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Coherent estimations for residential photovoltaic uptake in Germany including spatial 

spillover effects 

by Jan Paul Baginski* and Christoph Weber 

Abstract 

The share of solar energy in German electricity generation has increased strongly over recent 

years. This is largely due to guaranteed feed-in tariffs together with decreasing prices for solar 

panels. Residential PV systems play a decisive part providing households with a possibility to 

contribute to the Energiewende and benefit from the use of renewable energy. Their regional 

distribution varies distinctly across Germany implying different requirements in distribution 

grids as well as uneven utilization of national policy measures. Our paper focusses on the 

spatial diffusion of roof mounted PV systems and the underlying drivers in Germany. We 

extend previous findings not only by including additional explanatory variables but also by 

considering cross-regional spillover using spatial econometric models. Estimation results show 

that spatial dependence is a relevant determinant for explaining regional clusters of PV 

adoption. Recurrent visual perception or peer-effects might explain spatial autocorrelation as 

potential adopters follow decisions by actors in the proximity. Another reason for spatial 

dependence might be a concentration of craft skills or solar initiatives, which leads to an 

accelerated diffusion in a region and its surroundings. Whereas the first explanation 

corresponds to the specification of a spatial lag model, the latter is in line with a spatial error 

specification. However, our results indicate that although spatial lag is present, spatial 

dependence in the residuals has higher explanatory power. Hence, we suppose that spatial 

spillover is not mainly driven by social imitation but by unobserved regional characteristics. 

Notably, high values for solar radiation, the share of detached houses, electricity demand and 

inverse population density of a region favour the PV uptake. 
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1 Introduction 

The limited availability of fossil resources and more importantly their contribution to climate 

change have driven the deployment of sustainable electricity generation technologies. 

Numerous countries have rolled out policies to encourage the use of renewable energies 

(REN21 2017). Germany was among the first countries to introduce a feed-in tariff (FIT) for 

photovoltaic panels (PV) by the Renewable Energy Sources Act (EEG). As a result, Germany 

became a pioneer for PV and still has the highest installed PV capacity per capita worldwide 

(REN21 2017), despite solar radiation being rather low compared to other countries. The share 

of German electricity demand covered by solar energy systems has risen from below 1% in 

the year 2008 to around 6% in the year 2016. A distinctive feature of PV panels is their 

scalability, making them attractive at the utility, commercial and residential scale. Residential 

customers, who are in the focus of this study, can easily install roof mounted PV panels and 

become small-scale producers (Groote et al. 2016). From a households’ perspective, PV 

systems bundle both investment opportunities (the net present value of the generated 

electricity) and an apparent support of renewable energies (the common knowledge a house 

becomes “greener”) (Dastrup et al. 2012). From a political perspective, these characteristics 

may considerably contribute to the social acceptance of renewable energy and induce a 

commitment of private households (Schaffer and Brun 2015). In Germany, small-scale PV 

installations (below 10 kWp) account for about 5.4 GW as of December 2015, representing 

14% of total capacity. 

 

Figure 1 PV Capacity and System Prices for small-scale systems (below 10 kWp) in Germany from 2000 to 2015. Own 

illustration and calculation based on data from German TSOs (2016) and IEA (2016) 

Besides guaranteed FIT, decreasing PV system prices enhance their popularity among 

households, leading to a growing capacity over the years (c.f. Figure 1). However, only about 

2.4% of Germany’s 38 million households have installed PV panels. Mainzer et al. (2014) 

estimate the total technical residential building roof potential in Germany to be above 200 GW. 
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Considering this huge potential for small-scale roof mounted PV installations, the maturing PV 

sector and the ambitious renewable energy targets, two related questions arise: How do 

residential PV systems spread over space and what drives the regional uptake? 

A variety of studies has discussed barriers and drivers for the adoption or non-adoption of 

residential PV. They use qualitative methods, such as interviews (Schelly 2014) and case 

studies (Braito et al. 2017) or quantitative methods, including (log-)linear regression analysis 

(Groote et al. 2016) based on data from large surveys (Rai et al. 2016) or publicly available 

data. From an economic perspective, a household will invest in a PV system, if it is profitable 

meaning it has e.g. a positive net present value (Klein and Deissenroth 2017). Ceteris paribus, 

higher solar irradiation increases yields making it more likely to invest in PV panels in locations 

with high irradiation (Schaffer and Brun 2015). However, findings indicate that beyond solar 

irradiation and economic motives, the built environment (Graziano and Gillingham 2015), 

knowledge of grants and costs (Vasseur and Kemp 2015), administrative burdens (Palm 

2018), regional policies (Zhang et al. 2011), ecological attitudes (Braito et al. 2017), peer 

effects (Palm 2017), and the influence of installers (Rai et al. 2016) determine the decisions to 

install roof mounted PV panels. 

Investigating accumulated PV uptake at a regional level, different degrees of PV adoption in, 

at first glance, similar regions are obvious und clusters in adjacent regions become apparent. 

Spatial clusters might be induced by different forces, such as peer effects (Palm 2017) or the 

concentrated know-how of craftsmen or regional solar initiatives (Schaffer and Brun 2015). As 

the presence of solar panels on rooftops is conspicuous, others in the same region know PV 

adopters and this community level re-enforcement may further spread the uptake of PV panels 

(Dastrup et al. 2012). Notably it is relevant whether social imitation effects or rather economic 

or ecological considerations essentially drive PV expansion. In the former case, regional 

disparities are likely to be self-reinforcing, at least in the mid-term. This has obvious 

implications for regional policy initiatives, business strategies as well as grid planning. Here, 

the identification of the underlying issues for PV uptake are important to foresee potential 

problem situations. The accumulation of decentral PV systems in specific regions, can cause 

bidirectional flows in the distribution grid, which can for instance cause voltage problems 

(Balta-Ozkan et al. 2015). This issue was often not accounted for when designing the (rather 

old) grid infrastructure and has to be met with either reinforcements or some flexibility options. 

A recent strategy in German energy policy is to favour self-consumption by funding battery 

storage systems (Wittenberg and Matthies 2016). However, with increasing electricity 

generation coming from decentral PV, to preserve grid stability in certain regions becomes 

more challenging. 
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Previous studies have failed to cover the spatially dependent nature of PV diffusion. They 

ignore potential neighbourhood effects in line with spatial proximity. Addressing this issue, an 

arising stream of literature (Dharshing 2017; Balta-Ozkan et al. 2015; Schaffer and Brun 2015) 

considers potential spatial relations, invoking Tobler’s first law of geography: “everything is 

related to everything else, but near things are more related than distant things” (Tobler 1970, 

p. 236). In this context, our paper focusses on the underlying processes for PV diffusion over 

space, while controlling for regional differences in adopter characteristics and settlement 

structure. We extend previous findings on the regional diffusion of roof mounted PV systems 

in Germany not only by including additional explanatory variables but also by considering 

multiple forms of cross-regional spillover using spatial econometric models. The analysed PV 

sample comprises all installations with a capacity up to 10 kWp erected by the end of 2015. By 

normalizing the entire dataset to households, a coherent specification and interpretation of 

model results is achieved. Another advance of our study is the consideration and comparison 

of various spatial model specifications to select the model, which performs best to fit the data 

and to capture the underlying spatial process. Further, we differentiate between direct and 

indirect effects (LeSage and Pace 2009), which has no precedent in the literature regarding 

PV adoption analysis with spatial econometric models. We thus contribute to the literature by 

deepening the interpretation of spatial model estimations in the context of residential PV 

diffusion research, by providing new results including unprecedented variables as well as 

aligning our results with previous findings. Our results indicate that solar irradiation, electricity 

demand, detached housing and inverse population density positively relate to the uptake of 

residential PV systems. The impact of environmental attitude and income seem to be 

negligible. Significant spatial parameter estimates indicate spatial dependence is a relevant 

determinant for explaining regional clusters of adoption. 

The remainder of this paper is structured as follows: Section 2 outlines the relevant literature. 

Section 3 describes the methodological approach for the spatial regression analysis including 

the identification of direct and indirect effects. Section 4 provides data and descriptive statistics. 

Estimation and test results of the spatial econometric analysis are described in section 5. The 

final chapter concludes. 

2 Related Literature 

The here mentioned articles share the use of spatial econometric models (c.f. section 3) to 

identity determinants for residential PV adoption (c.f.Table 1). They agree that spatial spillover 

is a major determinant for explaining residential PV uptake. Another common driver is solar 

irradiation. Higher irradiation entails higher electricity generation and consequently greater PV 
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expansion.1 Further, the built environment and settlement structure has a strong influence on 

residential PV adoption. Building density (residential buildings per sqm) is identified as a 

positive influence by Schaffer and Brun (2015). They argue that for rooftop installations, roof 

space is a prerequisite and hence greater building density induces higher PV adoption.2 

Graziano and Gillingham (2015) and Balta-Ozkan et al. (2015) find that adoptions decrease 

with population density, implying multi-storey buildings with limited roof space. Density 

measures do not capture building features, which usually supplement the analysis. Balta-

Ozkan et al. (2015) embraces the share of detached houses as a predictor for PV adoption 

and finds a positive influence. Compared to terraced houses, detached houses offer better 

access to possibly larger rooftops, which simplifies construction work. Dharshing (2017) 

presumes that owners of single-family houses are often the target for PV marketing and more 

likely to install PV systems.3 However, the author does not discover a significant effect. 

Similarly, researchers anticipate PV adoption to increase with the share of owner-occupied 

buildings. Owner-occupiers might be financially well off and have savings to invest in PV 

systems. In addition, the planning and installation process is easier to manage as owner-

occupiers can decide freely whether to install PV. They might show a higher willingness to 

invest in building technologies as they directly profit from anticipated yields. In contrast renters 

may not have permission to install PV panels (Graziano and Gillingham 2015) and the 

presence of the user/investor-dilemma hampers PV uptake.4 Schaffer and Brun (2015) 

ascertain a positive impact of owner-occupied buildings and similarly Graziano and Gillingham 

(2015) find a negative impact of rented dwellings. Yet, Balta-Ozkan et al. (2015) surmise an 

opposing effect. Despite continuously decreasing solar panel prices, initial costs still impede 

the diffusion of residential PV systems. Households’ disposable income might increase the 

propensity to invest in a PV system. Balta-Ozkan et al. (2015) and Zhang et al. (2011) do not 

find a significant effect of per-capita income. In contrast, Dharshing (2017) and Schaffer and 

Brun (2015) reveal a positive influence of (per-capita) income. However, Schaffer and Brun 

(2015) use the Gross Regional Product to control for income, which may not be a suitable 

indicator to reflect household income. It remains unclear whether, high-income households are 

more likely to adopt PV panels. The merit of PV systems to generate electricity environment 

friendly, without CO2-emissions during operation, may incite environmental aware households 

                                                
1 Electricity is usually fed into the grid and remunerated under a FIT (the EEG in Germany). FIT for 
small-scale PV systems were in place in the considered countries and timeframes, except in Graziano 
and Gillingham 2015, who analyse a data sample with different support policies in place. 
2 However, building density does not capture building type e.g. specifying dwellings per building. 
3 Dharshing 2017 controls for new constructions as a predictor variable and deduces a negative 
influence on PV uptake, indicating that owners of older buildings might install PV systems during 
renovation activities. 
4 In multi-family houses, with the owner occupying one dwelling, the decision is rather straightforward 
as well. In condominiums with several owner-occupied flats, a common decision about installing PV 
cells on the roof is necessary which raises the barrier to action. However, condominiums are a building 
segment of limited relevance in Germany. 
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to adopt the PV technology. Zhang et al. (2011) find a positive effect of environmental 

consciousness on PV installations. Schaffer and Brun (2015) results show no significant impact 

of ecological attitudes and Dharshing (2017)’s results are ambiguous. Balta-Ozkan et al. 

(2015) find that households’ PV adoption increases with a higher electricity demand. This might 

build on incentives to reduce electricity costs, to reduce the environmental impact of a high 

electricity demand or the desire to become more self-sufficient.  
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Table 1: Corresponding Literature 

Authors 
Dataset & Spatial 

Resolution 

Methodological 

Approach & 

explained variable 

Key Findings 

Allan and 

McIntyre 

(2017) 

269,449 domestic PV 

systems with an average 

capacity of 3.45 kWp in the 

UK (only England) in 326 

local authorities 

Cross-sectional 

spatial 

model; number of 

PV systems per 

household 

 Local socio-economic factors, including 

wealth, housing type and population 

density explain uptake of FIT 

 “Green” attitudes are not important 

 Significant spatial coefficients 

Balta-

Ozkan et 

al. (2015) 

384,043 PV systems in the 

UK, under 10 kWp installed 

until June 2013 in 134 

NUTS3 regions 

Cross-sectional 

spatial 

model; (log of) 

absolute number of 

PV installations 

 Electricity demand, population density, 

pollution levels, education and detached 

housing affect PV adoption 

 Rather than income, accumulated capital 

and financial savings are key drivers for 

PV uptake in the UK 

 Significant spatial spillover effects 

Dharshing 

(2017) 

589,202 PV Systems in 

Germany (2000-2013), with 

a capacity between 1 and 

10 kWp in 402 NUTS3 

regions 

Spatial panel 

model; number of 

PV installation per 

owner-occupied 

building 

 

 Differences in economics influence spatial 

and temporal patterns of PV adoption 

 Socioeconomic status has an impact on 

PV adoption, but effect of environmental 

attitude and settlement structure is 

ambiguous  

 Significant spatial spillover effects 

between neighbouring counties 

Graziano 

and 

Gillingham 

(2015) 

3833 PV systems in 

Connecticut, USA installed 

between 2005 and 

September 2013, with a 

capacity below 5 kWp on 

block group level 

Fixed effects panel 

model including 

spatial parameters; 

number of PV 

systems 

 Spatial clustering beyond distribution of 

income or population 

 Positive relationship between previous PV 

installations nearby  as well as built 

environment and PV adoption 

 Spatial effect decreases with distance and 

time 

Rode and 

Weber 

(2016) 

576,056 German PV 

systems installed from 

1992 until the end of 2009 

smaller or equal to 30 kWp 

with exact location 

Epidemic diffusion 

model; PV systems 

per building (proxy 

for potential number 

of adopters) 

 Imitation behaviour is important factor for 

diffusion of PV 

 Decreasing influence of distance  on 

localized imitation 

Schaffer 

and Brun 

(2015) 

Over 820,000 PV systems 

in Germany installed 

between 1991 and 2011, 

with a capacity under 16 

kWp in 402 NUTS3 regions 

Cross-sectional 

spatial 

model; PV capacity 

per square 

kilometre 

 House density, homeownership,  solar 

radiation and per-capita income explain 

PV uptake 

 Ecological attitude has no impact on 

investment decision 

 Significant cross-regional spatial spillover 
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3 Methodology: Spatial Econometric Models 

Either a specific-to-general or vice versa a general-to-specific approach can be chosen to 

arrive at a suitable model to capture spatial interaction effects (Florax et al. 2003; Mur and 

Angulo 2009; Elhorst 2010). The latter approach starts the analysis with a non-spatial linear 

regression5, the standard approach in empirical work. It presumes that the manifestation of the 

dependent variable in a region is independent from the manifestation of the dependent variable 

in regions nearby. The approach proceeds by testing whether or not the model specification 

needs to be extended with spatial interactions effects (Elhorst 2010). Omitting possible spatial 

dependence may lead to biased and inconsistent parameter estimates (Anselin, Bera 1998). 

The former approach means to start with a general spatial model that contains a series of 

simpler models representing all the alternative economic hypotheses worth considering. 

According to Manski (1993) these are: (i) endogenous interactions, where the decision of a 

spatial unit depends on the decision taken in other spatial units; (ii) exogenous interactions, 

where the decision of a spatial unit to act in some way depends in independent explanatory 

variables of the decision taken by other spatial units; and (iii) correlated effects, where similar 

unobserved characteristics result in similar decision. The Manski model, also known as the 

general nesting spatial model, includes all three proposed spatial interactions and nests 

several reduced models. Figure 2 provides formulas of relevant spatial specifications and their 

connectedness. 

 

Figure 2: Different spatial model specifications and their connectedness (tested models in bold print) (own illustration based 

on (Elhorst 2010)) 

                                                
5 As the linear regression is usually estimated by ordinary least squares (OLS), we label this regression 
and its results as OLS. 
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Thereby 𝑌 denotes a 𝑁 × 1 vector of observations on the dependent variable and 𝑋 is a 𝑁 × 𝐾 

matrix of observations on the explanatory variables with an associated 𝐾 × 1 vector of 

regression coefficients 𝛽. The variable 𝑊𝑦 denotes endogenous interactions among the 

dependent variable, associated with 𝜌, the spatial autoregressive parameter. It measures the 

effect of spatial lag in the dependent variable. 𝑊𝑋 captures exogenous interactions among 

independent variables, with the 𝐾 × 1 vector 𝜃 representing spatial lag in the predictor 

variables. 𝑊𝑢 denotes interactions among the residuals of spatial units, associated with 𝜆, the 

spatial autocorrelation parameter. 𝜀 represents an independently and identically distributed 

error term with zero mean and constant variance 𝜎2. 𝑊 is a 𝑁 × 𝑁 matrix (spatial weights 

matrix) reflecting the spatial structure of the units in the sample. There are different options to 

define the spatial weights matrix based on concepts of contiguity and distance or a combination 

of both (Anselin and Bera 1998). In the “queen contiguity” the matrix elements are set to one, 

if spatial units are neighbours6 and zero otherwise (Eq. 2a). In distance-based approaches, 

the matrix elements are commonly defined as the inverse distances of the spatial units (Eq. 

2b). By convention, the diagonal elements of the weights matrix (𝑤𝑖,𝑖 ) are set to zero as no 

spatial unit is viewed as its own neighbour and row elements are standardized such that they 

sum to one. Additionally, a cut-off point 𝑑∗ can be introduced to limit spatial units as neighbours 

to a given distance (Eq. 2c) 

𝑤𝑖,𝑗 = {
1, 𝑖𝑓 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟 𝑡𝑜 𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (1a) 

𝑤𝑖,𝑗 =  
1

𝑑𝑖,𝑗
 (1b) 

𝑤𝑖,𝑗 =  0, 𝑖𝑓 𝑑 > 𝑑∗ (1c) 

In this study, a queen contiguity matrix is used and its spatial structure for German NUTS3 

region is presented in Figure 3. Since the selection of the spatial weights matrix 𝑊 is to some 

extent arbitrary, it has become a common practice to examine whether the results are robust 

to the specification (Elhorst 2010). Thus, we have also specified the inverse distance weights 

matrix and have estimated the same spatial models. We use the NUTS3 centres to calculate 

the distances. As we expect the effect of spatial units on the entity of interest to decrease with 

distance and eventually vanish, we introduce a cut-off distance at 65 km. Thereby we ensure 

that each region has at least one neighbour. As results have shown no significant differences, 

                                                
6 Neighbour means an entity that shares a common side or vertex with the region of interest (Le Sage 
1999, p. 12). 
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we just provide graphical illustration of the used weights matrices (c.f. Figure 3).7 When only 

direct neighbours are considered, the number of neighbours is rather small. If instead 

neighbours are defined based on distance, urban areas have multiple neighbours, which gets 

obvious in the meshed structure. 

 

 

Figure 3: Neighbourhood structure of queen contiguity spatial weights matrix (left) and inverse distance spatial weights 

matrix with cut-off distance at 65 km (right) of German NUTS3 regions 

Following the suggestion of Florax et al. (2003) and Elhorst (2010), we start our analysis with 

an OLS regression and then expand the model with a spatially lagged dependent variable, 

leading to the spatial lag or spatial autoregressive model (SAR) (c.f. Figure 2). Then we specify 

the spatial error model (SEM), incorporating a spatial autoregressive process in the error term. 

Under most circumstances, LeSage and Pace (2009) propose using a spatial Durbin (SDM) 

model, since spatial dependence among the dependent and independent variables is 

considered. The advantage of this model over others is the capacity to generate unbiased 

parameter estimates, regardless of the underlying spatial process (Elhorst 2010; LeSage and 

Pace 2009; Botzen 2016). Further, estimating a SDM model is still appropriate if spatially 

correlated variables are omitted (Bowen and Lacombe 2017). As the underlying spatial 

process is usually unclear, another approach is to employ an even more general model 

combining all three spatial effects (Manski-Model). However, Elhorst (2010) proves that one of 

the components has to be excluded in order to distinguish between spatial coefficients from 

each other and to interpret the results. Hence, we exclude the lag of predictor variables and 

estimate the Kelejian-Prucha (Keleijan and Prucha 1989) or general spatial model (GSM), 

controlling for both a spatially lagged dependent variable and a spatial autoregressive process 

in the error term. 

                                                
7 Results for inverse distance matrix are provided upon request. Elhorst (2010) suggests that if a model 
is estimated for different spatial weight matrices, the matrix exhibiting the highest log-likelihood function 
value should be selected. 
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To support the interpretation of the 𝛽 coefficients in spatial econometric models, associated 

measures are necessary (Bivand and Piras 2015). LeSage and Pace (2009) show that point 

estimates may lead to erroneous conclusions and partial derivative interpretations of the 

impacts represent a more valid basis.8 The change in a single region associated with any 

explanatory variable that affects the region itself is called direct impact whereas the potential 

effect on all other regions is called indirect effect (LeSage and Pace 2009). The sum of both 

effects leads to the total effect. Impact measures can be determined for any model including a 

spatially lagged variable (either the dependent variable 𝑊𝑌 or the explanatory variables 𝑊𝑋). 

In an OLS and SEM, the 𝛽 coefficients are similar to direct effects, and indirect effects are zero 

(Elhorst 2010). 

4 Data, Descriptive Statistics and Model Specification 

4.1 Solar PV Installation Data 

Following the approach of previous studies, our analysis relies on NUTS3 data.9 In the 

classification scheme of the European Union a NUTS3 region corresponds to a German 

county.10 The PV data is retrieved from a transparency platform, which contains renewable 

energy plant data of the four German transmission grid operators (Amprion, Tennet, Transnet 

and Hertz 50 (2016)).11 Renewable plants other than PV systems are removed from the 

dataset. As this paper focusses on household PV investments, the considered capacity should 

mirror the boundaries for rooftop installations on residential buildings. The academic literature 

uses either a 10 kWp boundary (c.f. Dharshing 2017; Balta-Ozkan et al. 2015), a 16 kWp 

boundary (Schaffer and Brun 2015) or a 30 kWp boundary (Mainzer et al. 2014; Rode and 

Weber 2016) to delineate small-scale roof top installations. These power boundaries are 

deduced from assumptions on the average available roof top space of residential buildings and 

differ consequently. According to the EEG, a higher feed-in tariff is granted for systems smaller 

or equal to 10 kWp.12 Taking this as a basis, we use a 10 kWp threshold as the condition for 

small-scale rooftop PV installations and consider all PV systems installed before 2016. After 

cleaning the data, 892.452 PV installations across Germany with an average capacity of 6 kWp 

are considered. Since NUTS3 regions differ in size and population, the absolute domestic PV 

capacity is hardly comparable. Hence, installed power should be normalized to increase 

comparability between regions and reduce heteroscedasticity of residuals in the regression 

analysis. The decision to purchase a PV system is usually made at the household level. As we 

                                                
8 For mathemtical prove see LeSage and Pace 2009 and for examples see Elhorst 2010. 
9 This is mainly due to data availability. Data on smaller units e.g. postcode regions is not available for 
all variables. 
10 The German term is „Landkreis“. 
11 www.netztransparenz.de/EEG/Anlagenstammdaten 
12 C.f. EEG 2017, § 48, Section. 2, Number.1: Renewable Energy Sources Act as of 21st July 2014 
(BGBl. I p. 1066), last changed by Section 1 of this law from 7th July 2017 (BGBl. I p. 2532) 

http://www.netztransparenz.de/EEG/Anlagenstammdaten
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want to explain the diffusion of PV systems among households, we normalize the PV capacity 

to the number of households. Notably, not every decision-maker (household) is in the position 

to install PV panels. This mainly is true for households in multifamily houses, or in general, 

households living in rented apartments. Nonetheless, this approach is advantageous, since it 

allows not only normalizing the PV capacity to the number of households but also the predictor 

variables. This enables a consistent specification and interpretation of the model. In this vein, 

the impact of households living in rented dwellings is captured through the (complementary) 

share of owner-occupied apartments in total dwellings. Household data is obtained from the 

German 2011 census. Such comprehensive population and building surveys are only 

conducted every ten years, yet only limited changes in the number of households per county 

are expected between 2011 and 2015 given inert population dynamics. Figure 4 shows the 

dependent variable of this study, the cumulated capacity of small-scale PV installations per 

household. 

 

Figure 4: Accumulated installed capacity of small-scale installations (kWp/household) in German counties by the end of 2015. 

Own calculations and illustration based on data from German TSOs (2016). 

The average household PV capacity in NUTS3 regions shows significant differences ranging 

from 0.01 kW to 0.68 kW. The spatial pattern of households’ PV uptake shows a downward 

gradient from south to north. A divide between East and West Germany, with lower capacity 

levels in the East is also visible. Cities show rather low adoption levels as well, presumably 

related due to the high denominator, the number of households. High capacity levels occur 

especially in South Germany revealing spatial clusters, e.g. in Bavaria. As FIT defined by the 

EEG are applicable in every NUTS3 region, the differences in regional distribution are due to 

other determinants (c.f. Section 4.2). 
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4.2 Explanatory Variables - Determinants for PV Adoption 

First, a region’s cumulated installed capacity is expected to increase with solar irradiation. We 

capture solar radiation using the sum of global solar irradiation at NUTS3 region centres. The 

data are retrieved from the German Weather Service (DWD 2015). To characterise adopters 

of PV systems, we include share of Green voters, share of welfare recipients, household 

electricity demand and disposable household income. Following previous approaches, we use 

the share of voters for the Green party (labelled “Green voters” subsequently) in the 2013 

federal election to capture environmental attitude and expect a positive impact on PV uptake. 

As no official electricity consumption data is available for NUTS3 regions, electricity demand 

has not been analysed as a predictor variable for PV uptake in Germany before. We use 

information from a comparison portal that evaluated 200.000 electricity contracts in 2014 and 

provides the annual per capita electricity consumption for 120 German cities (c.f. 

preisvergleich.de (2015)). Several cities correspond directly to NUTS3 regions, hence 120 of 

402 data points are available. The missing data is approximated: For each state, the weighted 

average per capita electricity consumption is calculated based on the data within that state. 

We estimate the missing NUTS3 data points for electricity demand by multiplying the per-

capita consumption within that state with the NUTS3 population. It could be argued that 

households who already adopted PV have a lower electricity demand, as more electricity is 

produced locally and not purchased. This would lead to an endogeneity problem. However, 

electricity generation from PV rooftop installations is measured by a second meter (under the 

EEG) and thus does not interfere with household electricity demand. Hence, there should not 

be a problem using the data. Disposable household income in NUTS3 regions of the year 2014 

is retrieved from regional account data provided by the German Federal Statistical Office. As 

not only income, but also financial assets in general, determine the possibility to purchase PV 

systems, we try to capture the effect of prosperity. In general, it is difficult to find proxies for 

wealth, since data is hardly available. As one indicator, we use the share of owner-occupied 

dwellings, as home-ownership generally indicates a higher financial status. Data bases on the 

2011 census. As income from capital shows a clear divide between East and West Germany 

(Federal and State Statistical Offices 2014), we add an east-west dummy. Data on the income 

from capital might be a better indicator for financial assets than owner-occupied dwellings. 

Unfortunately, this data could not be obtained. In addition, the east-west dummy controls for 

differences in East and West Germany beyond income, e.g. possible different mind-sets. 

Achtnicht and Madlener (2014) find differences of East and West German households 

regarding energy efficient retrofits, indicating more price sensitive households in East 

Germany. Accordingly, we expect a negative impact of East German regions on PV uptake. 

As a (negative) control variable for prosperity in a region, the share of welfare recipients is 

included, containing beneficiaries of unemployment benefits as well as other social benefits. 
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The sensitive financial situation might not offer the possibility to purchase the PV technology. 

Data is retrieved from the German Federal Statistical Office for the year 2014. To control for 

settlement structure we include the share of detached houses, share of single-family houses 

and the share of owner-occupied dwellings and presume positive impacts on PV uptake. The 

data bases on the 2011 census. As correlation between these variables may be high, it is 

tested for in the analysis. As we normalize to the number of households, we do not consider 

household size or population density. However, we include the county area, which normalized 

to the number of households yields the inverse of the household density. We expect the area 

per household to have a positive impact on cumulated installed capacity in a region. 

Descriptive statistics for all variables are presented in Table 1. Other influences, such as age 

or education variables are omitted in this study, as we do not want to overload the analysis 

and presume that the main drivers for PV adoption are covered. Yet, previous studies capture 

the effect of population age and find a negative impact for the share of population under 20 

years (Dharshing 2017). The effect of other age variables, e.g. people above 60 remains 

unclear. Similarly, Graziano and Gillingham (2015) do not find a significant effect of age. Both, 

Balta-Ozkan et al. (2015) and Dharshing (2017) suggest a positive impact of education on the 

regional PV uptake. 

Table 1: Descriptive statistics of model variables 

Variable Description Mean Std. Dev. Min. Max. 

PV Capacity kWp/household 0.187 0.148 0.011 0.683 

Solar Radiation Global radiation [kWh/m2a] 1,115 60 987 1,262 

Green Voters Share of Green party voters 0.090 0.035 0.027 0.239 

Electricity Demand Electricity demand/household 3.620 434 2,469 4,976 

Available Income EUR/household 46,306 7,642 29,509 92,251 

Welfare Recipients Share of welfare recipients 0.171 0.075 0.038 0.423 

Owner-Occupier Share of owner-occupiers 0.519 0.144 0.128 0.769 

Single Family 

Houses 
Share of single family houses 0.388 0.152 0.085 0.753 

Detached Houses Share of detached dwellings 0.627 0.208 0.122 0.974 

County Area County area [m2]/household 13,108 10,763 424 57,929 
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4.3 Model Specification 

To investigate the determinants of PV adoption across the 402 German NUTS3 regions (𝑛) 

the following model is applied: 

𝑃𝑉𝑛 = 𝛽0 + 𝛽1𝑠𝑜𝑙𝑎𝑟𝑛 + 𝛽2𝑔𝑟𝑒𝑒𝑛𝑛 + 𝛽3𝑒𝑙𝑒𝑐𝑛 + 𝛽4𝑖𝑛𝑐𝑜𝑚𝑒𝑛 +
            𝛽5𝑤𝑒𝑙𝑓𝑎𝑟𝑒𝑛 + 𝛽6𝑜𝑤𝑛𝑒𝑟𝑛 + 𝛽7𝑑𝑒𝑡𝑎𝑐ℎ𝑛 + 𝛽8𝑎𝑟𝑒𝑎𝑛 + 𝑢𝑛. 

𝑢 ~ 𝑁(0, 𝜎2𝐼𝑛)  

(2) 

The dependent variable in Equation (1) is the PV capacity of installations under 10 kW 

normalized to the number of households. The explanatory variables encompass solar 

irradiation (𝑠𝑜𝑙𝑎𝑟), share of green voters (𝑔𝑟𝑒𝑒𝑛), household electricity demand (𝑒𝑙𝑒𝑐), 

household income (𝑖𝑛𝑐𝑜𝑚𝑒), share of welfare beneficiaries (𝑤𝑒𝑙𝑓𝑎𝑟𝑒), share of owner-

occupied dwellings (𝑜𝑤𝑛𝑒𝑟), share of detached buildings (𝑑𝑒𝑡𝑎𝑐ℎ𝑒𝑑) and area per household 

(𝑎𝑟𝑒𝑎). Except solar radiation, all variables are normalised to the number of households in 

NUTS3 regions. 

5 Estimation Results and Discussion 

As single-family houses are often detached and occupied by the owner, the use of all variables 

leads to collinearity problems.13 Collinearity causes instability in parameter estimation and 

must be avoided. We exclude the share of single-family houses as a regressor.14 Standardized 

coefficient estimates of the OLS model are presented in the first column of Table 3. Results 

reveal that solar radiation, electricity demand, share of detached houses and area per 

household have a positive impact on the regional uptake of PV installations. Available income, 

welfare recipients, green voters and the east dummy variable turn out to affect negatively the 

adoption of PV. Ownership seems to be negligible. The negative impacts of available income 

and green voters are rather surprising and rise questions on the validity of the specification 

although the obtained R2 of 0.75 indicates a rather good model fit. To test for spatial correlation, 

we calculate Moran's I (Moran, 1950) and carry out Lagrange multiplier (LM) tests. Moran's I 

test statistic is a global indicator of spatial association.15 The positive values (c.f. Table 2) 

indicate spatial dependence of PV capacity as well as OLS residuals. Also, Moran’s scatter 

plots in Figure 5 and Figure 6 show positive spatial correlation between neighbouring regions. 

                                                
13 We use the the variance of inflation factor (VIF) to detect collinearity. The VIF is based on the square 
of the multiple correlation coefficients resulting from regressing a predictor variable against all other 
predictor variables. A VIF greater than 10 signals a collinearity problem in the model. We also excluded 
detached houses or single-family houses, which lead to a smaller R2 and justifies the omission of the 
owner-occupier rate. 
14 Results including single-family houses are provided upon request. 

15 Moran‘s I: 𝐼 =
𝑁∙∑ ∑ [𝑤𝑖𝑗∙(𝑦𝑖−𝑦̅)∙(𝑦𝑗−𝑦̅)]𝑁

𝑗=1
𝑁
𝑖=1

∑ ∑ [𝑤𝑖𝑗∙∑ (𝑦𝑗−𝑦̅)2𝑁
𝑖=1 ]𝑁

𝑗=1
𝑁
𝑖=1
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We use a row standardized queen contiguity weights matrix for the tests and the subsequent 

spatial models. LMerror and LMlag tests, in addition to their robust versions, test the null 

hypothesis of no spatial dependence against alternatives of spatial error and spatial lag 

dependence respectively (Anselin, 1988; Florax et al., 2003).16 LM tests (c.f. Table 2) indicate 

that the null hypothesis of no spatial dependence should be dismissed. OLS regression seems 

inappropriate and may result in biased estimates, as spatial forces driving PV adoption are not 

confined by NUTS3 borders but are likely to spill over to proximate regions. Given the positive 

and significant values of LMerror and LMlag tests and their robust versions, the OLS model is 

rejected in favour of both the SAR and the SEM. Hence, also the SDM should be estimated 

(Elhorst 2010). In addition, we employ a GSM, incorporating both spatial lag and error 

correlation, but neglecting spatial dependence in explanatory variables. Table 3 provides 

estimation results. In addition, Table 5 shows impact measures of the SDM and GSM. 

Table 2: Test for spatial dependence in the OLS regression 

Test  

Moran’s I for PV capacity  0.596 

Moran’s I for residuals  0.316 

LMerror  86.28*** 

Robust LMerror  22.67*** 

LMlag  72.40*** 

Robust LMlag  8.78** 

⁎⁎⁎ Significance level at 0.1% 

⁎⁎ Significance level at 1%. 

 

 

Figure 5 and Figure 6: Moran’s I Scatter Plots (PV capacity (left) and OLS residuals (right)) 

                                                
16 Tests for a missing spatially lagged dependent variable (LM lag) test (in the specification of equ. (1)) 
that 𝜌 = 0; tests for spatial autocorrelation of the error (LM error) test whether 𝜆 = 0. RLM error tests for 
error dependence in the possible presence of a missing lagged dependent variable. RLM lag tests for a 
missing spatial lagged dependent variable in the possible presence of spatial error dependence. 



 
 

16 

Table 3: OLS and spatial model estimation results 

Variable OLS SAR SEM SDM GSM 

 Estimate Estimate Estimate Estimate 𝜃 Estimate Estimate 

Intercept 
0.000   

(1.000) 

-0.061.   

(0.010) 

-0.031   

(0.546) 

-0.027   

(0.299) 
 

-0.033       

(0.464) 

Solar Radiation 
0.298***    

(0.000) 

0.176***    

(0.000) 

0.230***    

(0.000) 

0.144   

(0.230) 

-0.027   

(0.840) 

0.227***    

(0.000) 

Green Voters 
-0.092**   

(0.009) 

-0.009   

(0.772) 

0.038   

(0.292) 

0.014   

(0.745) 

-0.155*   

(0.019) 

-0.046       

(0.225) 

Electricity Demand  
0.322***    

(0.000) 

0.273***    

(0.000) 

0.306***    

(0.000) 

0.288***    

(0.000) 

-0.125   

(0.178) 

0.297***    

(0.000) 

Income 
-0.156**   

(0.001) 

-0.082.   

(0.061) 

-0.118*   

(0.011) 

-0.087.   

(0.071) 

0.037   

(0.697) 

-0.110*      

(0.018) 

Welfare recipients 
-0.233***    

(0.000) 

-0.113*   

(0.016) 

-0.128*   

(0.010) 

-0.103.   

(0.074) 

-0.037   

(0.698) 

-0.16**      

(0.003) 

East Dummy 
-0.179***    

(0.000) 

-0.005   

(0.920) 

-0.053   

(0.373) 

-0.073   

(0.443) 

-0.006   

(0.959) 

-0.102.       

(0.089) 

Ownership 
0.061   

(0.365) 

0.178**   

(0.004) 

0.093   

(0.184) 

0.067   

(0.381) 

0.047   

(0.672) 

0.070        

(0.326) 

Detached 
0.201**   

(0.001) 

0.147**   

(0.008) 

0.234***    

(0.000) 

0.260***    

(0.000) 

-0.193.   

(0.055) 

0.224**     

(0.001) 

County Area 
0.201***    

(0.000) 

0.157***    

(0.000) 

0.213***    

(0.000) 

0.222***    

(0.000) 

-0.139*  

(0.027) 

0.210***     

(0.000) 

𝜌  
0.317***    

(0.000) 
 

0.468***    

(0.000) 
 

0.038        

(0.615) 

𝜆   
0.528***    

(0.000) 
  

0.493***    

(0.000) 

R2 /adj. R2  0.746/0.741      

Log Likelihood -294.65 -265.42 -255.90 -248.88  -255.81 

AIC 611.29 554.85 535.79 539.76  537.63 

BIC 655.25 602.80 583.75 623.68  589.58 

Breusch  Pagan Test 72.45 78.02 49.67 86.37  51.38 

Note: The values in parentheses are p-values. 

⁎⁎⁎ Significance level at 0.1% 

⁎⁎ Significance level at 1%. 

⁎ Significance level at 5% 

. Significance level at 10% 
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Considering the results of the OLS regression model as a benchmark, the findings are partly 

revised when spatial models are estimated. All models including spatial terms offer a better 

model fit (Log Likelihood, AIC, BIC) than OLS estimation. Results point to strong spatial 

correlation between PV adoption levels in adjacent counties, confirming residential PV forms 

local clusters in certain regions. The positive and statistically significant estimate of ρ in the 

SAR and SDM indicates spatial lag of PV adoption. It implies that levels of solar panel uptake 

tend to spill over NUTS3 borders and facilitate PV adoption in neighbouring regions. Recurrent 

visual perception, intensified social interactions and peer-effects might explain spatial 

autocorrelation as potential adopters follow decisions by actors in the proximity. The positive 

and statistically significant parameter estimate of λ in the SEM indicates spatial dependence 

in the residuals. Hence, similar unobserved characteristics result in similar decisions in 

neighbouring NUTS3 regions. A local concentration of craft skills, solar initiatives (Schaffer and 

Brun 2015), local PV supplier activities or advertising campaigns, might lead to an accelerated 

PV diffusion in a region and its surroundings. Admittedly, the interpretation of the spatial 

association is tentative and may certainly relate to other than the discussed factors. Combining 

both results, an influence of PV installations in one county on PV installations in neighbouring 

counties as well as a remaining unexplained spatial dependence indicated by the residuals is 

present. Consequently, the GSM should best fit to capture the spatial processes. The GSM 

results show positive estimates of both 𝜌 and 𝜆 indicating a combined spatial dependence 

similar to an ARMA time series specification. However, in contrast to the SAR and SDM, 𝜌 

becomes insignificant. Since the models are estimated by maximum likelihood, we can perform 

a likelihood ratio (LR) test to examine whether the SDM or GSM can be reduced to the SAR 

or SEM (c.f. Figure 2). LRs indicate that neither the SDM nor GSM should be reduced to a 

SAR (c.f. Table 4). In contrast, the SDM model could be reduced to a SEM as the LR test is 

insignificant. Further, a model reduction of the GSM to a SEM seems plausible as the LR is 

small and insignificant, notably visible in the only infinitesimal different log likelihood. Hence, 

the effect of spatial lag does not offer additional explanatory power when considering spatial 

dependence in the residuals.17 Also, log-likelihoods and AIC (Akaike Information Criterion) 

show that SEM and SDM model perform best and improve upon to the OLS and SAR models 

(c.f. Table 3). In terms of BIC (Bayesian information criterion) the SEM shows the best results, 

lending credence to its choice. Breusch–Pagan test indicates the presence of 

heteroscedasticity in residuals of all models, although it is somewhat reduced in the spatial 

estimations. SEM and GSM, taking spatial dependence of residuals into account, show the 

best results.  

 

                                                
17 Although this is indicated by the robust LMlag test (c.f. Table 2).  
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Table 4: Likelihood rations for nested spatial models 

SDM vs. reduced model GSM vs. reduced model 

SAR (𝜃 = 0) 33.01*** (0.000) SAR (𝜆 = 0) 19.12*** (0.000) 

SEM (𝜃 = −𝜌𝛽) 14.04 (0.121) SEM (𝜌 = 0) 0.063 (0.687) 

 

Regarding the 𝛽 estimates, a difference between the OLS and spatial models are the generally 

smaller coefficients in the spatial models. This implies that their direct influence is less 

pronounced than estimated earlier, and partly attributable to spatial association. In this vein, 

the east dummy is insignificant in spatial models. As expected solar radiation maintains a 

positive influence on PV uptake in the spatial models.18 Yet in our analysis solar radiation is 

not the predominant factor, as other variables show higher coefficients. Contrary to 

expectations, ecological attitude has a negative influence on PV uptake (OLS) or is insignificant 

(SAR, SEM und GSM). In the SDM the estimate is positive whereas the lag estimate is 

negative. This finding is supported by the impact analysis (c.f. Table 5). It suggests that a high 

share of Green voters in a region negatively influences PV adoption in adjacent regions, which 

has no plausible interpretation. Yet, by visualising the share of Green voters in NUTS3 regions, 

it becomes obvious, that the share of Green voters is especially high in cities. Here, the PV 

capacity per household is rather low, which might entail a negative relation. In less densely 

populated suburbs, meaning regions adjacent to cities, the PV uptake under consideration is 

rather high, which again might explain the negative spatial lag impact. Admittedly, the use of 

other indicators for environmental awareness than Green party voters might involve different 

results, in particular that environmental motivation favours PV uptake. E.g. Wittenberg and 

Matthies (2016) finds that the use of green electricity tariffs and energy efficient appliances is 

higher for PV adopters, indicating higher environmental awareness than average households.  

A major predictor for PV uptake is household electricity demand. It has the highest positive 

coefficient estimates. Simiarly, Wittenberg and Matthies (2016) find that electricity 

consumption of PV adopters is medium to high compared to the German average. A 

household’s comparatively higher demand may entail higher environmental concerns and lead 

to a the desire to compensate the higher demand by green electricity production (Balta-Ozkan 

et al. 2015). The decision could also be motivated by the financial consideration to reduce the 

household’s comparatively higher electricity costs or the wish to become self-sufficient. 

A negative impact of household income on cumulated PV capacity is suggested by spatial 

estimation results suggest and supported by the impact analysis (c.f. Table 5). This implies 

that high income is no precondition for meeting the upfront costs of PV systems. For high-

                                                
18 The effect of solar radiation is statistically insignificant in the SDM, which has no plausible 
interpretation. 
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income households, the potentially profitable purchase of a PV system may not be a concern, 

as saving money (or energy costs) is not an issue. Also, higher incomes are potentially paid in 

densely populated areas, where limited roof potentials hinder the growth of installed capacity 

per household. Obviously, there is an indirect effect of income on PV uptake through the 

increased probability for living in a detached and owner-occupied house. However, the positive 

impact of homeownership is only significant in the SAR specification and insignificant in the 

remaining models. We assume the reason to be the high correlation of detached and owner-

occupied dwellings. If detached houses are excluded as a regressor, the impact of owner-

occupied dwellings is positive in all models. Similarly, including single-family houses instead 

of detached or owner-occupied dwellings, a positive impact is found. Hence, detached houses 

in our data (building on the German 2011 census) are to some extent congruent with owner-

occupied dwellings as well as single-family houses. However, the explanatory power of 

detached houses is the highest. They are a main driver for PV adoption indicated by high 𝛽 

estimates in all models. In addition, county area per household essentially favours PV uptake.19 

This again hints at a positive impact of rural areas with larger properties and higher shares of 

detached single- or double-family houses. Detached houses improves solar exploitation of PV 

panels, since they usually encounter no shadowing and have larger roofs (Dharshing 2017). 

Further, construction work is easier compared to terraced houses (Balta-Ozkan et al. 2015). 

The share of welfare recipients mitigates regional PV uptake, hence capturing a positive 

relationship between socio-economic status and PV uptake, which could not be obtained from 

the income variable. In this vein, initial investment costs seem to detain socially deprived 

households (who are also more likely to rent) from adopting PV systems. Although FIT offer or 

increase profitability of PV systems, they do not reduce the high capital costs. Balta-Ozkan et 

al. (2015) use the findings of Graziano, Gillingham (2015) on the importance of accumulated 

capital for PV uptake and suggest that the early adopters of PV panels seem to be post-family 

householders capable to cover the high upfront costs. Notably, in older post family households 

(two-person, retired), electricity demand is rather high as more time is spent at home 

(Wittenberg and Matthies 2016). These households again are likely to characterize affluent 

regions, live in detached houses and entail enough capital savings to invest in PV panels.20 

                                                
19 Population density negatively affects household PV adoption, as county area per household has a 
positive impact in all models. 
20 In the appendix (c.f. Table 6), we summarise our results and compare them to literature findings. 
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Table 5: Impacts measures of SDM and GSM 

 SDM GSM   

Variable Direct Indirect Total Direct Indirect Total 

Solar Radiation 
0.149   

(0.178) 

0.072   

(0.613) 

0.221**   

(0.004) 

0.227*** 

(0.000) 

0.009   

(0.633) 

0.236*** 

(0.000) 

Green Voters 
-0.003   

(0.920) 

-0.262**   

(0.003) 

-0.266**   

(0.002) 

-0.046   

(0.198) 

-0.002   

(0.753) 

-0.047   

(0.200) 

Electricity Demand  
0.289*** 

(0.000) 

0.017   

(0.869) 

0.306*   

(0.034) 

0.297*** 

(0.000) 

0.012   

(0.615) 

0.309*** 

(0.000) 

Income 
-0.087.   

(0.059) 

-0.006   

(0.939) 

-0.094   

(0.537) 

-0.110*   

(0.022) 

-0.004   

(0.682) 

-0.115*   

(0.021) 

Welfare recipients 
-0.113*   

(0.043) 

-0.150   

(0.282) 

-0.262.   

(0.061) 

-0.160**   

(0.001) 

-0.006   

(0.639) 

-0.166**   

(0.001) 

East Dummy 
-0.077   

(0.381) 

-0.071   

(0.681) 

-0.148   

(0.283) 

-0.102.   

(0.094) 

-0.004   

(0.775) 

-0.106.   

(0.086) 

Ownership 
0.076   

(0.270) 

0.138   

(0.399) 

0.213   

(0.201) 

0.070   

(0.325) 

0.003   

(0.677) 

0.073   

(0.327) 

Detached 
0.252*** 

(0.000) 

-0.125   

(0.394) 

0.127   

(0.328) 

0.224*** 

(0.000) 

0.009   

(0.595) 

0.233**   

(0.001) 

County Area 
0.218*** 

(0.000) 

-0.063   

(0.437) 

0.155.   

(0.084) 

0.210*** 

(0.000) 

0.008   

(0.621) 

0.218*** 

(0.000) 

Note: The values in parentheses are p-values. 

⁎⁎⁎ Significance level at 0.1% 

⁎⁎ Significance level at 1%. 

⁎ Significance level at 5% 

. Significance level at 10% 

 

The 𝜃 coefficients of the SDM, representing spatial lags of the independent variables, are only 

statistically significant for county area and green voters. Similarly, indirect impact measures of 

the SDM and GSM are only significant for Green voters and detached houses (c.f. Table 5).21 

This implies that spatial lag of independent variables and indirect impacts do not offer 

meaningful explanations of PV adoption. Hence, most effects are local, as mostly direct 

impacts are significant and outgun indirect impacts. Consequently, PV uptake in a region 

depends on its own adopter-characteristics and settlement structure, and less so on those of 

its neighbours. In addition, positive direct (or total) impact measures of the SDM and GSM 

                                                
21 The effects estimate for the SAR model gives a similar picture (cf. Table 10). 
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confirm that solar irradiation detached houses, electricity demand and county area favour PV 

uptake. Negative influences of income and welfare recipients are also substantiated.  

To conclude, it is clear from the results that the data exhibits significant spatial dependence 

independently of the chosen specification. In the context of this study, we do not prefer a single 

model, but rather build implications on all model results. However, from coefficient estimates 

and test results the SEM performs best to interpret the impact of PV uptake within a region. 

This indicates that although spatial lag is present, spatial dependence in the residuals has 

higher explanatory power. Hence, we suppose that spatial spillover is not mainly driven by 

social imitation but by other regional characteristics not included in our model.  

Detached houses in spacious regions offer favourable conditions for PV adoptions. Also, 

households living in (their own) detached buildings might have financial savings to invest in 

PV systems. The share of welfare recipients seem to be a suitable negative proxy for wealth, 

having an impeding influence on a regions PV uptake. We hence suggest that is not income 

but rather prosperity i.e. accumulated capital, which contributes to regional differences in PV 

uptake. Further, households with higher electricity demand are inclined to adopt PV panels. 

Neither disposable income nor ecological attitude qualify to explain higher levels of PV 

adoption and rather show an opposing impact. A supposed East German mind-set impeding 

PV adoption could also not be supported.  

The availability and choice of data as well as the configuration of the spatial weights matrix 

(Mur and Angulo 2009) are crucial for the regression results and their interpretation. We have 

tested an inverse distance matrix and results are robust across this alternative specification.  

6 Conclusion 

Considering the finite nature of fossil resources and their effect on climate change as well as 

the huge potential for small-scale roof mounted PV installations and the support mechanisms 

in place, more small-scale PV installations are likely to emerge. This article studies the drivers 

and barriers influencing the diffusion of small-scale solar PV systems across space. We use 

cross-sectional data on PV installations in Germany, along with adopter characteristics, 

settlement structure and radiation data to find key determinants for accumulated capacity of 

small-scale PV systems in NUTS3 regions. 

Spatial dependence is a significant explanatory factor for residential PV diffusion, implying 

positive spillover to adjacent regions and the manifestation of PV clusters in certain regions. 

Recurrent visual perception, intensified social interactions and peer-effects might explain 

spatial autocorrelation as potential adopters follow decisions by actors in the proximity. Another 

reason for spatial dependence might be a concentration of craft skills or solar initiatives, which 

leads to an accelerated diffusion in a region and its surroundings. Whereas the first explanation 
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corresponds to the specification of a spatial lag model (SAR) the latter is in line with a spatial 

error specification (SEM). When considering both spatial processes in a generalized spatial 

model (GSM), we find that although spatial lag is present, spatial dependence in the residuals 

has higher explanatory power. We suppose that spatial spillover is not mainly driven by social 

imitation but by rather on regional characteristics beyond the included predictor variables. 

Notably, high values for solar radiation, shares of detached houses, electricity demand and 

inverse population density of a region favour PV uptake. The number of welfare benefit 

recipients and available income have a negative impact on small-scale PV installations. The 

share of Green voters has a negative impact in the OLS model but is insignificant in spatial 

models. This indicates on the one side that neglecting spatial association leads to implausible 

results. On the other hand, our results suggest that neither high income nor ecological attitudes 

induce PV installations as a presumably “typical” ecological behaviour. Obviously, there is an 

indirect effect of income (or accumulated capital) on PV uptake through the increased 

probability for living in a detached house. Yet beyond this impact, no direct effect is 

measurable. Also our results indicate that there are no measurable effects of a specific “East 

German” mind set (or differing economic conditions) beyond the general spatial 

interdependences and economic factors. 

The drivers for the regional distribution of PV installations are important for political and 

scientific discussions regarding the increasing share of PV generation in Germany. As 62% of 

German residential buildings are detached, there is further rooftop PV potential to be exploited. 

Potential new business models such as solar leasing or tenant (sub-) metering might grow and 

make rooftop PV accessible to a broader market. One implication pointed at by Dharshing 

(2017) is that regional differences lead to variations in the local benefits of policy measures. A 

better understanding of the regional impacts of policies can help to improve remuneration 

schemes and adjust national policies. In addition, the installation of PV systems in a region 

creates local jobs and revitalises artisanship, which might be important factors for urban 

development and planning.  

Our findings deepen the understanding on the regional diffusion of small-scale PV but research 

is still needed, as spatial dependence in residuals hints at unobserved drivers for regional 

uptake. E.g. editing data on local solar initiatives in NUTS3 regions and taking it as a predictor 

variable might account for some of the spatial error correlation. Shortcomings of our research 

which could be addressed include the following: Notably we do not account for innovation 

diffusion effects over time, as proposed by Rogers (2003). Hence, a temporal dimension could 

be integrated in the analysis leading to a spatial-temporal model. Klein and Deissenroth (2017) 

analyse when household’s invest in PV systems and find that not only profitability, but also the 

change in profitability compared to the status quo determines the uptake. Yet a precondition 

for including time effects is the availability of the data. However, we do not want to capture 
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effects over time (e.g. cost decreases) but rather (nearly) time invariant features of different 

regions and thus employed cross-sectional data instead of panel data. Time invariant variables 

are incorporated in the fixed effects (FE) of standard FE panel models, which complicates 

evaluation of these variables. Rode and Weber (2016) find that imitation in household PV 

adoption is highly localised, but influence decreases over distance. Richter (2013) also notices 

stronger social effects of domestic solar PV for smaller spatial units. In light of these findings, 

our spatial units seem to be rather big to investigate social interaction between households. 

Considering smaller spatial units such as zip codes in the analysis may hence improve our 

findings on spillover effects. However, data availability at a zip code level for the predictor 

variables used in this study has limited the spatial disaggregation. 
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Appendix 

Table 6: Summary of effects on PV uptake 

Variable Literature findings Our findings 

Solar Radiation Schaffer and Brun (2015) and Balta-

Ozkan et al. (2015) propose a positive 

effect: Higher irradiation means  higher 

electricity generation that is generally 

fed into the grid and remunerated under 

a FIT. Insignificant impact in Allan and 

McIntyre (2017). 

High positive impact in most 

specifications: Households 

consider financial yields when 

deciding whether to adopt PV. 

Green voters Proposed to be insignificant by Schaffer 

and Brun (2015) and Allan and McIntyre 

(2017); inconsistent finding by 

Dharshing (2017). 

Inconclusive; negative effect in 

the OLS estimation and 

insignificant in spatial models. Not 

only ecological conscious 

households adopt PV. 

Electricity Demand Balta-Ozkan et al. (2015) find a positive 

effect: Households with higher demand 

may be more interested in becoming 

self-sufficient. 

High positive impact: Higher 

interest to reduce comparatively 

high electricity costs or desire to 

compensate higher demand by 

green electricity production. 

Available Income Schaffer and Brun (2015) and Dharshing 

(2017) find a positive influence of 

income: higher income households may 

be more capable to manage high upfront 

costs of PV systems. 

Small negative effect: Income is 

no precondition to adopt PV. 

Finding in line with Balta-Ozkan et 

al. (2015), Zhang et al. (2011) and 

Graziano and Gillingham (2015). 

Supposedly, accumulated capital 

more important than income.  

Welfare recipients Dharshing (2017) finds negative effect of 

unemployment rate, indicating poor local 

economy hampers PV adoption.  

Negative impact: Sensitive 

financial situation of households 

does not offer the chance to 

purchase PV; Effect of 

accumulated capital bigger may 

be bigger than effect of income. 
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Home ownership Balta-Ozkan et al. (2015) find a 

negative effect in the UK and claim 

cumulated capital is more important.  

Positive effect (but due to correlation 

with detached houses insignificant 

except in SAR model): Homeowners 

are more likely to invest in building 

technologies and planning is easier 

as they can freely decide what to put 

on their roof; in line with Schaffer and 

Brun (2015). 

Detached Houses Balta-Ozkan et al. (2015) find a 

positive effect: Compared to terraced 

homes or block development, 

construction work could be easier. 

High positive impact: Detached 

houses may offer more suitable roof 

space for rooftop PV installations and 

do not suffer from shadowing. Higher 

explanatory power than single-family 

houses and owner-occupied 

dwellings in our analysis. 

Single-Family 

Houses 

Dharshing (2017) finds positive 

impact in panel SEM model, but 

insignificant effect in FE and panel 

SAR model. Impact remains unclear. 

Due to correlation between detached, 

owner-occupied and single-family 

houses excluded form regression.  

 

County Area per 

Household (Inverse 

Population Density) 

Schaffer and Brun (2015) find 

positive influence of house density: 

Scalable roof-top PV may be suitable 

for densely populated regions and 

rural areas with little inhabitation offer 

less roof potential. 

High positive impact: More county 

area per household indicates larger 

properties with presumably larger 

roof spaces, characterised by a 

higher share of single and double 

family homes. Finding in line with 

Balta-Ozkan et al. (2015). 
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Figure 7: Local Moran’s I showing similar and dissimilar values in neighbouring counties 

 

Table 7: OLS estimation results with whole data set 

Variable Coefficient Std. error t-value p-value VIF 

Intercept 0 0.025 -0.002 0.998  

Solar Radiation 0.281*** 0.035 8.031 0.000 1.889 

Green Voters -0.153*** 0.034 -4.462 0.000 1.815 

Electricity Demand  0.331*** 0.058 5.751 0.000 5.117 

Income -0.151** 0.047 -3.199 0.001 3.426 

Welfare recipients -0.267*** 0.051 -5.241 0.000 4.013 

East Dummy -0.199*** 0.050 -3.946 0.000 3.908 

Ownership 0.056 0.088 0.636 0.525 12.010 

Detached -0.014 0.072 -0.189 0.850 8.027 

County Area 0.198** 0.060 3.277 0.001 5.612 

Solar Radiation 0.191*** 0.042 4.537 0.000 2.726 

Note: The values in parentheses are p-values. 

⁎⁎⁎ Significance level at 0.1% 

⁎⁎ Significance level at 1%. 

⁎ Significance level at 5% 

. Significance level at 10% 
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Table 8: Correlation Matrix 

Variable Sol. Green Elec. Inc. Wel. East Own. Sing. Det. Area 

Solar Radiation 1.00          

Green Voters 0.07 1.00         

Electricity Demand  -0.02 0.25 1.00        

Income 0.27 0.38 0.70 1.00       

Welfare recipients -0.49 -0.23 -0.51 -0.69 1.00      

East Dummy 0.02 -0.55 -0.69 -0.59 0.32 1.00     

Ownership 0.01 -0.05 0.70 0.57 -0.62 -0.30 1.00    

Single -0.15 -0.14 0.63 0.38 -0.42 -0.14 0.89 1.00   

Detached 0.02 -0.01 0.60 0.50 -0.65 -0.24 0.88 0.77 1.00  

County Area -0.01 -0.35 0.17 0.03 -0.26 0.29 0.57 0.65 0.60 1.00 

 

 

Table 9: Direct and indirect effects of SAR model 

 Variable Direct Indirect Total 

Solar Radiation 0.179*** (0.000) 0.078*** (0.000) 0.257*** (0.000) 

Green Voters -0.073*   (0.019) -0.031*   (0.021) -0.104* (0.017) 

Electricity Demand  0.275*** (0.000) 0.119*** (0.000) 0.394*** (0.000) 

Income -0.077. (0.066) -0.033* (0.067) -0.110* (0.062) 

Welfare recipients -0.142** (0.002) -0.062** (0.003) -0.204** (0.002) 

East Dummy -0.046 (0.302) -0.020 (0.332) -0.066 (0.307) 

Ownership 0.150* (0.013) 0.065* (0.028) 0.215* (0.014) 

Detached 0.158** (0.002) 0.068** (0.006) 0.226** (0.002) 

County Area 0.159*** (0.000) 0.069** (0.001) 0.228*** (0.000) 

Note: The values in parentheses are p-values. 

⁎⁎⁎ Significance level at 0.1% 

⁎⁎ Significance level at 1%. 

⁎ Significance level at 5% 

. Significance level at 10% 
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