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Estimating the value of flexibility from real 
options: On the accuracy of hybrid electricity 
price models 
 

Christian Pape1∙ Oliver Woll ∙ Christoph Weber 

 
Abstract Practitioners in the electricity industry aim to assess the value of power 
plants or other real options several months or even years ahead of operation. Such 
a valuation is notably required for hedging purposes. The revenue streams to be 
earned in the spot market are thereby already secured on future markets. Yet the 
peculiarities of the electricity market, notably the limited storability of electricity 
and the incompleteness of the derivative markets, make this problem also 
theoretically challenging since they prevent the straightforward application of 
standard approaches for price modeling and for hedging.  

In this context, the contribution of this article is twofold: (1) We present a novel 
methodology to model electricity prices based on fundamental expectations and 
accounting for both short-term and long-term uncertainties. This requires the joint 
modeling of different commodity prices, namely electricity, fuel and CO2 prices. 
Moreover price distributions have to be modelled in order to assess the real option 
value adequately ex ante. Specifically, we compare two different modeling 
approaches to account for long-term variations in multi-commodity price dynamics. 
(2) We suggest a test procedure and introduce performance measures to analyze the 
accuracy of the proposed price modeling. We thereby focus on the practically 
relevant question, whether the price modeling provides ex ante estimates of the 
value of the real option that are in line with the ex post realized values. This 
approach is chosen since no derivative markets exist where the (extrinsic) values 
for the real options could be observed months or years ahead of actual operation. 
Nonetheless we show that under well-defined assumptions, the ex-ante values 
derived using the price model should provide unbiased estimates of the ex post 
values, which are computed as a sum of hedging and spot exercise revenues.  
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The application part shows results for a state-of-the-art gas power plant. By 
applying the developed performance measures and test statistics, we find that 
neither of the two investigated price models clearly outperforms the other.  
 
Keywords Electricity price forecasting ∙ Futures market ∙ Hedging ∙ Real option ∙ 
Stochastic optimization∙ Valuation 

1 Introduction 

In electricity markets, the valuation of flexibilities from conventional generation 
assets and the adequate description of short- and long-term electricity price 
uncertainties are of substantial interest for market participants to hedge against the 
related price and volume risks. The expected revenues in the spot market are thereby 
secured on future markets several months or even years ahead of actual operation. 
In recent years the valuation and hedging became increasingly challenging due to 
changes in the industry such as the increasing renewable energy production or 
decreasing electricity price levels. We subsequently first discuss the challenges in 
terms of electricity price modelling and then those in terms of computation and 
validation of real option values. Those two issues motivate our approach for 
electricity price modelling and the evaluation methodology developed to assess the 
performance and unbiasedness of real option values. 

Whereas longer-term electricity price models estimate the price development for 
time horizons of one to several years (e.g., to schedule power plant revisions), 
shorter-term electricity price models aim to forecast for time horizons ranging from 
several hours to less than a week (e.g., to optimize the day-ahead unit commitment). 
Due to the increasing share of fluctuating renewable infeed, the consideration of 
short-term stochasticity in longer-term price forecasting models is crucial for the 
valuation of asset flexibilities, the assessment of optionalities and other risk 
management purposes (Wozabal et al. 2014). Asset flexibilities notably arise for 
power plants which can be switched on and off under some technical constraints, 
i.e. these are real options exercised against spot electricity prices. The value of these 
real options then depends on the spread between spot electricity prices and variable 
generation cost of the power plant. For conventional thermal generation units, the 
variable generation cost in turn depend on input factor prices, namely fuel (e.g. gas) 
and CO2 certificate prices. Hence a power plant may be viewed as a real option with 
multiple underlying commodities. 

Yet, the long-term relations among stock or commodity prices tend to be unstable 
for financial markets and for energy commodities the fluctuations are even more 
extreme (among others Alexander 1999, Eydeland and Wolyniec 2003, Bencivenga 
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et al. 2010).2 Therefore, an accurate representation of the dependencies between 
input commodity prices  and electricity prices is of importance for the evaluation of 
such spread options (Aïd et al. 2013). In this article, we compare two electricity 
price models to consider the long-term uncertainty. Model 1 uses a one-factor mean 
reversion process to directly model the longer-term clean generation spread between 
electricity price and the combined price for the input fuel and CO2 emissions,3 
whereas Model 2 adopts a multi-factor approach to describe the longer-term 
variations of electricity prices and input commodity prices. 

Usually, the accuracy of electricity price forecasts is assessed by performing 
statistical tests to measure the accuracy of point, interval and distributional forecasts 
(among others see Janczura and Weron 2012; Weron 2014). Statistical tests 
typically compare the price forecasts with in-sample or out-of-sample realizations 
of prices. However, the price forecasting accuracy does not directly measure the 
adequacy of estimates for the real option value. A model that is judged superior in 
terms of price forecast accuracy may well underperform when options on price 
spreads with multiple underlying factors are to be assessed. At the same time, the 
ex-ante value of such real options is generally not observable in the market. Based 
on readily available futures market quotes, only the current average generation 
spread for low time granularities (e.g. months) may be computed. This yet provides 
just a rough estimate of the intrinsic option value given the combined effects of 
market incompleteness and limited storability. Limited storability induces strong 
price fluctuations in the spot market e.g. between day and night hours or between 
periods with low and high renewable infeed. Due to the market incompleteness of 
the futures markets which quote average prices for longer delivery periods (e.g. 
months), the short-term price fluctuations are yet averaged out in the futures 
markets. Correspondingly the real option value of switching on and off is not 
directly revealed in the derivative markets with lower time granularity. 

Given this market incompleteness, it is also not straightforward to construct a 
dynamic delta hedge and such a hedge will moreover not fully eliminate the price 
risk. Under well-defined assumptions discussed below, ex ante option values 
obtained from price simulations will nevertheless be an unbiased estimate of the ex 
post realized value. The latter may be computed as the sum of the cash flows from 
hedging operations plus cash flows from an optimal dispatch in the spot market. Yet 
an in-depth discussion is necessary to understand how differences between ex post 
and ex ante values are related to market incompleteness and limited storability on 
the one side, and inaccuracies of the price models on the other.  

                                                           
2 Among others, Guo et al. (2014) highlight the importance of correlation risk for spread options, 
thereby referring to the hedging of a gas-fired power plant. Related to more general spread 
hedging, Carmona and Durrleman (2003) provide notable work on multi-asset hedging.  
3 The term ‘clean spark spread’ designates a spark spread (the spread between electricity and gas 
prices) that includes emission costs. We use the general term ‘clean generation spread’ because 
the Models presented in this paper are also applicable for other spreads, e.g. ‘clean dark spread’ 
(the spread between electricity and coal prices and emission costs). 
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The aim of this article is hence to assess the value of real options in the electricity 
market and to what extent an inaccurate pricing model could cause valuation biases. 
To understand the accuracy of said pricing models, we suggest an evaluation 
framework that focusses on the accuracy of longer-term distributional forecasts and 
attempts to decompose the impact of model imperfections. The interplay with 
market imperfections is thereby scrutinized in detail. 

The contribution of this article is twofold: (1) We present a novel methodology 
to model electricity prices based on fundamental expectations and accounting for 
both short-term and long-term uncertainties. As the literature on joint modeling of 
commodity prices is scarce, we compare two modeling approaches to account for 
variations in long-term price dynamics (Kovacevic and Paraschiv 2014). (2) We 
suggest a test procedure and introduce performance measures to analyze the 
accuracy of the proposed price modeling for estimating the value of flexibility from 
real options. The evaluation framework takes into account that prior to delivery only 
the futures market can be used for hedging.4 

The article is structured as follow: Section 2 introduces the two electricity price 
models under study. The section describes the fundamental price modeling, the 
modeling for the short-term uncertainty and the differences between the two 
methods to capture the long-term stochastics of electricity prices. Section 3 
describes the valuation model used to calculate the real option value ex ante. 
Section 4 introduces the evaluation framework to assess the accuracy of electricity 
price forecasts for valuation purposes. In this section, we explain the hedging with 
futures and propose novel performance and test measures. Section 5 presents a real-
world application for a large-scale gas power plant. For both price models we 
perform the asset valuation and apply the suggested evaluation framework. Section 

6 concludes with a summary of our main findings. 

2 Hybrid energy price modeling 

In addition to the forecast horizon, electricity price models are classified based 
on the method applied (Weber 2005; Weron 2014). We introduce a so-called hybrid 
model to combine the strengths of different modelling approaches, namely, a 
fundamental and a stochastic method. Fundamental models attempt to capture 
physical and economic relationships in electricity markets and are beneficial for 
depicting longer-term changes in supply and demand. Such models are parameter-

                                                           
4 Additionally, this article has practical relevance. Typically, utilities use sophisticated models to 
derive expectations regarding longer-term electricity prices based on a few number of scenarios. 
Normally companies use one leading scenario which is in line with all strategic decisions and two 
competing scenarios which reflect an up- and a downside case. These expectations form the basis 
for corporate planning and are approved by top management. The price modeling presented in this 
paper provides a methodology to consider uncertainty in such scenarios. 
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rich and based on specific assumptions regarding economic or physical 
relationships. They are, however, reacting sensitively if these assumptions are 
violated in reality (Weron 2014). Therefore, we add a stochastic component, which 
is advantageous for modeling the price variation. The stochastic component 
distinguishes between short- and long-term dynamics as they are driven by different 
sources of uncertainty. Thereby, the fundamental modelling approach ensures 
consistency between input commodity and electricity prices.5 However, the 
inclusion of the longer-term spread uncertainty within the fundamental model 
affects the bandwidth of the forecasted price distribution.   

2.1 Model definition 

The hybrid price modeling is based on the assumption that electricity spot prices St  
at time t (i.e. hours) are primarily driven by fundamental information and are also 
subject to stochastic influences. To compare the differences in modeling the longer-
term uncertainty, we define two models: Model 1 estimates a deterministic path for 
the fundamentally expected price S̅tfund based on expected input commodity prices X̅c,t  and models a short-term price dynamic ωtspot as well as a long-term spread 

uncertainty ωtspread, see Eq. (2-1). The index n belongs to the set of simulations n ∈{ͳ, …N}, with N indicating the number of simulations and the index c ∈ ሺͳ,…,Cሻ 
indicating different commodities.  

 ܵ,௧ௌ ଵ = ܵ௧̅௨ௗ(�̅�,௧ ) + ߱,௧௦௧ +߱,௧௦𝑎ௗ (2-1) 

Model 2 applies a multi-factor approach to model the input prices Xc,n,t . The 

resulting input prices are used to derive N estimates for Sn,tfund such that the long-

term spread uncertainty is included in Stfund and ωt spread becomes superfluous.  

 ܵ,௧ௌ ଶ = ܵ,௧௨ௗ(𝑋,,௧ ) + ߱,௧ ௦௧ (2-2) 

To keep Model 1 and 2 comparable, the short-term stochastic ωn,t spot and the 

approach to model Stfund are equal for both models such that the probability weighted 
means of Sn,tModel ͳ and Sn,tModel ʹ over all N are equal.6 S̅t  is the notation for the mean 

of the simulated prices given by Eq. (2-3) 

                                                           
5 Hereby, consistent means that commodity price developments are in line with fundamental 
relationships, e.g. increasing gas prices tend to increase the electricity prices due to higher variable 
costs of gas-fired power plants whereas emission prices increase the variable costs for all 
conventional assets based on their respective emission intensity. 
6 This assumption is true as long as variations in input commodity prices do not lead to a changed 
ordering of the bid stack. As discussed in Sunderkötter and Weber (2012), such reversals in the 
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 ܵ௧̅ = ∑ ,௧ݎ ∙ ܵ,௧ௌ ଵ  = ∑ ,௧ݎ ∙ ܵ,௧ௌ ଶ  , (2-3) 

with the probability of occurrence prn,t for state n. Given the homogeneous 

probabilities of prn,t over n, Eq. (2-3) corresponds to the average of all prices Sn,t . 

Any time the notation S୲ is used without further specification of the model, either Sn,tModel ʹ or Sn,tModel ͳ can be applied. 7 Fig. 1 summarizes and illustrates the model 

differences.  
 
 

Model 1 ܵ௧௨ௗ(�̅�,௧ ) + ߱,௧ ௦௧ + ߱,௧ ௦𝑎ௗ = ܵ,௧ௌ ଵ 
Input fuels

    

Model 2 ܵ,௧௨ௗ(𝑋,,௧ ) + ߱,௧ ௦௧ + = ܵ,௧ௌ ଶ 
Multi-factor 

input fuels 

 

 

Fig. 1 Overview of the hybrid price simulation models  

2.2 Fundamental model 

The fundamental price Sn,tfund is determined in an equilibrium model for supply 

and demand for N simulations of commodity prices, similar to Müsgens 2006; 
Weigt and Hirschhausen 2008; Graf and Wozabal 2013; Pape et al. 2016. First, we 
assume that companies bid their available capacity at their operational costs cu,t  

given by 

                                                           
merit order are unlikely in the German market. Weber and Vogel (2014) provide evidence that 
even carbon constraints do not lead to reversals in the stack in long-term equilibria. 
7 In order to estimate the long-term uncertainty (Model 1: ω୬,୲ୱ୮୰ୣaୢ and Model 2: dX୲,ୡ , see section 

2.4) and the short-term uncertainty, a Kalman filtering approach or similar techniques may be used. 
Through the use of latent variables, those approaches separate the short-term and long-term 
components of uncertainty. Since the short-term impact of long-term uncertainties is low, 
neglecting the latter in the short-term estimation is expected to induce little bias. The other way 
round, a simple moving average procedure on spot prices serves as a first approximate filtering 
approach when estimating long-term stochasticity. 
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 𝑐௨,,௧ = ቀ𝑋𝑓,, +𝑋ೀమ,,  ∙ைమ𝑓,ೠ ቁ𝜂ೠ + 𝑐௨,௧ℎ . (2-4) 

The operational costs are driven by time-varying fuel and emission prices Xf,t . 

The index f ∈ {ͳ, ..., M} is a subset of index c and contains the type of fuel that is 
used as input for any production unit u={ͳ,…,U}. M is the number of fuel types. The 
notation for the production units efficiencies is Ʉu and COʹf,u  for emission 

intensities. Second, we assume that the market operator aggregates the bids and 

arranges them in increasing order of the operational costs cu,t (cͳ,t <cʹ,t <…<cU,t ). 
Given those ordered capacities, the stepwise bidding quantities Bu,t  are given by 

=∶ ௨,௧ܤ  [∑ 𝑖,௧௨−ଵ𝑖=ଵܭ , ∑ 𝑖,௧௨𝑖=ଵܭ ), ͳ  ݑ  ܷ, (2-5) 

with the convention ∑ =ͲͲi=ͳ  (cf. Aïd et al. 2009). Ki,t∈R+ represents the available 

capacity, thus the installed capacity minus unavailable capacity (e.g., due to power 
plant revisions) at time t. The operational costs sorted in ascending order will 
deliver the typical monotonous shape of the bid stack. The fundamental estimation 
of the spot price St,nfund at time t is given by the operational costs of the last unit that 

is needed to satisfy a given demand: 
 ܵ,௧௨ௗ ∶= ∑ 𝑐ݐݏ𝑖,,௧ 𝑖=ଵ 𝟙{Dt ∈𝑖,}, ݐ ݎ݂ ∈ ℕ. (2-6) 

The demand Dt  denotes the residual demand. The variable renewable energy 
sources RESt, e.g., wind and solar, are assumed to produce at zero variable costs 
and are subtracted from domestic demand Lt.  

௧ܮ = ௧ܦ  − ܧܴ ௧ܵ (2-7) 

Due to the time-varying nature of the residual load and the non-linearity of the 
bid stack, the basic fundamental drivers of electricity price formation are covered 
in the fundamental model; however, other factors such as strategic bidding are not 
included. 

2.3 Short-term stochastic variation  

Electricity prices are a result of idiosyncratic influences causing seasonal cycles, 
high and non-constant volatility (heteroscedasticity) and mean reversion. For the 
short-term variation of electricity spot prices, we model a stochastic process for the 

difference ωt spot between observed prices S୲ and fundamental expectation S̅tfund, Eq. 

(2-3). We use a discrete time approach covering four steps: (A) The day-ahead 
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bidding is done simultaneously for all 24 hours of the day and thus based on the 
same information set. In line with Huisman et al. (2007), we treat the time series as 
a panel of individual hours h = {ͳ, …, ʹ4} ∈ t observed with a daily 

frequency d= {ͳ,…,D} ∈ t. (B) As ωt spotresult from comparing actual prices and 

prices based on a stack model, their distribution is non-normal. We map their 
empirical distribution to a normal distribution as Th:  ωd,h → ud,h = Ф-ͳ{CDFhሺωd,hሻ}. Ф-ͳ is the inverse of the standard normal distribution and CDF୦ 

is the empirical cumulative density function. (C) The stochastic influences on the 
panels are complex and interrelated. To reduce the complexity, we use a principal 
component analysis. We identify common principal factors f୲,୧ by solving the 

eigenvalue-eigenvector-problem for the correlation matrix from uୢ,୦ (among others, 

see Kovacevic and Wozabal (2014), Ziel (2016), Zugno et al. (2013)). (D) The 
factor f୲,୧ is modeled based on an ARMA-GARCH specification to cover lagged 

effects in price level and price volatility, which are characteristic of electricity 
prices. The maximum likelihood method is used to estimate the parameters. For the 
simulation of hourly prices, steps (A) to (D) are carried out in reverse order. The 

short-term uncertainty ωd,hspot is the same for Model 1 and Model 2. A summary of 

the approach and the key equations are given in Appendix A. More details and the 
fit with data is shown in Weber (2007) and Pape et al. (2017). Pape et al. (2017) 
report a high R2 of 0.81 for Model 5 (which corresponds to the specification used 
here) and a low MAE for an out-of-sample day-ahead forecasting at 4.09 
EUR/MWh. This underlines the good performance of this approach.  

2.4 Long-term stochastic variation  

Without explicitly referring to the longer-term dependencies between 
commodity prices, Frikha and Lemaire (2013) model simple correlations between 
Ornstein-Uhlenbeck processes. Empirical work on dependencies among energy 
commodity prices is reported by Bachmeiner and Griffin 2006; Mjelde and Bessler 
2009; Joets and Mignon 2011. However, a limited number of studies have jointly 
modeled commodity prices, including coal, gas and emissions. To the best of our 
knowledge, a joint model for European commodity prices was first applied by 
Kovacevic and Paraschiv (2014), who use principal component analysis to identify 
the joint factors of commodity prices. 

2.4.1 Model 1: One-factor mean reversion approach  

The modeling outlined so far neglects the influence of longer-term electricity 

price variations. We continue with Eq. (2-1) and find a specification for ωn,tspread that 

describes the longer-term uncertainty of the clean generation spread including CO2 
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emissions. This is similar in vein to the approach adopted in Frikha and Lemaire 
(2013) although they consider more complex mean-reversion dynamics. The main 
drivers of for the modelled spread are capacity shortages or oversupply in relation 
to the actual demand level that may change unexpectedly, e.g. due to economic 
crises. In the longer run, capacity adjustments will drive the spread levels back to 
equilibrium; therefore, mean-reversion is likely to occur. The dashed line in Fig. 2 
shows the clean generation spread. It provides graphical evidence and Table 14 in 
Appendix B gives statistical support to the mean reversion assumption for Model 
1.8 

 
Fig. 2 Clean-Spark-Spread, operational costs and electricity prices based on front-year contracts 

 

Above equilibrium, the spread provides incentives for capacity investments. 
Below equilibrium, the spread motivates capacity shut-down. The spread is in 
equilibrium when it enables investors to refinance the investment and fixed costs 
based on the expected yearly electricity production. At equilibrium, there are no 
incentives for market entries or exits and any divergence from the equilibrium will 
return to the spread equilibrium again (Woll and Weber 2011). In continuous time, 
the standard mean reversion process is the Ornstein-Uhlenbeck process, e.g., see 
Dixit and Pindyck (1994). In discrete time, the equivalent formulation is a first-
order autoregressive process AR(1): 

 ߱,௧௦𝑎ௗ = 𝜇ሺͳ − ݁−𝜅 ∆௧ሻ + ݁−𝜅 ∆௧߱,௧−ଵ௦𝑎ௗ +  ௧. (2-8)ߝ

The stochastic term ɂt is normally distributed with the spread volatility σspread. 
Parameter Ɉ is the mean reversion rate, the speed of returning to equilibrium Ɋ. 

2.4.2 Model 2: Multi-factor approach  

The modeling outlined for Model 1 is a multi-factor model by definition (cf. e.g., 
Gibson and Schwartz 1990; Schwartz 1997; Huisman and Mahieu 2003). However, 

                                                           
8 On the consistency of mean-reversion in spot and random walk for future prices cf. Dempster et 
al. (2008) 
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with respect to the longer-term spread, it constitutes a one-factor model due to a 
single stochastic term in Eq. (2-8). The basic idea for the multi-factor approach is 
that the operational costs will cover the long-term spread dynamics if the fuel prices 
are modeled stochastically. A large share of fuel-price-dependent power generation 
supports such a hypothesis. Therefore, we treat the fuel prices Xn,c,t  as stochastic 

variables in Model 2. E.g., Aïd et al. (2013) pursue a similar modeling idea and 
model the fuel spreads as independent geometric Brownian motions GBM. Fig. 3 
and Table 15 in Appendix B support the validity of GBM assumption for Model 2. 

 
Fig. 3 Gas-TTF, EUA CO2 and Coal-API2 calendar front-year prices from 2009 until 2011 

 
In contrast to Aïd et al. (2013) we directly model commodity prices in discrete 

time and account for their joint behavior in the error term. In discrete time, the 
equivalent formulation of a GMB is given by Eq. (2-9).  

 𝑋௧, = 𝑋௧−ଵ, ݁ቀ𝑐 −ଵଶ𝜎𝑐మቁ∆௧+𝜎𝑐 √∆௧ఌ,𝑐  ݓ𝑖ݐℎ ߝ௧, ~ܰሺͲ,ͳሻ. (2-9) 

Hereby, σc is the volatility for commodity price c, rc  the drift parameter and dWc 
the increment of a Brownian motion.9 To model the dependencies between 
commodity prices, we enforce a constant correlation (with respect to time) for the 
random variables; Corrሺɂt,c,ɂt,c'ሻ = ɏc,c', where ɏc,c' denotes the correlation of the 

input prices Xc  and Xc' . We model ɂt  as 
 𝛆୲ = Lܢ୲, (2-10) 

where zt is a vector of uncorrelated random variables and L a lower triangular 
matrix given by the Cholesky decomposition of a covariance matrix Σ. This matrix 
is positive and semi-definite by construction and a real-valued Cholesky matrix 
exists that satisfies Σ=LLT. Lzt  produces random variables with covariance 
properties of the commodity prices. Simulations for Xn,c,t  result in N bid stacks, that 

are used in the fundamental model Eq.(2-6). 

                                                           
9 The short-term electricity price model covers effects of non-constant volatility. These tend to 
overshadow the effects of non-constant volatility in the input commodity prices. Therefore, and 
given the methodological challenges of specifying a multi-commodity non-constant volatility 
model, we keep the assumption of constant volatility for the input commodities and the long-term 
spread modelling.  
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3 Valuation of real options  

With technical constraints, the decision to exercise a real option does not depend 
solely on the spot prices of electricity and input commodities but also on the plant 
operating state. The valuation problem becomes path dependent and complex to 
solve (Gardner and Zhuang 2000). The valuation model applied in this article is 
based on stochastic dynamic programming with backward recursion, similar to 
Tseng and Barz (2002) and Weber (2005). The basic model covers technical 
constraints for minimum operation and ramp times as well as minimum and 
maximum generation levels and start-up costs. The relevant formulas for the cost 
function, start-up costs CtSt and electricity production PtEl can be found in Appendix 
C and detailed information is provided in Gardner and Zhuang (2000), Tseng and 
Barz (2002) or Weber (2005).  

To determine the value of flexibility, we first evaluate the intrinsic option value 
based on expected values for electricity prices S̅t and input cost X̅ttotal, i.e. the mean 
given by Eq. (2-3). X̅ttotal is the total cost of inputs including the prices for fuel and 
for emissions certificates. The intrinsic value V̅t,TD  in t for delivery period TD from Tͳ until Tʹ  equals the differences of the optimal profit V̅t→Tʹ  and V̅t→Tͳ at time t, with V̅t→T  given by10  

 

 

ܸ̅௧→் ሺ ௧ܱ−ଵ′ ሻ = maxை′,ಶ ቀܵ௧̅ ∙ ௧ܲா − �̅�௧௧௧𝑎 ∙ ௧ܲி௨ሺ ௧ܱ′, ௧ܲாሻ − 𝑐௧ℎ ∙
௧ܲா − ௧ௌ௧ሺܥ ௧ܱ′ሻ + ܸ̅௧+ଵ→் ሺ ௧ܱ′ሻቁ. (3-1) 

Further elements appearing in Eq.(3-1) are the consumed input fuels PtFu, other 

variable costs c୭୲୦ୣ୰  and start-up costs CtSt. The fuel quantity and start-up costs 

depend on the state variable Ot’ , which is a generalization of the state variable for 

the operation state Ot and counts the hours since start-up if positive or the hours 
since shutdown if negative. The revenues in Eq. (3-1) are driven by the optimal 

electricity output PtEl, given the operation state Ot . Eq. (3-1) elucidates that V̅t→T  

depends on the value of the state variable preceding the optimization period Ot-ͳ’  
and may be computed recursively. Therefore, the problem can be solved by finding 
the optimal state in the final node and working back in time. A detailed description 
of the procedure for backward induction is found in Weber (2005). As stated in Eq. 
(2-3), the intrinsic value V̅t→T  is identical for Model 1 and Model 2 in the present 
study. The total (extrinsic) option value is based on the valuation with stochastic 
electricity price simulations Sn,t with ݊ ∈ {1,…,N}. Now, the optimal profit does 

not depend solely on the previous operation status but also on the uncertain 
electricity prices. Similar to Eq. (3-1), the optimal profit ௧ܸ→்  at time ݐ, given the 

operation status Ot-1
’ , and the price St-1 is given by 

                                                           
10 This clarification is necessary to deal with options whose underlying covers a delivery period 
[T1T2] with t<T1. Hence we define the option value in such a case as the difference between values 
for the two boundaries of the delivery period. E. g. for the intrinsic value V̅t,T1,T2

 =V̅t→T2
 -V̅t→T1

 
. 
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௧ܸ→் ሺ ௧ܱ−ଵ′ , ௧ܵ−ଵሻ = ଵே∑ [maxை′ ,ಶ ቀܵ,௧ ∙ ܲ,௧ா − �̅�௧௧௧𝑎 ∙ே=ଵ
ܲ,௧ி௨(ܱ,௧′ , ௧ܲா) − 𝑐௧ℎ ∙ ܲ,௧ா − ′௧ௌ௧(ܱ,௧ܥ ) +

௧ܸ+ଵ→் (ܱ,௧′ , ܵ,௧)ቁ]. (3-2) 

The optimal operation strategy depends on the payoff in t for different price 
scenarios and on the expected optimal profit at further time steps given those 
different prices. The optimal unit commitment can again be solved through 
backward recursion in a dynamic programming approach. Therefore, Monte Carlo 
simulations for the price paths based on information available at time t = 0 until the 
final node T are necessary (among other Ripley 2009; Kroese et al. 2011). Instead 
of using all simulated paths, we generate a price lattice similar to Weber (2005) or 
Felix and Weber (2012) to reduce computational burden.11 From initially N possible 
states for electricity prices Sn,t, we reduce the dimension based on a k-means 

algorithm (e.g., see Lloyd 1982). Given k = ሺͳ, …, Kሻ price clusters and the 
corresponding transition probabilities Trk,t-ͳ→k' , Eq. (3-2) is written as12 

 

௧ܸ→் (ܱ,௧−ଵ′ , ܵ,௧−ଵ) = ∑ ′,௧−ଵ→′ݎܶ maxை,ೖ′′ ,ೖ′ಶ,([ܵ′,௧ ∙ ܲ′,௧ா −�̅�௧௧௧𝑎 ∙ ܲ′,௧ி௨ (ܱ′,௧′ , ܲ′,௧) − 𝑐௧ℎ ∙ ܲ′,௧ா − ′௧ௌ௧(ܱ′,௧ܥ ) +௧ܸ+ଵ→் (ܱ,௧′ , ܵ′,௧)]). (3-3) 

The value of flexibility Vt→Tflex  , is the difference between the intrinsic value V̅t→T  
and the total option value Vt→T  derived from the valuation with stochastic prices.13 

 ௧ܸ→்௫ = ௧ܸ→் − ܸ̅௧→்  (3-4) 

4 Accuracy of price models 

For estimating the value of flexibility ௧ܸ→்௫, a well-performing point forecast 

model for electricity prices is not sufficient, as it only ensures the accurate valuation 
of the intrinsic option value (ܸ̅௧→் ). Rather, the choice of an electricity forecasting 
model should be based on a comprehensive evaluation of the ability to forecast the 
price distribution. Since asset valuation is a major application purpose for longer 

                                                           
11 For a similar real option valuation (gas storage), Felix and Weber (2012) report small differences 
in the results based on least square Monte Carlo compared to recombining trees. 
12The transition probabilities Trk,t-1→k' describe the share of simulations whereby the price in ݐ 
belongs to the cluster k and in t - 1 to cluster k'. 
13 The value of flexibility as introduced here refers to the option value part that is induced by 
uncertainties. Basically operating flexibility may affect operations also without uncertainty and 
hence also the intrinsic value of a power plant may include some flexibility value, In line with the 
current practice in industry, we yet define the value of flexibility as the difference between the 
intrinsic and the total option value.  
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term price distribution forecasts, the accuracy of ex ante asset valuations is a 
practically relevant indicator for the quality of the distribution forecasts. Yet the 
definition and the use of such an indicator raises some challenges – notably related 
to the characteristics of electricity markets. Primarily, three aspects have to be 
considered:  

(a) Since operational decisions for power plants and similar flexibilities are taken 
close to real time, the spot price is the reference to be used for the valuation of the 
corresponding real options. Yet, the electricity futures markets do not replicate the 
granularity of the spot markets, rather they provide quotes for delivery over longer 
time periods (e.g. months). Given the limited storability of electricity, the prices in 
spot markets vary strongly whereas these fluctuations are averaged out in the future 
quotes.  

 (b) As electricity futures are written for the delivery over a certain time period 
such as months, model-based estimates and simulations are needed to compute 
future prices in a finer granularity (cf. section 2). Therefore, we simulate hourly 
prices and have to average over possibly heterogeneous time segments to determine 
futures prices (see Eq. (4-1)). This leads to a joint testing problem: the different 
components of the electricity and fuel price models can only be tested jointly - here 
in conjunction with a valuation model, used to evaluate directly real option values.14 

(c) Under standard theoretical assumptions, a dynamic delta hedge ensures the 
recovery of the initial (extrinsic) option value.15 However, the incompleteness of 
markets and the impossibility of cash-and-carry arbitrage (which results from 
limited storability) make adaptations of the hedge strategies necessary. Only in such 
a framework, the ex-ante option values may be computed and compared to the ex-
post values. The evaluation framework derived from these considerations is 
described in the next subsection. Subsequently the necessary assumptions and the 
impact of market imperfections are discussed. In the last subsection, performance 
measures and test statistics are introduced. 

4.1 Evaluation framework 

We propose to evaluate whether one price forecasting model is superior to 
another in a framework which replicates key features of power plant management 
in a real-world portfolio context. This approach reflects the real option 

                                                           
14 Evaluating the performance of any price forecasting and valuation approach is facing the joint 
hypothesis problem raised in the seminal work by Fama (1970) and discussed frequently since. 
I.e., we cannot simultaneously test the efficient market hypothesis and a specific market price and 
asset valuation model. Therefore, we assume that systematic deviations between our ex-ante asset 
valuations and realized values are attributable to inaccurate price and/or valuation models (see 
section 4.2). 
15 Standard theoretical assumptions notably include that market participants have access to the 
same information, assets are fully divisible, trading is possible on a continuous basis until delivery 
and no transaction costs exist (cf. Fama (1970)).  
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characteristics of power plants, the incompleteness of future markets and the longer 
term hedging of the real option value that is realized only in the spot market. The 
approach is able to capture the impact of longer term uncertainties and distributional 
forecasts on valuation. Fig. 4 shows the evaluation framework and visualizes the 
used procedure. The horizontal axis is a time axis and depicts the transition from 
the futures to the spot market for a given delivery period. The vertical axis shows 
the order of steps for the evaluation. The following paragraph further explains the 
intuition and the steps that are summarized in Fig. 4.  
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 𝑨ࡲࡱ: Absolute Error hedging with futures   

  𝑨ࡿࡱ(Absolute Error Spot) 

    𝑨ࡱ𝑽 (Absolute Error valuation) 
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Fig. 4 Overview of the underlying problem and application of the evaluation framework. 

 
The evaluation framework consists of two main parts. The first part of the 

evaluation framework is a straightforward application of well-developed methods 
to test the (statistical) ‘goodness-of-fit’ of electricity prices forecasts (top right of 
Fig. 4). Until recently, the electricity price forecasting literature neglected to focus 
on testing the accuracy of probabilistic forecasts (Janczura and Weron 2012; Weron 
2014), but this type of research is gaining importance (among others Maciejowska 
and Nowotarski 2016; Pape et al. 2017). The second part is to define performance 
measures (bottom of Fig. 4) which are applicable to the hedging with futures and 
account for the transition between futures and spot markets. The defined 
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performance measures are in line with standard goodness-of-fit measures and are 
supposed to measure the relative merits of a price model compared to another (see 
section 4.3). Since the focus is on the modelling of future spreads, a s                                                         
pot price model is applied that fulfils Eq. (2-3) such that both models deliver the 
same point-forecasting results and this allows to focus on differences of the 
distributional forecast ability.  

The starting point of the overall procedure are electricity price simulations. 
Based on the price simulations, we can compute the goodness-of-fit measures of 
part 1 (top left of Fig. 4). Before the start of delivery (ݐ < Tͳ), the simulated spot 

prices ܵ ܶܦ for the delivery period of the underlying future ܶ from Tଵ until Tଶ are 

calibrated to the observed electricity future quotes at time ܨ) ݐt,Tͳ,Tʹ =  t,Tವ), suchܨ

that ܵ ݊,ܶ reflect possible spot prices in a risk neutral world, see Eq. (4-1);  

ܦT,ݐܨ  = ∑ ∑ ܵ݊,ܶܶʹܶ=ܶͳಿ=భே⋅ሺܶʹ−ܶͳሻ .  (4-1) 

The middle of Fig. 4 shows the clustering of the price simulations and the 
computation of the real option values. The valuation model delivers the intrinsic 
value plus the value of flexibility for a delivery during the delivery period TD from Tଵ until Tଶ based on the information at time t ( tܸ→்ವ  ). The subsequently computed 

delta hedge should eliminate the price risk (Hull 2011). Eq. (4-2) gives the hedge 
position (Ɂୡ,୲ ) for the commodities 𝑐 at time ݐ as 

= ,௧ߜ  𝜕t→ವ 𝜕ி𝑐,,ವ ݓ𝑖ݐℎ ܶ = { ଵܶ, … , ଶܶ}. (4-2) 

Delta neutrality is achieved by offsetting the options delta with trades in the 
underlying such that the delta of the position Ɏ equals zero, e.g. at t=Ͳ it equals  

 𝜋 = Ͳܸ→்ವ − ∑ ∙ ,ߜ ∈ሺଵ,…,ሻ ܦܶ,,ܨ . (4-3) 

After setting up the initial hedge, the changes in the delta positions ∆Ɂc,τ =Ɂc,τ −Ɂc,τ-ͳ  are traded to ensure delta neutrality at all times τ=t+ͳ,…,t' (dynamic 

hedging). Fig. 4 illustrates that we calculate the hedge position at consecutive points 
in time t, t + ͳ,… , t′ < Tଵ and that the hedge is liquidated before the start of 
delivery ݐ’. The profit and loss from hedging (P&LF) then equals  

௧,௧′ிܮ&ܲ  = ∑ ቌߜ,௧ ∙ ,௧,்ವܨ + ∑ ∙ ,𝜏ߜ∆ ′,𝜏,்ವ௧ܨ
𝜏=௧+ଵ − ∙ ′,௧ߜ  ,௧′,்ವቍܨ

∈ሺଵ,…,ሻ ′ݐ ℎݐ𝑖ݓ < ଵܶ.  (4-4) 

If we assume continuous hedging in complete markets without transaction costs 
and based on the correct price model, the initial option value tܸ→T  equals to the 
option value ௧ܸ′→T  in t' plus the ܲ&ܮ ி from time t until t'.  

 tܸ→T = ௧,௧′ிܮ&ܲ + ௧ܸ′→T  ݂ݐ ݎ′ < ଵܶ. (4-5) 

Eq. (4-5) holds since the portfolio of the real option and the continuously 
adjusted dynamic hedge is risk free at any moment. Hence, its value evolves 
according to the risk free interest rate - which is assumed to be (close to) zero. 
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4.2 Underlying assumptions and market imperfections 

The equality (4-5) relies on the following assumptions: (1) complete markets (i.e. 
one hedge product per risk factor), (2) no transaction costs, (3) continuous hedging, 
(4) a risk-free discount rate close to zero, (5) the use of the true price model when 
executing the hedge transactions. If hedging is based on an erroneous price model, 
the resulting portfolio will not be risk free and thus the equality is no longer 
guaranteed. Implicitly we assume (6) perfect or at least sufficient liquidity, i.e. no 
price impact of hedging transactions. If the previous assumptions hold, we may note 
that one assumption is not necessary: (7) absence of risk premia. Even in the 
presence of risk premia in the real-world measure, entering a hedge contract does 
not change the value of a portfolio. For the resulting portfolio, to continuously 
remain risk free, changes in the value of the real option (or any other derivative) 
will come along with compensating cash flows from hedging until the end of the 
hedging period, where the hedge can be liquidated without value change for the 
overall portfolio. If assumptions (1) to (4) and (6) hold, the difference between the 
left-hand side and the right-hand side of Eq. (4-5) provides an indication about the 
accuracy of the used price model. If this difference is observed on a sample of 
sufficient size, an error measure may be derived. This is indicated in the bottom of 
Fig. 4 and the performance measures are discussed in section 4.3.16  

Before proceeding, we check the aforementioned assumptions against the 
specifics of the electricity market. For electricity markets, the assumption (1) 
regarding market completeness is violated due to the low (e.g. monthly) granularity 
of products in the futures markets compared to spot trading. Assumption (3) on 
continuous hedging is certainly not fulfilled in the interval between the last trade in 
the future market (e.g. end of the preceding month) and the actual delivery (e.g. 
middle of the current month). These two specificities imply that we cannot rely on 
the standard result for complete markets that derivative values obtained under the 
risk neutral measure are also valid under the real world measure. Instead of 
deducing this result from the basic model assumptions, we therefore state it as an 
additional assumption (8): Valuation results for derivatives obtained under the risk 
neutral measure are still valid under the real world measure. This assumption is 
retained instead of assumption (7) on absence of risk premia but it cannot be fully 
tested.17  

Finally, Assumption (2) on absence of transaction costs does not hold. Due to 
the fact that every trade leads to transaction costs, continuous adjustment of the 
hedge position may not be optimal in real world markets (Eydeland and Wolyniec 

                                                           
16 Note that these performance measures assess the accuracy of the price models in view of a 
specific task, namely the longer-term valuation of real options. This makes the difference 
compared to the goodness-of-fit measures in part one of the evaluation methodology (cf. above). 
17 Alternatively, one may maintain the more standard assumption of complete markets for the 
theoretical analysis. In that case any application has to discuss against prima facie evidence (hourly 
vs. monthly products), why obvious market incompleteness does not invalidate results 
    . 
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2003). It is beyond the scope of the present paper to identify optimal hedging 
strategies in the presence of transaction costs. In the view of real-world applicability 
it is however important to assess the hedging performance including transaction 
costs. Transaction costs are therefore modeled as bid-ask-spread assuming that 
futures can only be bought at ask Fc,t,ܶܦAsk  and sold at bid prices Fc,t,ܶܦBid  (e.g., Gondzio 

et al. 2003). Given a mean price Fc,τ,ܶܦ  as Fc,t,ܶܦ =ሺFc,t,ܶܦAsk +Fc,t,ܶܦBid ሻ/ʹ , with Fc,t,ܶܦAsk Fc,t,ܶܦBid , the transaction costs over the hedging period turn out to be: 

 

ܥܶ = ∑ 𝑖,௧ 𝟙{ఋ𝑖, >}ߜ] ∙ ሺܨ𝑖,௧,ܶܦ − 𝑖ௗܦܶ,𝑖,௧ܨ ሻ + ∑ 𝑖,𝜏 𝟙{Δఋ𝑖,𝜏 >}ߜ∆ ∙௧′𝜏=௧+ଵ 𝑖∈ሺܨ𝑖,𝜏,ܶܦ − 𝑖ௗܦܶ,𝑖,𝜏ܨ ሻ + 𝑖,௧′ 𝟙{ఋ𝑖,′ >}ߜ ∙ ሺܨ𝑖,௧′,ܶܦ − 𝑖ௗܦܶ,𝑖,௧ܨ ሻ + 𝑖,௧ 𝟙{ఋ𝑖, <}ߜ ∙ሺܨ𝑖,௧,ܶܦ௦ − ܦܶ,𝑖,௧ܨ − 𝑖ௗܦܶ,𝑖,௧ܨ ሻ + ∑ 𝑖,𝜏 𝟙{Δఋ𝑖,𝜏 <}ߜ∆ ∙ ሺܨ𝑖,𝜏,ܶܦ௦ − ሻ௧′𝜏=௧+ଵܦܶ,𝑖,𝜏ܨ 𝑖,௧′ 𝟙{ఋ𝑖,′ <}ߜ+ ∙ ሺܨ𝑖,௧′,ܶܦ௦ −  .[ሻܦܶ,′𝑖,௧ܨ
(4-6) 

4.3 Performance measures and test statistics 

A simple rearrangement of Eq. (4-5) leads to a first performance measure, the 
absolute error for the hedging with futures  AEF as given in Eq. (4-7).  

ிܧܣ  = ௧,௧′ிܮ&ܲ| + ௧ܸ′→்ವ     − ௧ܸ→்ವ  | ′ݐ ݎ݂  < ଵܶ, ܶ = { ଵܶ, … , ଶܶ} (4-7) 

Smaller values in this performance measure indicate that the price model and the 
corresponding valuation are more accurate. But this observation is obviously 
subject to some stochastic noise. By making use of Eq. (2-3) in our application, we 
can attribute observed differences in this performance measure primarily to the 
spread modelling in the long-term part of the Model 1 and Model 2.18  

As formulated, AEF is only applicable during a time span from the initial 
valuation until any time prior to the start of delivery. This implies that the final value 
of the real option is derived based on the price model. To avoid such a model-based 
accuracy measure, we derive the terminal value based on the cash flows from 
exercising the option, i.e., running the power plant. This leads to the absolute error 
spot AES as a straightforward extension of AEF into the spot period: 

ௌܧܣ  = ,௧ܮ&ܲ| భ்−ଵி + ்ܸ ವௌ − ௧ܸ→்ವ  | ݓ𝑖ݐℎ ܶ = { ଵܶ, … , ଶܶ} (4-8) 

The exercise value in the spot market VDୗ  is computed by solving the valuation 

model based on the actual spot price realizations S.19 Since assumptions (1) and 

                                                           
18 Yet given that other assumptions are also violated in the application, there might be some 
impacts overshadowing (stochastically) the influence of the long-term price modelling. 
19 As ݊ = ͳ for ்ܵ, Eq. (3-1) and (3-2) deliver the same result. Note that within the delivery period 
no adjustments of the hedge position are possible as the futures market closes prior to ଵܶ.  
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(3) are not fulfilled, we consider the case where assumptions (2), (4) to (6) and (8) 
are valid. Then AES would be zero if the price model enabled perfect forecasts at 
the end of the future trading. Given remaining uncertainty at the end of the future 

trading period, AES will always be positive in our model setting. Notably, AES will 
include differences in revenues that result from realizations of risk factors that are 
not hedgeable. If assumption (8) holds, these differences have zero mean and will 
hence not bias the result. We cannot fully test that assumption, but may assess the 
validity of the assumption based on the following considerations: risk premia 
related to non-priced (and thus non-observable and non-hedgeable) risk factors are 
likely to induce some systematic difference between the observed future price at t′ = Tଵ − ͳ and the actual spot market prices. I.e. if we do not find evidence that 

the average difference Ft',TD-∑ SDమD=భ /(T2-T1) is different from zero, assumption 

(8) is likely to hold.20  
To further investigate the effects resulting from the discontinuity at the end of 

the future markets, we introduce a third performance measure which compares the 
cash flows from the spot market to the latest valuation result. The valuation at time Tͳ-ͳ is based on information just before delivery and delivers unbiased results if the 
futures prices are unbiased estimates for the spot. This measure is labeled AEV - 
absolute error valuation.21 

ܧܣ  = |்ܸ ವௌ − ்ܸ భ-ͳ→்ವ |. (4-9) 

In addition to the absolute measures, we calculate a performance ratio (PRሻ for 
the hedging and exercising activities. 

 ܴܲ = &,భ−భಷ +ವೄ t→ವ  . (4-10) 

The numerator of PR is the right side of Eq. (4-8) except for tܸ→்ವ   which is used 

as the denominator. A PR equal to one indicates that the ex-ante value is perfectly 
recovered ex-post. Any deviation from one may be attributable to market 
imperfections or inadequate modeling. Transaction costs are subtracted from the 

P&LF, and thus from the right hand of Eq. (4-4). The index TC indicates the 

consideration of transaction costs in the performance measures (e.g. AETC
F ,  AETC

S  
or PR).  

The incompleteness of the electricity market is associated with insufficient 
granularity of available hedge products in the futures market, which is another 
driver for imperfect hedging. For the performance measures, every traded product 
will deliver one sampling point (i.e. calendar, quarter or monthly products). Hence 
the sampling error will be lower when investigating the hedge product with the 

                                                           
20 A t-test on the monthly price data used in the application does not reject the hypothesis of zero 
mean for the difference. And thus the assumption (8) that valuation results obtained under the risk 
free measure are also valid under the real world measure has some plausibility. 
21 For ݐ′ = ଵܶ − ͳ, ܧܣௌ  ிܧܣ +  .|, due to the triangular inequality |a+b|≤|a|+|bܧܣ
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highest possible granularity and evaluating the mean over all AE for different 

delivery time periods TD = {T1,...,T2}.22 We label the resulting values as MAEF, 

MAES and MAEV, respectively. The aggregated measures allow additional 
conclusions. Notably market incompleteness by itself can be one of the main drivers 
for higher values of AEV, due to non-anticipated and non-hedgeable new 

information for individual spot hours. The corresponding mean error MAEVshould 
however tend to zero, if the short-term electricity price model is adequate. 
Inadequate long-term price models should rather translate into absolute errors in the 
future market MAEF if the time interval between final future trading day and end of 
the delivery period is sufficiently short and if MAEV is small. In addition to the 
MAEs, we suggest to use a two-tailed t-test for identifying statistical significant 
biases in the valuation outcomes. Instead of computing the absolute value in Eq. 
(4-7)-(4-9), we may directly use the corresponding errors labelled as EDF , EDୗ , EDV  

and test if the errors systematically differ from zero. A rejection of the null 
hypothesis would imply that the corresponding price model induces biased results 
in the valuation.  

5 Application  

5.1 Data 

The application evaluates the hedging and valuation of a gas-fired power plant 
for the calendar year and monthly products for 2012 and 2013 (see Table 1). The 
technical parameters for the power plant are given in Table 2. The constraints for 
minimum off time and the ramp time are equal to the smallest Δt used for the 
optimization, such that the constraints are not binding. The relevant time constraint 
is for minimum operation time. Other important technical parameters are start-up 
costs and operation level dependent fuel consumption (see Section 3). 

Table 1 Overview of applications 

Delivery period Start of hedging Case 

01.01.2012 until 31.12.2012 First Wednesday 2011 (05.01.2011) Cal-2012 

01.01.2013 until 31.12.2013 First Wednesday 2012 (03.01.2011) Cal-2013 

01.01.2012 until 31.01.2012 First Wednesday in January 2011 Jan-12 

… … … 

01.12.2012 until 31.12.2012 First Wednesday in December 2011 Dec-12 

… … … 

                                                           
22 Usually, products with low granularity are liquidly traded far away from maturity which lowers 
the impacts from potential limited liquidity and vice versa for high granularity products. 
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Table 2 Gas power plant parameters  

Nominal 

capacity 

Minimu

m output 

Efficiency at 

nominal capacity 

Efficiency at 

minimum output 

Minimum 

operating time 

Start-up 

costs 

800 MW 200 MW 0.58 0.5 6 hour 10 kEUR 

 
All data are collected from commercial data sources; an overview is given here: 

Table 3 Input data and method for describing expectations 

Data23 Source  Product Expectations 

Load entsoe.eu  Hourly load values (adj. 

to monthly 

consumption) 

Simulation of 

DT similar to 

Woll and 

Weber 

(2011) 

RES (Wind and 

Solar) 

eex-

transparency.com  

Ex-ante power 

production 

Plant capacities  EWL database  (based on Platts, etc.) - 

Electricity price energate.de  Day-Ahead Auction Simulation 

Coal price “  API#2 (CIF ARA) Model 1 vs. 

Model 2 CO2 price “ EU CO2 Allowances 

Gas price “ Gas-TTF 

For the hedging, products with different granularity are available in the futures 
market. The standard products for electricity are monthly, quarterly and yearly 
products for base contracts with different maturities (e.g., yearly products for 8760 
hours). The futures market products for gas are monthly, quarterly, seasonal 
(summer/winter) and yearly products. For coal, the futures market products include 
monthly, quarterly and yearly products. CO2 emission allowances are only traded as 
yearly products. Usually, products far from maturity show lower liquidity compared 
to those close to maturity. Moreover, the products with higher granularity are only 
traded several months or quarters before delivery. Therefore, we define a basic rule 
for the transition among different hedging products. Half a year before maturity, 
one shifts hedge quantities from yearly to quarterly products, and three months 
before delivery, hedge quantities are swapped from quarterly to monthly products 
for electricity products. Table 4 illustrates the products used for the hedging of the 
delivery year 2012 for 01.01.2011, 01.06.2011 and 01.03.2012. For the application 
with monthly delivery periods, the initial hedge is performed 52 weeks before the 
start of delivery. Missing price notations for monthly products are derived from the 
already traded products with lower granularity.  

Due to data limitations, we cannot observe the bid-ask spread for all relevant 
products. Therefore, we extract the average historic bid-ask-spread and account for 
decreasing spreads for products closer to maturity. For the dynamic hedge, we 
assume a weekly rebalancing of the hedge position. We approximate the delta by 

                                                           
23 Other than the listed fuel prices for hard coal, uranium and oil are based on assumptions because 
prices for hard coal depend on local extraction costs, prices for uranium are not quoted.  
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changing the underlying price Fc,t,T by a small amount (∆Fc,t,T = 0.1 EUR) up and 

down and determine the values Vt,Tup and Vt,Tdown, see Eq.(5-1) . 

= ,௧ߜ  ߲ ௧ܸ,்߲ܨ,௧,் ≈ ௧ܸ,௨் − ௧ܸ,ௗ்௪ʹ ∙ 𝑖ܨ∆  (5-1) 

 

Table 4 Transition between different hedging products for delivery: Cal-2012 

 01.01.2011 01.06.2011 01.03.2012 

Products Year Quarter Months Year Quarter Months Year Quarter Months 

Electricity 

Base 

Cal12 - - - Q1/12 

to Q4/12 

- - Q3/12 

Q4/12 

Apr12; 

to Jun12 

Gas Cal12 - - - Q1/12 

to Q4/12 

- - Q3/12 

Q4/12 

Apr12; 

to Jun12 

Coal Cal12 - - - Q1/12 

to Q4/12 

- - Q3/12 

Q4/12 

Apr12; 

to Jun12 

CO2 Cal12 - - Cal12 - - Cal12 - - 

5.2 Price simulations 

Table 5 shows the estimation results. The parameters for Model 1 are estimated 
using the least squares regression method (Hamilton 1994). For Model 2, we 
calculate the covariance matrix and perform the Cholesky decomposition.  

 

Table 5 Drift, volatility and mean reversion rate of daily spread (Model 1) and drift, volatility 

and correlation coefficient of weekly log-price changes (Model 2) based on data for 2009-2011 

(Units of original time series Spread in €/MWh, Coal in €/tSKE, Gas in €/MWh and CO2 in €/t). 

Parameter 

Model 1 

Spark- 

Spread 

Parameter 

Model 2 
Coal Gas  CO2  Ɋ 0 rc 0 0 0 Ɉ 0.0065 σc 0.026 0.034 0.030 σspread  0.4754 ɏcoal,⋅  1 0.666 0.252 

  ɏgas,⋅ 0.666 1 0.359 

  ɏCOʹ,⋅ 0.252 0.359 1 

 
For the price forecasts we run Monte Carlo simulations to obtain the approximate 

price distribution. Table 6 and Fig. 5 show exemplary results. Circa one year ahead 
of the delivery period, the probability density function (pdf) of the simulated prices 
is wider than the pdf of realized spot prices due to the high uncertainty about 
electricity spot prices far ahead of delivery and due to futures market quotes which 
indicate that market expectations were above the realized price level. The non-
linearity of the supply stack (steeper at higher price levels) further caused a wider 
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distribution of the simulated prices. The price distribution from Model 2 shows a 
slightly wider bandwidth compared to Model 1, as indicated by Fig. 5 and Table 6 
and a standard deviation of 27.58 EUR/MWh, compared to Model 1 with a standard 
deviation of 25.31 EUR/MWh. The tendency of wider price distributions for Model 
2 holds for nearly all times of re-estimation. The out-of-sample goodness-of-fit 
indicates a better performance of Model 1 compared to Model 2 (see Appendix D, 
Fig. 7). The graphical test in Fig. 6 going back to Rosenblatt (1952) and also known 
as probability integral transform (PIT), shows uniformity of the transformed values 
for an ideal distribution forecasts (see Diebold et al. (1998) and ). 

Table 6 Quantile from the price simulation for cal. 2012 based on information at 05.01.2011. 

Quantile 0% 10% 20% 30% 40% 50% 

Model 1 -513.29 22.93 31.40 37.73 43.68 49.77 

Model 2 -513.79 20.76 29.76 36.63 42.95 49.32 

  60% 70% 80% 90% 100% 

Model 1  56.52 64.42 73.62 85.26 250.39 

Model 2  56.19 64.06 73.68 87.75 284.91 

 

 
Fig. 5 Probability density function of prices for cal. 2012 and 2013 in Jan. of the previous years 

 

 
Fig. 6 Goodness-of-fit test: PIT values of price simulations from week 1 of valuation for 2012 and 
2013 using Model 1 and Model 2  
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In addition to the graphical test, we calculated the mean CRPS (Continuous 
Ranked Probability Score)24 and used the Diebold-Mariano-type test to check the 
statistical significance of differences in the predictive performance. Table 7 and 

Table 16 summarize the results by showing the number of instances at a 5% 
significance level in which Model 1 or Model 2 is the preferred model and how 
often we reject the null hypothesis which implies equal predictive performance.  

 
Table 7 Summary of Diebold-Mariano-test of equal predictive performance for 2012 and 2013 

 Preferred 

Model 1 

Preferred 

Model 2 

Equal predictive 

performance (rej. H0) 

DM test (α = 5%) as share of weeks 

(Sample: Week 1-50, 2012) 
50.0% 42.2% 7.8% 

DM test (α = 5%) as share of weeks 

(Sample: Week 1-50, 2013) 
41.0% 40.3% 18.7% 

5.3 Valuation results 

Table 8 and Table 9 show the valuation results at the time of the initial hedge. 
The results for the intrinsic valuation are identical for Model 1 and Model 2 due to 
Eq. (2-3). The valuation based on stochastic prices shows similar operating hours 
and fuel consumption for Model 1 and Model 2, but the operating margin is 
considerably higher for Model 2. The same holds for the delivery year 2013; 
however, compared to the delivery in 2012, the plant value is lower. Due to the 
decreasing spread, the operating hours decrease and result in 30% lower real option 
values. For the following 100 weeks, the plant value is reassessed with updated 
information. The results are shown in the Appendix F (Fig. 9).25 

 

Table 8 Valuation results of the first valuation (05.01.2011) for delivery 2012 

Results week 1  Model 1 Model 2 

                                                           
24 Calibration and sharpness are different criteria for the accuracy of distributional forecasts. The 
Continuous Ranked Probability Score (CRPS) assess calibration and sharpness simultaneously. 
For more information, we refer to Gneiting et al. (2007) or Pape et al. (2017). 
25 Fig. 11 and Fig. 12 show the evolution of the hedge positions over the investigated time spans 
which illustrates similar patterns for both models and years. Larger changes in the evolution of 
hedge quantities occur either due to substantial changes in the respective underlying commodity 
price or at times where transitions between different hedge products occur (e.g., calendar to 
quarterly products). The evolution of the hedge position for monthly delivery periods can be found 
in Fig. 13 to Fig. 16. The driving factors for the monthly periods are identical to the ones from the 
application with calendar year products. Also, the hedge amounts are similar. However, Model 2 
shows slightly smaller hedge amounts, which in turn results in different profit and loss from the 
hedging. 
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 Intrinsic Total Total 

Value [Mio. EUR] 27.89 34.81 39.73 

Flexibility value  6.92 11.85 

Operating hours [h/year] 3'898 3954 3'893 

Average operation margin [EUR/MWhel] 8.96 11.28 13.13 

Fuel consumption [GWhth/year] 5'301 5'323 5'222 

 

Table 9 Valuation results of the first valuation (04.01.2012) for delivery 2013 

Results week 1  Model 1 Model 2 

 Intrinsic Total Total 

Value [Mio. EUR] 18.12 22.56 27.33 

Flexibility value  4.44 9.21 

Operating hours [h/year] 2'845 3'035 2'871 

Average operation margin [EUR/MWhel] 7.99 9.44 12.13 

Fuel consumption [GWhth/year] 3'913 4'124 3'888 

Table 10 sums up the hedge results and performance measures. The option value 
in the spot market is considerably lower compared to the valuation results in the 
first week. In the application, the ܧܣ measures indicate a better performance of 
Model 1 for the delivery year 2012. None of the two models ensures the recovery 
of the initial plant value, but the performance ratio of Model 1 is 10 percentage 
points higher compared to Model 2; i.e., 77% of the initial plant value is actually 
recovered through hedging and spot operations (see Table 10 and Appendix D). The 
results for the delivery year 2013 differ slightly. For both models, the performance 
ratio increases beyond 100%, although a PR equal to one would be optimal. Errors 
from the price simulation model (section 5.2) are carried into the valuation model. 
As discussed in section 4 we can therefore only measure the relative merits of one 
price forecasting model compared to another and need to interpret the outcomes of 
different performance measures for the valuation in conjunction. In the case of 
Model 1, the plant operator gains from holding a short position in the futures market 
constantly over the entire period. Model 1 has a lower AETCF  than Model 2 but the AE V and AETCS  for Model 2 indicate a better match between the last valuation and 
the spot market for this particular year. In four out of the six AE measures, the 
hedging results for annual contracts based on Model 1 hence outperform those based 
on Model 2. This is mainly due to the tendency of Model 2 to deliver very high plant 
values which are not recovered in the future market. Yet, the differences are small 

and the investigation of the mean errors (MAE்F , MAE்ௌ  and MAE்V ) for separate 
months is required for a more thorough assessment. 
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Table 10 Hedge results for Model 1 and 2 at time T in Mio. EUR for delivery 2012 and 2013 

Hedging results [Mio. EUR] 2012 2012 2013 2013 

Total option value Model 1 Model 2 Model 1 Model 2 

(a) First week ሺ܄𝐭,܂,܂ሻ 34.80 39.72 22.56 27.34 

(b) Last week ሺ܄𝐭′,܂,܂ሻ 20.05 21.49 5.07 5.78 

     Diff. value (b) – (a) -14.75 -18.24 -17.50 -21.56 
 (c) Cash flow spot market ሺVTDs ሻ 10.57 10.57 6.48 6.48 

     Diff. to last week (c) – (b) -9.47 -10.91 1.41 0.70 

Cash flow from hedge transactions     

(i) Base 28.43 26.94 19.78 20.37 
(ii)     Gas  -4.31 -3.82 2.01 1.86 
(iii)      Emission certificates (CO2) -7.83 -7.19 -0.49 -0.69 
(iv)      Transaction costs (TC) -4.41 -4.16 -2.67 -2.45  ሺ𝐝ሻ    𝐏&𝐋 ۴ incl. TC (sum of (i) – (iv) 11.89 11.76 18.63 19.09 

Absolute error futures (𝐀۳۱۴܂ ) 2.86 6.48 1.13 2.47 

Absolute error incl. spot (𝐀۳܁۱܂ ) 12.34 17.39 2.54 1.77 

Absolute error valuation ሺ𝐀۳܄ሻ 9.47 10.91 1.41 0.70 

Performance ratio ሺ𝐏۱܂܀ሻ 77% 67% 123% 103% 

 
The results for the monthly delivery periods are given in Table 11 and Table 12. 

The plant values decrease over time (first to last week). Two effects contribute to 
this decrease: one is the loss in time value common to all options when they 
approach expiry. The other is the decline in the power price levels and average 
spreads during 2012 and parts of 2013. The latter effect also explains why the cash 
flow in the spot market is lower than the last option value for the majority of months 
in 2012.  

In 2013, the plant values fall below seven-digit numbers and the spot cash flow 
is on average higher than the last option value. These observations also must be 
taken into account when examining the AE and MAE values. Model 2 estimates 
higher option values than Model 1 in all but three cases (first week 3/2012 as well 
as last week 1/2012 and 7/2012). The PR scores of Model 1 and Model 2 are 
distorted by the low (close to zero) cash flows from the spot market. The imperfect 
hedging strategy, together with low option values in 2013, lead to PRs that are 
greater than 100% - up to 259% for Model 1 in 2013. All MAEs show lower values 
for Model 1 compared to Model 2, indicating a better performance regarding the 
hedge and forecasting of the long-term uncertainty.  

 
For the hedging including the spot market results, Model 1 delivers a 

substantially lower mean absolute error (MAETCS  0.64 compared to 0.72). If one 
focuses on the sum of the errors instead of absolute errors, the total error is -3.32 
Mio. EUR for Model 1 and -11.00 Mio. EUR for Model 2. 
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Table 11 Hedge results for Model 1 for all calendar months in 2012 and 2013 

Unit: 

[Mio. €] 

Total option 

value 

Spot cash 

flow 
Cash flow of hedge transactions Hedged value 

Model 1 Vt,T Vt',T VTDs  AEV Base Gas CO2 TC P&LTC AETCF  AETCS  

01/12 6.63 7.54 0.80 6.74 3.74 -1.40 -1.15 -0.15 1.05 1.96 4.78 

02/12 3.50 2.90 3.98 1.08 2.81 -1.33 -0.76 -0.11 0.62 0.03 1.11 

03/12 1.76 1.69 0.40 1.29 2.77 -1.33 -0.75 -0.10 0.59 0.51 0.78 

04/12 1.54 0.80 0.70 0.10 2.90 -0.87 -0.73 -0.07 1.23 0.49 0.39 

05/12 1.51 0.45 0.29 0.16 2.20 -0.78 -0.62 -0.08 0.73 0.33 0.49 

06/12 2.29 1.02 0.53 0.49 3.72 -1.33 -0.92 -0.11 1.35 0.08 0.41 

07/12 2.19 1.47 0.22 1.25 3.09 -0.70 -0.47 -0.06 1.85 1.14 0.12 

08/12 1.25 0.34 0.73 0.40 1.75 -0.65 -0.28 -0.05 0.77 0.15 0.24 

09/12 1.81 0.64 0.52 0.11 2.18 -0.81 -0.43 -0.05 0.89 0.29 0.40 

10/12 2.51 0.95 0.47 0.48 2.51 -0.74 -0.26 -0.04 1.47 0.08 0.56 

11/12 3.62 1.42 0.67 0.75 2.97 -0.64 -0.18 -0.04 2.11 0.08 0.84 

12/12 3.20 0.82 1.25 0.43 2.01 -0.16 0.00 -0.04 1.81 0.57 0.14 

01/13 3.58 2.39 1.08 1.31 2.48 0.25 0.06 -0.09 2.69 1.51 0.20 

02/13 2.56 1.05 0.76 0.29 2.56 -0.66 -0.31 -0.07 1.52 0.01 0.28 

03/13 1.26 0.33 0.35 0.02 1.60 -0.39 -0.19 -0.07 0.95 0.02 0.04 

04/13 0.55 0.07 0.50 0.43 0.40 0.19 0.01 -0.05 0.55 0.06 0.50 

05/13 0.28 0.01 0.06 0.05 0.28 0.11 -0.03 -0.04 0.32 0.05 0.10 

06/13 0.58 0.03 0.00 0.03 0.57 0.33 -0.03 -0.07 0.80 0.26 0.23 

07/13 0.87 0.12 0.11 0.01 0.88 0.40 -0.14 -0.04 1.10 0.35 0.34 

08/13 0.29 0.02 0.43 0.40 0.30 0.10 -0.03 -0.03 0.34 0.08 0.48 

09/13 0.48 0.09 0.63 0.54 0.74 -0.13 -0.10 -0.04 0.47 0.07 0.62 

10/13 2.31 0.43 0.62 0.18 1.39 -0.05 -0.17 -0.04 1.13 0.74 0.56 

11/13 1.25 0.39 0.63 0.24 1.72 -0.36 -0.21 -0.03 1.12 0.26 0.50 

12/13 0.82 0.14 1.31 1.18 1.14 -0.24 -0.08 -0.02 0.81 0.13 1.30 

Sum 46.6 25.1 17.1 
 

46.7 -11.2 -7.75 -1.49 26.3 
்ܧܣܯ    

   
0.75 1.95 

  
 

 
0.38 0.64 

 
The PRs (not given in the tables) are, by contrast, too high for Model 1 in 2013. 

The same is true for Model 2 but to a lesser extent. This result is caused by low 
initial option values below 1 Mio. EUR, which put more weight on relatively small 
differences in the hedge performance and spot stochasticity. Based on the results 
for calendar months, one can conclude that Model 1 performs slightly better than 
Model 2 with respect to all MAE measures. The biggest differences between Model 
1 and Model 2 stem from the initial plant values. More conservative predictions 
from Model 1 for the achievable spread lead to better valuation results. The finding 
is particularly relevant in times of decreasing spreads. The benefits tend to disappear 
for plant values close to zero. 

The t-test based on the errors for all investigated calendar month has limited 
statistical power given the sample size. The results shown in Table 13 indicate that 
the null hypothesis of an unbiased model is rejected at a 10% level for the error 
based on spot valuation EDୗ in case of Model 2. For the error based on futures EDF , 

the null hypothesis is rejected for Model 1 at the 5 % significance level. Since EDୗ  
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measures the combined effect from hedging, valuation and operation in the spot, the 
results suggest that Model 1 is to be preferred. Yet, the fact that the results for EDF are better for Model 2 suggests that there are some compensating effects 

between the future and spot period and that the test results are reflective of some 
joint modelling testing problem. Furthermore one may note that the underlying 
assumptions for using the t-test, notably the normality of the error distribution, are 
barely met. More reliable testing would hence require more general methods and an 
extension of the sample size – although the latter may raise challenges related to 
structural breaks. This is hence left for future research.  
 
Table 12 Hedge results for Model 2 for all calendar months in 2012 and 2013 

Unit: 

[Mio. €] 

Total option 

value 

Spot cash 

flow 
Cash flow of hedge transactions Hedged value 

Model 2 Vt,T Vt',T VTDs  AEV Base Gas CO2 TC P&LTC AETCF  AETCS  

01/12 6.78 7.41 0.80 6.61 3.77 -1.41 -1.13 -0.16 1.08 1.71 4.90 

02/12 3.71 2.98 3.98 1.00 2.81 -1.34 -0.74 -0.10 0.63 0.10 0.90 

03/12 1.99 2.15 0.40 1.75 2.74 -1.28 -0.71 -0.10 0.65 0.81 0.94 

04/12 1.49 1.06 0.70 0.35 2.75 -0.75 -0.67 -0.07 1.27 0.83 0.48 

05/12 1.56 0.84 0.29 0.54 2.07 -0.63 -0.57 -0.07 0.80 0.08 0.47 

06/12 2.61 1.20 0.53 0.67 3.32 -1.10 -0.81 -0.10 1.32 0.10 0.77 

07/12 2.46 1.38 0.22 1.16 2.78 -0.56 -0.40 -0.06 1.76 0.67 0.49 

08/12 1.41 0.42 0.73 0.31 1.65 -0.51 -0.26 -0.04 0.84 0.15 0.17 

09/12 2.11 0.66 0.52 0.14 1.92 -0.65 -0.37 -0.04 0.86 0.59 0.73 

10/12 3.03 1.04 0.47 0.56 2.31 -0.63 -0.22 -0.04 1.42 0.57 1.14 

11/12 3.93 1.47 0.67 0.80 2.76 -0.54 -0.14 -0.04 2.03 0.43 1.23 

12/12 4.01 0.90 1.25 0.35 1.87 -0.12 0.00 -0.03 1.72 1.39 1.04 

01/13 3.62 2.47 1.08 1.38 2.43 0.25 0.06 -0.09 2.65 1.50 0.11 

02/13 2.70 1.12 0.76 0.36 2.50 -0.65 -0.30 -0.08 1.47 0.11 0.46 

03/13 1.55 0.39 0.35 0.04 1.58 -0.39 -0.19 -0.07 0.93 0.22 0.27 

04/13 0.79 0.17 0.50 0.33 0.47 0.22 -0.01 -0.04 0.64 0.02 0.35 

05/13 0.61 0.02 0.06 0.04 0.43 0.14 -0.05 -0.04 0.47 0.11 0.08 

06/13 1.05 0.07 0.00 0.07 0.82 0.37 -0.05 -0.06 1.08 0.10 0.03 

07/13 1.40 0.17 0.11 0.06 1.00 0.40 -0.15 -0.04 1.22 0.02 0.08 

08/13 0.73 0.05 0.43 0.38 0.52 0.13 -0.05 -0.03 0.58 0.11 0.27 

09/13 1.17 0.12 0.63 0.51 0.94 -0.17 -0.13 -0.03 0.62 0.43 0.08 

10/13 2.92 0.53 0.62 0.09 1.31 -0.05 -0.16 -0.03 1.06 1.32 1.24 

11/13 2.02 0.47 0.63 0.16 1.67 -0.36 -0.19 -0.02 1.10 0.45 0.29 

12/13 1.42 0.20 1.31 1.12 1.15 -0.23 -0.08 -0.02 0.82 0.40 0.72 

Sum 55.1 27.3 17.1  45.6 -9.86 -7.31 -1.41 27.0   ்ܧܣܯ     0.78 1.90     0.51 0.72 

 
Table 13 Two-tailed t-test for the error distribution from all calendar months in 2012 to 2013 

t-test statistic   ۳܄۲܂ ۲۴܂۳  ܁۲܂۳   

Model 1 1.09 -2.05** 0.34 

Model 2 1.41 -0.17 1.77* 

Significances at the 0.05 level are labeled with ** and at 0.1 level with *. 
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6 Conclusion 

This article highlights the importance of long-term electricity and input factor 
price modeling for the valuation and hedging of real (spread) options. We show that 
inappropriate distributional forecasting increases the risk of biased valuation results 
which may in turn induce risky hedging decisions and an incomplete recovery of 
ex-ante option values. In a longer term context, such biased price models may even 
lead to unwise investment decisions. Therefore, market participants and researchers 
should emphasize the modeling of such uncertainties. At the same time, they should 
further develop techniques to judge the accuracy of said price models for the 
valuation of asset flexibility. The latter is challenging for the electricity futures 
markets given the obvious market incompleteness.   

In this context, we suggest a hybrid electricity price modeling approach that 
harnesses the benefits from different methodologies to accurately depict short- and 
long-term uncertainties. The price model contains three major parts: (1) A 
fundamental supply-stack model to forecast the fundamentally expected electricity 
price; (2) A stochastic approach to model the short-term fluctuations around the 
fundamental price, and (3) A model of the long-term fluctuations in the relevant 
multi-commodity spread. Thereby, a one-factor (mean-reversion) approach 
modelling directly the spread and a multi-factor commodity model are considered.  

To evaluate the performance of the price model, we develop a stepwise 
evaluation procedure that accounts for the fact that the real option value is not 
observable before it is materialized in the spot market. The evaluation whether one 
price forecasting model is superior to another uses a framework which replicates 
key features of power plant hedging and operation in a real-world portfolio context. 
We use a straightforward application of well-developed methods to test the 
‘goodness-of-fit’ of electricity prices forecasts. To evaluate the appropriateness of 
the price models in a real-world portfolio context, we additionally develop 
performance measures and test statistics which are applicable to the hedging with 
futures and account for the transition between future and spot markets. By applying 
the evaluation procedure, it is shown that the modeled electricity price distributions 
affect the total option value. Based on the comparison of the proposed performance 
measures, we can identify the key impacts that influence our valuation results. We 
conclude that modeling the mean-reversion behavior of spreads provides more 
conservative estimates of the flexibility value of real options than a conventional 
multi-commodity price model. The multi-factor approach tends to overestimate the 
variability of the spread between electricity and input factor prices, thus leading to 
an overestimation of the total option value. This overestimation then implies a 
reduced capability to recover the value through combined hedging and spot 
operation. Yet, simple statistical test indicate that the mean reversion model delivers 
biased results for the pure future trading period. 

Some aspects of this analysis may be investigated further in future research. A 
promising starting point to eventually reach more general analytical results is to 
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approximate the supply stack and drop the modeling at plant level, e.g., replacing it 
by a piece-wise linear function (Kallabis et al. 2016). 
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Appendix A Additional material for modeling the short-term stochastics 

Let 𝑪 be the correlation matrix of ud,h. The eigenvalues λ and corresponding 

eigenvectors v may be computed such that 
 𝑪𝒗 = ɉ𝒗 (6-1) 

A detailed description of PCA and the interpretation of the resulting eigenvalues 
λ and eigenvectors v can be found in . 

In matrix notation, the relationship between the error term ut,h(matrix U) and 

factor ft,i(matrix F) is the following: 

܃  = 𝑽𝑳۴ (6-2) 

Matrix V contains the eigenvectors 𝒗 and the diagonal matrix L the square root 
of the eigenvalues λ.  

܃  =  (௧,ℎݑ)
 

𝑽 = ሺ𝒗𝒗  … 𝒗𝟒ሻ 
ࡲ = ( ௧݂,𝑖) 

𝑳 = ( 
 √ɉଵ Ͳ… ͲͲ √ɉଶ… Ͳ⋮ ⋮⋱ ⋮Ͳ Ͳ… √ɉଶ4) 

 
 

(6-3) 

Eqs. (6-4) and (6-5) show the ARMA-GARCH specification for the factors ft,i 
 ௧݂,𝑖 = Ɋ𝑖 + 𝛼ଵ,𝑖 ௧݂−ଵ,𝑖 + 𝛼ଶ,𝑖ߞ௧−ଵ,𝑖  + ௧,𝑖ߞ ,௧,𝑖~NሺͲߞ ℎݐ𝑖ݓ  𝜎௧,𝑖ሻ (6-4) 

 𝜎௧,𝑖ଶ = ,𝑖ߛ  + ଵ,𝑖 𝜎௧−ଵ.𝑖ଶߛ + ௧−ଵ,𝑖ଶߞ ଶ,𝑖ߛ  (6-5) 

with the error Ƀt,i of the ARMA-part a and for the GARCH-part a constant term ɀͲ, the standard deviation from the previous day σt-ͳ,iʹ  and the quadratic error from 

the previous time step Ƀt-ͳ,iʹ . 

 
  



Estimating the value of flexibility from real options      33 

 

Appendix B Significance of the mean reversion parameters 

 
Table 14 Significance of the mean reversion parameter for the Model 1  

 
             |             Newey-West (2009-2011) 
 

      

Delta Spread |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+----------------------------------------------------------------   
      spread |  -.0064474   .0034977    -1.84   0.066    -.0133137    .0004189 

       _cons |   .0419821   .0283656     1.48   0.139     -.013702    .0976663 

 
The mean reversion parameter for the clean-spark-spread shows significance below 
the 10 percent level. For longer time spans and after 2011 the significance is below 
the 2.5 percent level but due to the financial crisis, we did not extend the estimation 
horizon beyond 2008/09. 
 

 
Table 15 Significance of the mean reversion parameter for the Model 2  

 
             |             Newey-West (2009-2011) 
 

    

Delta Gas TTF |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
             TTF |  -.0040284   .0042373    -0.95   0.342    -.0123466    .0042898 
           _cons |   .0883743   .0974907     0.91   0.365    -.1030083    .2797569 
------------------------------------------------------------------------------ 
             |             Newey-West (2009-2011)     

Delta Coal-API2 |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
             Coal |  -.0028628   .0053284    -0.54   0.591     -.013323    .0075974 
           _cons |   .0348067   .0528995     0.66   0.511    -.0690397     .138653 
------------------------------------------------------------------------------ 
             |             Newey-West (2009-2011)     

Delta EUA CO2 |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
              CO2 |  -.0067506   .0069859    -0.97   0.334    -.0204645    .0069633 
            _cons |    .080438   .1000731     0.80   0.422    -.1160141    .2768902 

 

The GBM assumption is valid because the commodity prices show no significant 
mean reversion.  
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Appendix C Additional material for the valuation model 

Vt,Tͳ,Tʹ  equals the discounted expected profit from plant operation 

 

௧ܸ, భ், మ் = ∑ ݁ሺ்−௧ሻܧ[݉𝑎ݔ ሺܵ,் − , ்,ݐݏܥ Ͳሻ]మ்
்= భ் , ݐ ℎݐ𝑖ݓ  ଵܶ  ଶܶ (6-6) 

cn,T are the operational costs arising from producing electricity. Xttotalis the total 

price of inputs (fuel price Xf,t including emissions XCOʹ,t  in EUR/MWhth)  

 𝑋௧௧௧𝑎 = 𝑋,௧ + 𝑋ைమ,௧  ∙  ଶ,௨ . (6-7)ܱܥ

The cost function Cn,tOp depends on the fuel quantities Pn,tFu and other costs cother 
,௧ைݐݏܥ  = 𝑋௧௧௧𝑎 ∙ ܲ,௧ி௨ + ௧ℎݐݏܥ ∙ ܲ,௧ா  (6-8) 

The fuel quantity is a linear function of the electricity output PEl,n.  

 ܲ,௧ி௨ = 𝑎ܱ,௧ + 𝑎ଵ ∙ ܲ,௧ா , (6-9) 

with aͳ the marginal heat rate when the power plant is operating, aͲ represents 
additional fuel consumption at the minimum stable operation level Pmin. On,t is a 

state variable indicating whether the plant is off or on ሺͲ, ͳሻ. Oher equations for the 
constraints can be found in Tseng and Barz (2002) and Weber (2005). Start-up costs Cn,tSt  depend on the state variable Us,t=ሺͲ, ͳሻ, indicating a start-up. 

௧ௌ௧ݐݏܥ   =  {𝑎ௌ௧ + 𝑎ଵௌ௧ ∙ 𝑋௧௧௧𝑎,Ͳ, 𝑖݂ ܷ,௧ = ͳ,𝑖݂ ܷ,௧ = Ͳ . (6-10) aͲSt includes labor plus fixed operating costs and maintenance expenses related 

to start-ups and aͳSt are the fuel costs for a start-up. The costs for staying online are 

the fuel costs during times with negative spreads. The optimal electricity output Pn,tEl 
given the operation state On,t  is  

 ܲ,௧ா (ܱ,௧′ ) = ܱ,௧(ܱ,௧′ ) ቀ ܲ𝑖 + ሺ ܲ𝑎௫ − ܲ𝑖ሻ ⋅ 𝟙ௌ, −𝑎భ𝑋𝑎ቁ (6-11) 

To model minimum operation and minimum shutdown times, the state variable On,t is generalized by the state variable On,t'  which counts the hours since start-up if 

positive or the hours since shutdown if negative. State transitions are only possible 
between certain values of On,t' . For example, a start-up is only possible once the 

shutdown time has reached the minimum shutdown time Rdown, i.e., when On,t' =- Rdown. A detailed description of these state constraints is given by Tseng and Barz 
(2002) and similarly by Gardner and Zhuang (2000). 
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Appendix D Point and distributional goodness-of-fit test 

 

 

Fig. 7 Goodness-of-fit test: MAE and MAPE for Model 1 and Model 2 in 2012 and 2013 
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Appendix E Diebold-Mariano-test of equal predictive performance per hour 

Table 16 Summary of Diebold-Mariano-test of equal predictive performance for separate hours 

2012 and 2013 

 2012 2012 2012 2013 2013 2013 

Hour Preferred 

Model 1 

Preferred 

Model 2 

Equal pred. 

(rej. H0) 

Preferred 

Model 1 

Preferred 

Model 2 

Equal pred. 

(rej. H0) 

1 80.0% 8.0% 12.0% 38.0% 30.0% 32.0% 

2 74.0% 18.0% 8.0% 48.0% 24.0% 28.0% 

3 72.0% 14.0% 14.0% 46.0% 20.0% 34.0% 

4 68.0% 16.0% 16.0% 44.0% 18.0% 38.0% 

5 76.0% 20.0% 4.0% 54.0% 28.0% 18.0% 

6 78.0% 20.0% 2.0% 52.0% 36.0% 12.0% 

7 74.0% 20.0% 6.0% 44.0% 40.0% 16.0% 

8 62.0% 36.0% 2.0% 40.0% 48.0% 12.0% 

9 56.0% 40.0% 4.0% 40.0% 48.0% 12.0% 

10 54.0% 44.0% 2.0% 40.0% 48.0% 12.0% 

11 30.0% 56.0% 14.0% 40.0% 48.0% 12.0% 

12 22.0% 76.0% 2.0% 40.0% 48.0% 12.0% 

13 22.0% 76.0% 2.0% 40.0% 48.0% 12.0% 

14 22.0% 76.0% 2.0% 40.0% 48.0% 12.0% 

15 22.0% 76.0% 2.0% 40.0% 48.0% 12.0% 

16 22.0% 72.0% 6.0% 40.0% 46.0% 14.0% 

17 42.0% 48.0% 10.0% 40.0% 48.0% 12.0% 

18 52.0% 44.0% 4.0% 40.0% 48.0% 12.0% 

19 58.0% 38.0% 4.0% 40.0% 48.0% 12.0% 

20 60.0% 36.0% 4.0% 40.0% 48.0% 12.0% 

21 58.0% 38.0% 4.0% 40.0% 48.0% 12.0% 

22 30.0% 68.0% 2.0% 40.0% 48.0% 12.0% 

23 26.0% 56.0% 18.0% 40.0% 48.0% 12.0% 

24 44.0% 12.0% 44.0% 18.0% 6.0% 76.0% 

Total 50.0% 42.2% 7.8% 41.0% 40.3% 18.7% 
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Appendix F Power plant value for delivery years 2012 and 2013 

 

 

Fig. 8 Intrinsic ሺܸ̅ሻ and total ሺܸሻ option value of the plant over time for delivery in 2012 (top) 

and 2013 (bottom) 

 
The results for the monthly delivery periods are provided Fig. 9 and Fig. 10. 

 

Fig. 9 Total option value ሺܸሻ of single month over time for delivery in 2012 
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Fig. 10 Total option value ሺܸሻ of single month over time for delivery in 2013 

Appendix G Hedge amounts over time 

 

Fig. 11 Hedge amounts over time for delivery 2012 
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Fig. 12 Hedge amounts over time for delivery 2013 

 

Fig. 13 Hedge amounts over time for Model 1 for monthly products of year 2012 
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Fig. 14 Hedge amounts over time for Model 2 for monthly products of year 2012 

 

Fig. 15 Hedge amounts over time for Model 1 for monthly products of year 2013 
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Fig. 16 Hedge amounts over time for Model 2 for monthly products of year 2013 
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