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Abstract

Two basic solutions have been proposed to fix the well-documented incompatibility of

the sample covariance matrix with Markowitz mean-variance portfolio optimization: first,

restrict leverage so much that no short sales are allowed; or, second, linearly shrink the

sample covariance matrix towards a parsimonious target. Mathematically, there is a deep

connection between the two approaches, and empirically they display similar performances.

Recent developments have turned the choice between no-short-sales and linear shrinkage into

a false ’either-or’ dichotomy. What if, instead of 0% leverage we considered fully-invested,

long-short 130/30 portfolios, or even 150/50, given that prime brokers, fund regulators

and investors have started to allow it? And instead of linearly shrinking the unconditional

covariance matrix, what if we allowed for each of the eigenvalues of the sample covariance

matrix to have its own shrinkage intensity, optimally determined under large-dimensional

asymptotics, while also incorporating Multivariate GARCH effects? Our empirical evidence

finds that, indeed, these new developments enable us to have ‘the best of both worlds’

by combining some appropriate leverage constraint with a judiciously chosen shrinkage

method. The overall winner is a 150/50 investment strategy where the covariance matrix

estimator is a combination of DCC (Dynamic Conditional Correlation — a well-known

Multivariate GARCH model) — with NL (Non-Linear shrinkage, a substantial upgrade

upon linear shrinkage technology); although 130/30 DCC-NL comes a close second. This is

true both in the ‘pure’ case of estimating the Global Minimum Variance portfolio, and also

for textbook-style construction of Markowitz mean-variance efficient portfolio.

KEY WORDS: DCC; Nonlinear shrinkage; Leverage constraints; Large portfolios;

Risk reduction; Markowitz mean-variance efficiency; Multivariate GARCH.
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1 Introduction

Since the groundbreaking work of Markowitz (1952), statistics and optimization techniques have

been used to develop diversified investment strategies that either: (i) minimize risk, subject to

exposure to the stock market (the “Global Minimum Variance” Portfolio); or (ii) are efficient

in terms of risk-return trade-off (the “Tangency” Portfolio). The first type is a purer test of

the covariance matrix estimator and the optimization program used because the second one

requires, in addition, a good predictive model for expected returns — or abnormal expected

returns —, which is notoriously hard to obtain. Given that the second problem is more common

in basic Finance textbooks, we considers both exercises.

Here we only work in the realm of fully-invested portfolios, i.e., portfolios whose weights

sum up to one, which is the default choice for the bulk of the asset management industry (as

opposed to weights summing to zero). Even though the weights sum up to one, there is some

leeway to take on some negative weights, and an interesting question is how much. The major

candidates are 100/0 (no short sales at all), 130/30, and 150/50 (meaning that for $100 million

of capital, the prime broker enables you to go $150 million long if you go $50 million short at

the same time, for a net exposure to the stock market of $100 million, which is exactly equal to

the capital invested).

Jagannathan and Ma (2003) explain why imposing the wrong constraints helps reducing the

risks. They claim that large negative weights imply high sample covariances between stocks,

while the high sample covariances are likely to be caused by upward-biased estimation errors.

Thus, to some extent imposing the nonnegative constraints on portfolio weights reduces the

sampling error. This mechanism is analogous to shrinkage estimation of the covariance matrix.

Comparing effects of the two mechanisms, Jagannathan and Ma (2003) show that with the

no-short-sale constraint in place, the sample covariance matrix performs as well as the shrinkage

estimator. Moreover, they observe that if the shrinkage estimator is used in constructing

portfolios, imposing the no-short-sale constraint would hurt the out-of-sample performance.

Demiguel et al. (2009) use the norm framework to unify the shrinkage effects in weights and in

the covariance matrix. Further, Fan et al. (2012) extend the no-short-sale constraint to varying

degrees of leverage constraints and provide mathematical insights. Building on their work, we

provide both theoretical insights and empirical evidence for the advantage of the 130/30 and

150/50 strategies, and the outperformance of the shrinkage covariance matrix estimators.

The shrinkage estimator used in Jagannathan and Ma (2003) and Demiguel et al. (2009) is a

weighted average of the sample covariance matrix and the Sharpe (1963) one-factor model-based

estimator, proposed by Ledoit and Wolf (2003). The estimation is substantially equivalent to

linearly shrinking the sample eigenvalues towards a more centralized set of eigenvalues by a

unified shrinkage intensity, while retaining the sample eigenvectors. Ledoit and Wolf (2012)

extend the linear shrinking to the nonlinear transformation of the sample eigenvalues, and

obtain the nonlinear shrinkage (NL) estimator of the covariance matrix, which has been proven

to have better out-of-sample performance (Ledoit and Wolf, 2015, 2017). As the shrinkage

mechanism remains the same, it is necessary to compare the effect of using the nonlinear
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shrinkage estimator with that of imposing varying degrees of leverage constraints.

Further, Engle et al. (2017) use the nonlinear shrinkage estimator to replace the sample

covariance matrix in the “correlation targeting” maximum likelihood estimation of the dynamic

conditional correlation (DCC) model, and propose the DCC-NL estimator, which turns

out to perform better than the DCC estimator, the NL estimator and other conventional

estimators for the covariance matrix. Since the DCC model works in capturing the conditional

heteroscedasticity, which is totally different to the shrinkage mechanism, we conjecture that

the use of DCC model would also help improving the out-of-sample performance of portfolios

with leverage constraints.

The two main original contribution of this paper are as follows. First, we demonstrate

that loosening the leverage constrain from zero leverage (100/0) to 130/30 or even 150/50

delivers better performance, both in terms of constructing a global minimum variance portfolio

and a mean-variance efficient portfolio. Second, we show that upgrading from first-generation

linear shrinkage technology for the estimation of the covariance matrix to a 1000-dimensional

Multivariate GARCH model with built-in nonlinear shrinkage is independently and additively

beneficial. In short, we find that as long as there is some leverage — which can be in many

fully-invested funds as long as the prime broker allows it —, then shrinkage starts to help, and

implementing the most advanced covariance matrix shrinkage formula helps even more.

The rest of the paper is organized as follows. Section 2 provides the methodologies and

the background, including the nonlinear shrinkage estimator of the covariance matrix, its

combination with the DCC model, how we construct the global minimum variance portfolios

and the Markowitz mean-variance efficient portfolios with the momentum signal, and our

extension compared to the research of Jagannathan and Ma (2003). In Section 3, we use Monte

Carlo simulations to verify our theoretical results. Section 4.1 describes our data. In Section 4,

we report the results for out-of-sample performance of the global minimum variance portfolios

and the Markowitz mean-variance efficient portfolios, and conduct robustness checks. Section 5

concludes.

2 Methodology and Background

2.1 Shrinkage and DCC

It is widely known that the sample covariance matrix performs poorly out-of-sample in large

dimensions due to overfitting. Without imposing any additional structure on the data, shrinkage

methods improve the estimation precision by rectifying the bias of the sample eigenvalues.

The basic idea behind shrinkage methods is to pull the extreme sample eigenvalues towards

the grand mean of all sample eigenvalues, since the smallest sample eigenvalues are biased

downwards and the largest ones upwards. Ledoit and Wolf (2003, 2004a,b) propose the

linear shrinkage estimators, which are the first-order approximation solutions to a nonlinear

optimization problem, as all sample eigenvalues adjust with the same shrinkage intensity. The

nonlinear shrinkage estimators proposed by Ledoit and Wolf (2012, 2015), however, allow the
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sample eigenvalues to adjust with heterogeneous shrinkage intensities, and thus should generally

perform better than the linear ones.

To determine the optimal shrinkage intensity for every sample eigenvalue (in regard to a

particular loss function), Ledoit and Wolf (2015) discretize the famous Marčenko and Pastur

(1967) equation and construct the QuEST (Quantized Eigenvalues Sampling Transform) function.

By numerically inverting the QuEST function, the consistent estimators for the population

eigenvalues can be obtained. Specifically, let (λ1, . . . , λN ) denote a set of eigenvalues of the

N × N sample covariance matrix S, sorted in descending order, and (u1, . . . ,uN ) be the

corresponding eigenvectors. Let QT,N (t) ..=
(
q1T,N (t), . . . , qNT,N (t)

)′
denote the QuEST function,

which turns the set of population eigenvalues t ..= (t1, . . . , tN ) into the set of sample eigenvalues.

Thus, given the set of sample eigenvalues, the population eigenvalues can be consistently

estimated by inverting the QuEST function:

τ̂ ..= argmin
t∈[0,+∞)N

1

N

N∑
i=1

(
qiT,N (t)− λi

)2
, (2.1)

Then, the nonlinear shrinkage estimator (denoted by NL) of the covariance matrix is

Σ̂ ..=

N∑
i=1

λ̂i (τ̂ ) · uiu′i , (2.2)

where λ̂i (τ̂ ) for i = 1, . . . , N denote the shrunk eigenvalues based on τ̂ .

On the other hand, to capture the volatility-clustering feature of asset returns, Engle (2002)

use the Dynamic Conditional Correlation (DCC) model to describe the time-varying structure

in variances and covariances. Let Σt ..= (σijt) denote the conditional covariance matrix of

asset returns rt ..= (rit) (N -dimensional column vector) at time t, where t = 1, . . . , T . Let

Dt
..= diag

(
σ
1/2
11t . . . σ

1/2
NNt

)
denote the volatility matrix, Qt ..= (qijt) the pseudo-correlation

matrix, and Pt ..= (ρijt) the correlation matrix, satisfying

Pt ..= diag
(
q
−1/2
11t . . . q

−1/2
NNt

)
Qt diag

(
q
−1/2
11t . . . q

−1/2
NNt

)
. (2.3)

The DCC model is defined as

Σt = DtPtDt . (2.4)

A GARCH(1,1) model is used to describe the dynamic of every univariate volatility:

σ2ii,t = σ2ii,0 (1− αi − βi) + αi r
2
i,t−1 + βi σ

2
ii,t−1 , (2.5)

and the pseudo-correlation matrix Qt is specified as

Qt = Q̄(1− α− β) + α st−1s
′
t−1 + β Qt−1 , (2.6)

where αi, βi, α, and β are non-negative scalars satisfying αi + βi < 1 for every i ∈ {1, 2, . . . , N}
and α+ β < 1. σii,0 is the long-run volatility of asset return for individual i, st = D−1t rt is the

devolatilized returns at time t, and Q̄ is the long-run covariance matrix of st.
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By combining the nonlinear shrinkage estimator of Q̄ with the DCC model, Engle et al.

(2017) propose the DCC-NL estimator of the covariance matrix. To avoid inverting matrices with

large dimensions, they also use the 2MSCLE method (Pakel et al., 2017) in estimating the DCC

model, which is the composite likelihood estimation bonding the individual likelihoods generated

by 2× 2 blocks of all contiguous pairs. To sum up, NL aims to improve the estimation precision

of covariance matrix by shrinking eigenvalues and thus reducing sampling errors, meanwhile,

DCC takes the conditional heteroscadasticity into consideration by dynamic modeling. In view

of these strengths, the DCC-NL estimator is supposed to have better out-of-sample performance

than the DCC estimator, the NL estimator, and the sample covariance matrix (denoted by S),

especially in large dimensions.

2.2 Constructing GMV Portfolio with Gross-Exposure Constraints

Based on the estimator Σ̂t of the time-varying covariance matrix Σt, constructing GMV portfolio

with gross-exposure constraints is equivalent to the following minimization problem given by

min
wt
w′tΣ̂twt (2.7)

subject to w′t1 = 1 and
N∑
i=1

|wi,t| ≤ γ.

The constraint
∑N

i=1 |wi,t| ≤ γ could be expressed as ‖wt‖1 ≤ γ. Note that γ ≥ 1, and the

constraint becomes weaker with the increase of γ. When γ = 1, the constraint is equivalent to

the extreme situation considered in Jagannathan and Ma (2003) that no short sales are allowed.

γ = 1.6 corresponds to fully-invested portfolios of the 130/30 type, and γ = 2 to 150/50. When

γ =∞, short exposure is unconstrained.

Define the Lagrangian as

L(wt, µ, λ) = w′tΣ̂twt − µ(w′t1− 1)− λ(γ − ‖wt‖1), (2.8)

and let gt be the subgradient vector of ‖wt‖1. Then, for wi,t 6= 0, the i-th element of gt is

unique, i.e., gi,t = sign(wi,t); for wi,t = 0, gi,t could be any values in [−1, 1].

Consequently, the Karush-Kuhn-Tucker (KKT) conditions for the above partial constrained

optimization problem (2.7) are
2Σ̂twt − µ1 + λgt = 0,

λ(c− ‖wt‖1) = 0, λ ≥ 0,

‖wt‖1 ≤ γ, w′t1− 1 = 0,

(2.9)

where 1 is the column vector of ones, λ and µ are Lagrange multipliers. Denote a solution to

(2.9) as w∗t . The following result shows that constructing the partial constrained minimum

variance portfolio from the DCC estimator Σ̂t is equivalent to constructing a (unconstrained)

minimum variance portfolio from a shrunk version of Σ̂t.
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Theorem 1. (i) Let Σ̃γ,t = Σ̂t + 1
2λ(g∗t1

′ + 1g∗
′
t ), where g∗t is the subgradient at w∗t , and λ is

the Lagrange multiplier defined in (2.9). Then Σ̃γ,t is positive definite if Σ̂t is positive

definite DCC covariance matrix estimator.

(ii) The partial constrained portfolio optimization problem (2.7) is equivalent to the optimization

problem

min
w′t1=1

w′tΣ̃γ,twt (2.10)

with the regularized covariance matrix Σ̃γ,t.

2.3 Constructing Markowitz Mean-Variance Efficient Portfolios

Given the estimator of the covariance matrix Σ̂t and the gross-exposure parameter γ,

the Markowitz mean-variance efficient portfolio based on the momentum signal mt
..=

(m1t, . . . ,mNt)
′ is formulated as:

min
wt
wt
′Σ̂twt (2.11)

subject to wt
′1 = 1 , (2.12)

wt
′mt = bt and (2.13)

N∑
i=1

|wi,t| ≤ γ, (2.14)

where bt is a selected target exposure to the signal mt. In our empirical study, bt is determined

by the sorting portfolios. In particular,

bt = wQ′tmt (2.15)

where wQt is the weight vector of quantile-based portfolios. Let {(1), (2), . . . , (N)} be the

permutation of {1, 2, . . . , N} that results in descending order of scores for the signal mt. Then,

wQ
(1)
t = . . . = wQ

(d)
t

..= 1/d and wQ
(d+1)
t = . . . = wQ

(N)
t

..= 0, where d is the largest integer

that is smaller than or equal to the ratio of portfolio size N to the number of quantiles B. We

consider quintiles (B = 5) in our empirical analysis.

Denote the solution to problem (2.11) as w∗b,t, then we could obtain the following theorem

similar to Theorem 1.

Theorem 2. The partial constrained portfolio optimization problem (2.11) is equivalent to the

optimization problem

min
wt

w′tΣ̃γ,twt (2.16)

subject to w′t1 = 1 and wt
′mt = bt.

with the regularized covariance matrix Σ̃γ,t. Here Σ̃γ,t = Σ̂t + 1
2λ(g∗b,t1

′ + 1g∗
′
b,t), g∗b,t is the

subgradient at w∗b,t, and λ is the Lagrange multiplier.
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2.4 Comparison with the Study of Jagannathan and Ma (2003)

Jagannathan and Ma (2003) explain why imposing the wrong constraints on large portfolios helps

reduce the risk. The underlying mathematics connecting shrinkage to short-sales constraints are

sophisticated and unexpected, yet profound and compelling. While some people may have read

this connection as confirmation that “shrinkage is not necessary”, their paper could equally be

interpreted as saying that shrinkage works because we (meaning the asset management and

finance professors who impose no-short-sales constraints) have been effectively shrinking all

along without even knowing it. So why not get the best of both worlds?

First, Jagannathan and Ma (2003) only consider the constraint of nonnegative weights.

To bridge the gap between the extreme no-short-sale constraint and no constraint, we study

the effects of different degrees of leverage constraints on risk reduction by considering a wide

range of gross-exposure constraints parameter γ. Specifically, we find valid empirical evidence

supporting the 130/30 and 150/50 strategies.

Second, they compare the gain from imposing the nonnegative constraint with that from

using the single-index linear shrinkage estimator proposed by Ledoit and Wolf (2003), and find

the comparable effects supporting the conjecture that imposing the nonnegative constraint has

a shrinkage-like effect. Given that Ledoit and Wolf (2012, 2015) extend the linear shrinkage to

the nonlinear shrinkage, and Engle et al. (2017) advocate the use of the nonlinear shrinkage

estimator in estimating the DCC model, both of which turn out to have improved out-of-sample

performance, we focus on whether the gains from the nonlinear shrinkage estimator and the

DCC-NL estimator exceed that from imposing various constraints on the portfolio weights.

Third, they construct the global minimum variance (GMV) portfolios but do not consider

the Markowitz mean-variance efficient portfolios, as they believe that the sample mean is such

an imprecise estimator of the population mean that based on which the mean-variance efficient

portfolios constructed always perform poorly out of sample. To construct better Markowitz

mean-variance efficient portfolios, we use the well-known momentum signal of Jegadeesh and

Titman (1993) as a proxy for the population mean. For a given stock and a given investment

date, the momentum signal mit equals to the geometric average of the previous 12 monthly

returns on the stock but excluding the most recent month (the signal is actually the geometric

average return over 11 months, thus we denote it as 11-MM).

Finally, they construct portfolios with 500 stocks in their empirical research without

considering the change of portfolio size. Actually, they find that the portfolio size and the

sample size matter in determining the influence of no-short-sale constraints on the performance

in their simulation study, while the portfolio size is set to be no greater than 300. To study

whether and how much the effects of the shrinkage and the leverage constraints on risk reduction

and efficiency increase would be influenced by the portfolio size in practice, we consider two

cases in both the Monte Carlo simulation studies and the empirical study: N = 500, 1000.
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3 Monte Carlo Simulations

3.1 Data Generating Process

In the last section, we demonstrate that imposing the gross-exposure constraint on portfolio

weights is equivalent to using the shrinkage estimator when the time-varying structure of the

covariance matrix is captured by the DCC model. Moreover, we emphasize that one of our most

important improvements compared to Jagannathan and Ma (2003) is that we consider varying

levels of constraint on the gross-exposure instead of imposing the nonnegative constraints on

all weights.

In this section, we use Monte Carlo simulations to verify our theoretical results and to

quantify the finite sample performance with varying levels of leverage constraint and different

covariance matrix estimators. Since the essence of both the constraint on leverage and the

shrinkage in covariance matrix estimation is the trade-off between the reduction in sampling

error and the increase in specification error, the true convariance matrix matters in determining

the performance. We therefore generate Monte Carlo data that can simulate the real data the

best. The simulated data are generated as following:

First, we estimate the unconditional covariance matrix from the most liquid stocks

(N = 500, 1000) in the CRSP database based on the nonlinear shrinkage method using five

years of daily data from 2010 to 2014. This matrix will be regarded as the true unconditional

covariance matrix.

Second, we simulate the DCC time series with parameters α = 0.05 and β = 0.93 for (2.6),

and with parameters αi = 0.05 and βi = 0.90 for all individual stocks i = 1, . . . , N for (2.5). The

disturbance terms are drawn from a multivariate standard normal distribution or a multivariate

“Student” t-distribution with 5 degrees of freedom. For each simulation, we thereby generate an

T ×N ×N time-varying covariance matrix and correspondingly an T ×N matrix of simulated

returns, where the time length T is fixed at 1250. We repeat each simulation for 100 times.

3.2 Simulation Results

We consider six different estimators for the covariance matrix, including the sample covariance

matrix (S), the single-index linear shrinkage estimator (L) proposed by Ledoit and Wolf (2003),

the nonlinear shrinkage estimator (NL) proposed by Ledoit and Wolf (2012, 2015), the covariance

matrix estimator based on DCC model (Engle, 2002), and the DCC-L and DCC-NL estimator

proposed by Engle et al. (2017). For each covariance matrix estimator, we allow a wide choice of

the leverage-constraint parameter γ, ranging from 1 to 16. Here we construct GMV portfolios

based on (2.7).

Following Fan et al. (2012), we calculate three different risks to evaluate the performance.

First, the oracle risk (denoted by Rorc) corresponding to the oracle portfolio, based on the true

time-varying covariance matrix, is obtained by (3.1). Second, the empirical risk (denoted by

Remp) corresponding to the empirical portfolio, based on the estimated time-varying covariance

matrix, is obtained by (3.2). The empirical risk, however, is not the actual risk of the empirical
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portfolio, since it relies on the estimated covariance matrix. Replacing the estimated covariance

matrix by the true covariance matrix, we get the actual risk (denoted by Ract, (3.3)), which is

crucial for comparing the finite sample performance of different portfolios.

Rorc = w′tΣtwt (3.1)

Remp = ŵ′tΣ̂tŵt (3.2)

Ract = ŵ′tΣtŵt (3.3)

Figures 1-4 show Rorc, Remp, and Ract for six different covariance matrix estimators, each

with varying constraints on the gross-exposure, where Figure 1 and Figure 3 are for the cases

of N = 500, and Figure 2 and Figure 4 are for the cases of N = 1000. For Figures 1-2,

the disturbance terms of the simulated data are drawn from a multivariate standard normal

distribution, while for Figures 3-4, they are drawn from a multivariate ”Student” t-distribution

with 5 degrees of freedom. In all cases, the sample size is fixed at T = 1250. It is intuitive to

see from Equations (3.1) to (3.3) that the gap between the actual and the oracle risks is caused

by the estimation errors or the wrong constraints on weights, whereas the difference between

the actual and the empirical risks is because of the estimation errors in the covariance matrix

estimators.

The curve of the oracle risk shared by six graphs in each figure indicates that the theoretical

risk decreases sharply with the increase of the gross-exposure parameter γ before γ reaches 2,

when the constraints on gross-exposure form the 150/50 strategy. This provides theoretical

evidence supporting the outstanding performance of the 150/50 strategy. The sums of the

absolute weights for oracle portfolios are 5.76 (5.75) and 5.85 (5.84), for N = 500 and N = 1000,

respectively, in the cases with normally-distributed (t-distributed) disturbance terms, implying

the corresponding exact inflection points on the curves of oracle risk.

The estimation of the covariance matrix becomes more and more difficult with the increase of

γ and N , especially if no-shrinkage-involved covariance matrix estimator is used at the meantime.

When N = 500, the gap between the actual and the empirical risks first becomes wider as γ

increases, and then remains constant. In addition, the actual-empirical gap is noticeably larger

for no-shrinkage-involved covariance matrix estimators. The difference between the actual

and the oracle risks show very similar properties, except that it is much smaller when DCC

model is used, suggesting the effectiveness of DCC model in forecasting and accordingly in

reducing the actual risk. In the cases of N = 1000, the actual risks are remarkably larger when

the constraints on the gross-exposure are weak and S or DCC estimator is used at the same

time: the curves of actual risks turn up when γ > 4, making the actual-empirical gap and

the actual-oracle gap increase. These findings all help confirming the positive effects of the

shrinkage and the gross-exposure constraints on reducing risks. However, in comparison with

the consistent positive effects of the shrinkage, the constraints help reducing portfolio risks only

under moderate degree.

To better analyze the actual risks of portfolios constructed based on different covariance

matrix estimators, we show them in Figure 5 (for normally-distributed disturbance terms)
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and Figure 6 (for t-distributed disturbance terms). On the one hand, for varying leverage

constraints, it is always the DCC-NL estimator that brings the lowest risk, closely followed

by DCC-L estimator. On the other hand, with the relaxation of the leverage constraint (the

increase of γ), the actual risk first decreases and then increases (for S and DCC) or remains

constant (for L, NL, DCC-L, and DCC-NL). The actual risk is the lowest when γ is between 2

and 5. When γ < 5 (the leverage constraint is effective), the performance of estimators mainly

depends on whether the DCC is used, whereas when γ > 5, the difference in performance largely

depends on whether the shrinkage is used. Overall, the DCC model, the shrinkage method,

and the imposing of an appropriate leverage constraint all help reducing risks, and the effects

increase with N .

We also present a subset of the simulation results in Table 1 (for normally-distributed

disturbance terms) and Table 2 (for t-distributed disturbance terms). Specifically, the tables

present the performance of the GMV portfolios based on various covariance matrix estimators

with gross-exposure parameter γ =∞, 2, 1.6, and 1, corresponding to four specific strategies,

which are no constraint on weights, the 150/50 strategy, the 130/30 strategy, and the no-short-

sale constraint. Results shown in Panels A, B are for portfolios with N = 500 and N = 1000,

respectively.

Besides the aforementioned revelations, Tables 1-2 indicate that portfolios constructed using

the DCC-NL (DCC-L) estimator without imposing any leverage constraint have the minimum

actual risks. This should not be surprising since the data-generating process is based on DCC

model and the ex post standard deviation calculated is based on the real covariance matrix.

The moderate leverage constraints with parameter γ = 2 or γ = 1.6 help reducing the actual

risks remarkably when no shrinkage is used in the estimation of the covariance matrix, but they

are not as effective as using the DCC-NL estimator. Moreover, in line with the results shown in

Figure 5 and Figure 6, the DCC-NL estimator is always suggested, even when an appropriate

leverage constraint is imposed.

The numbers in the last two columns indicate that both the shrinkage and the leverage

constraints largely reduce the standard deviations and the total short positions of weights. The

oracle total short position, based on the true covariance matrix, approximately equals 237.9%

(237.6%) when N = 500, and equals 242.3% (242.1%) when N = 1000, for normally-distributed

(t-distributed) disturbance terms. As a result, the 130/30 strategy and 150/50 strategy are

not diversified enough, leading to their underperformance compared to using the DCC-NL

estimator without imposing any leverage constraint.

4 Empirical Results

4.1 Data

We examine the effects of the leverage constraint, the shrinkage in covariance matrix estimation,

and the use of DCC model to capture the heteroscedasticity on the out-of-sample performance

of the minimum variance portfolio and the mean-variance efficient portfolio. We use the same
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data and the same portfolio-construction rules as in Ledoit et al. (2018), but we impose leverage

constraints on portfolio weights.

Specifically, we focus on stocks traded on the NYSE, AMEX, and NASDAQ, with daily

return data for all the immediately preceding 1250 days as well as the upcoming 21 days, and

with correlations not exceeding 0.951. The daily return data we use, which covers the period

from 01/01/1980 to 12/31/2015, are from the Center for Research in Security Prices (CRSP)

database. The out-of-sample period is from 01/08/1986 to 12/31/2015.

For both the minimum variance portfolio and the efficient mean-variance portfolio, we

consider two different portfolio sizes N = 500, 1000. The covariance matrix estimators we

consider here include the sample covariance matrix (S), the nonlinear shrinkage estimator (NL)

(Ledoit and Wolf, 2012, 2015), the covariance matrix estimator based on DCC model (Engle,

2002), and the DCC-NL estimator (Engle et al., 2017). To consider the effects of the leverage

constraint and the shrinkage covariance matrix estimator together, we establish portfolios with

a varying gross-exposure parameter γ, based on each covariance matrix estimator for each

portfolio type and portfolio size.

Following Ledoit et al. (2018), we update the portfolios every 21 consecutive trading days,

and thus form 360 investment dates from 01/01/1980 to 12/31/2015. At any investment date,

the covariance matrix is estimated based on the most recent 1250 daily returns (roughly equals

five years).

4.2 Main Results

Table 3 presents the out-of-sample performance of the GMV portfolios with gross-exposure

parameter γ = ∞, 2, 1.6, and 1. On the one hand, judging by the out-of-sample standard

deviations of the GMV portfolios, which are shown in the fourth columns of Table 3, DCC-NL

performs the best among four covariance matrix estimators considered. The outperformance

is most obvious when N = 1000 and no leverage constraint is imposed: it reduces the out-of-

sample standard deviation by 5.08 percentage points compared to the sample covariance matrix.

As the leverage constraint becomes tighter, the relative outperformance of the NL estimator

declines, while that of the DCC improves. The decline in the outperformance of NL estimator is

consistent with the observations in Jagannathan and Ma (2003). According to them, imposing

the nonnegative constraints on portfolio weights has a shrinkage-like effect, and thus it hurts

the performance of the NL estimator.

On the other hand, the moderate constraints with γ = 2, or γ = 1.6 consistently outperform

the extreme no-short-sale constraint with γ = 1 as well as the no constraint with γ =∞, but the

degrees of outperformance vary with the change of covariance matrix estimators. For example,

when N = 1000, if sample covariance matrix is used, the 50% short-sale constraint (γ = 2)

reduces the out-of-sample standard deviation by 4.57 and 2.07 percentage points compared to

the no-constraint strategy and the no-short-sale strategy, respectively, while the numbers reduce

1The sample correlations are calculated based on the daily returns over the past 1250 days. We remove the

stock with the lower volume in a pair on the investment date if the correlation of the two exceeds 0.95.
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to 0.37 and 0.54, respectively, if the DCC-NL estimator is used. Nevertheless, the DCC-NL

estimator is always preferred: it leads to the smallest out-of-sample standard deviation even

when an appropriate leverage constraint is imposed.

Interestingly, the effect of using DCC-NL is comparable to the combined effect of using

DCC and imposing an appropriate leverage constraint. Specifically, when N = 1000, the

GMV portfolios constructed using the DCC-NL estimator without any leverage constraint and

the GMV portfolios constructed using the DCC estimator with the constraint of γ = 2 have

annualized out-of-sample standard deviations of 8.28 percent and 8.18 percent, respectively,

both reducing the 13.36 percent from using the sample covariance matrix by over 5 percentage

points.

Figure 7 reveals the change of the out-of-sample risks with the continuous increase of the

parameter γ. The out-of-sample risks first decline and then increase for all portfolios constructed

based on different covariance matrix estimators and for both cases with 500 and 1000 stocks.

The optimal choice that corresponds to the lowest risk is γ = 2 (the 150/50 strategy) for

portfolios with 500 stocks and is γ = 1.5 (the 130/30 strategy) for portfolios with 1000 stocks,

where in both cases the DCC-NL estimator is suggested.

To sum up, the DCC-NL estimator achieves the best performance in all cases no matter

whether a leverage constraint is imposed, and imposing the 30% to 50% constraint on leverage

also improves the performance. The out-of-sample standard deviations of all GMV portfolios

decrease in N , except the cases where neither the shrinkage is used nor the leverage constraint

is imposed. When N = 1000, the DCC-NL estimator is used for covariance matrix, and the 30%

leverage constraint is imposed, the portfolio has the smallest out-of-sample standard deviation

among all GMV portfolios constructed.

Table 4 presents results for the Markowitz portfolios constructed based on the 11-MM

momentum signal (Jegadeesh and Titman, 1993). Those portfolios have consistently larger

out-of-sample Sharpe ratios than the corresponding global minimum variance portfolios, thus

supporting the effectiveness of the momentum signal as a proxy for the population mean.

Judging by the Sharpe ratios, the 130/30 and 150/50 strategies still outperform the strategy

without any constraint on weights or with the extreme constraint that no short-sale is allowed,

and the DCC-NL estimator still performs the best among all covariance matrix estimators

considering the robustness of performance. When N = 1000 and no constraint imposed on

weights, the Markowitz portfolio constructed using the DCC-NL estimator has a Sharpe ratio

of 1.12, almost double that from using the sample covariance matrix. Furthermore, it is not

difficult to see that the effect of directly using the nonlinear shrinkage estimator approximates

that of imposing the 30% or 50% leverage constraint, both of which outperform imposing the

nonnegative constraint on weights, while both are inferior to using the DCC-NL estimator

without any constraint, whose performance can be imitated by using the DCC estimator and

imposing an appropriate leverage constraint at the same time. These findings again support

our conjecture that imposing appropriate constraints on portfolio weights has a shrinkage-like

effect, no matter whether the DCC model is used for considering the dynamics in covariances

and variances.
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4.3 Portfolio Weights

During each investment period, we compute the minimum weight (MinW), the maximum weight

(MaxW), the standard deviation of weights (StdW) and the total short positions in weights

(ShortW) across the N stocks of the portfolio. We present the average values over the 360

investment periods from 01/01/1980 to 12/31/2015 for the four characteristics of portfolio

weights in Tables 3-4.

We find that portfolios constructed based on the sample covariance matrix turn out to have

the smallest minimum weight and the largest total short position, while portfolios constructed

based on the DCC estimator always have the largest maximum weight, and portfolios constructed

based on the NL estimator always have the smallest standard deviation in weights.

If no leverage constraint is in place, the total short positions are always large, especially

when N is large and no shrinkage method is used in the estimation of the covariance matrix.

For example, when N = 1000, the total short position of GMV portfolio reaches 327.64 percent

if the DCC estimator is used, and this number even comes up to 525.34 if the sample covariance

matrix is used. For Markowitz portfolios, the corresponding short positions are even larger,

with 425.38 percent for the DCC estimator and 594.48 percent for the sample covariance matrix.

The total short position and the turnover of portfolios are largely reduced by the use of the

nonlinear shrinkage estimators and the introduction of leverage constraints. This should not be

surprising considering how the nonlinear shrinkage method works in improving the estimation

precision of covariance matrix.

4.4 Robustness Checks

4.4.1 Alternative Predictors

For robustness check, we consider the Markowitz mean-variance efficient portfolios with an

alternative momentum signal. Instead of using the 11-months momentum, now we follow

Gettleman and Marks (2006) and focus on the change in the 6-months momentum (denoted

by ∆6-MM), where the 6-months momentum is the geometric average return reversal over the

previous seven months but excluding the most recent month (Jegadeesh and Titman, 1993).

Table 5 presents the results for the Markowitz mean-variance efficient portfolios constructed

based on the ∆6-MM momentum signal, from which we draw similar conclusions to our main

findings aforementioned. First, the DCC-NL estimator performs the best among all estimators

we considered. Second, the moderate constraints with γ = 2 and γ = 1.6 lead to much better

out-of-sample performance than no constraint or the extreme constraint that no short-sale

is allowed. Third, the effects of using NL estimator and imposing the 30% or 50% leverage

constraint are very close. When N = 1000, both the use of NL estimator and the imposing of

the 50% leverage constraint raise the Sharpe ratio of the portfolio constructed from 0.7 to 1.

Finally, the effect of using nonlinear shrinkage estimators gradually fades out as the intensity

of the leverage constraint increases. The advantage of using nonlinear shrinkage estimators

culminates when no constraint is imposed: both the NL estimator and the DCC-NL estimator
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increase the Sharpe ratio by more than 40 percent compared to the sample covariance matrix.

4.4.2 Transaction Cost

Transaction cost is an important issue in practical implementations. In Table 6, we present

results of the Markowitz mean-variance efficient portfolios constructed based on the 11-MM

momentum signal, when the transaction cost is considered. Referring to studies with practical

background (e.g., Credit Suisse Trading Strategy (2013); Deutsche Bank Market Research

(2015)) and literature from academic views (e.g., Mei et al. (2016); Mei and Nogales (2018)),

we set the bid-ask spread to be three or five basis-points to embody the transaction cost.

Unsurprisingly, the Sharpe ratio becomes lower with the increase of transaction costs.

Assuming a bid-ask spread of three basis-points, the Sharpe ratio reaches 1 only when N = 1000,

30% or 50% short-sale constraint is imposed, and DCC or DCC-NL estimator is used at the

same time. If the bid-ask spread is set to five basis-points, the maximum value of Sharpe ratio

is 0.93, which only occurs when N = 1000, 30% short-sale constraint is imposed, and DCC-NL

estimator is used at the same time.

Features suggested by the pattern of Sharpe ratios are consistent with our main results. The

DCC-NL estimator generates the best out-of-sample performance among the four covariance

matrix estimators in all cases, and the 30% (γ = 1.6) and 50% (γ = 2) short-sale constraints

are appropriate. The advantage of the DCC-NL estimator is most remarkable when no leverage

constraint is imposed. For example, if the bid-ask spread is 3 basis-points, when N = 500 and

no constraints imposed, using the DCC-NL estimator increases the Sharpe ratio from using

S estimator by nearly 50% to 0.83. When appropriate constraints are imposed on portfolio

weights, the DCC-NL estimator still helps increasing the Sharpe ratio. Moreover, owing to

the parsimony of the shrinkage method in turnover, the outperformance of the DCC-NL (NL)

estimator over the DCC (S) estimator becomes more significant and robust than when the

transaction cost is ignored.

5 Conclusion

Leverage constraints are often used by quantitative investors. Besides the nonnegative constraint,

strategies limiting the total short position to be at most 30% and 50% of the portfolio value are

implementable in practice: the so-called 130/30 strategy and 150/50’ strategy. Jagannathan

and Ma (2003) find that imposing the nonnegative constraint on weights can reduce the risks

of the optimal portfolios constructed and explain it by the shrinkage-like effect. We extend

their research by considering different degrees of leverage constraints so that the prevalent

130/30 strategy and 150/50’ strategy are also contained. On the other hand, we focus on the

DCC-NL estimator to consider the dynamics and the estimation precision of covariance matrix

at the same time, where NL represents the nonlinear shrinkage, which is an improvement to

the single-index linear shrinkage estimator considered in Jagannathan and Ma (2003).

We provide theoretical insights into the similar effects of imposing the gross-exposure
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constraint and using the shrinkage covariance matrix estimator on reducing risks of portfolios

constructed. Moreover, we demonstrate through Monte Carlo simulations and empirical studies

that portfolios constructed based on the DCC-NL estimator are well diversified, and the 30%

to 50% leverage constraint is appropriate, which turns out to be better than the no-short-sale

constraint as well as the no constraint. The good out-of-sample performance of the DCC-NL

estimator are attributed to both the use of a DCC model, which captures the dynamic structure

in variances and covariances, and the introduction of an appropriate shrinkage, which reduces

the sampling errors in the estimation of covariance matrix. The leverage constraint also has a

shrinkage-like effect, but it is unlikely to hurt the performance of the shrinkage estimators as

long as the degree of the constraint is moderate.

Based on daily return data from stocks traded on the NYSE, AMEX, and NASDAQ, we

construct the global minimum variance portfolios and the Markowitz mean-variance efficient

portfolios based on momentum signals with portfolio sizes N = 500 and 1000. The empirical

results show that though imposing an appropriate leverage constraint can achieve a similar

effect as using the nonlinear shrinkage estimator, it always fall behind using the DCC-NL

estimator, which considers both reducing the sampling errors and capturing the conditional

heteroscedasticity. The effects of DCC and NL both increase in portfolio size, but the latter

decreases as the leverage constraint becomes tighter. Moreover, we find that using DCC-

NL estimator improves the out-of-sample performance even when the 30% or 50% leverage

constraint is imposed. Overall, using the NL estimator, the DCC model, and an appropriate

leverage constraint all help improving the out-of-sample performance, but only NL and leverage

constraints help reducing the standard deviation of weights and the turnover of portfolios.

In our main study, we use the geometric average of the previous 12 monthly returns on

the stock but excluding the most recent month as a proxy for the mean return to construct

the mean-variance efficient portfolio. For robustness check, we consider the change in the 6

months momentum as an alternative proxy and also take the effect of transaction costs into

consideration by assuming the bid-ask spread to be 3 or 5 basis-points. Neither of these changes

affects the robustness of our findings.
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A Theoretical Justifications

Proof of Theorem 1 (i). Note that the matrix Σ̃γ,t is obviously symmetric and the solution

to problem (2.7) is denoted by w∗t . For any vector x,

x′Σ̃γ,tx = x′Σ̂tx+
1

2
λ(x′g∗t1

′x+ x′1g∗
′
t x)

= x′Σ̂tx+ λ(x′g∗t )(1
′x). (A.1)

Based on the KKT conditions in (2.9), 2Σ̂tw
∗
t − µ1 + λg∗t = 0. Therefore,

λ(x′g∗t )(1
′x) = −2(x′1)(x′Σ̂tw

∗
t ) + µ(x′1)2. (A.2)

Note that

|(x′1)(x′Σ̂tw
∗
t )| = |(x′1)(x′Σ̂

1
2
t )(Σ̂

1
2
t w
∗
t )| ≤ |(x′1)(x′Σ̂tx)

1
2 (w∗

′
t Σ̂tw

∗
t )

1
2 |,

where the equality holds because of the positive definiteness of the DCC estimator Σ̂t, and the

inequality could be obtained by Cauchy-Schwartz inequality.

In addition, because the DCC estimator Σ̂t is positive definite under some conditions, we

have

0 < w∗
′
t Σ̂tw

∗
t =

1

2
µw∗

′
t 1−

1

2
λw∗

′
t gt =

1

2
µ− 1

2
λ‖w∗t ‖1 ≤

1

2
µ.

Hence,

|(x′1)(x′Σ̂tw
∗
t )| ≤ |x′1|(x′Σ̂tx)

1
2 (

1

2
µ)

1
2 . (A.3)

Combining (A.1)-(A.3), we have

x′Σ̃γ,tx = x′Σ̂tx− 2(x′1)(x′Σ̂tw
∗
t ) + µ(x′1)2

≥ x′Σ̂tx− 2|(x′1)(x′Σ̂tw
∗
t )|+ µ(x′1)2

≥ x′Σ̂tx− 2|x′1|(x′Σ̂tx)
1
2 (

1

2
µ)

1
2 + µ(x′1)2

= (a− b)2 + b2, (A.4)

where a = (x′Σ̂tx)
1
2 , and b = (12µ)

1
2 |x′1|.

Moreover, (a− b)2 + b2 is always nonnegative and is zero if and only if a = b and b = 0 hold

simultaneously. However, a = (x′Σ̂tx)
1
2 > 0 because Σ̂t is positive definite. Therefore, for any

vector x, x′Σ̃γ,tx > 0 holds. This indicates the positive definiteness of Σ̃γ,t.

Proof of Theorem 1 (ii). Firstly, the optimization problem (2.10) with equality constraint

could be solved through the Lagrange multiplier method. Construct the Lagrangian

L(wt, µc) = w′tΣ̃γ,twt − µγ(w′t1− 1),

then the solution wopt
t to this minimization problem should satisfy2Σ̃γ,tw

opt
t − µγ1 = 0,

wopt′

t 1− 1 = 0.
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Because Σ̃γ,t is invertible, then the solution to this problem is given by

wopt
t =

Σ̃−1γ,t1

1′Σ̃−1γ,t1
. (A.5)

By the Lagrange multiplier method, problem (2.7) is to minimize

L(wt, µ, λ) = w′tΣ̂twt − µ(w′t1− 1)− λ(c− ‖wt‖1).

Based on the fact that g∗
′
t w

∗
t = ‖w∗t ‖1 and KKT conditions in (2.9), we have

Σ̃γ,tw
∗
t = Σ̂tw

∗
t +

1

2
λg∗t 1

′w∗t +
1

2
λ1g∗

′
t w

∗
t

= Σ̂tw
∗
t +

1

2
λg∗t +

1

2
λ‖w∗t ‖11

=
1

2
(λγ + µ)1.

Hence, the solution to problem (2.7) w∗t = 1
2(λγ+µ)Σ̃−1γ,t1. Moreover, because of the constraint

w′t1 = 1, solving for λγ + µ yields λγ + µ = 2
1′Σ̃−1

γ,t1
. This fact indicates that

w∗t = wopt
t .

Therefore, it implies the equivalence of the partial constrained optimization problem and the

(unconstrained) optimization problem with regularized covariance matrix estimator.

Proof of Theorem 2. Firstly, the optimization problem (2.16) with equality constraint could

be solved through the Lagrange multiplier method. Construct the Lagrangian

L(wt, µ1c, µ2c) = w′tΣ̃γ,twt − µ1c(w′t1− 1)− µ2c(w′tmt − bt),

then the solution wopt
b,t to this minimization problem should satisfy2Σ̃γ,tw

opt
b,t − µ1c1− µ2cmt = 0,

wopt′

b,t 1− 1 = 0, wopt′

b,t mt − bt = 0.

Therefore, wopt
b,t = µ1cΣ̃

−1
γ,t1 + µ2cΣ̃

−1
γ,tmt = Σ̃−1γ,t (1,mt)

(
µ1c

µ2c

)
.

The above equations also imply that

1 =
1

2
µ1c1

′Σ̃−1γ,t1 +
1

2
µ2c1

′Σ̃−1γ,tmt,

bt =
1

2
µ1cm

′
tΣ̃
−1
γ,t1 +

1

2
µ2cm

′
tΣ̃
−1
γ,tmt,

or (
1

bt

)
=

1

2
(1,mt)

′Σ̃−1γ,t (1,mt)

(
µ1c

µ2c

)
.
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Solving for (µ1c, µ2c)
′ yields(

µ1c

µ2c

)
= 2

[
(1,mt)

′Σ̃−1γ,t (1,mt)
](1

bt

)
.

Therefore, the solution to this problem is given by

wopt
b,t = Σ̃−1γ,t (1,mt)

[
(1,mt)

′Σ̃−1γ,t (1,mt)
](1

bt

)
. (A.6)

By the Lagrange multiplier method, problem (2.11) is to minimize

L(wt, µ1, µ2, λ) = w′tΣ̂twt − µ1(w′t1− 1)− µ2(w′tmt − bt)− λ(c− ‖wt‖1).

So, the KKT conditions are
2Σ̂twt − µ11− µ2mt + λgt = 0,

λ(c− ‖wt‖1) = 0, λ ≥ 0,

‖wt‖1 ≤ γ, w′t1− 1 = 0, w′tmt − bt = 0.

(A.7)

Based on the fact that g∗
′
b,tw

∗
b,t = ‖w∗b,t‖1 and KKT conditions in (A.7), we have

Σ̃γ,tw
∗
b,t = Σ̂tw

∗
b,t +

1

2
λg∗b,t1

′w∗b,t +
1

2
λ1g∗

′
b,tw

∗
b,t

= Σ̂tw
∗
b,t +

1

2
λg∗b,t +

1

2
λ‖w∗b,t‖11

=
1

2
(λc+ µ1)1 +

1

2
µ2mt.

It then follows that w∗b,t = 1
2Σ̃
−1
γ,t [(λc+ µ1)1 + µ2mt]. The constraints also imply that

1 =
1

2
(λc+ µ1)1

′Σ̃−1γ,t1 +
1

2
µ21

′Σ̃−1γ,tmt,

bt =
1

2
(λc+ µ1)m

′
tΣ̃
−1
γ,t1 +

1

2
µ2m

′
tΣ̃
−1
γ,tmt,

or (
1

bt

)
=

1

2
(1,mt)

′Σ̃−1γ,t (1,mt)

(
λγ + µ1

µ2

)
.

Solving for (λc+ µ1, µ2)
′ yields(
λc+ µ1

µ2

)
= 2

[
(1,mt)

′Σ̃−1γ,t (1,mt)
](1

bt

)
.

Hence,

w∗b,t = Σ̃−1γ,t (1,mt)
[
(1,mt)

′Σ̃−1γ,t (1,mt)
](1

bt

)
. (A.8)

We can then conclude that wopt
b,t = w∗b,t. This completes the proof.
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B Tables and Figures

Table 1: Actual Risk of Portfolio and Standard Deviation and Total Short Position of Portfolio

Weights.

Panel A: N = 500 Panel B: N = 1000

Σ̂ StdR StdW ShortW StdR StdW ShortW

γ =∞

S 5.53 1.45 222.75 6.63 0.75 239.63
L 4.98 1.21 172.41 3.88 0.59 170.19

NL 5.01 1.13 166.32 3.92 0.54 161.28
DCC 5.11 1.31 195.77 6.43 0.68 209.17

DCC-L 4.43 1.13 157.73 3.73 0.54 153.92
DCC-NL 4.40 1.11 155.17 3.69 0.54 149.89

γ = 2

S 6.75 0.81 47.88 5.88 0.43 48.76
L 6.74 0.80 47.95 5.83 0.43 48.81

NL 6.74 0.77 47.84 5.85 0.41 48.74
DCC 5.14 0.73 45.90 4.63 0.40 47.74

DCC-L 5.10 0.72 45.91 4.57 0.40 47.76
DCC-NL 5.11 0.73 45.86 4.57 0.40 47.71

γ = 1.6

S 7.48 0.78 29.31 6.86 0.43 29.57
L 7.47 0.77 29.35 6.80 0.42 29.60

NL 7.50 0.75 29.29 6.80 0.41 29.57
DCC 5.62 0.69 28.33 5.13 0.39 29.16

DCC-L 5.59 0.69 28.35 5.10 0.39 29.17
DCC-NL 5.59 0.69 28.30 5.11 0.39 29.13

γ = 1

S 9.66 0.78 0.00 9.76 0.45 0.00
L 9.67 0.78 0.00 9.75 0.45 0.00

NL 9.64 0.75 0.00 9.80 0.44 0.00
DCC 7.59 0.62 0.00 7.33 0.37 0.00

DCC-L 7.58 0.62 0.00 7.31 0.37 0.00
DCC-NL 7.58 0.62 0.00 7.32 0.37 0.00

Notes: This table shows the simulation results for the empirical GMV portfolios constructed based on

different covariance matrix estimators and facing various degrees of leverage constraints. The disturbance

terms of the simulated data are drawn from a multivariate standard normal distribution. The covariance

matrix is estimated using the most recent 1250 daily returns based on six different methods, which are the

sample covariance matrix (S), the linear shrinkage estimator (L) (Ledoit and Wolf, 2003), the nonlinear

shrinkage estimator (NL) (Ledoit and Wolf, 2012, 2015), the DCC estimator (Engle, 2002), the DCC-L

estimator and the DCC-NL estimator (Engle et al., 2017). γ = ∞, 2, 1.6, 1 stands for an increasing

restriction with the proportion of short-sale not exceeding ∞, 50%, 30%, 0, respectively. The standard

deviation of return (StdR) is calculated using the true covariance matrix, and thus it represents the

actual risk. The standard deviation of weights (StdW) and the total short position of weights (ShortW)

of the empirical portfolios are also reported. Panel A and Panel B show results for portfolios with 500

and 1000 stocks, respectively.
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Table 2: Actual Risk of Portfolio and Standard Deviation and Total Short Position of Portfolio

Weights.

Panel A: N = 500 Panel B: N = 1000

Σ̂ StdR StdW ShortW StdR StdW ShortW

γ =∞

S 5.54 1.42 216.01 6.48 0.74 235.76
L 4.97 1.18 169.42 3.81 0.58 168.62

NL 5.01 1.12 164.14 3.84 0.54 160.09
DCC 5.07 1.25 183.60 6.24 0.67 207.46

DCC-L 4.41 1.09 151.78 3.71 0.54 153.05
DCC-NL 4.37 1.07 148.57 3.65 0.53 147.35

γ = 2

S 7.05 0.78 46.75 5.92 0.42 48.27
L 7.05 0.77 46.75 5.90 0.41 48.30

NL 7.04 0.75 46.63 5.90 0.40 48.19
DCC 5.01 0.70 44.10 4.47 0.39 46.76

DCC-L 4.98 0.70 44.14 4.42 0.38 46.79
DCC-NL 4.98 0.70 44.08 4.42 0.38 46.71

γ = 1.6

S 8.09 0.75 28.75 6.86 0.41 29.30
L 8.13 0.74 28.77 6.88 0.41 29.32

NL 8.12 0.72 28.72 6.89 0.40 29.29
DCC 5.51 0.66 27.53 4.97 0.37 28.57

DCC-L 5.48 0.66 27.55 4.94 0.37 28.59
DCC-NL 5.48 0.66 27.48 4.94 0.37 28.56

γ = 1

S 10.90 0.73 0.00 10.60 0.42 0.00
L 10.92 0.73 0.00 10.62 0.42 0.00

NL 10.90 0.71 0.00 10.63 0.41 0.00
DCC 7.62 0.59 0.00 7.20 0.35 0.00

DCC-L 7.61 0.59 0.00 7.18 0.35 0.00
DCC-NL 7.61 0.59 0.00 7.19 0.35 0.00

Notes: This table shows the simulation results for the empirical GMV portfolios constructed based on

different covariance matrix estimators and facing various degrees of leverage constraints. The disturbance

terms of the simulated data are drawn from a multivariate t-distribution with 5 degrees of freedom. The

covariance matrix is estimated using the most recent 1250 daily returns based on six different methods,

which are the sample covariance matrix (S), the linear shrinkage estimator (L) (Ledoit and Wolf, 2003),

the nonlinear shrinkage estimator (NL) (Ledoit and Wolf, 2012, 2015), the DCC estimator (Engle, 2002),

the DCC-L estimator and the DCC-NL estimator (Engle et al., 2017). γ = ∞, 2, 1.6, 1 stands for an

increasing restriction with the proportion of short-sale not exceeding ∞, 50%, 30%, 0, respectively. The

standard deviation of return (StdR) is calculated using the true covariance matrix, and thus it represents

the actual risk. The standard deviation of weights (StdW) and the total short position of weights

(ShortW) of the empirical portfolios are also reported. Panel A and Panel B show results for portfolios

with 500 and 1000 stocks, respectively.
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Table 3: Out-of-sample Average Return, Standard Deviation, Sharpe Ratio, four Characteristics

of Portfolio Weights and Average Turnover of the Global Minimum Variance Portfolios.

Σ̂ AvR StdR SR MinW MaxW StdW ShortW AvT

Panel A: 500 stocks contained in the portfolio

γ =∞

S 6.74 10.82 0.62 −5.90 9.86 1.64 239.93 5.70
NL 7.24 9.82 0.74 −2.71 4.77 0.95 131.52 2.21

DCC 10.25 10.57 0.97 −4.05 15.52 1.55 172.78 3.97
DCC-NL 9.51 9.66 0.98 −2.11 13.79 1.21 105.09 1.99

γ = 2

S 7.38 9.88 0.75 −3.27 9.76 1.01 50.00 2.93
NL 7.34 9.86 0.74 −2.67 5.61 0.79 50.00 1.15

DCC 9.18 9.82 0.93 −2.56 16.79 1.25 49.97 2.61
DCC-NL 9.05 9.55 0.95 −1.92 15.45 1.17 49.74 1.26

γ = 1.6

S 7.31 10.09 0.72 −3.05 10.53 0.98 30.00 2.77
NL 7.44 10.09 0.74 −2.72 6.30 0.77 30.00 1.17

DCC 9.02 9.79 0.92 −2.27 18.03 1.27 30.00 2.49
DCC-NL 8.97 9.64 0.93 −1.82 17.02 1.22 30.00 1.18

γ = 1

S 7.73 11.48 0.67 0.00 12.75 1.02 0.00 1.54
NL 8.04 11.48 0.70 0.00 8.00 0.80 0.00 0.36

DCC 8.62 10.36 0.83 0.00 23.48 1.47 0.00 1.27
DCC-NL 8.43 10.32 0.82 0.00 23.18 1.46 0.00 0.20

Panel B: 1000 stocks contained in the portfolio

γ =∞

S 7.37 13.36 0.55 −6.85 9.19 1.59 525.34 11.41
NL 7.38 8.80 0.84 −1.34 2.37 0.46 132.93 3.09

DCC 8.20 10.62 0.77 −4.28 17.83 1.31 327.64 7.23
DCC-NL 8.27 8.28 1.00 −1.11 14.31 0.73 94.70 2.68

γ = 2

S 7.64 8.79 0.87 −2.21 8.03 0.61 50.00 2.93
NL 7.32 8.87 0.83 −1.57 3.18 0.40 50.00 1.42

DCC 8.56 8.18 1.05 −1.67 19.63 0.88 49.99 2.75
DCC-NL 8.16 7.91 1.03 −1.08 16.45 0.76 49.71 1.52

γ = 1.6

S 7.67 9.10 0.84 −2.00 8.70 0.60 30.00 2.75
NL 7.60 9.19 0.83 −1.72 3.66 0.41 30.00 1.41

DCC 8.47 8.08 1.05 −1.46 21.23 0.91 30.00 2.61
DCC-NL 8.15 7.91 1.03 −1.04 18.76 0.83 29.99 1.35

γ = 1

S 9.28 10.86 0.85 0.00 11.29 0.66 0.00 1.56
NL 9.21 10.91 0.84 0.00 5.35 0.45 0.00 0.55

DCC 7.79 8.53 0.91 0.00 29.03 1.16 0.00 1.39
DCC-NL 7.47 8.45 0.88 0.00 28.29 1.14 0.00 0.23

Notes: This table shows the empirical results for the GMV portfolios constructed based on different

covariance matrix estimators and facing various degrees of leverage constraints. The covariance matrix

is estimated using the most recent 1250 daily returns based on four different methods, which are the

sample covariance matrix (S), the nonlinear shrinkage estimator (NL) (Ledoit and Wolf, 2012, 2015),

the DCC estimator (Engle, 2002), and the DCC-NL estimator (Engle et al., 2017). γ = ∞, 2, 1.6, 1

stands for an increasing restriction with the proportion of short-sale not exceeding ∞, 50%, 30%, 0,

respectively. We hold the portfolios for 21 days and record their daily returns. We report their out-of-

sample annualized average return (AvR), annualized standard deviations (StdR), and Sharpe ratios (SR).

Four characteristics of portfolio weights, including the minimum weight (MinW), the maximum weight

(MaxW), the standard deviation of weights (StdW), and the total short positions of weights (ShortW),

and the average turnover (AvT) of portfolios are also reported. All numbers shown are in percentage

except those for Sharpe ratios. Panel A and Panel B show results for portfolios with 500 and 1000 stocks,

respectively.
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Table 4: Out-of-sample Average Return, Standard Deviation, Sharpe Ratio, four Characteristics

of Portfolio Weights and Average Turnover of the Markowitz Portfolios constructed based on

the Momentum Signal (11-MM).

Σ̂ AvR StdR SR MinW MaxW StdW ShortW AvT

Panel A: 500 stocks contained in the portfolio

γ =∞

S 9.65 12.77 0.76 −6.43 10.29 1.79 269.74 6.20
NL 10.94 11.81 0.93 −2.98 4.92 1.05 152.84 2.56

DCC 12.96 12.44 1.04 −4.96 16.62 1.77 214.38 4.59
DCC-NL 12.65 11.43 1.11 −2.68 14.68 1.36 135.40 2.44

γ = 2

S 11.45 12.68 0.90 −3.59 9.97 1.06 50.00 2.90
NL 11.85 12.64 0.94 −3.16 6.07 0.86 50.00 1.11

DCC 12.90 12.27 1.05 −3.03 18.57 1.37 50.00 2.49
DCC-NL 12.86 12.01 1.07 −2.52 17.55 1.31 49.95 1.20

γ = 1.6

S 11.46 13.49 0.85 −3.56 10.78 1.05 30.00 2.73
NL 11.66 13.49 0.86 −3.43 6.97 0.87 30.00 1.12

DCC 12.79 12.82 1.00 −2.86 19.86 1.39 30.00 2.35
DCC-NL 12.57 12.67 0.99 −2.53 19.30 1.35 30.00 1.14

γ = 1

S 12.37 17.52 0.71 0.00 14.12 1.13 0.00 1.47
NL 12.77 17.53 0.73 0.00 10.78 0.98 0.00 0.26

DCC 12.17 16.11 0.76 0.00 22.46 1.45 0.00 1.12
DCC-NL 11.84 16.08 0.74 0.00 22.45 1.46 0.00 0.18

Panel B: 1000 stocks contained in the portfolio

γ =∞

S 9.28 15.41 0.60 −7.73 9.89 1.78 594.48 12.75
NL 10.57 10.39 1.02 −1.49 2.42 0.51 150.55 3.44

DCC 10.41 13.12 0.79 −5.65 20.63 1.60 425.38 9.15
DCC-NL 10.75 9.63 1.12 −1.44 15.65 0.82 122.08 3.14

γ = 2

S 11.23 10.99 1.02 −2.40 8.38 0.63 50.00 2.89
NL 11.06 11.03 1.00 −1.92 3.47 0.44 50.00 1.35

DCC 12.13 9.90 1.23 −1.92 21.82 0.97 50.00 2.65
DCC-NL 11.51 9.63 1.20 −1.42 19.27 0.87 49.95 1.42

γ = 1.6

S 11.73 11.82 0.99 −2.35 9.11 0.63 30.00 2.70
NL 11.62 11.90 0.98 −2.19 4.15 0.46 30.00 1.33

DCC 12.37 10.26 1.21 −1.72 23.42 1.00 30.00 2.50
DCC-NL 11.73 10.08 1.16 −1.44 21.93 0.95 30.00 1.26

γ = 1

S 13.07 16.12 0.81 0.00 11.82 0.70 0.00 1.49
NL 12.86 16.11 0.80 0.00 7.24 0.55 0.00 0.41

DCC 12.25 13.52 0.91 0.00 24.91 1.05 0.00 1.24
DCC-NL 11.94 13.41 0.89 0.00 25.01 1.06 0.00 0.21

Notes: This table shows the empirical results for the Markowitz Portfolios constructed based on the

Momentum Signal (11-MM), using different covariance matrix estimators and facing various degrees of

leverage constraints. The covariance matrix is estimated using the most recent 1250 daily returns based

on four different methods, which are the sample covariance matrix (S), the nonlinear shrinkage estimator

(NL) (Ledoit and Wolf, 2012, 2015), the DCC estimator (Engle, 2002), and the DCC-NL estimator (Engle

et al., 2017). γ = ∞, 2, 1.6, 1 stands for an increasing restriction with the proportion of short-sale not

exceeding ∞, 50%, 30%, 0, respectively. We hold the portfolios for 21 days and record their daily returns.

We report their out-of-sample annualized average return (AvR), annualized standard deviations (StdR),

and Sharpe ratios (SR). Four characteristics of portfolio weights, including the minimum weight (MinW),

the maximum weight (MaxW), the standard deviation of weights (StdW), and the total short positions

of weights (ShortW), and the average turnover (AvT) of portfolios are also reported. All numbers shown

are in percentage except those for Sharpe ratios. Panel A and Panel B show results for portfolios with

500 and 1000 stocks, respectively.
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Table 5: Out-of-sample Average Return, Standard Deviation, Sharpe Ratio, four Characteristics

of Portfolio Weights and Average Turnover of the Markowitz Portfolios constructed based on

an Alternative Momentum Signal (∆6-MM).

Σ̂ AvR StdR SR MinW MaxW StdW ShortW AvT

Panel A: 500 stocks contained in the portfolio

γ =∞

S 8.55 11.60 0.74 −6.33 10.25 1.76 262.57 6.31
NL 9.08 10.54 0.86 −2.93 4.91 1.04 149.60 2.49

DCC 12.01 11.81 1.02 −4.83 15.66 1.70 208.15 4.48
DCC-NL 11.82 10.70 1.10 −2.72 13.86 1.32 133.18 2.39

γ = 2

S 9.58 11.31 0.85 −3.71 10.24 1.08 50.00 3.28
NL 9.80 11.27 0.87 −3.13 6.17 0.87 50.00 1.12

DCC 11.53 11.34 1.02 −3.10 17.09 1.32 50.00 2.49
DCC-NL 11.82 11.07 1.07 −2.63 16.21 1.26 49.94 1.20

γ = 1.6

S 9.50 12.12 0.78 −3.46 11.14 1.07 30.00 3.10
NL 10.00 12.10 0.83 −3.27 7.11 0.87 30.00 1.13

DCC 11.37 11.86 0.96 −2.95 18.31 1.33 30.00 2.34
DCC-NL 11.56 11.70 0.99 −2.67 17.75 1.30 30.00 1.13

γ = 1

S 9.76 15.98 0.61 0.00 15.12 1.18 0.00 1.87
NL 10.03 16.00 0.63 0.00 11.23 1.01 0.00 0.28

DCC 11.59 15.12 0.77 0.00 21.19 1.41 0.00 1.07
DCC-NL 11.23 15.08 0.75 0.00 21.20 1.41 0.00 0.17

Panel B: 1000 stocks contained in the portfolio

γ =∞

S 10.28 14.73 0.70 −7.39 9.58 1.70 566.20 12.33
NL 9.48 9.51 1.00 −1.49 2.42 0.50 149.18 3.37

DCC 10.33 13.32 0.78 −5.84 19.13 1.55 424.24 9.11
DCC-NL 10.14 9.39 1.08 −1.56 14.79 0.79 124.47 3.18

γ = 2

S 10.19 10.12 1.01 −2.47 8.34 0.64 50.00 3.27
NL 9.64 10.15 0.95 −1.92 3.53 0.45 50.00 1.35

DCC 10.34 9.78 1.06 −2.03 20.47 0.93 50.00 2.65
DCC-NL 10.28 9.40 1.09 −1.57 18.23 0.85 49.94 1.41

γ = 1.6

S 10.56 10.96 0.96 −2.35 9.15 0.64 30.00 3.10
NL 10.42 11.04 0.94 −2.15 4.24 0.46 30.00 1.33

DCC 10.46 10.12 1.03 −1.89 21.94 0.96 30.00 2.49
DCC-NL 10.24 9.89 1.03 −1.64 20.51 0.91 30.00 1.25

γ = 1

S 11.60 14.92 0.78 0.00 12.71 0.73 0.00 1.87
NL 11.67 15.01 0.78 0.00 7.74 0.56 0.00 0.42

DCC 10.63 13.35 0.80 0.00 22.84 1.00 0.00 1.20
DCC-NL 10.55 13.28 0.79 0.00 22.71 1.00 0.00 0.20

Notes: This table shows the empirical results for the Markowitz Portfolios constructed based on an

alternative Momentum Signal (∆6-MM), using different covariance matrix estimators and facing various

degrees of leverage constraints. The covariance matrix is estimated using the most recent 1250 daily

returns based on four different methods, which are the sample covariance matrix (S), the nonlinear

shrinkage estimator (NL) (Ledoit and Wolf, 2012, 2015), the DCC estimator (Engle, 2002), and the

DCC-NL estimator (Engle et al., 2017). γ = ∞, 2, 1.6, 1 stands for an increasing restriction with the

proportion of short-sale not exceeding ∞, 50%, 30%, 0, respectively. We hold the portfolios for 21 days and

record their daily returns. We report their out-of-sample annualized average return (AvR), annualized

standard deviations (StdR), and Sharpe ratios (SR). Four characteristics of portfolio weights, including

the minimum weight (MinW), the maximum weight (MaxW), the standard deviation of weights (StdW),

and the total short positions of weights (ShortW), and the average turnover (AvT) of portfolios are also

reported. All numbers shown are in percentage except those for Sharpe ratios. Panel A and Panel B

show results for portfolios with 500 and 1000 stocks, respectively.
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Table 6: Out-of-sample Average Return, Standard Deviation, and Sharpe Ratio of the Markowitz

Portfolios constructed based on the Momentum Signal (11-MM) with Transaction Costs.

Spread = 3 basis-points Spread = 5 basis-points
Σ̂ AvR StdR SR AvR StdR SR

Panel A: 500 stocks contained in the portfolio

γ =∞

S 7.42 12.77 0.58 5.93 12.79 0.46
NL 7.78 11.82 0.66 5.68 11.87 0.48

DCC 9.08 12.47 0.73 6.49 12.54 0.52
DCC-NL 9.54 11.45 0.83 7.47 11.50 0.65

γ = 2

S 10.40 12.67 0.82 9.70 12.67 0.77
NL 10.40 12.63 0.82 9.44 12.64 0.75

DCC 10.96 12.27 0.89 9.67 12.28 0.79
DCC-NL 11.38 12.01 0.95 10.39 12.01 0.87

γ = 1.6

S 10.48 13.48 0.78 9.82 13.48 0.73
NL 10.27 13.49 0.76 9.35 13.49 0.69

DCC 10.96 12.82 0.86 9.74 12.83 0.76
DCC-NL 11.18 12.66 0.88 10.25 12.67 0.81

γ = 1
S 11.84 17.52 0.68 11.48 17.51 0.66

NL 12.15 17.53 0.69 11.73 17.52 0.67
DCC 11.23 16.11 0.70 10.61 16.10 0.66

DCC-NL 11.24 16.07 0.70 10.85 16.07 0.67

Panel B: 1000 stocks contained in the portfolio

γ =∞

S 4.68 15.44 0.30 1.62 15.53 0.10
NL 4.74 10.49 0.45 0.85 10.70 0.08

DCC 2.53 13.27 0.19 −2.71 13.57 −0.20
DCC-NL 5.02 9.72 0.52 1.21 9.94 0.12

γ = 2

S 10.19 10.98 0.93 9.49 10.99 0.86
NL 9.54 11.03 0.86 8.52 11.04 0.77

DCC 10.14 9.91 1.02 8.81 9.93 0.89
DCC-NL 9.96 9.63 1.03 8.93 9.64 0.93

γ = 1.6

S 10.75 11.82 0.91 10.10 11.82 0.86
NL 10.17 11.90 0.85 9.20 11.91 0.77

DCC 10.49 10.26 1.02 9.24 10.27 0.90
DCC-NL 10.30 10.08 1.02 9.35 10.08 0.93

γ = 1

S 12.54 16.12 0.78 12.18 16.11 0.76
NL 12.18 16.10 0.76 11.72 16.10 0.73

DCC 11.26 13.51 0.83 10.61 13.51 0.79
DCC-NL 11.33 13.40 0.85 10.92 13.40 0.81

Notes: This table shows the empirical results for the Markowitz Portfolios constructed based on the

Momentum Signal (11-MM), using different covariance matrix estimators and facing various degrees of

leverage constraints when transaction costs are considered. The covariance matrix is estimated using

the most recent 1250 daily returns based on four different methods, which are the sample covariance

matrix (S), the nonlinear shrinkage estimator (NL) (Ledoit and Wolf, 2012, 2015), the DCC estimator

(Engle, 2002), and the DCC-NL estimator (Engle et al., 2017). γ = ∞, 2, 1.6, 1 stands for an increasing

restriction with the proportion of short-sale not exceeding ∞, 50%, 30%, 0, respectively. We hold the

portfolios for 21 days and record their daily returns. We report their out-of-sample annualized average

return (AvR), annualized standard deviations (StdR), and Sharpe ratios (SR). AvR and StdR are shown

in percentage. Panel A and Panel B show results for portfolios with 500 and 1000 stocks, respectively.

The left and right panels show results under the assumptions of 3 basis-points and 5 basis-points bid-ask

spreads, respectively.
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Figure 1: Comparisons of the oracle theoretical optimal risks, the average actual risks, and the

average empirical risks of the 100 simulated GMV portfolios constructed based on different

covariance matrix estimators (S, L, NL, DCC, DCC-L, DCC-NL) and facing various degrees

of leverage constraints (the intensity of the constraint declines with the increase of parameter

γ). N = 500, and the disturbance terms of the simulated data are drawn from a multivariate

standard normal distribution.
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Figure 2: Comparisons of the oracle theoretical optimal risks, the average actual risks, and the

average empirical risks of the 100 simulated GMV portfolios constructed based on different

covariance matrix estimators (S, L, NL, DCC, DCC-L, DCC-NL) and facing various degrees

of leverage constraints (the intensity of the constraint declines with the increase of parameter

γ). N = 1000, and the disturbance terms of the simulated data are drawn from a multivariate

standard normal distribution.
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Figure 3: Comparisons of the oracle theoretical optimal risks, the average actual risks, and the

average empirical risks of the 100 simulated GMV portfolios constructed based on different

covariance matrix estimators (S, L, NL, DCC, DCC-L, DCC-NL) and facing various degrees

of leverage constraints (the intensity of the constraint declines with the increase of parameter

γ). N = 500, and the disturbance terms of the simulated data are drawn from a multivariate

t-distribution with 5 degrees of freedom.
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Figure 4: Comparisons of the oracle theoretical optimal risks, the average actual risks, and the

average empirical risks of the 100 simulated GMV portfolios constructed based on different

covariance matrix estimators (S, L, NL, DCC, DCC-L, DCC-NL) and facing various degrees

of leverage constraints (the intensity of the constraint declines with the increase of parameter

γ). N = 1000, and the disturbance terms of the simulated data are drawn from a multivariate

t-distribution with 5 degrees of freedom.
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Figure 5: Comparisons of the average actual risks of the 100 simulated GMV portfolios

constructed based on different covariance matrix estimators (S, L, NL, DCC, DCC-L, DCC-NL)

and facing various degrees of leverage constraints (the intensity of the constraint declines with

the increase of parameter γ). The disturbance terms of the simulated data are drawn from a

multivariate standard normal distribution.
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Figure 6: Comparisons of the average actual risks of the 100 simulated GMV portfolios

constructed based on different covariance matrix estimators (S, L, NL, DCC, DCC-L, DCC-NL)

and facing various degrees of leverage constraints (the intensity of the constraint declines with

the increase of parameter γ). The disturbance terms of the simulated data are drawn from a

multivariate t-distribution with 5 degrees of freedom.
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Figure 7: Comparisons of the out-of-sample risks of the GMV portfolios constructed based on

different covariance matrix estimators (S, NL, DCC, DCC-NL) and facing various degrees of

leverage constraints (the intensity of the constraint declines with the increase of parameter γ).
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