66% 17.84% 15.79% 14.22%

Construction 11.89% 13.07% 11.86% 12.72% 12.11% 11.97%

Trade 17.43% 22.24% 17.33% 20.52% 18.80% 17.75%

Transport 5.68% 8.98% 5.49% 7.86% 8.04% 5.89%

Bank,Insurance 3.46% 1.85% 3.61% 1.41% 3.10% 3.36%

Services 44.90% 33.85% 45.30% 37.40% 40.12% 44.18%

TOJCH

First job 5.14% 4.98% 5.11% 4.54% 6.30% 5.13%

Job After Break 26.94% 29.66% 27.02% 29.92% 24.03% 27.11%

Job With New Employer 54.58% 54.05% 54.45% 57.67% 54.94% 54.80%

Company Taken Over 3.33% 3.12% 3.27% 2.81% 4.75% 3.32%

Changed Job, Same Firm 10.01% 4.20% 10.15% 5.05% 9.98% 9.63%

FSIZE

[1] LT 20 33.12% 38.44% 33.24% 36.13% 32.36% 33.47%

[2] GE 20 LT 200 29.77% 29.56% 29.65% 31.84% 28.00% 29.76%

[3] GE 200 LT2000 17.86% 16.00% 17.86% 16.11% 18.70% 17.74%

[4] GE 2000 19.24% 16.00% 19.25% 15.92% 20.93% 19.03%

STATE
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German Foreign German Direct Indirect Overall

citizens citizens nationals migrants migrants

[1] Schleswig-Holstein 2.95% 1.17% 3.01% 2.11% 1.65% 2.83%

[2] Hamburg 1.76% 0.68% 1.71% 1.02% 2.42% 1.69%

[3] Lower Saxony 9.36% 7.02% 9.33% 10.36% 5.91% 9.21%

[4] Bremen 0.83% 0.78% 0.74% 1.53% 0.78% 0.82%

[5] North-Rhine-Westfalia 18.34% 24.29% 17.79% 24.68% 21.71% 18.73%

[6] Hessen 7.45% 8.98% 7.15% 9.08% 10.27% 7.55%

[7] Rheinland-Pfalz 4.28% 4.78% 4.04% 6.01% 5.33% 4.32%

[8] Baden-Wuerttemberg 10.89% 23.41% 10.04% 18.73% 22.38% 11.71%

[9] Bavaria 14.38% 20.49% 14.36% 16.88% 16.96% 14.78%

[10] Saarland 0.92% 1.85% 0.83% 2.24% 1.07% 0.98%

[11] Berlin 3.86% 4.39% 3.85% 4.35% 3.78% 3.89%

[12] Brandenburg 4.75% 0.78% 5.11% 1.15% 1.74% 4.49%

[13] Mecklenburg-Vorpommern 2.79% 0.20% 3.02% 0.19% 1.16% 2.62%

[14] Saxony 7.89% 0.88% 8.56% 1.02% 2.81% 7.43%

[15] Saxony-Anhalt 4.90% 0.00% 5.29% 0.32% 0.10% 4.58%

[16] Thuringia 4.66% 0.29% 5.19% 0.32% 0.10% 4.37%

Survey year t

2000 9.65% 13.85% 9.89% 10.81% 9.01% 9.92%

2001 8.17% 10.63% 8.32% 8.76% 7.75% 8.33%

2002 6.84% 8.10% 7.06% 6.14% 6.30% 6.92%

2003 6.01% 6.24% 6.09% 4.86% 6.88% 6.02%

2004 6.36% 5.76% 6.44% 6.27% 4.94% 6.32%

2005 5.96% 4.98% 5.99% 4.80% 6.30% 5.89%

2006 6.66% 5.56% 6.71% 5.88% 6.10% 6.59%

2007 7.16% 6.44% 7.15% 7.23% 6.59% 7.12%

2008 7.00% 5.85% 6.91% 6.65% 7.56% 6.93%

2009 7.14% 7.22% 7.07% 7.93% 6.88% 7.14%

2010 5.91% 5.27% 5.86% 5.63% 6.40% 5.87%

2011 5.63% 3.22% 5.48% 4.86% 6.40% 5.48%

2012 4.98% 3.32% 4.96% 3.90% 5.23% 4.87%

2013 5.04% 3.22% 4.99% 3.90% 5.52% 4.92%

2014 7.49% 10.34% 7.08% 12.40% 8.14% 7.67%

ISEI 45.51 39.02 45.72 39.38 45.69 45.09

Gender

Male 43.99% 54.34% 43.94% 46.68% 50.78% 44.66%

Female 56.01% 45.66% 56.06% 53.32% 49.22% 55.34%

Observations 14754 1025 13183 1564 1032 15779

Percentage 93.50% 6.50% 83.55% 9.91% 6.54% 100%

Appendix IV. Estimation results: occupational mismatch.

Table 16: Estimation results of occupational mismatch.

Variables Dependent variable: MATCH

(1) (2) (3) (4) (5) (6) (7) (8) (9)

EDU 0.230∗∗∗ 0.229∗∗∗ 0.217∗∗∗ 0.207∗∗∗ 0.210∗∗∗ 0.209∗∗∗ 0.209∗∗∗ 0.110∗∗∗ 0.110∗∗∗

(33.32) (33.05) (29.97) (28.08) (28.23) (27.87) (27.72) (12.48) (12.48)

AGE -0.0251∗∗∗ -0.0258∗∗∗ -0.0233∗∗∗ -0.0236∗∗∗ -0.0234∗∗∗ -0.0240∗∗∗ -0.0240∗∗∗ -0.0240∗∗∗

(-15.85) (-16.04) (-13.91) (-14.07) (-13.90) (-14.15) (-13.95) (-13.95)

IND(Reference: Services)

Agriculture -0.223 -0.179 -0.207 -0.155 -0.152 0.136 0.133

(-1.65) (-1.31) (-1.51) (-1.12) (-1.10) (0.96) (0.94)

Energy -0.450∗∗ -0.512∗∗ -0.475∗∗ -0.469∗∗ -0.481∗∗ -0.571∗∗ -0.572∗∗

(-2.59) (-2.92) (-2.70) (-2.66) (-2.73) (-3.21) (-3.21)

Mining -0.932 -0.993∗ -0.960∗ -0.878 -0.874 -0.857 -0.860
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Variables Dependent variable: MATCH

(1) (2) (3) (4) (5) (6) (7) (8) (9)

(-1.96) (-2.05) (-1.99) (-1.82) (-1.81) (-1.76) (-1.77)

Manufacturing -0.208∗∗∗ -0.220∗∗∗ -0.201∗∗∗ -0.213∗∗∗ -0.202∗∗∗ -0.177∗∗∗ -0.179∗∗

(-4.03) (-4.23) (-3.83) (-4.04) (-3.82) (-3.30) (-3.24)

Construction 0.337∗∗∗ 0.343∗∗∗ 0.341∗∗∗ 0.360∗∗∗ 0.369∗∗∗ 0.443∗∗∗ 0.439∗∗∗

(5.94) (6.00) (5.98) (6.25) (6.40) (7.53) (7.03)

Trade -0.418∗∗∗ -0.398∗∗∗ -0.409∗∗∗ -0.415∗∗∗ -0.409∗∗∗ -0.442∗∗∗ -0.442∗∗∗

(-8.67) (-8.18) (-8.37) (-8.49) (-8.35) (-8.93) (-8.93)

Transport -0.862∗∗∗ -0.888∗∗∗ -0.876∗∗∗ -0.878∗∗∗ -0.870∗∗∗ -0.819∗∗∗ -0.821∗∗∗

(-11.41) (-11.64) (-11.44) (-11.44) (-11.33) (-10.58) (-10.44)

Bank,Insurance 0.234∗ 0.168 0.195 0.172 0.183 -0.0103 -0.0108

(2.30) (1.63) (1.88) (1.65) (1.76) (-0.10) (-0.10)

TOJCH(Reference: First job)

Job After Break -0.432∗∗∗ -0.440∗∗∗ -0.442∗∗∗ -0.433∗∗∗ -0.370∗∗∗ -0.370∗∗∗

(-4.60) (-4.68) (-4.69) (-4.57) (-3.83) (-3.82)

Job With New -0.179∗ -0.180∗ -0.194∗ -0.204∗ -0.171 -0.171

Employer (-1.97) (-1.98) (-2.13) (-2.22) (-1.83) (-1.83)

Company Taken 0.761∗∗∗ 0.773∗∗∗ 0.772∗∗∗ 0.768∗∗∗ 0.822∗∗∗ 0.821∗∗∗

Over (5.40) (5.48) (5.46) (5.42) (5.72) (5.71)

Changed Job, 0.163 0.200 0.193 0.197 0.150 0.149

Same Firm (1.54) (1.87) (1.80) (1.83) (1.37) (1.36)

FSIZE(Reference: GE 2000)

[1] LT 20 0.155∗∗ 0.173∗∗ 0.184∗∗∗ 0.359∗∗∗ 0.360∗∗∗

(2.92) (3.24) (3.42) (6.52) (6.52)

[2] GE 20 LT 200 0.0266 0.0462 0.0569 0.166∗∗ 0.166∗∗

(0.50) (0.86) (1.06) (3.04) (3.04)

[3] GE 200 0.00808 0.0214 0.0250 0.0676 0.0676

LT 2000 (0.14) (0.37) (0.43) (1.14) (1.13)

STATE(Reference: Bavaria)

[1] Schleswig- -0.114 -0.117 -0.0471 -0.0473

Holstein (-1.03) (-1.05) (-0.42) (-0.42)

[2] Hamburg 0.0222 0.0158 -0.00693 -0.00733

(0.15) (0.11) (-0.05) (-0.05)

[3] Lower Saxony -0.0886 -0.0881 -0.0378 -0.0379

(-1.24) (-1.23) (-0.52) (-0.52)

[4] Bremen -0.125 -0.118 -0.135 -0.136

(-0.64) (-0.61) (-0.69) (-0.69)

[5] North-Rhine- -0.0487 -0.0410 0.00297 0.00275

Westfalia (-0.81) (-0.68) (0.05) (0.05)

[6] Hessen 0.0820 0.0809 0.0849 0.0846

(1.05) (1.03) (1.07) (1.07)

[7] Rheinland- -0.136 -0.145 -0.0889 -0.0888

Pfalz (-1.47) (-1.55) (-0.94) (-0.94)

[8] Baden- -0.0221 -0.0270 -0.0151 -0.0152

Wuerttemberg (-0.33) (-0.40) (-0.22) (-0.22)

[10] Saarland -0.327 -0.321 -0.313 -0.314

(-1.84) (-1.81) (-1.74) (-1.74)

[11] Berlin -0.155 -0.164 -0.119 -0.119

(-1.56) (-1.65) (-1.18) (-1.18)

[12] Brandenburg -0.374∗∗∗ -0.365∗∗∗ -0.265∗∗ -0.265∗∗

(-4.07) (-3.97) (-2.84) (-2.84)

[13]Mecklenburg- -0.317∗∗ -0.311∗∗ -0.243∗ -0.244∗

Vorpommern (-2.80) (-2.74) (-2.11) (-2.12)

[14] Saxony -0.0300 -0.0331 0.0512 0.0508

(-0.39) (-0.43) (0.65) (0.65)

[15] Saxony- -0.202∗ -0.194∗ -0.0988 -0.0994

Anhalt (-2.21) (-2.13) (-1.06) (-1.07)

[16] Thuringia -0.266∗∗ -0.264∗∗ -0.140 -0.140

(-2.88) (-2.85) (-1.48) (-1.48)

Survey year t (Reference: 2000)
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Variables Dependent variable: MATCH

(1) (2) (3) (4) (5) (6) (7) (8) (9)

2001 0.0702 0.0617 0.0616

(0.88) (0.76) (0.76)

2002 0.157 0.151 0.151

(1.86) (1.76) (1.76)

2003 0.0845 0.0647 0.0648

(0.96) (0.72) (0.73)

2004 0.0848 0.0933 0.0931

(0.97) (1.06) (1.05)

2005 0.145 0.130 0.129

(1.62) (1.43) (1.43)

2006 0.0291 0.0287 0.0285

(0.34) (0.33) (0.33)

2007 0.0721 0.0899 0.0900

(0.86) (1.05) (1.06)

2008 0.118 0.133 0.133

(1.38) (1.54) (1.54)

2009 0.238∗∗ 0.232∗∗ 0.232∗∗

(2.79) (2.69) (2.69)

2010 0.0437 0.0676 0.0679

(0.49) (0.74) (0.74)

2011 0.132 0.143 0.144

(1.43) (1.53) (1.54)

2012 0.239∗ 0.283∗∗ 0.284∗∗

(2.49) (2.91) (2.91)

2013 0.249∗∗ 0.233∗ 0.234∗

(2.60) (2.39) (2.40)

2014 0.268∗∗ 0.317∗∗∗ 0.318∗∗∗

(3.21) (3.74) (3.75)

ISEI 0.0299∗∗∗ 0.0299∗∗∗

(21.02) (21.02)

FEMALE -0.00608

(-0.16)

Constant -2.649∗∗∗ -1.723∗∗∗ -1.430∗∗∗ -1.210∗∗∗ -1.306∗∗∗ -1.228∗∗∗ -1.326∗∗∗ -1.583∗∗∗ -1.579∗∗∗

(-30.21) (-16.52) (-12.42) (-8.42) (-8.60) (-7.84) (-8.08) (-9.45) (-9.27)

LR test(Prob> χ2) 0.00 0.00 0.00 0.0026 0.0002 0.0521 0.00 0.8761

Observations 15779 15779 15779 15779 15779 15779 15779 15779 15779

Pseudo R2 0.059 0.070 0.085 0.093 0.093 0.095 0.097 0.118 0.118

Standard errors are in parentheses: ∗
p < 0.05, ∗∗

p < 0.01, ∗∗∗
p < 0.001

Appendix V. Estimation results: occupational mismatch using citizenship and

search channels.

Table 17: Estimation results of occupational mismatch using

citizenship and search channels.

Variables Dependent variable: MATCH

(1) (2) (3) (4) (5) (6)

EDU 0.110∗∗∗ 0.108∗∗∗ 0.106∗∗∗ 0.106∗∗∗ 0.103∗∗∗ 0.103∗∗∗

(0.027) (0.026) (0.026) (0.026) (0.025) (0.025)

AGE -0.0240∗∗∗ -0.0243∗∗∗ -0.0246∗∗∗ -0.0246∗∗∗ -0.0240∗∗∗ -0.0240∗∗∗

(-0.006) (-0.006) (-0.006) (-0.006) (-0.006) (-0.006)

IND(Reference: Services)

[1] Agriculture 0.136 0.145 0.141 0.141 0.133 0.138

(0.032) (0.034) (0.033) (0.033) (0.031) (0.032)
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Variables Dependent variable: MATCH

(1) (2) (3) (4) (5) (6)

[2] Energy -0.571∗∗ -0.580∗∗ -0.602∗∗∗ -0.601∗∗∗ -0.602∗∗∗ -0.599∗∗∗

(-0.141) (-0.143) (-0.149) (-0.149) (-0.149) (-0.148)

[3] Mining -0.857 -0.842 -0.821 -0.821 -0.852 -0.850

(-0.211) (-0.207) (-0.202) (-0.202) (-0.210) (-0.209)

[4] Manufacturing -0.177∗∗∗ -0.172∗∗ -0.166∗∗ -0.166∗∗ -0.165∗∗ -0.163∗∗

(-0.043) (-0.042) (-0.040) (-0.040) (-0.040) (-0.039)

[5] Construction 0.443∗∗∗ 0.448∗∗∗ 0.445∗∗∗ 0.445∗∗∗ 0.440∗∗∗ 0.439∗∗∗

(0.099) (0.101) (0.100) (0.100) (0.099) (0.099)

[6] Trade -0.442∗∗∗ -0.439∗∗∗ -0.424∗∗∗ -0.424∗∗∗ -0.432∗∗∗ -0.431∗∗∗

(-0.109) (-0.108) (-0.104) (-0.104) (-0.106) (-0.106)

[7] Transport -0.819∗∗∗ -0.807∗∗∗ -0.804∗∗∗ -0.804∗∗∗ -0.812∗∗∗ -0.812∗∗∗

(-0.202) (-0.199) (-0.198) (-0.198) (-0.200) (-0.200)

[8] Bank,Insurance -0.0103 -0.0140 -0.0253 -0.0253 -0.0260 -0.0258

(-0.002) (-0.003) (-0.006) (-0.006) (-0.006) (-0.006)

TOJCH(Reference: First job)

Job After Break -0.370∗∗∗ -0.377∗∗∗ -0.418∗∗∗ -0.418∗∗∗ -0.437∗∗∗ -0.436∗∗∗

(-0.090) (-0.092) (-0.102) (-0.102) (-0.106) (-0.106)

Job With New Employer -0.171 -0.180 -0.171 -0.171 -0.170 -0.170

(-0.041) (-0.043) (-0.041) (-0.041) (-0.040) (-0.040)

Company Taken Over 0.822∗∗∗ 0.815∗∗∗ 0.710∗∗∗ 0.710∗∗∗ 0.644∗∗∗ 0.646∗∗∗

(0.168) (0.167) (0.147) (0.147) (0.134) (0.135)

Changed Job, Same Firm 0.150 0.133 0.0345 0.0346 -0.0659 -0.0687

(0.035) (0.031) (0.008) (0.008) (-0.015) (-0.016)

FSIZE(Reference: GE 2000)

[1] LT 20 0.359∗∗∗ 0.361∗∗∗ 0.406∗∗∗ 0.406∗∗∗ 0.423∗∗∗ 0.425∗∗∗

(0.087) (0.088) (0.098) (0.098) (0.102) (0.103)

[2] GE 20 LT 200 0.166∗∗ 0.166∗∗ 0.182∗∗∗ 0.182∗∗∗ 0.201∗∗∗ 0.203∗∗∗

(0.041) (0.041) (0.045) (0.045) (0.050) (0.050)

[3] GE 200 LT 2000 0.0676 0.0682 0.0676 0.0676 0.0808 0.0821

(0.017) (0.017) (0.017) (0.017) (0.020) (0.020)

STATE(Reference: Bavaria)

[1] Schleswig-Holstein -0.0471 -0.0741 -0.0647 -0.0647 -0.0658 -0.0669

(-0.011) (-0.018) (-0.016) (-0.016) (-0.016) (-0.016)

[2] Hamburg -0.00693 -0.0251 -0.0281 -0.0281 -0.0290 -0.0279

(-0.002) (-0.006) (-0.007) (-0.007) (-0.007) (-0.007)

[3] Lower Saxony -0.0378 -0.0550 -0.0577 -0.0577 -0.0623 -0.0619

(-0.009) (-0.013) (-0.014) (-0.014) (-0.015) (-0.015)

[4] Bremen -0.135 -0.148 -0.151 -0.151 -0.141 -0.145

(-0.033) (-0.036) (-0.037) (-0.037) (-0.034) (-0.035)

[5] North-Rhine-Westfalia 0.00297 0.000882 0.00462 0.00462 0.000943 0.000663

(0.001) (0.000) (0.001) (0.001) (0.002) (0.000)

[6] Hessen 0.0849 0.0845 0.0848 0.0849 0.0739 0.0737

(0.020) (0.020) (0.020) (0.020) (0.018) (0.018)

[7] Rheinland-Pfalz -0.0889 -0.0996 -0.0971 -0.0971 -0.102 -0.103

(-0.021) (-0.024) (-0.024) (-0.024) (-0.025) (-0.025)

[8] Baden-Wuerttemberg -0.0151 0.00362 -0.00112 -0.00113 -0.00236 -0.00215

(-0.004) (0.001) (-0.000) (-0.000) (-0.001) (-0.000)

[10] Saarland -0.313 -0.304 -0.297 -0.297 -0.305 -0.298

(-0.077) (-0.075) (-0.073) (-0.073) (-0.075) (-0.073)

[11] Berlin -0.119 -0.120 -0.117 -0.117 -0.119 -0.119

(-0.029) (-0.029) (-0.028) (-0.028) (-0.029) (-0.029)

[12] Brandenburg -0.265∗∗ -0.299∗∗ -0.301∗∗ -0.301∗∗ -0.297∗∗ -0.298∗∗

(-0.065) (-0.074) (-0.074) (-0.074) (-0.073) (-0.073)

[13] Mecklenburg- -0.243∗ -0.280∗ -0.292∗ -0.292∗ -0.283∗ -0.284∗

Vorpommern (-0.060) (-0.069) (-0.072) (-0.072) (-0.069) (-0.070)

[14] Saxony 0.0512 0.0165 0.0111 0.0111 0.0119 0.0106

(0.012) (0.004) (0.003) (0.003) (0.003) (0.002)

[15] Saxony-Anhalt -0.0988 -0.136 -0.140 -0.140 -0.128 -0.129

(-0.024) (-0.033) (-0.034) (-0.034) (-0.031) (-0.031)
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Variables Dependent variable: MATCH

(1) (2) (3) (4) (5) (6)

[16] Thuringia -0.140 -0.177 -0.163 -0.163 -0.158 -0.159

(-0.034) (-0.043) (-0.040) (-0.040) (-0.039) (-0.039)

Survey year t (Reference: 2000)

2001 0.0617 0.0576 0.0519 0.0519 0.0537 0.0511

(0.015) (0.014) (0.013) (0.013) (0.013) (0.013)

2002 0.151 0.147 0.138 0.138 0.127 0.125

(0.037) (0.036) (0.034) (0.034) (0.031) (0.030)

2003 0.0647 0.0564 0.0571 0.0571 0.0533 0.0520

(0.016) (0.014) (0.014) (0.014) (0.013) (0.013)

2004 0.0933 0.0822 0.0844 0.0844 0.0704 0.0695

(0.023) (0.020) (0.020) (0.020) (0.017) (0.017)

2005 0.130 0.117 0.119 0.119 0.101 0.100

(0.032) (0.029) (0.029) (0.029) (0.025) (0.025)

2006 0.0287 0.0177 0.0137 0.0137 -0.00251 -0.00315

(0.007) (0.004) (0.003) (0.003) (-0.001) (-0.001)

2007 0.0899 0.0795 0.0947 0.0946 0.0746 0.0727

(0.022) (0.019) (0.023) (0.023) (0.018) (0.018)

2008 0.133 0.121 0.130 0.130 0.109 0.107

(0.033) (0.030) (0.032) (0.032) (0.027) (0.026)

2009 0.232∗∗ 0.226∗∗ 0.236∗∗ 0.236∗∗ 0.215∗ 0.213∗

(0.057) (0.055) (0.057) (0.057) (0.052) (0.052)

2010 0.0676 0.0579 0.0296 0.0296 0.00378 0.00391

(0.017) (0.014) (0.007) (0.007) (0.001) (0.001)

2011 0.143 0.127 0.103 0.103 0.0666 0.0633

(0.035) (0.031) (0.025) (0.025) (0.016) (0.0015)

2012 0.283∗∗ 0.267∗∗ 0.249∗ 0.249∗ 0.212∗ 0.214∗

(0.069) (0.065) (0.060) (0.060) (0.051) (0.052)

2013 0.233∗ 0.218∗ 0.201∗ 0.201∗ 0.165 0.165

(0.057) (0.053) (0.049) (0.049) (0.040) (0.040)

2014 0.317∗∗∗ 0.318∗∗∗ 0.310∗∗∗ 0.310∗∗∗ 0.269∗∗ 0.265∗∗

(0.077) (0.077) (0.075) (0.075) (0.065) (0.064)

ISEI 0.0299∗∗∗ 0.0296∗∗∗ 0.0289∗∗∗ 0.0289∗∗∗ 0.0284∗∗∗ 0.0284∗∗∗

(0.007) (0.007) (0.007) (0.007) (0.007) (0.007)

Foreign -0.400∗∗∗ -0.375∗∗∗ -0.372∗∗∗ -0.365∗∗∗ 0.0144

citizen (-0.099) (-0.093) (-0.092) (-0.090) (0.003)

Referrals -0.422∗∗∗ -0.421∗∗∗

(-0.103) (-0.103)

Foreign citizen × -0.00707

Referrals (-0.002)

CHAN (Reference: Internet)

Public emp. agency -0.325∗∗∗ -0.316∗∗∗

(-0.078) (-0.076)

Private emp. agency -0.258 -0.252

(-0.062) (-0.060)

Newspaper -0.235∗∗ -0.233∗∗

(-0.056) (-0.056)

Referrals -0.530∗∗∗ -0.513∗∗∗

(-0.129) (-0.125)

Other 0.017 0.0428

(0.004) (0.010)

MIG × CHAN(Reference: Foreign citizen × Internet)

Foreign citizen × Public -0.296

emp. agency (-0.072)

Foreign citizen × Private -0.267

emp. agency (-0.065)

Foreign citizen × -0.196

Newspaper (-0.048)

Foreign citizen × Referrals -0.397

(-0.097)
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Variables Dependent variable: MATCH

(1) (2) (3) (4) (5) (6)

Foreign citizen × Other -0.551

(-0.134)

Constant -1.583∗∗∗ -1.480∗∗∗ -1.285∗∗∗ -1.285∗∗∗ -1.123∗∗∗ -1.136∗∗∗

LR test(Prob> χ2) 0.00 0.00 0.9612 0.00 0.5276

Observations 15779 15779 15779 15779 15779 15779

Pseudo R2 0.118 0.119 0.125 0.125 0.127 0.127

Marginal effects are in parentheses. Marginal effects for factor levels is the discrete change from the base level.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Appendix VI. Estimation results: occupational mismatch using migration back-

ground and search channels.

Table 18: Estimation results of occupational mismatch using

migration background and search channels.

Variables Dependent variable: MATCH

(1) (2) (3) (4) (5)

EDU 0.110∗∗∗ 0.109∗∗∗ 0.107∗∗∗ 0.107∗∗∗ 0.104∗∗∗

(0.027) (0.026) (0.026) (0.026) (0.025)

AGE -0.0240∗∗∗ -0.0240∗∗∗ -0.0243∗∗∗ -0.0243∗∗∗ -0.0238∗∗∗

(-0.006) (-0.006) (-0.006) (-0.006) (-0.006)

IND(Reference: Services)

[1] Agriculture 0.136 0.138 0.135 0.135 0.127

(0.032) (0.032) (0.032) (0.032) (0.030)

[2] Energy -0.571∗∗ -0.575∗∗ -0.596∗∗∗ -0.596∗∗∗ -0.597∗∗∗

(-0.141) (-0.142) (-0.147) (-0.147) (-0.148)

[3] Mining -0.857 -0.857 -0.836 -0.836 -0.866

(-0.211) (-0.211) (-0.206) (-0.206) (-0.213)

[4] Manufacturing -0.177∗∗∗ -0.168∗∗ -0.162∗∗ -0.162∗∗ -0.161∗∗

(-0.043) (-0.041) (-0.039) (-0.039) (-0.039)

[5] Construction 0.443∗∗∗ 0.449∗∗∗ 0.446∗∗∗ 0.446∗∗∗ 0.441∗∗∗

(0.099) (0.101) (0.100) (0.100) (0.099)

[6] Trade -0.442∗∗∗ -0.438∗∗∗ -0.423∗∗∗ -0.423∗∗∗ -0.431∗∗∗

(-0.109) (-0.108) (-0.104) (-0.104) (-0.106)

[7] Transport -0.819∗∗∗ -0.806∗∗∗ -0.803∗∗∗ -0.803∗∗∗ -0.811∗∗∗

(-0.202) (-0.199) (-0.198) (-0.198) (-0.200)

[8] Bank,Insurance -0.0103 -0.0215 -0.0323 -0.0322 -0.0328

(-0.002) (-0.005) (-0.008) (-0.008) (-0.008)

TOJCH(Reference: First job)

Job After Break -0.370∗∗∗ -0.379∗∗∗ -0.419∗∗∗ -0.419∗∗∗ -0.437∗∗∗

(-0.090) (-0.092) (-0.102) (-0.102) (-0.106)

Job With New Employer -0.171 -0.184 -0.174 -0.174 -0.173

(-0.041) (-0.044) (-0.042) (-0.042) (-0.041)

Company Taken Over 0.822∗∗∗ 0.811∗∗∗ 0.707∗∗∗ 0.707∗∗∗ 0.644∗∗∗

(0.168) (0.166) (0.147) (0.147) (0.134)

Changed Job, Same Firm 0.150 0.129 0.0319 0.0319 -0.0657

(0.035) (0.030) (0.007) (0.007) (-0.015)

FSIZE(Reference: GE 2000)

[1] LT 20 0.359∗∗∗ 0.360∗∗∗ 0.405∗∗∗ 0.405∗∗∗ 0.421∗∗∗

(0.087) (0.087) (0.098) (0.098) (0.102)

[2] GE 20 LT 200 0.166∗∗ 0.169∗∗ 0.185∗∗∗ 0.185∗∗∗ 0.204∗∗∗

(0.041) (0.042) (0.046) (0.046) (0.050)

[3] GE 200 LT 2000 0.0676 0.0687 0.0681 0.0683 0.0812

(0.017) (0.017) (0.017) (0.017) (0.020)
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Variables Dependent variable: MATCH

(1) (2) (3) (4) (5)

STATE(Reference: Bavaria)

[1] Schleswig-Holstein -0.0471 -0.0673 -0.0578 -0.0577 -0.0593

(-0.011) (-0.016) (-0.014) (-0.014) (-0.014)

[2] Hamburg -0.00693 -0.0173 -0.0207 -0.0198 -0.0220

(-0.002) (-0.004) (-0.005) (-0.005) (-0.005)

[3] Lower Saxony -0.0378 -0.0427 -0.0461 -0.0461 -0.0509

(-0.009) (-0.010) (-0.011) (-0.011) (-0.012)

[4] Bremen -0.135 -0.113 -0.119 -0.120 -0.110

(-0.033) (-0.027) (-0.029) (-0.029) (-0.027)

[5] North-Rhine-Westfalia 0.00297 0.0110 0.0140 0.0141 0.0100

(0.001) (0.003) (0.003) (0.003) (0.002)

[6] Hessen 0.0849 0.0939 0.0932 0.0932 0.0819

(0.020) (0.022) (0.022) (0.022) (0.020)

[7] Rheinland-Pfalz -0.0889 -0.0824 -0.0813 -0.0813 -0.0866

(-0.022) (-0.020) (-0.020) (-0.020) (-0.021)

[8] Baden-Wuerttemberg -0.0151 0.00864 0.00349 0.00373 0.00191

(-0.004) (0.002) (0.001) (0.001) (0.000)

[10] Saarland -0.313 -0.280 -0.274 -0.273 -0.282

(-0.077) (-0.069) (-0.067) (-0.067) (-0.069)

[11] Berlin -0.119 -0.116 -0.114 -0.114 -0.116

(-0.029) (-0.028) (-0.028) (-0.028) (-0.028)

[12] Brandenburg -0.265∗∗ -0.305∗∗ -0.306∗∗ -0.306∗∗ -0.302∗∗

(-0.065) (-0.075) (-0.075) (-0.075) (-0.074)

[13] Mecklenburg-Vorpommern -0.243∗ -0.289∗ -0.300∗∗ -0.300∗∗ -0.290∗

(-0.060) (-0.071) (-0.074) (-0.074) (-0.071)

[14] Saxony 0.0512 0.00759 0.00316 0.00324 0.00440

(0.012) (0.002) (0.001) (0.001) (0.001)

[15] Saxony-Anhalt -0.0988 -0.143 -0.146 -0.146 -0.134

(-0.024) (-0.035) (-0.038) (-0.036) (-0.033)

[16] Thuringia -0.140 -0.190∗ -0.174 -0.174 -0.169

(-0.034) (-0.047) (-0.043) (-0.043) (-0.041)

Survey year t (Reference: 2000)

2001 0.0617 0.0611 0.0549 0.0548 0.0565

(0.015) (0.015) (0.013) (0.013) (0.014)

2002 0.151 0.146 0.138 0.138 0.126

(0.037) (0.036) (0.034) (0.034) (0.031)

2003 0.0647 0.0591 0.0594 0.0592 0.0555

(0.016) (0.015) (0.015) (0.015) (0.014)

2004 0.0933 0.0922 0.0932 0.0933 0.0788

(0.023) (0.023) (0.023) (0.023) (0.019)

2005 0.130 0.124 0.125 0.124 0.106

(0.032) (0.030) (0.031) (0.030) (0.026)

2006 0.0287 0.0259 0.0209 0.0207 0.00420

(0.007) (0.006) (0.005) (0.005) (0.001)

2007 0.0899 0.0894 0.104 0.103 0.0831

(0.022) (0.022) (0.025) (0.025) (0.020)

2008 0.133 0.133 0.141 0.141 0.119

(0.033) (0.033) (0.035) (0.034) (0.029)

2009 0.232∗∗ 0.238∗∗ 0.246∗∗ 0.246∗∗ 0.224∗

(0.057) (0.058) (0.060) (0.060) (0.054)

2010 0.0676 0.0682 0.0393 0.0393 0.0127

(0.017) (0.017) (0.010) (0.010) (0.003)

2011 0.143 0.143 0.118 0.118 0.0813

(0.035) (0.035) (0.029) (0.029) (0.020)

2012 0.283∗∗ 0.278∗∗ 0.258∗∗ 0.258∗∗ 0.221∗

(0.069) (0.067) (0.063) (0.063) (0.054)

2013 0.233∗ 0.229∗ 0.212∗ 0.212∗ 0.175

(0.057) (0.056) (0.052) (0.052) (0.043)

2014 0.317∗∗∗ 0.340∗∗∗ 0.330∗∗∗ 0.330∗∗∗ 0.288∗∗∗
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Variables Dependent variable: MATCH

(1) (2) (3) (4) (5)

(0.077) (0.082) (0.079) (0.079) (0.069)

ISEI 0.0299∗∗∗ 0.0293∗∗∗ 0.0286∗∗∗ 0.0286∗∗∗ 0.0281∗∗∗

(0.007) (0.007) (0.007) (0.007) (0.007)

MIGBACK (Reference: German national)

Direct migrant -0.351∗∗∗ -0.324∗∗∗ -0.321∗∗∗ -0.314∗∗∗

(-0.087) (-0.080) (-0.079) (-0.077)

Indirect migrant -0.120 -0.110 -0.122 -0.106

(-0.029) (-0.027) (-0.030) (-0.026)

Referrals -0.420∗∗∗ -0.421∗∗∗

(-0.103) (-0.103)

MIGBACK × REF (Reference: German national × Formal channels)

Direct migrant × referrals -0.00752

(-0.002)

Indirect migrant × referrals 0.0370

(0.009)

Chan (Reference: Internet)

Public emp. agency -0.329∗∗∗

(-0.079)

Private emp. agency -0.255

(-0.061)

Newspaper -0.243∗∗

(-0.058)

Referrals -0.534∗∗∗

(-0.130)

Other 0.00896

(0.002)

Constant -1.583∗∗∗ -1.485∗∗∗ -1.293∗∗∗ -1.293∗∗∗ -1.125∗∗∗

LR test(Prob> χ2) 0.00 0.00 0.9666 0.00

Observations 15779 15779 15779 15779 15779

Pseudo R2 0.118 0.119 0.125 0.125 0.127

Marginal effects are in parentheses. Marginal effects for factor levels is the discrete change from the base level.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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