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I 

Solving the Bi-level Problem of a Closed Optimization of Price Zone Configurations in Europe 

using a Genetic Algorithm by Tim Felling 

 

Abstract 

The topic of alternative price zone configurations is frequently discussed in Central Western 

Europe where – so far – national borders coincide with borders of price zones. Reconfiguring 

these price zones is one option in order to improve congestion management, foster trading across 

borders of price zones and, thus, to increase welfare. In view of the significant increase in 

redispatch volumes and costs over the last years due to increasing feed-in from renewable energy 

sources in conjunction with delayed grid expansion, this topic has gained in importance. To 

determine these improved price zone configurations for a large-scale system like Central Western 

Europe, often either configurations based on expert guesses are considered or heuristics using 

approximate criteria like locational marginal prices are used to obtain price zones through 

clustering. In contrast, the present paper formulates a bi-level optimization problem of how to 

determine optimal configurations in terms of system costs and – given the size and nature of the 

problem – solves it with a specially developed genetic algorithm. Resulting price zone 

configurations are compared to both exogenously given, expert-based price zone configurations 

from the Entso-E bidding zone study and endogenously assessed configurations from a 

hierarchical cluster algorithm. Results show that the genetic algorithm achieves best results in 

terms of system costs. Moreover, the comparison with solutions from a hierarchical cluster 

analysis reveals important drawbacks of the latter methodology.  
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1 Introduction 

Electricity markets in Europe are constantly evolving. One driver is the call for further integration, 

notably with the introduction of the so-called Flow-Based market coupling (FBMC) approach for 

the day-ahead (DA) market in 2015. This new form of zonal market coupling superseded the 

previously net transfer capacity- (NTC) based market coupling aiming at a better representation 

of the physics of the underlying electricity grid and an increase of welfare. However, when 

evaluating welfare of European electricity markets, a comprehensive assessment has to go beyond 

the consideration of the DA market and has to comprise redispatch costs as well. Targeted climate 

goals and increasing capacities of flexible, variable renewables put the electricity grid under 

increasing stress. In conjunction with delayed grid expansion this results in increasing redispatch 

(RD) amounts and costs (including also curtailment of renewables), namely around 1.2 billion 

euros in Germany in 2017 compared to 200 million euros in 2014 (c.f. (Bundesnetzagentur, 

2019; Bundesverband der Energie- und Wasserwirtschaft e.V. (BDEW), 2018)). Thus, the role of 

congestion management becomes more important and questions the current market design in 

Europe with zonally coupled price zones (PZs).  

A frequently discussed solution approach in both academia and politics is the reconfiguration of 

price zones to align PZ borders to frequently congested lines instead of national borders. An 

overview over contributions is presented in sec. 2. Entso-E has even launched an official review 

of the current existing zones and investigates potential reconfigured PZs. Yet, no quantitative 

results of market or redispatch models have been presented in the study (ENTSO-E, 2018).  

Given the significance of this topic, the paper at hand presents a methodology to identify 

improved price zone configurations (PZCs) for Central Western Europe (CWE). It formulates a bi-

level optimization problem that aims at finding the optimal PZCs with least system costs. On the 

lower level, the costs of DA market under a FBMC regime and on the upper level the costs for 

redispatch are minimized. The computation is challenging, as the problem is applied on the entire 

grid of CWE. Moreover, the inclusion of the PZC as a decision variable leads to a highly non-

linear problem. To this end, a genetic algorithm is developed to solve the problem. This 

comprises the development of individual genetic operators that are explicitly tailored for the 

particular optimization problem. Given the nature of genetic algorithms, the identified solutions 

are most likely not optimal, but at least improved PZCs. The resulting PZCs are evaluated for their 

system costs in contrast to other configurations. On the one hand, they are compared to PZCs 

from a hierarchical cluster algorithm (HCA) which is based on nodal prices (LMPs) (cf. (Felling 

and Weber, 2018)) and on the other hand to expert-based PZCs from the Bidding Zone Study 

(ENTSO-E, 2018). A nodal pricing set-up serves as another benchmark. Moreover, the 

performance of the algorithm and its genetic operators is investigated.  
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The paper at hand is organized as follows. In sec. 2, extant literature is presented and the novelty 

and contribution of the paper at hand is underlined. Thereafter, in sec. 3, the problem formulation 

of the optimization problem is presented. Subsequently, sec. 4 introduces the corresponding 

solution approach, namely the developed GA. Sec. 5 explains the evaluation methodology. 

Finally, results are presented in sec. 6 while sec. 7 gives a summary and concludes the paper at 

hand.  

2 Literature Review 

In energy economics literature, nodal pricing is frequently considered as the optimal market 

design. Several publications point out its advantages such as (Bjørndal and Jörnsten, 2001, 2007; 

Ehrenmann and Smeers, 2005; Hogan, 1992; Schweppe et al., 1988). However, a zonal pricing 

regime, where borders of price zones usually align with national borders, is still present in CWE 

and a development directly to nodal pricing, as implemented in parts of the US or New Zealand 

(Consentec and Neon, 2018; Biggar, Darryl R.; Hesamzadeh, 2014), is unlikely to materialize 

soon. A more likely approach constitutes the determination of alternative, improved PZCs. 

There are numerous publications that investigate improved PZCs. Relevant existing literature of 

how to identify and evaluate alternative PZCs can be clustered into three streams:  

 The first one relates to exogenously given configurations. In both (Trepper et al., 2015) 

and (Egerer et al., 2016) the authors split Germany into two PZs, a Northern and Southern 

zone. Both studies show that RD amounts can be reduced while price spreads between 

the two zones, except for a few hours, remain relatively small. In these works, as the split 

is given exogenously, focus lays on the assessment and evaluation of these exogenous 

alternative PZCs.  

 The second stream looks at different approaches to assess PZCs endogenously by the use 

of heuristics, i.e. various cluster algorithms. These heuristics are based on different easily 

computable yet approximate criteria. Most algorithms cluster locational marginal prices 

(LMPs) or power transfer distribution factors (PTDFs). LMPs are clustered by (Burstedde, 

2012) who uses a hierarchical algorithm based on Ward’s criterion on a simplified grid 

of CWE. (Breuer, 2014) uses a genetic algorithm to cluster LMPs of the European 

transmission system into PZs1. In (Felling and Weber, 2018), the authors apply a 

hierarchical algorithm using demand- and infeed-weighted nodes to investigate a robust 

configuration for different economic scenarios for CWE. The same algorithm is then 

applied in (Felling et al., 2019) where improved PZCs are compared in a large-scale 

                                                
1 Parts of the dissertation (Breuer, 2014) are published in (Breuer and Moser, 2014; Breuer et al., 2013). 
Henceforth it is referred to (Breuer, 2014) as the main reference.  
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model system. Therein, the authors show that a reconfiguration of PZs can reduce system 

costs significantly, especially due to decreasing redispatch costs (RDC). Further 

algorithms based on LMPs are applied in (Wawrzyniak et al., 2013; Imran and Bialek, 

2008). In contrast to the LMP-based methodology, cluster algorithms based on PTDFs are 

applied by (Bergh et al., 2016; Sarfati et al., 2015; Klos et al., 2014; Kang et al., 2013; 

Wawrzyniak et al., 2013; Duthaler et al., 2012). (Bergh et al., 2016) also investigate 

improved PZCs for CWE and Italy, Czech Republic and Poland. The investigations 

consider the impact of the improved PZCs on zonal network parameters, line flows and 

fuel shares.  

 The third stream also refers to endogenously assessed PZCs. In contrast to the second 

stream, authors set up optimization problems to identify optimal PZCs rather than using 

heuristics based on approximate criteria. (Grimm et al., 2017) formulate a three-level 

problem that includes the configuration of PZs on the first level while on the second and 

third level the DA market and RD measures are optimized. In (Bjørndal and Jörnsten, 

2001) authors also formulate an optimization problem. However, as stated in their paper, 

the problem is hard to solve due to the “non-linear and discrete nature of the problem” 

(Bjørndal and Jørnsten 2001, p. 71). Moreover, the application on a large-scale system of 

such optimizations problems with thousands of nodes is computationally too challenging 

(Felling and Weber, 2018; Breuer, 2014). Thus, (Grimm et al., 2017) investigate networks 

with only up to 28 nodes. The proposed optimization problem in (Bjørndal and Jörnsten, 

2001) remains unsolved. 

The paper at hand combines all three streams while focusing on the combination of stream three 

and two. In line with stream three, the paper presents a bi-level optimization problem of how to 

identify an optimal PZC with the explicit objective function of minimizing overall system costs. 

The DA market and the RD stage are considered on separate levels. However, as improved PZCs 

for the entire extended CWE (CWE+)2 with over 2200 nodes are desired and the inclusion of a 

PZC as a decision variable leads to a highly non-linear problem (cf. sec. 3), a heuristic 

methodology is required to solve this bi-level problem. In line with stream two, a genetic 

algorithm (GA) is developed and applied to the CWE+ electricity grid. The algorithm takes the 

GA of (Breuer, 2014) as a starting point, but differs in its methodology in two respects. On the 

one hand, it directly considers system cost minimization in the objective function (instead of the 

approximate criterion of LMP variation). On the other hand, a new genetic operator is developed 

and existing ones are adapted and tailored to the specific optimization problem. Finally, in line 

with stream one, the PZCs are evaluated against other PZCs. Results are compared to exogenously 

                                                
2 CWE+ comprises Germany, France, Belgium, the Netherlands, Austria and Switzerland  
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given PZCs such as the current PZC in CWE+ but also to the suggested PZCs from the ENTSO-E 

Bidding Zone Study (BZS) (ENTSO-E, 2018). Moreover, in order to prove the effectiveness of the 

developed algorithm, results are compared to PZCs from the LMP-based hierarchical cluster 

algorithm of (Felling and Weber, 2018). The market outcome of a nodal pricing set-up serves as 

a benchmark for all PZCs, as it is often referred to as the theoretically economic optimum (as 

mentioned in the beginning of this section). 

Having said that, one important feature of the algorithm is the consideration of FBMC procedures 

for the DA market coupling. The principles of FBMC and the determination of its parameters have 

been outlined in previous publications. A summary of the main features is given in sec. 3 and, 

for now, we refer to the works of (Felten et al., 2019; Marjanovic et al., 2018; Wyrwoll et al., 

2018; Van den Bergh et al., 2016; Marien et al., 2013) for detailed information.  

In terms of GAs, developments go back to the works of (Holland, 1975) and (Goldberg and 

Holland, 1989). The general advantage of these kinds of algorithms is the applicability to large-

scale problems and that their genetic operators are suitable for different kinds of problems. Their 

solution is likely to be a local optimum instead of the global optimum in most cases. Thus, often 

a trade-off between computation times and optimality has to be considered (Tovey, 2018). An 

overview over GAs is given in, among others, (Mitchell, 1998; Srinivas and Patnaik, 1994).  

In conclusion, the paper at hand is the first that combines all three above-mentioned streams: 

The advantages of a mathematical foundation and objective function that explicitly targets the 

minimization of system costs, the application and development of a heuristic solver, namely a 

GA, and the comparison to other endogenous and exogenous configurations.  

3 Problem Formulation 

This section presents the problem formulation of the developed bi-level problem of identifying 

an optimal PZC.  

3.1 Problem Structure 

Figure 1 presents a general overview of the problem structure. In chronological order and as 

presented in (Grimm et al., 2017), the problem can be formulated as a three-level problem as 

visualized on the left-hand side in Figure 1. At first, a regulator decides on a PZC. Subsequently, 

the DA market is carried out. In case of network congestions, RD actions are undertaken by the 

system operator. 

Subsequently, the problem size is reduced to form a bi-level problem. To this end, we take 

advantage of the fact that the regulator and the system operator share the same objective function 

of minimizing overall system costs. This enables a combination of the third and first level to a 
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new first level, a so-called “system perspective”. A similar approach is also used in (Grimm et al., 

2017). The newly restructured two-level problem is presented on the right-hand side of Figure 1.  

 

Figure 1: Structure of optimization problem 

The minimization of system costs (SC), i.e. minimizing the sum of market clearing costs (MCC) 

and redispatch costs (RDC), constitutes the upper level objective. Given a PZC on the upper level, 

the FBMC optimization problem on the lower level is solved for this given PZC. Its results, mainly 

costs and power plant dispatch, are handed back to the upper level. Therein, the determined 

dispatch is tested for potential violation of network constraints and, thus, whether RD measures 

are necessary.  

3.2 Upper Level Problem  

The upper level of the introduced bi-level problem is described in this section, while the 

following section focusses on the corresponding lower level. Eq. (1) presents the upper level 

objective function namely the minimization of SC, i.e. the sum of both MCC 𝐶𝑔,ℎ
𝐷𝐴 and RDC 

𝐶𝑔,ℎ
𝑅𝐷 per generator is minimized over all considered hours. Notably, no inter-temporal constraints 

are considered. Thus, the bi-level problem can be computed for each hour separately. This is of 

importance for the algorithm introduced later, since it enables a parallelization of the 

computation. The PZC enters the optimization problem in form of the binary matrix 𝑀𝑧,𝑖
𝑁2𝑍 that is 

among the optimization variables. The particular role of the matrix is introduced at the end of 

this section. 

 

(1) 

 min
𝑀𝑧,𝑖
𝑁2𝑍,𝑔𝑔,ℎ

𝑅𝐷+,𝑔𝑔,ℎ
𝑅𝐷−,𝑔𝑔,ℎ

𝐷𝐴
𝐶𝑆𝐶 

with  

𝐶𝑆𝐶 = 𝐶𝐷𝐴 + 𝐶𝑅𝐷 =∑∑𝐶𝑔,ℎ
𝐷𝐴

𝑔ℎ

+ 𝐶𝑔,ℎ
𝑅𝐷 
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The overall RDC 𝐶𝑅𝐷are determined as presented in eq. (2). The variables 𝑔𝑔,ℎ
𝑅𝐷+ and 𝑔𝑔,ℎ

𝑅𝐷− denote 

positive and negative redispatch quantities of a generator g in the hour h. The set H denotes the 

set of considered hours. The output is constrained by the remaining flexibility, i.e. the delta 

between the maximum 𝑔𝑔,ℎ
𝑚𝑎𝑥 and minimum capacity 𝑔𝑔,ℎ

𝑚𝑖𝑛 and the DA-generation 𝑔𝑔,ℎ
𝐷𝐴 . The 

generation constraints are given in eq. (3) and (4).3 Notably, the DA-generation is determined in 

the lower level problem.  

𝐶𝑅𝐷 = ∑ (∑ (𝑐𝑔,ℎ((1 + 𝛾)𝑔𝑔,ℎ
𝑅𝐷+ − (1 − 𝛾)𝑔𝑔,ℎ

𝑅𝐷− ))𝑔ℎ   (2) 

𝑔𝑔,ℎ
𝐷𝐴  − 𝑔𝑔,ℎ

𝑅𝐷− ≥ 𝑔𝑔,ℎ
𝑚𝑖𝑛 ∀ 𝑔 ∈ 𝐺, ℎ ∈ 𝐻 (3) 

𝑔𝑔,ℎ
𝑅𝐷+ + 𝑔𝑔,ℎ

𝐷𝐴 ≤ 𝑔𝑔,ℎ
𝑚𝑎𝑥 ∀𝑔 ∈ 𝐺, ℎ ∈ 𝐻 (4) 

The factor 𝛾 entering the RDC and thus the objective function (cf. eq. (1)) serves as a mark-up 

factor to penalize RD actions. In this paper, 𝛾 is set to 0.2 to account for inefficiencies in the RD 

process and to prevent a re-optimization of the DA market outcome. The RD modelling approach 

is based on (Felling et al., 2019). Therein, the same factor is applied and authors also present a 

sensitivity for different 𝛾- values. Setting 𝛾 = 0 would correspond to fully efficient RD. In that 

case, as (Voswinkel et al., 2019) explain in a similar context, the solution from the DA market 

(i.e. the lower level problem) would not matter, as the DA solution would be backshifted by RD 

to the optimal nodal solution without additional costs (RDC could even be negative). In case of 

perfectly efficient RD, the sum of RDC and MCC is the same for any given PZCs and equals the 

SC of the nodal solution. That is due to the optimality of the nodal solution. It yields the cost-

minimal dispatch that does not violate any constraints (cf. (Voswinkel et al., 2019)).  

The following constraints complete the upper-level equations and correspond to those of a nodal 

pricing set-up. For the RD assessment, the complete electricity grid is considered, i.e. all nodes 

i, lines f, and the complete nodal PTDF 𝐴𝑓,𝑖. Net injections are considered on a nodal level by 

the variable 𝑞𝑖,ℎ. It consists of the generation according to the DA market solution 𝑔𝑔,ℎ
𝐷𝐴  and 

potential curative positive 𝑔𝑔,ℎ
𝑅𝐷+ or negative 𝑔𝑔,ℎ

𝑅𝐷−generation from RD measures, subtracted by 

the corresponding load (demand) value 𝑑𝑖,ℎ (eq. 7). The assignment matrix 𝑀𝑔,𝑖
𝐺2𝑁 (generator-to-

nodes) is used to distribute infeed from generators to nodes. The transmission constraint is given 

by eq. (5). 𝐿𝑓 denotes the thermal capacity of a line f.4 Eq. (6) presents the balance constraint.  

                                                
3 In this paper, the minimum capacity of generator is set to zero. Yet, in an advanced application the 
parameter could differ from zero, e.g. in order to reflect must-run constraints.  
4 The capacity is reduced to 85% to approximate n-1 security.  
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−𝐿𝑓 ≤  ∑ 𝐴𝑓,𝑖𝑞,𝑖,ℎ ≤ 𝐿𝑓 ∀ 𝑓 ∈ 𝐹, ℎ ∈ 𝐻𝑖   
(5) 

∑ 𝑞𝑖,ℎ = 0𝑖  ∀ ℎ ∈ 𝐻  (6) 

𝑞𝑖,ℎ = (∑ (𝑔𝑔,ℎ
𝐷𝐴  +  𝑔𝑔,ℎ

𝑅𝐷+ − 𝑔𝑔,ℎ
𝑅𝐷− )𝑀𝑔,𝑖

𝐺2𝑁) − 𝑑𝑖,ℎ
 
 𝑔  ∀ 𝑖 ∈ 𝐼, ℎ ∈ 𝐻  (7) 

Finally, the aforementioned binary node-to-zone (N2Z) matrix 𝑴𝒛,𝒊
𝑵𝟐𝒁 constitutes the remaining 

optimization variable from eq. (1). In view of the focus on PZCs of this paper, the matrix is of 

particular importance. A PZC may be broken down to an assignment of nodes to zones. This 

assignment is translated into the binary matrix 𝑀𝑧,𝑖
𝑁2𝑍. Every node is assigned to one and only one 

PZ. This is ensured by eq. (8). Each zone consists of at least one node (cf. eq. (9)).  

∑𝑀𝑧,𝑖
𝑁2𝑍 = 1 ∀ 𝑖 ∈ 𝐼; 

𝑧

 (8) 

∑𝑀𝑧,𝑖
𝑁2𝑍 ≥ 1 ∀ 𝑧 ∈ 𝑍; 

𝑖

 (9) 

Furthermore, a set of constraints ensures connectivity of zones meaning that all nodes in a zone 

have to be connected. This can be formulated via a graph-theoretical approach as shown in 

(Grimm et al., 2017). In the present paper, the Matlab® graph toolbox is used during the 

application of the algorithm.  

Finally, the number of price zones is fixed from the outset (cf. eq. (10)). Without that fix, the node-

to-zone matrix 𝑀𝑧,𝑖
𝑁2𝑍 would converge to the optimal solution of a nodal set-up with each node 

being a zone. As aforementioned, the nodal solution is the solution with the lowest costs that 

satisfies all constraints. Due to the mark-up factor 𝛾, any RD actions cause additional costs. 

Hence, the optimizer would try to reduce RD by downsizing zones until either each node is a 

single zone or at least very small zones are identified that do not cause RD in any considered 

time step.  

𝑐𝑎𝑟𝑑(𝑍) = 𝑛𝑍  
 

(10) 

As eq.(1) to (7) suggest, the PZC 𝑀𝑧,𝑖
𝑁2𝑍 does yet not directly affect the upper level problem. Given 

the nodal set-up of the redispatch assessment, the complete grid with every node is considered 

and, thus, is not directly affected by any PZCs. That is different for the lower level problem, as 

the following section shows.  

3.3 Lower Level Problem 

The lower level problem replicates FBMC procedures for the DA market clearing. Given the 

objective of this paper to identify improved PZCs, the focus in the following descriptions lies not 

only on FBMC but also on how the PZC is considered in the optimization problem. Moreover, in 

reference to (Voswinkel et al., 2019), the differences between the upper (nodal) and lower (zonal) 
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level are worked out. As previously indicated, only the DA problem is directly influenced by the 

PZCs and, thus, by the matrix 𝑀𝑧,𝑖
𝑁2𝑍.  

The objective function aims at minimizing MCC on the DA market and formulates as follows: 

The corresponding constraints replicate current FBMC procedures. As several publications 

present how FBMC parameters can be derived and explain their basic functionalities, only the 

key aspects are summarized here (c.f. (Felten et al., 2019; Voswinkel et al., 2019; Marjanovic et 

al., 2018; Wyrwoll et al., 2018; Van den Bergh et al., 2016; Amprion et al., 2014; Marien et al., 

2013)). Two days before delivery, FBMC parameters are generated by linearizing the electricity 

grid around a base-case, the best estimation for the day of delivery (Schavemaker et al., 2008).5 

These parameters comprise zonal PTDFs that correspond to a weighted nodal PTDF (cf. eq. (12)). 

In contrast to the upper level, nodes are not considered individually but via the aggregated zonal 

PTDF. The PZC in terms of 𝑀𝑧,𝑖
𝑁2𝑍 is thereby of importance as it determines the assignment of 

nodes to zones.  

𝐴𝑓,𝑧 = ∑𝐴𝑓,𝑖 ⋅ 𝜅𝑖 ⋅ 𝑀𝑧,𝑖
𝑁2𝑍 ∀ 𝑓 ∈ 𝐹, 𝑧 ∈ 𝑍

𝑖

 (12) 

The applied weights 𝜅𝑖 are called generation shift keys (GSKs). They express how a change of 

the zonal net position 𝑞𝑧,ℎ is shifted on the nodes of a zone. In the paper at hand, so-called 

capacity weighted GSKs are chosen (cf. eq. (13)).6 For these GSKs, the PZC is required in two 

ways. First, to determine the entire generation capacity of a zone 𝐺𝑧
𝑚𝑎𝑥 (cf. eq. (14)). Second, to 

serve as an assignment operator of 𝐺𝑧
𝑚𝑎𝑥 in the denominator of eq. (13).  

𝜅𝑖 =  
∑ (𝑀𝑔,𝑖

𝐺2𝑁⋅𝑔𝑔 
𝑚𝑎𝑥) 𝑔

∑ 𝐺𝑧
𝑚𝑎𝑥⋅𝑀𝑧,𝑖

𝑁2𝑍
𝑧

 ∀ 𝑖 ∈ 𝐼  (13) 

𝐺𝑧
𝑚𝑎𝑥 = ∑ ∑ 𝑀𝑧,𝑖

𝑁2𝑍 ⋅ (𝑀𝑔,𝑖
𝐺2𝑁 ⋅ 𝑔𝑔 

𝑚𝑎𝑥)𝑔𝑖  ∀ 𝑧 ∈ 𝑍  (14) 

For the zonal balance  𝑞𝑧,ℎ the information on the nodal level 𝑞𝑖,ℎ
𝐷𝐴 (cf. eq.(15)) is grouped to a 

zonal level 𝑞𝑧,ℎ (cf. eq. (16)).  

                                                
5 In the present paper, the nodal solution is considered for the base-case assumption. (Wyrwoll et al., 2018) 
apply a two-stage model to generate a (zonal) base-case. (Finck et al., 2018) use an NTC approach.  
6 To derive GSKs, various methodologies exist (cf. (Voswinkel et al., 2019; Dierstein, 2017; Van den Bergh 
et al., 2016)) 

  min
𝑔𝑔
𝐷𝐴

𝐶𝐷𝐴   

with 

𝐶𝐷𝐴 =∑∑𝑐𝑔,ℎ𝑔𝑔,ℎ
𝐷𝐴  

𝑔ℎ

 

(11) 
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𝑞𝑖,ℎ
𝐷𝐴 = (∑  𝑔𝑔,ℎ

𝐷𝐴 ⋅ 𝑀𝑔,𝑖
𝐺2𝑁) − 𝑑𝑖,ℎ  ∀ 𝑖 ∈ 𝐼,  ℎ ∈ 𝐻𝑔   (15) 

𝑞𝑧,ℎ = ∑ 𝑀𝑧,𝑖
𝑁2𝑍 ⋅ 𝑞𝑖,ℎ

𝐷𝐴 ∀ 𝑧 ∈ 𝑍, ℎ ∈ 𝐻𝑖   (16) 

The other important set of parameters are the remaining available margins 𝐿𝑓,ℎ
𝐷𝐴  (RAMs, cf. eq. 

(17)). They reflect the available line capacity given by its thermal capacity and reduced by a 

security margin (so-called flow reliability margin (FRM), 𝐿𝑓
𝐹𝑅𝑀)7 and a reference flow (𝜙𝑓,ℎ

𝐷𝐴). This 

flow represents the delta between the expected flow from the base case (𝜙𝑓,ℎ
𝐵𝐶 , cf. eq. (19)) with 

expected nodal net positions 𝑞𝑖,ℎ
𝐵𝐶 and the flow that results from the zonal approximation (zonal 

PTDF) at the same generation and demand pattern (Felten et al., 2019; Amprion et al., 2014). 

The reference flow results from substituting eq. (19) into eq. (18).  

𝐿𝑓,ℎ
𝐷𝐴 = 𝐿𝑓 − 𝐿𝑓

𝐹𝑅𝑀 − 𝜙𝑓,ℎ
𝐷𝐴 ∀ 𝑓 ∈ 𝐹𝐶𝐵𝐶𝑂, h ∈ 𝐻 (17) 

𝜙𝑓,ℎ
𝐷𝐴 = 𝜙𝑓,ℎ

𝐵𝐶 − ∑𝐴𝑓,𝑧 ∙ 𝑞𝑧,ℎ
𝐵𝐶  ∀ 𝑓 ∈ 𝐹𝐶𝐵𝐶𝑂, h ∈ 𝐻

𝑧

 (18) 

𝜙𝑓,ℎ
𝐵𝐶 = ∑𝐴𝑓,𝑖 ∙ 𝑞𝑖,ℎ

𝐵𝐶  ∀ 𝑓 ∈ 𝐹𝐶𝐵𝐶𝑂, h ∈ 𝐻

𝑧

 
(19) 

 

While at the upper level all lines are considered with their physical capacity (cf. eq. (5) in the 

problem set-up), line constraints at the lower level differ in two ways. Again, the PZC is of 

importance:  

First, not all lines but only a set of critical branches and outages (CBCO) 𝐹𝐶𝐵𝐶𝑂 is considered in 

the FBMC problem formulation. This set, depending on the parametrization of FBMC, consists of 

all cross-border lines and eventually some internal, so-called critical branches.8 Thus, when 

changing the PZCs, the considered cross-border lines and accordingly the set 𝐹𝐶𝐵𝐶𝑂  changes as 

well. Second, as shown in eq. (17), the line capacity is reduced by the reference flow (𝜙𝑓,ℎ
𝐷𝐴) and 

a security margin (𝐿𝑓
𝐹𝑅𝑀). The reference flow is impacted by the zonal PTDF and, thus, the PZC 

as well.  

Having introduced the FBMC parameters and the role of the PZC in terms of 𝑀𝑧,𝑖
𝑁2𝑍, the 

transmission constraint is presented in eq.(20). The line flow, i.e. the product of zonal PTDF and 

zonal net positions, has to be within the transmission capacities. Accordingly, eq. (21) and eq. 

(22) present the balance constraint and the generation constraint.9  

                                                
7 In the paper at hand, we set the FRM 𝐿𝑓

𝐹𝑅𝑀 to zero. (e.g. as applied in (Bjørndal and Bjørndal, 2017)) 
8 In the paper at hand, we only consider cross-border lines (e.g. as also applied in (Bjørndal and Bjørndal, 
2017)). It is currently under discussion, whether internal branches are to be considered in future FBMC (cf. 
(ACER, 2018)) as they shall not hamper trade between price zones.  
9 Again, as in the upper level, 𝑔𝑔 

𝑚𝑖𝑛is set to zero for the application in this paper.  
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−𝐿𝑓,ℎ
𝐷𝐴 ≤ ∑ 𝐴𝑓,𝑧𝑞𝑧,ℎ ≤ 𝐿𝑓,ℎ 

𝐷𝐴  ∀ 𝑓 ∈ 𝐹𝐶𝐵𝐶𝑂, h ∈ 𝐻𝑧   (20) 

∑ 𝑞𝑧,ℎ = 0, ∀ h ∈ 𝐻𝑧   (21) 

𝑔𝑔 
𝑚𝑖𝑛 ≤  𝑔𝑔

𝐷𝐴 ≤ 𝑔𝑔 
𝑚𝑎𝑥∀ 𝑔 ∈ 𝐺  (22) 

In general, constraints at the upper-level (RD) and lower level (DA) are related. The main 

difference lies in the granularity of the considered system. In the RD problem, a nodal set-up, 

including all lines, nodes and their corresponding net positions, is considered. In the DA-

problem, only the zonal net exports and the sub-set of critical branches are considered (see 

above-mentioned (Voswinkel et al., 2019) for a comparison of nodal and zonal system). The PZC, 

respectively the node-to-zone assignment matrix 𝑀𝑧,𝑖
𝑁2𝑍, affects the lower level in several ways. It 

is used to aggregate nodes to zones for the zonal PTDFs (i), for the GSKs (ii), the assessment of 

zonal net-position (iii), the assessment of reference flows (iv) and the set of considered branches 

(v).  

The above listing and corresponding equations highlight that the lower-level problem is (highly) 

non-linear in the matrix 𝑀𝑧,𝑖
𝑁2𝑍 (cf. eq. (12) to (14), (16) to (18), (20)and (21)). Apart from that, 

both problems are linear in the other variables. The non-linearity, in conjunction with the 

problem size, is one of the main reasons for using the GA that is introduced in the following 

section.  

4 Solution Approach: Genetic Algorithm 

While section 3 has presented the formulation of the optimization problem, this section 

introduces the developed solution algorithm. As stated in the introduction, GAs are suitable for 

large-scale applications and nonlinear, mixed integer optimization problems.  

The general idea of GAs is to create a so-called population of candidate solutions. These 

candidates are then iteratively adjusted by different genetic operators. Exemplary classic 

operators are the crossover operator, where parts of two or more candidate solutions are merged, 

or the mutation operator which adjusts single parts of a candidate solution. A mixture of operators 

has to ensure both diversification (or exploration) and intensification (exploitation) of results (c.f. 

(Tovey, 2018; Mitchell, 1998; Holland, 1975)). After each iteration, the candidate solutions with 

the best objective value (also called fitness value) in conjunction with the best solutions from the 

population database are taken to the next iteration. The following subsection explains the 

developed algorithm and presents its developed genetic operators.  
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4.1 General overview 

Figure 2 visualizes the flowchart of the algorithm and its elements. Starting with the initial 

population (start solution) and its evaluation, all steps of the algorithm are presented in the 

following subsections.  

 

Figure 2: Flowchart of genetic algorithm 

4.2 Initial Population  

Starting point of the algorithm is an initial population i.e. a set of candidate solutions. Each 

candidate solution corresponds to a PZC whereby the binary matrix 𝑀𝑧,𝑖
𝑁2𝑍 is rewritten as an 

assignment vector as visualized in Figure 3. A similar approach has been applied in (Breuer, 

2014). 

 

Figure 3: Transformation of node-to-zone matrix to candidate solution 

For the initial population a mixture of randomly chosen PZCs and/or existing, exogenous PZCs 

can be chosen - the corresponding methodology of how to obtain random PZCs is described in 

sub-section 4.4.4. The initial population, as any other later generated candidate solution, is 

directly evaluated. The following sub-section discusses this process.  
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4.3 Evaluation  

Each candidate solution is evaluated to obtain its objective value. As presented in the 

optimization problem of section 3, the objective value corresponds to the total SC.  

However, since a candidate solution sets and fixes the node to zone assignment 𝑀𝑧,𝑖
𝑁2𝑍 , the matrix 

𝑀𝑧,𝑖
𝑁2𝑍 is now a parameter instead of a variable. Hence, the two levels of the presented bi-level 

problem can be solved sequentially. The DA-problem is solved first for each considered hour. 

Subsequently, costs and amounts of RD are assessed. Aside of the key indicator SC, further 

parameters are thereby determined that provide information for the latter applied genetic 

operators. Among these secondary indicators are the following: 

- Adjusted SC per zone: Generation costs per zone are assessed with an adjustment for the net 

(export/import) position of the PZ. The net position is weighted with the average price of 

CWE.  

- Congested lines after DA market clearing (before RD) 

- Shadow prices of lines from DA problem 

- Shadow prices of lines from RD problem 

- Binary, sparse vector of all lines with “ones” indicating a cross-border line to evaluate equality 

of candidate solutions  

Having introduced the concept of PZCs as candidate solutions and their evaluation (computation) 

methodology, the following sub-sections present the four developed genetic operators (sec. 4.1) 

and the selection process (sec. 4.5) indicated by the five blue boxes in Figure 2. 

4.4 Genetic Operators  

In total, four main operators are developed in the course of the implementation of the GA. The 

basic concept of commonly known operators (as “Mutation” or “Crossover”) and operators that 

have been applied in a similar context (such as the “Split-And-Merge” operator (c.f. (Breuer, 

2014)) are taken up and adapted to solve the presented bi-level problem. Especially, the 

“Crossover” and “Split-And-Merge” operators are reinterpreted and individually adjusted, i.e. 

they incorporate the introduced indicators (cf. sec. 4.3) to support the convergence towards an 

improved solution. In addition, the "Random" operator is newly developed to ensure the 

diversification of results. As the following subsections introduce, each operator puts a different 

emphasis on the above-introduced directions of diversification or intensification of results. 

4.4.1 Mutation 

This operator aims at improving local optima, thus intensification of results. Similar to the 

mutation operator in (Breuer, 2014), a random number (up to a pre-defined maximum number) 
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of border-nodes of a randomly chosen PZC receive a new PZ-ID, namely the PZ-ID of the 

corresponding neighboring PZ. In the latter application, for up to three PZCs a range of one to 

five nodes are selected and receive a new PZ-ID. 

4.4.2 Crossover 

The goal of this operator is, one the one hand, to create relatively new candidate solutions, and, 

on the other hand, to improve the selected candidate solutions. Thus, the operator aims at a 

combination of both diversification and intensification. The operator works as follows: A number 

of random candidate solutions is selected. Subsequently, the n zones of the first candidate 

solution with the least contribution to (adjusted) SC are taken and form the first zones of the new 

solution. The contribution of a zone is determined by its adjusted SC (c.f. section 4.3) divided by 

the square of the zone’s number of nodes. The division ensures that larger zones with comparable 

costs per node are preferred over smaller zones. Thereafter, the n zones from the next candidate 

solution with the least contribution to SC are taken, provided that these zones do not - or only 

partly - contain nodes that already have been taken. The operator stops, when all nodes have 

been assigned to a zone or the maximum number of zones is reached. The repair function (c.f. 

sec. 4.6) handles cases where nodes have not been assigned to a zone or the maximum number 

of zones has not been reached. 

In the later application between two and five candidate solutions are selected while the number 

of n zones, that are selected during each iteration, is set to one. Notably, only zones that are 

different, i.e. have different cross-border lines, are eligible for the crossover operator.  

4.4.3 Split-and-Merge 

The idea of the Split-and-Merge operator is to improve a candidate solution by adjusting the set 

of cross-border lines. This eventually enables a better congestion management by considering 

these lines directly in the FBMC problem. Therefore, as in (Breuer, 2014), one zone is split along 

a chosen line while at the same time two zones are merged. Thus, this operator focuses on both 

intensification and diversification of results, while the emphasis on intensification is higher.  

To find a suitable line that splits a zone, the following approach is developed. One or a 

combination of the following criteria is randomly selected: Either a zone with high redispatch 

costs is chosen first and then a line of this zone is selected second or in turn, a line is selected 

first that determines the zone to be split. The probability for one of the two variants is 50%. The 

line is selected from a list of lines with (i) most overloaded lines before RD, (ii) highest shadow 

prices in the DA-problem or (iii) highest shadow prices in the RD-problem. With a (pre-defined) 

low probability – e.g. 1% in the later application - a random line is chosen. 
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Analogously, two zones are merged that are connected by lines that are, in the best case, neither 

congested before RD nor have shadow prices in either DA or RD problem.  

4.4.4 Random 

This operator ensures the diversification of solutions, thus prevents the algorithm to run in a local 

minimum. Every n iterations a set of random candidate solutions is created and added to the 

population database. Moreover, a set of random candidate solutions form the initial population 

database.  

The operator works as follows. A particular number of nodes (equal to the number of PZs) is 

randomly chosen from all nodes. Each of these nodes forms the nucleus for a new zone. 

Subsequently, all direct neighbours to a node, if not yet belonging to another zone, are added to 

the zone of the node. This is repeated iteratively for each of the selected nodes until each node 

is assigned to a zone. 

Randomly generated solutions are likely to have comparatively high objective values, especially 

when the algorithm has already developed a good solution over some iterations. To avoid that 

the random candidate solutions are immediately removed from the population database in the 

selection process, they get the opportunity to evolve over a limited number n of iterations before 

they compete with the other candidate solutions in the selection process. In the later application, 

n is set to 20. 

4.5 Selection  

In contrast to the above-described operators, the selection process does not adjust the candidate 

solutions. The process determines which of the new candidate solutions are taken to the next 

iteration, thus added to the population database and, analogously, which of the candidate 

solutions from the population database are replaced by new candidate solutions. 

More specifically, a pre-defined number of the best solutions is taken from each, the database of 

existing solutions and the new solutions, while the rest is chosen from the aggregate of both new 

candidate solutions and population database. An exception, as described in section 4.4.4, are 

the randomly assessed candidate solutions. In the later application, 100 candidate solutions in 

each iteration form a new population. Five of them are selected of each the database and the 

new solutions while the remaining candidate solutions are chosen from the aggregate of both 

sets.  

4.6 Repair Function 

Comparable to the repair function in (Breuer, 2014), the developed repair function in this paper 

checks any violation of constraints of the node-to-zone matrix. Typical violations are nodes or 
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areas without a zone (i.e. without a PZ-ID) or zones consisting of two or more separate areas that 

are not physically connected by a transmission line. In this case, the repair function repairs the 

candidate solution with least invasive effort. Separate nodes and areas that have not been 

assigned to a zone are connected to the nearest neighboring zone. In case a zone consists of two 

separate areas that are not physically connected, the smaller area is connected to a neighboring 

zone. 

Alternatively, solutions with violated constraints could be penalized with an additional term that 

is added to the objective function. However, for this algorithm computation time is crucial. 

Therefore, this repair function is directly applied before the candidate solution is evaluated.  

5 Application Case and Assessment Approach 

Following the methodological description, this section introduces the investigated scenarios and 

sensitivities and the key indicators that are applied for their assessment. 

5.1 Scenarios and Sensitivities 

Results are assessed for the year 2020 for all countries where currently FBMC is carried out plus 

Switzerland (i.e. CWE+). The grid model considers the entire geographical scope and comprises 

about 2300 nodes and 4400 branches and transformers. Grid expansion is considered based on 

(Amprion et al., 2017) while amounts of infeed from renewables are modelled based on (R2b, 

2017).10  

The nodal set-up, as explained in the literature review (cf. section 2), serves as benchmark for all 

investigated PZCs. Aside from the endogenous PZCs from the GA, PZCs from the HCA from 

(Felling and Weber, 2018) are considered for comparison. In addition, historical PZCs, i.e. the 

business-as-usual configuration (BAU-C) and the former common German-Austrian PZC, and 

expert-based PZCs from the Bidding Zone Study serve as references. The following sub-section 

shortly sketches the considered PZCs. 

5.1.1 Nodal set-up 

The SC of the nodal set-up serve as the reference value when comparing different PZCs. Costs of 

the other PZCs are denoted as the delta to the costs of the nodal set-up. That eases the 

interpretation of results and visualizes the difference to the best-case scenario.  

5.1.2 Endogenous price zone configurations by a hierarchical cluster algorithm 

To evaluate potential improvements of the GA in reference to existing cluster algorithms from the 

second stream of literature, results are compared to solutions from the HCA developed in (Felling 

                                                
10 The regarded scenario and grid model is the same that is investigated in (Voswinkel et al., 2019). 
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and Weber, 2018). For the detailed methodology, we refer to that paper and only briefly 

summarize the key functionalities here: The algorithm clusters LMPs based on a set of 

representative hours (possibly taken from different years) into zones. The objective function aims 

at the minimization of price variations within zones. Thus, the algorithm places congested lines, 

on which prices diverge, rather between than within zones. 

5.1.3 Exogenous price zone configurations  

By comparing the solutions of the GA and HCA to exogenous PZCs, the potential improvement 

of newly identified PZCs can be evaluated, especially in comparison to the BAU-C. Moreover, 

the accuracy of PZCs based on expert-guesses can be examined. Among the exogenous PZCs are 

the following: 

Real or historical PZCs:  

- GER/AT split: Business as usual with separation of German and Austrian PZ 

- GER/AT common: The former BAU-C with a common German and Austrian PZ 

Approximated expert guesses from the BZS11: 

- Big Country Split 1: Split of Germany and France into a northern and southern zone each 

- Big Country Split 2: Split of Germany and France into three zones each 

- GER SN: The German split of “Big Country Split 1” with a common French PZ.  

- GER SNW: The corresponding split of “Big Country Split 2” with a common French PZ 

- Small Country Merge: Belgium and Netherlands are merged to a single PZ 

5.2 Indicators 

Obviously, SC are the most important key figure, since they are directly taken into account in the 

objective function of the GA. To evaluate these costs, the SC are broken down into RDC and 

MCC and compared to SC of the above-mentioned PZCs. 

Aside of SC, rents and distributional effects are of high practical importance, especially given the 

political relevance of the topic. Therefore, equations (23)-(25) present the equations for producer, 

consumer and congestion rents.  

In eq. (23) each generator is assigned its zonal DA price 𝑝𝑧,ℎ
𝐷𝐴 by multiplication with the 

assignment matrices 𝑀𝑔,𝑖
𝐺2𝑁𝑀𝑧,𝑖

𝑁2𝑍. Cumulating the values of each generator yields the overall 

producer rent. In turn, eq. (24) presents the consumer rent. The value of loss load 𝑝𝑙𝑜𝑠𝑠−𝑙𝑜𝑎𝑑 is 

                                                
11 Notably, the PZCs from the BZS are approximated given the descriptions and figures in the BZS. A 
detailed node-to-zone assignment is not available and would not perfectly fit as different underlying grid 
models are used. In addition, the geographical scope in the BZS exceeds the present scope. Thus, results 
of these PZCs will and have to be interpreted with care.  
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subtracted by the zonal price at each node (𝑝𝑧,ℎ
𝐷𝐴𝑀𝑧,𝑖

𝑁2𝑍) and summed over all nodes and hours. 

The value of 𝑝𝑙𝑜𝑠𝑠−𝑙𝑜𝑎𝑑 is set to 1000 €/MWh, however, as we only look at differences between 

rents of PZCs, this value cancels out. Eq. (25) finally presents the congestion rent as last relevant 

equation.  

𝑅
𝑝𝑟𝑜𝑑

=  ∑∑(∑∑(𝑝𝑧,ℎ
𝐷𝐴𝑀𝑔,𝑖

𝐺2𝑁𝑀𝑧,𝑖
𝑁2𝑍)

𝑍𝐼

− 𝑐𝑔,ℎ)𝑔𝑔,ℎ
𝐷𝐴

𝐺

 

𝐻

 (23) 

𝑅𝑐𝑜𝑛𝑠 = ∑∑∑(𝑝𝑙𝑜𝑠𝑠−𝑙𝑜𝑎𝑑 − 𝑝𝑧,ℎ
𝐷𝐴𝑀𝑧,𝑖

𝑁2𝑍)𝑑𝑖,ℎ
𝐷𝐴

𝐼𝑍

 

𝐻

 (24) 

𝑅
𝑐𝑜𝑛𝑔

= ∑∑(𝑞𝑧,ℎ𝑝𝑧,ℎ
𝐷𝐴)

𝐻𝑍

 (25) 

Based on these equations, section 6.2.5 presents the rents for different PZCs.  

6 Results 

This section presents both the performance evaluation of the GA (sec. 6.1) and the assessment of 

its results (sec. 6.2), i.e. the resulting PZCs in comparison to other PZCs using the proposed 

indicators (cf. 5.2 ).  

At first, the performance of the algorithm is investigated to illustrate its actual functionality and 

the convergence of its objective value to a (local) optimum. In conjunction with these results, 

computation times of the algorithm are presented, as they are crucial for the latter application. 

Furthermore, the efficiency of the genetic operators, both in interaction and separately, is 

examined. Second, the focus is on the determined PZCs from the GA and their assessment, i.e. 

the comparison to the nodal solution, to PZCs from the HCA and to exogenously given PZCs. 

The key indicators presented in section 5.2 serve as assessment criteria. Thereafter, conclusions 

are drawn regarding the solutions of the GA by comparing them to PZCs from the HCA and 

expert-based PZCs.  

6.1 Performance Evaluation 

As aforementioned, the computational performance of the algorithm is investigated at first, 

because it constrains, as shown in the following subsection, the number of considered hours H 

in conjunction with the number of iterations and the population size. For all of the evaluations 

in this section, PZCs with six zones are considered. This corresponds to the number of PZ in the 

BAU-C. 
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6.1.1 Computation time  

One key advantage of the GA is that its computation can be highly parallelized. The overall 

computation time depends on the available system. Table 1 presents computation times for one 

iteration, one candidate solution and one single hour (as stated in section 3.2, the assessment of 

single hours is possible as no intertemporal constraints are considered). Computation of RD takes 

about 30 times longer than the assessment of DA markets. This is due to the difference in the 

number of constraints and decision variables in the two problems. While in the DA problem a 

limited set of lines is considered, the RD problem considers all lines, nodes and generators 

individually (c.f. section 3). 

Table 1 Computation time 

           ---- Computation time per single hour for one candidate solution [s] 

Day-Ahead problem Approx. 0.03 – 0.04 s 

RD problem Approx. 0.9 – 1.3 s 

Total  Approx. 0.9 – 1.4 s 

To get an idea of the overall computation time, the average duration for a set-up (as later used in 

the analysis) for 200 representative hours and 100 candidate solutions would take about 7.2 

hours for only one iteration. When parallelized on six virtual machines with eight cores each, 

computation time for one iteration drops to about nine minutes.  

However, computation time is still too high for an assessment of PZCs based on an entire year 

given the available computational resources. Thus, for the following analysis of the three main 

operators, only 10 representative hours are considered to investigate the effects of up to 1000 

iterations. A sensitivity analysis for the effect of different numbers of considered hours on the 

objective value will be presented thereafter and conclude the performance investigation12.  

6.1.2 Effectivity of single operators 

To investigate the effectivity of the operators and to get a general idea of the functionality of the 

algorithm, Figure 4 presents the development of the objective value (y-axis) for the ten 

representative hours over the number of iterations (x-axis) for the three operators “Crossover”, 

“Mutation” and “Split-And-Merge” as well as their combination (solid lines). We do not consider 

the “Random” operator, as its isolated application without the three other operators is of limited 

informative value.  

                                                
12 To assess the set representative hours H, we use k-means algorithm to cluster the residual load of the six 
PZ from the BAU-C into representative hours. 
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The dotted horizontal lines support a visual interpretation showing a corridor of the objective 

values between the optimal nodal solution (blue dots), the solution from the HCA13 (yellow dots) 

and the BAU-C. 

 

Figure 4: Development of objective value depending on number of iterations 

The solid blue line indicates the development of the objective value using all three mentioned 

operators14 while the other lines indicate the development when only one of the three genetic 

operators, “Split-and-Merge”, “Crossover” and “Mutation”, is applied. All four applications use 

identical start solutions consisting of a set of random solutions, the BAU-C and the solution from 

the HCA. As the start of the four lines indicates (x = 0), the PZC from the HCA has the lowest 

objective value, i.e. is the best solution in the initial population.  

The slope of the blue line, when all fours operators are applied, is the steepest and leads to the 

lowest objective value in the end. Notably, the curve of the “Crossover” operator has a 

comparable gradient in the beginning, yet reaches a first plateau after about 30 iterations. The 

objective value from thereon even remains unchanged as the diversity of remaining candidate 

solutions decreases until all candidate solutions are the same. In the later application, this effect 

is avoided by mixing the operators and adding candidate solutions from the random operator. 

The curve of the mutation operator (yellow) drops slowly but constantly and reaches the second-

best objective value after 1000 iterations. It even reaches the same objective value as the blue 

line around iteration 300. This course is due to its feature that only cross-border nodes are 

changed. Thus, changes in the PZC between iterations are not as drastic as potential changes 

from the other operators. In contrast, changes in the shape of PZs can be more drastic when using 

                                                
13 The HCA is also based on the LMPs of the same considered ten hours 
14 Each of the three operators receives 30% of the candidate solutions, while 10% are added by the 
“Random” operator.  
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the “Split-and-Merge” operator (orange line). Finally, all solutions reach objective values after 

1000 iterations that are an improvement in comparison to the solution from the HCA and the 

BAU-C.  

A visualization of the four resulting PZCs is given in Figure 5 - Figure 8. All Figures have 

similarities such as a zone encompassing large parts of France and a zone connecting Southern 

Germany and Austria and (varying) parts of Switzerland. Moreover, the final PZCs for the “Only 

Mutation” and “All operators” application are, as their objective value suggests, very alike. 

Regarding the PZCs from the “Only Split-and-Merge” and “Only Crossover”, there are bigger 

differences in Northern Germany and the BeNeLux-Countries.  

    

Figure 5: PZC using only 
Split-And-Merge 

Figure 6: PZC using only 
Crossover 

Figure 7: PZC using only 
mutation 

Figure 8: PZC using all 
operators 

Notably, by definition of a GA, there is a lot of randomness involved during the application. 

Hence, the visualized examples only indicate a typical course of the operators.  

Having introduced the basic features of the algorithm, the following section investigates the effect 

of considering different numbers of representative hours.  

6.1.3 Evaluation of the number of representative hours 

The results of section 6.1.2 are based on 10 representative hours. In this section, results for 10, 

25, 100 and 200 representative hours are compared to evaluate the effect of using such a limited 

number of representative hours. To this end, the SC of each PZC are not only assessed for its 

underlying set of representative hours (“In Sample”), but also for the other sets of representative 

hours and the entire year (“Out of Sample”).  

Starting point of the investigation are the resulting PZCs. Figure 9 – Figure 11 present the 

corresponding shapes. The PZC based on 10 hours remains the same as given in Figure 8. 
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Figure 9: PZC based on 25 hours 

 

Figure 10: PZC based on 100 hours 

 

Figure 11: PZC based on 200 hours 

Again, PZCs have similarities such as a joint German-Austrian PZ and a large French PZ. Main 

differences are found in Alsace (close to the French-German Border) and in Switzerland or in the 

assignment of nodes to zones in the BeNeLux area. Northern Germany is only split in more zones 

for the case of 25 hours.  

The different shapes affect the corresponding SC as shown in Figure 12. The groups of bars 

indicate the results of the four different PZCs for in total five different sets of representative hours: 

The four sets from the GA application and an additional set that comprises the entire year (right-

hand side). The presented costs are the average hourly delta to the cost from the optimal solution 

from the nodal set-up for the same corresponding set of hours. The absolute difference in SC is 

hence divided by the corresponding number of considered hours to ease comparison of results. 

Within each group, each bar shows the delta for the PZC based on 10, 25, 100 and 200 

evaluation hours. The star in each group highlights the lowest delta to the nodal SC.  

 

Figure 12: SC for PZCs based on different representative hours 

As the stars visualizes, each PZC is the best configuration for its set of representative hours. When 

evaluating over the entire year, the difference in costs amounts to almost 30 m€ (i.e. around 

12.000

14.000

16.000

18.000

20.000

22.000

24.000

26.000

28.000

30.000

  SC 8760 h  SC 200 h  SC 10 h   SC 25 h   SC 100 h

GA based on 10h

...200h

...25h

...100h

 
to

N
o

d
a
lS

C
 [
€

/h
]

SC Nodal 32.15 m€ 68.96 m€ 132.62 m€ 254.80 m€ 11.34 b€

 Electronic copy available at: https://ssrn.com/abstract=3425831 



 
 

22 

3.7 k€/h). In total, the SC of the PZC based on 200 hours is only around 175 m€ more expensive 

than the nodal solution (i.e. around 20 k€/h).  

The investigation of different numbers of representative hours shows that the GA and its four 

operators work effectively together. Moreover, the assessments indicate that a higher number of 

considered hours improves the SC for the entire year (“Out of Sample”) and provides no evidence 

of local instead of global optima being selected. Differences are observed both regarding SC and 

shapes of PZCs. Since considering more hours improves SC for the entire year significantly, the 

following section now investigates PZC based on 200 hours. Moreover, the subsequent section 

goes into more detail regarding RDC and MCC and by extending the range of considered PZCs 

to further exogenously and endogenously given PZCs.15 

6.2 Assessment of PZCs   

The previous section has focused on the performance of the algorithm. Subsequently, its results, 

i.e. the PZCs, are examined. Starting point of the following investigations is the presented PZC 

based on 200 representative hours for six PZs.  

The investigation is now extended in two directions.  

1. The set of considered PZCs is enlarged by using the GA to determine configurations with 

12 and 24 zones, i.e. the double respectively quadruple number of PZs compared to the 

previous PZC.  

2. The set of PZCs is enlarged that the solutions from the GA are compared to. Next to the 

nodal solution, the BAU-C and solutions from the HCA, we now also investigate 

exogenously given, expert-based PZCs from the BZS. 

The next sub-section commences by introducing the shape of the PZC for 12 and 24 zones before 

their results are compared to (a) the resulting PZCs from the HCA and (b) exogenously given 

PZCs. All investigations assess costs for an entire year. 

6.2.1 Results from the Genetic Algorithm  

Figure 13 and Figure 14 present the PZC for 12 and 24 PZ. The PZC for six PZs remains 

unchanged (cf. Figure 11).  

                                                
15 The maximum number of iterations remains at 1000. However, usually the best configuration, 
comparable to the results presented in Figure 4 , is identified after 300-400 iterations.  

 Electronic copy available at: https://ssrn.com/abstract=3425831 



 

23 

 

Figure 13: Shape of PZC with 12 PZ from GA (GA 12-
ImpC) 

 

Figure 14: Shape of PZC with 24 zones from GA (GA 
24-ImpC) 

In comparison to the improved configuration with 6 zones (short: 6-ImpC) now parts from Austria 

separate from Southern Germany and the French PZ splits into more than one PZ. Thereby the 

borders of PZs of the 6-ImpC, 12-ImpC and 24-ImpC are independent from each other in contrast 

to solutions from the HCA as will be shown in the following subsection. Due the hierarchical (or 

greedy) structure of the HCA, PZs from a configuration with a smaller number of zones are always 

subsets from PZCs with more zones. This is not the case for the GA.  

Similar to sections 6.1.2 and 6.1.3, the different shapes (and numbers) of PZs imply variations in 

SC. Figure 15 presents the costs components of RDC, MCC and SC. For now, the focus is on the 

bars of the “Genetic Algorithm” group on the left. Again, costs are denoted as the delta to the 

nodal SC for an entire year. For each configuration, three bars indicate the MCC (dark blue), the 

RDC (light blue) and the SC (red) as difference to the optimal nodal solution. As the DA market 

problem is less restrictive than the nodal problem, MCC are always lower compared to the nodal 

solution. However, these savings come at costs in terms of RDC. These are non-existent in the 

nodal set-up (at least as it is modelled here). Together, MCC and RDC add up to the SC that are 

visualized in the third, red column.  

As expected, when increasing the number of PZs, costs decrease. By doubling or quadrupling the 

number of PZs, the delta to the nodal system decreases by more than 50% to 86 m€. The DA 

problem gets more restrictive, thus MCC increase (i.e. the delta to nodal decreases) while RDC 

decrease. Since the decrease in RDC is stronger, the overall SC decrease as well.  

Having introduced the three PZCs from the GA, their results are now compared to the results 

from the HCA in the following subsection. 
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Figure 15: MCC, RDC and SC for different PZCs 

6.2.2 Comparison to other endogenous PZCs 

Again, we look at the shape of PZCs before we assess their corresponding costs. Figure 16 to 

Figure 18 present the solution from the HCA based on the same 200 hours. 

As mentioned in section 6.2.1, the PZs from the HCA 24-ImpC and the PZs from the HCA 12-

ImpC are subsets of the HCA 6-ImpC. For example, zones #8, #9, #10 and #11 in the HCA 12-

ImpC form together PZ #5 in the HCA 6-ImpC. Apart of that, PZs themselves differ a lot when 

comparing the shape of PZs from HCA to the GA.  

 

Figure 16: Improved PZC for 6 PZ 
from HCA (HCA 6-ImpC) 

 

Figure 17: Improved PZC for 12 PZ 
from HCA (HCA 12-ImpC) 

 

Figure 18: Improved PZC for 24 PZ 
from HCA (HCA 24-ImpC) 

In terms of SC, neither of the PZCs from the HCA achieves as good results as the GA solutions. 

The costs are denoted in the group “Hierarchical Cluster Algorithm” in Figure 15 next to the 

previously presented results from the GA. In fact, when comparing the results of the GA and HCA 
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with the same number of zones, cost differences arise to 127 m€ for the 6-ImpC, around 100 m€ 

for the 12- and 137 m€ for the 24-ImpC, respectively.  

On the other hand, the following point is worth noticing: All solutions from the HCA achieve 

best results in terms of RDC. To push further - and without going into too much detail regarding 

the exogenous PZCs - the RDC are even the lowest throughout all considered PZCs. Thus, the 

comparably high SC result from high MCC. This effect explains as follows: The algorithm aims at 

finding zones with similar prices, thus placing congested lines rather between than within PZs. 

This goal is achieved, as the low RDC suggest. However, these PZ borders lead to unnecessary 

high MCC, probably as the DA-problem gets too restrictive. A similar effect is observed and 

described in (Felling et al., 2019). Thus, the algorithm achieves its goal of identifying congestions 

and placing these lines between zones, however, as market costs are not in the scope of the 

algorithm, this eventually leads to high overall costs. Hence, the application of this kind of 

algorithms that are based on approximate criterions such as LMPs is questionable when 

determining PZCs.  

6.2.3 Comparison to exogenously given PZCs 

The previous two sub-sections compared the results from the endogenously assessed PZCs. The 

following section now puts focus on exogenous PZCs. These comprise the BAU-C and the former 

BAU-C with a common German-Austrian PZ. Moreover, results are assessed for the expert-based 

PZCs from the BZS that have been introduced in section 5.1.3.  

As the PZCs for the BAU cases are straightforward, Figure 19 and Figure 20 present the expert-

based PZCs for the so-called “Big Country Split 1” and “2”. 

 

Figure 19: Big Country Split 1 

 

Figure 20: Big Country Split 2 

A split of the French and German PZs into two respectively three zones each leads to savings of 

around 27 m€ for the “Big Country Split 1” and 35 m€ for the “Big Country Split 2” in reference 
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to the BAU-C. Notably, the savings for the same German splits with a united French PZ even 

achieve slightly better results including slightly lower RDC (around 2 m€). (However, this does 

not hold for the absolute RD amounts as the following sub-section reveals.) The split of the 

German-Austrian PZ saves 7 m€ in SC while RDC drop by about 11 m€. These amounts appear 

not that significant. Reasons for the rather low savings could be the analyzed scenario 2020 with 

an optimistic grid expansion but also the inefficiency of the proposed exogenous splits.  

When comparing these results to the PZCs from the GA, the latter achieves higher savings. Just 

by reshaping the borders of the BAU-C and, thus, maintaining six zones, SC drop by 123 m€. 

When increasing the number of PZs, costs drop even further to 157 m€ for the 12-ImpC and 

212 m€ for the 24-ImpC, respectively. In relation the overall SC of the BAU-C (11.65 b€) this 

corresponds to savings of 1.8%.  

Notably, SC from the 6-ImpC from the HCA are between the two BAU-C. Nevertheless, as 

anticipated in section 6.2.2, RDC drop by 400 m€ and are the lowest for any PZC with 6 zones. 

As aforementioned, the RDC for the 24-ImpC are the lowest throughout all PZCs. In the following 

section, the RD amounts corresponding to the presented costs are shown.  

6.2.4 Impact on redispatch amounts 

While Figure 15 showed the RDC, Figure 21 presents the corresponding RD amounts (in positive 

direction) in TWh for each PZC. To ease interpretation of results, PZCs are ordered in the same 

way. The order of RDC does not necessarily corresponds to the order of quantities. The 24-ImpC 

from the HCA has least RDC, yet the 24-ImpC from the GA achieves lowest quantities, as the 

blue star indicates. This also holds for the 12-ImpC from the HCA and GA. RD amounts of the 

Big Country Splits are lower than the amounts of the corresponding German splits while it is the 

other way around for RDC. However, differences are rather small.  
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Figure 21: Redispatch amounts for all PZCs [in positive direction in TWh] 

In total, RD amounts drop from 26,9 TWh in BAU-C by reshaping the borders to the 6-ImpC (GA) 

to 17,7 TWh. When adding more zones, RD amounts drop further to 8.7 TWh. That is less than 

one third of the quantities of the BAU-C. 

6.2.5 Impact on rents  

Figure 22 presents the producer, consumer and congestion rents for selected PZCs for CWE. 

Figure 22 only shows the rents for the two German Splits from the exogenous PZCs, as differences 

are rather small in contrast to the endogenous PZCs. In contrast to the previous sections, Figure 

22 indicates the rents of the market clearing stage in reference to the BAU-C. The delta to the 

nodal system is denoted at the bottom of the figure. Under the chosen assumption of cost-based 

redispatch, no rents arise at the redispatch stage. Yet, obviously the redispatch costs have to be 

borne by some of the stakeholders – according to the current rules in Germany these costs are 

passed through by the grid operators to the consumers. 
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Figure 22: Rents for selected PZCs for entire CWE. 

Overall, the decreases of producer rents are striking, especially for the nodal system and the 

configurations from the HCA. The higher the number of zones, the better local scarcity and 

congestions are reflected in market prices. This causes especially producer rents of RES to 

decrease massively. Figure 23 visualizes producer rents for Germany in reference to the BAU-C. 

Rents from wind generation, both from On- and Offshore, decrease significantly. In the nodal 

system, producer rents drop by almost 3 b€. In turn, producer rents from conventional power 

plants increase slightly. Effects for the exogenous PZCs are rather small.  

 

Figure 23: Producer rents for Germany 
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In parallel to decreasing producer rents, consumer rents increase in almost all cases. Table 2 

presents consumer rents for CWE by country, again, in reference to the BAU-C. In the 24-ImpC 

(GA), consumers in Germany benefit from decreasing prices with a total of around 600 m€. In 

the nodal solution, the consumer rent is even higher (>1 b€). Notably, the 12-ImpC (GA) is the 

only case of the endogenous PZCs where total consumer rent is negative. This is due to the shape 

of PZs. In the 12-ImpC (GA), PZ #2 stretches from France overs southern Germany towards 

Austria (cf. Figure 13). Hence, prices increase, especially for the French region that usually profits 

from local low-cost nuclear power stations. This causes consumer rent in France to drop 

significantly (-357 m€) in comparison to the 6-ImpC (-69 m€) and 24-ImpC (-188 m€) from the 

GA. 

Finally, congestions rents, as expected, rise when switching to a nodal pricing regime or 

endogenous zones with more price zones.  

Table 2: Consumer rent for CWE on PZ level (in m€) 
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AT -5,3 -20,9 -16,3 -8,2 -13,4 -19,7 -13,4 -7,3 -8,9 

BE -54,1 43,7 10,0 47,3 15,1 28,5 -4,8 -2,7 11,0 

CH 40,4 75,7 63,8 73,4 45,5 34,6 36,6 3,8 -1,7 

DE 1029,8 242,0 244,6 607,3 909,1 1006,0 1004,7 3,7 -2,7 

FR -315,9 -69,2 -357,5 -188,7 -238,0 -217,4 -224,5 5,1 -15,9 

BE 37,4 22,2 16,3 104,6 36,6 44,6 143,4 -10,3 -29,2 

Total 732,2 293,5 -39,1 635,6 755,0 876,5 942,0 -7,6 -47,6 

 

7 Conclusion and Outlook 

The paper at hand introduces a novel approach to identify improved PZCs, namely a bi-level 

optimization problem. For its solution, a problem-specific and tailored genetic algorithm is 

developed. The algorithm is applied to the entire system of CWE+. Results show that the new 

algorithm achieves the best results in terms of overall SC in comparison to all other investigated 

PZCs. In reference to the BAU-C, costs decrease by 123 m€, 157 m€ and 178 m€ for 6, 12, and 

24 zones, respectively. Just by reshaping the borders of the BAU-C and maintaining six PZs 

significant savings in both RDC and SC are realized. Moreover, the presented approach is the 

first that combines all three introduced streams in the extant literature. 

In reference to the hierarchical algorithm of (Felling and Weber, 2018), results show that 

minimizing RD does not necessarily lead to minimal SC. While RDC of the HCA are lowest in 

comparison to the solutions of the GA, their overall SC are significantly higher. This underlines 
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the importance of considering both MCC and RDC for an evaluation of PZCs and, 

correspondingly, including both costs in the objective function of an algorithm. It also 

substantiates the findings regarding the HCA of (Felling et al., 2019) that peculiarities of FBMC 

should be considered when determining new PZCs.  

A comparable HCA that does neither consider overall SC nor FBMC in its objective function has 

been proposed in the Bidding-Zone Study (ENTSO-E, 2018) to delimitate new PZCs for CWE and 

further parts of Europe.16 Additionally, the proposed exogenous splits from the BZS investigated 

in this paper appear to be inefficient, at least for the considered scenario and the used modelling 

approach. Accordingly, policy-makers should carefully select the methods for identifying 

improved PZCs. The same applies for the evaluation and comprehensive analysis of their results. 

The distribution of rents shows how producer rents decrease significantly, especially in Germany, 

when introducing improved PZCs with a higher number of zones. In particular, RES infeed suffers 

from self-cannibalization effects. In turn, consumer rents over all countries increase with the 

introduction of endogenous PZCs. An exception constitutes the case of the 12-ImpC PZC from 

the GA. Therein consumer rents decrease in reference to BAU-C, because of a large southern 

zone that stretches from mid-France up to Austria. This underlines the sensitivity of PZCs on 

results: Even if the same methodology is applied, results with different numbers of zones can 

differ significantly. Impacts of exogenous splits on rents are, in contrast to the endogenous PZCs, 

rather negligible. 

In terms of functionality and performance, results show that the GA and its four operators work 

effectively together. The numerical experiments with different numbers of representative hours 

indicate that a higher number of considered hours improves the SC for the entire year (“Out of 

Sample”) and provides no evidence of local instead of global optima being selected. Given 

limited computation power, the maximum of considered hours in the analysis remained 200.  

When considering the presented results, some aspects should be kept in mind. In this study, only 

one scenario with PZCs based on a maximum of 200h have been investigated. As the sensitivity 

study in section 6.1.3 and results in (Leisen et al., 2019; Felling and Weber, 2018) suggest, PZCs 

are sensitive and most probably differ when either more representative hours or scenarios are 

considered. Other important factors that drive results are the mark-up factor  for RDC and the 

simplified market- and redispatch model that do not consider intertemporal constraints.  

Thus, future work could focus on applying the algorithm on a high performance cluster to 

increase both the number of iterations and considered representative hours. Another 

                                                
16 The PZCs from the therein-applied HCA have been adjusted in a post-processing and have neither been 
assessed with a market nor a redispatch model. 
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improvement would be the modelling of intertemporal constraints to increase validity of results. 

Sensitivity studies could investigate the effect of adjusting FBMC parameters, i.e. consideration 

of internal branches or different FRMs on the shape of PZs.
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