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Abstract 
We consider 2-factorizations of the complete tripartite graph K{n\ 3) where each 

2-factor consists of cycles with even length. An additional requirement is related to 
pairs of edges being consecutive in an arbitrary cycle. For all pairs of e dges we require 
that the three nodes incident to these two edges must be from different partite sets of 
the tripartite graph. We show that such a 2-factorizations cannot exist if n = 2 or n is 
odd. Furthermore, we show how to construct such a 2-factorization for all even n with 
n<£{2,26,34,58,74}. 

Keywords: Graph decomposition; complete tripartite graph; 2-factorization 

1 Introduction 

Decompositions of graphs have received a great deal of attention. In particular, this is true 
for edge-disjoint decompositions of complete multipartite graphs into cycles, see Lindner and 
Rodger [9] for a survey. 
There are several papers considering special cycle structures. Billington [1] studies decom­
positions of complete tripartite graphs into cycles of lengths 3 and 4 while Cavenagh and 
Billington [4] consider decompositions of complete multipartite graphs into cycles with even 
length. Cavenagh [3] shows that each complete tripartite graph G can be partitioned into 
cycles of length k if the number of edges of G is a multiple of k. More generally, Billington 
and Cavenagh [2] prove that the edges of each complete tripartite graph can be partitioned 
into cycles of arbitrary lengths. Hilton and Rodger [5], Laskar [6], Laskar and Auerbach [7], 
and Leach and Rodger [8] investigate decompositions of complete multipartite graphs into 
Hamilton cycles. 
In this paper we study special structures of 2-factorizations of the complete tripartite graph 
where all three partite sets have identical size. The graph having 3n nodes is denoted by 
K{n\ 3) in the following. The three subsets of nodes forming the partite sets of the tripartite 
graph are represented by Vo, Vi, and Vi. Recall that a 2-factor of a graph G = (V,E) is a 
subset E' of edges such that each node v e V is incident to exactly two edges e0,ei € E', 
eo ,4 ei. A 2-factorization of a graph is a partition of the edges into edge-disjoint 2-factors. 
Note that each 2-factor consists of a collection of node-disjoint cycles. 
We consider 2-factors meeting two additional requirements: 

(i) Each cycle contained in the 2-factor must have even length. 

(ii) In the 2-factor each node i e Vs, s € {0,1,2}, must be adjacent to exactly one node 
j e V(s_i) mod 3 and to exactly one node j' € V(s+i) mod 3-

A 2-factor fulfilling (i) and (ii) is referred to as circular even 2-factor (ce2f) below. Accordingly, 
a circular even 2-factorization (ce2F) of a graph G is defined as a decomposition of E into 
edge-disjoint ce2fs. 
In the following section we study for which numbers n € N a ce2F of K(n; 3) exists. We 
answer this question for all n with n 0 {26,34,58, 74}. 

2 Results 

lt is easy to see that no ce2F of K{n\ 3) exists if n is odd. Since then the number of nodes 
3n is odd, there must be at least one cycle having odd length in each 2-factor. Therefore, we 
restrict ourselves to n being even in the following. 
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2.1 Gase n = 4k with k £ N 

In this subsection we provide a construction scheme for a ce2F of the graph K(n\ 3) with 
n = 4k for all k 6 N. Note that the subgraph induced by two of the three partite sets 
is the complete bipartite graph Kn,n with 2n nodes. It is well-known that for this graph 

1-factorizations exist, e.g. the bipartite 1-factorization FWp = |i?06<p,..., F̂ f2 j with 

F/"p = {[m, n+ (m + l) mod n] j m = 0,..., n — 1} for Z = 0,..., n — 1. 

The basic idea of our construction scheme is to combine certain 1-factors of FWp between pairs 
of partite sets in each ce2f. First, we adress the question how to combine 1-factors of FWp in 
order to obtain a ce2f of K{n\ 3). For two different partite sets V3, V3> and Z G {0,..., n — 1} 
we denote by Fjlip(s,s') the 1-factor F^p between the partite sets V3 and V3>. 

Lemma 1. Three 1-factorsF%p(0,1), F*p( 1,2), andF%p(2,0) withl0,h,l2 G {0,...,n-l} 
form a ce2f of K(n; 3) ifl0 + h+l2 is odd. 

Proof. Obviously, F"p(0,1), F"p(l,2), and F^p(2,0) form together a 2-factor of K(n\ 3) 
since exactly two 1-factors are chosen for each group. Moreover, the 2-factor fulfills condition 
(ii), i.e. it is circular. Let us consider an arbitrary path from a node i G V3 to another node 
i' G V3 induced by F£P(0, 1), F^p(l,2), and F£P(2,0). Obviously, the length of this path is 
a multiple of 3. Now consider an arbitrary path having length 3. Note that there are exactly 
two such paths for each i G Vä and both connect i with another node i' G V3. Let i and i' 
be the Start and end node of such a path. Since n is even and IQ + h + l2 is odd, |z — i'\ is 
odd, as well. This implies that an even number of paths of length 3 must be concatenated to 
construct a circle and, hence, circles have even length. • 

In the following we will show that a ce2F of the graph K{n\ 3) with n = 4k for all k G N 
exists. According to Lemma 1 combining 1-factors F^P(Q, 1), F^p( 1,2), and F^p(2,0) with 
indices lo,li,l2 G {0,..., n — 1} yields a ce2f if 

• exactly one index is odd, and the other two are even, or 

• all three indices are odd. 

According to Lemma 1 the specific combination of 1-factors can be chosen arbitrarily. However, 
we focus on a specific arrangement in the following. 
At first we combine the odd 1-factors Ffdp for l — 4A -I-1 (A = 0,..., j — 1) with the two 
even 1-factors F^x and F,"p. AS an example Figure 1 illustrates the case l = 1 for the graph 
K(4; 3), where the 1-factors FQP(0,1), F^p(l, 2) and f^"p(2,0) are shown. Here, the node on 
top of the column representing a part has the smallest index. We apply each combination three 
times by rotating the specific 1-factors such that each 1-factor is applied to each pair of partite 
sets exactly once. This means that each combination is arranged in three ce2fs: F^ (0,1), 
F?p{ 1,2), F£p(2,0) in the first ce2f, F£P( 1,2), ifp(2,0), F£P(0,1) in the second ce2f, 
and F^[(2,0), Fj"p(0,1), F^p( 1,2) in the third ce2f. By arranging this configuration for all 
A = 0,..., | — 1 we arrange edges corresponding to ^ 1-factors between each pair of partite 
sets in ce2fs. Note that we cover FiWp for each even index l G {0,..., n — 1}. 
It remains to arrange edges according to F,Wp for all odd Z = 4(j, + 3 (n = 0,..., | — 1) in the 
j remaining ce2fs. This can be done by arranging F/"p between each pair of partite sets in 
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Figure 1: #*(0,1), #*(1,2), and #"(2,0) for K(4; 3) 

Vy. 

Figure 2: #"(0,1), #"(1,2), and #"(2,0) for K(4; 3) 

a Single ce2f, i.e. by choosing #"(0,1), #"( 1,2), and #"(2,0). Clearly, the prerequisite 
of Lemma 1 is fulfilled and, hence, we obtain a ce2f. As an example Figure 2 illustrates the 
case 1 = 3 for the graph .ff(4; 3), where the 1-factors #"(0,1), #"(1,2) and #"(2,0) are 
shown. The preceding construction implies 

Theorem 1. For the graph K(n; 3) with n = Ak a ce2F exists for all k G N . 

2.2 Case n 0 {26,34,58,74} 

In this subsection we provide a construction scheme for a ce2F of the graph K(n; 3) for all 
even n 0 {2,26, 34,58,74}. If n is a multiple of 4, the construction method from the previous 
subsection can be applied. By using an integer programming formulation it can be shown that 
for n = 2 no ce2F exists. On the other hand, using Cplex we found ce2Fs F6 and F10 for 
K(6;3) and K(10;3). These ce2Fs are given in the appendix. 
At first we will show that from ce2Fs for a graph K(l; 3) with l G N ce2Fs for the larger 
graphs K{kl\ 3) can be constructed for all k G N. 

Lemma 2. If a ce2F of K(l\ 3) for some integer l G N exists, then also a ce2F of K(kl, 3) 
for all k GN exists. 

Proof. The basic idea of this constructive proof is to Cluster nodes and to use the structure 
known for the graph induced by the Cluster. This technique has been applied in se veral works 
concerning decomposition of graphs, see e.g. Laskar [6] or Laskar and Auerbach [7]. 
Suppose we have a ce2F F of K(l\ 3) for some l G N. Then we construct a ce2F F' of 
K(kl; 3) for all k G N as follows: 
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1. In the graph K(kl] 3) partition the nodes of each partite set V3, s G {0,1,2}, into l 
subparts Va<m for m = 0,..., / — 1, having size k each. 

2. Consider K(l\ 3) as the complete tripartite graph induced by t he 31 subparts. Each 2-
factor in t he 2-factorization F of K(l; 3) is expanded to k 2-factors in the 2-factorization 
F' of K(kl-,3). Note that for each pairof subparts (belongingto different partite sets) all 
edges between the nodes in these subparts can be represented by the complete bipartite 
graph Kktk• We may employ Fbip to decompose them into k 1-factors. For this purpose 
we assign an arbitrary orientation to each circle from the 2-factors in F. Then, we 
combine the 1-factors F^p for A = 0,..., k - 1 between each pair of subparts being 
consecutive in a circle. 

It is easy to see that F' is a 2-factorization of K(kl; 3). Moreover, we have a circular structure 
due to the circular structure of F. It is obvious that circles of even length are constructed 
since each underlying circle in F is of even length q and circles in F' can only have lenghts 
being multiples of q. • 

Thus, according to Lemma 2, we can construct ce2Fs of K(6k\3) and f£T(10/c;3) for all Ä G N 
using the ce2Fs F6 and F10 as building blocks. 
In a similar way the following lemma provides a basis for a more powerful recursive construction. 

Lemma 3. Ifa ce2F of K(l\ 3) for some l G N exists, then also a ce2F of K(kl + 4m; 3) for 
each pair of integers k,m with 4m > kl > 3m exists. 

Proof. The basic idea of this constructive proof is to divide the nodes into two parts inducing 
subgraphs Gkl := K{kl\Z) and G4m := F(4m;3). Suppose we have a ce2F F of K(l\ 3) for 
some l G N . Then we construct a ce2F of K(kl + 4m; 3) using structural elements of F and 
known ce2Fs of G4m (cf. Subsection 2.1) as follows: 

1. According to Lemma 2 from F we can construct a ce2F F' of Gkl for all k G N. We 
arrange F' of Gkl as part of the first kl ce2fs of K(kl + 4m; 3). 

2. We complete the first kl ce2fs of K(kl+4m; 3) by ce2fs of G4m. These ce2fs of G4m are 
arranged by combining 1-factors according to FUp of K4m^m as in the construction in 
Section 2.1. More specifically, we choose all 2m even 1-factors F^x for A = 0,..., 2m—1 
and the kl — 2m odd 1-factors F^_kl+1+2X for A = 0,... ,kl — 2m — 1. Since kl > 3m, 
the number of used odd 1-factors is at least m and, therefore, at least half the number of 
used even 1-factors. Regarding Lemma 1, we can arrange 3m ce2fs of G4m by combining 
two even 1-factors with one odd 1-factor in each ce2f. Furthermore, we can arrange 
kl — 3m ce2fs of G4m using the remaining odd 1-factors (only a Single 1-factor in each 
ce2f, cf. Subsection 2.1). 

Up to now, we have kl complete ce2fs of K(kl + 4m; 3). It remains to arrange all edges of 
G4m according to F^p+1 and F4^_1_2A for all A = 0,..., 4m~kl -1 (these edges have been left 
out in Step 2) and all edges between Gkl and G4m in the remaining 4m ce2fs of K(kl+Am~, 3). 
In the following we represent node i by (s(i),i') where s(i) denotes the partite set of i and 
i' := i mod n is the index of i within its partite set. W.l.o.g. we assume that the nodes of 
G4m are numbered such that they satisfy 0 < i' < 4m — 1. 
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3. For A = 0,... ,4ra-l in the ce2f with index kl+X for q = 0,1,2 and i' = Am,..., kl+ 
4m — 1 we arrange edges 

[(q, i'), ((q + 1) mod 3, (i' — 4m + A) mod 4m)] and 

[(?, i'), ((? ~ 1) mod 3, (i' - 4m + A) mod 4m)]. 

In S tep 3 we exclusively arrange circles of length 6. In the ce2f with index p e {kl, ...,kl + 
4m — 1} of K(kl + Am-,3) the nodes (q, (p+i1) mod 4m) for q = 0,1,2 and i' = 0,... ,4m — 
kl — 1 are not involved yet. 

4. For yL = kl,, kl + Am — 1 in the ce2f with index p for q = 0,1,2 and i' = 0,..., 4m — 
kl — 1 we arrange edges 

[(q, (p + i') mod 4m), ((q + 1) mod 3, (p + 4m — kl — 1 — i') mod 4m)] and 

[(q, (p + i') mod 4m), ((q — 1) mod 3, (p + 4m — kl — 1 — i') mod 4m)]. 

In Step 4 we, again, exclusively arrange circles of length 6. Edges originating from Step 4 
form ce2fs corresponding to i^A+i and 1-2A for A = 0,..., *r-n~kl - 1. Summarizing, we 
obtain a ce2F of K(kl + 4m; 3). • 

In t he following we want to apply Lemma 3 with k = 1. Thus, we study which even numbers 
n G N can be written in the form n = l + 4m with l,m € N and 4m > l > 3m. We get 

(f' g) for n mod 8 = 0, n > 8, 

(1 v (^,4^) for n mod 8 = 2, n > 42, 

V'm) for n mod 8 = 4, n> 28, U 

(^, ̂ ) for n mod 8 = 6, n > 14. 

Thus, each even number n > 36 can be written in the form n — l + 4m with l,m G N and 
4m > l > 3m. 

n existence argument 
2 no IP 
6 yes IP 

10 yes IP 
14 yes Lemma 3 (k = 1, l = 6, m = 2) 
18 yes Lemma 2 (k = 3, l = 6) 
22 yes Lemma 3 (k = 1, l = 10, m = 3) 
26 ? — 
30 yes Lemma 2 (fc = 5, l = 6) 
34 ? — 

Table 1: Existence results for a ce2F of K(n\ 3) 

Theorem 2. For the graph K(n; 3) a ce2F exists for all even n & {2,26,34,58,74}. 
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l An m l +4 m argument 
26 {7.8} 7 54 Lemma 2 (k = 9,1 = 6) 

8 58 — 
34 {9,10,11} 9 70 Lemma 3 (k = 1, l = 30, m = 10) 

10 74 — 
11 78 Lemma 2 (k = 13, l = 6) 

58 {15,16,17,18,19} 15 118 Lemma 3 (k = 1,1 = 54, m = 16) 
16 122 Lemma 3 (k = 1,1 = 5A,m = 17) 
17 126 Lemma 3 (k = 1, l = 54, m = 18) 
18 130 Lemma 3 (k = 1, Z = 62, m = 17) 
19 134 Lemma 3 (k = 1, l = 62, m = 18) 

74 {19,20,21,22,23,24} 19 150 Lemma 3 (k = 1, l = 70, m = 20) 
20 154 Lemma 3 (k = 1,1 = 70, m = 21) 
21 158 Lemma 3 (k = 1, l = 70, m = 22) 
22 162 Lemma 3 (k = 1, l = 70, m = 23) 
23 166 Lemma 3 (k = 1, l = 78, m = 22) 
24 170 Lemma 3 (k = l,l = 78,m = 23) 

Table 2: Numbers l + 4m depending on l G {26,34, 58,74} 

Proof. Due to Theorem 1 we already know a ce2F of K(n-, 3) for all n which are a multiple of 
4. For all other even n < 36 in Table 1 we summarize the results whether a ce2F is known for 
the graph K(n; 3) or not. Only for n G {2,26,34} no ce2F is known. Note that for n = 26,34 
no numbers k, l, m exist which satisfy the conditions of Lemma 3. 
Due to (1) each even n > 36 can be represented as n = l + 4m with 4m > l > 3m. Thus, if 
a ce2F for the specific graph K(k, 3) is known, according to Lemma 3 also a ce2F of K(n\ 3) 
exists. 
This construction covers all values n which do not depend on a (direct or indirect) represen-
tation with 1 = 26 or l = 34. The first part of Table 2 lists all numbers which directly depend 
on l = 26 or l = 34. The second column gives the feasible domain Dm consisting of all values 
m G N with Am > l > 3m for the specific value of l. For each element of Dm the third 
column contains the value l + Am. If a nother argument not based on the specific value of l 
for the existence of a ce2F of K(l + 4m; 3) is known, it is stated in the fourth column. 
The only numbers which directly depend on l\ = 26 or l2 — 34 and for which no other 
argument is known are l\ + 4 • 8 = 58 and l2 + 4 • 10 = 74. These numbers are treated in 
the same way in the second part of Table 2. It can be seen that all numbers which directly 
depend on Z3 = 58 or (4 = 74 can be covered by other arguments. Thus, our construction 
only falls for all even n G {2,26,34,58,74}. While for n = 2 it is proven that no ce2F exists, 
the other four cases remain open. • 

We can conclude that a ce2F of the graph K(n-, 3) for all even n £ {2,26,34,58,74} does 
exist. For n = 2 or n odd no ce2F can exist. Cases n G {26,34,58,74} remain open so far. 
However, we strongly conjecture ce2Fs to exist for these cases. 
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A Ce2Fs of K(6; 3) and K(10; 3) 

In the following we represent the nodes i = 0,..., n-1 of the graph Ä"(§; 3) by pairs (s(i), i') 
where i' = i mod f. In the following a ce2F F6 = {Ff | 0 < / < 5} of K(6\ 3) and a ce2F 
F10 = {Ff0 | 0 < / < 9} of Ä"(10;3) are shown. Each ce2f is given as collection of circles. 

*o = {[(0,0), (1,3), (2,0), (0,3), (1,0), (2,3)], 

[(0,1), (2,4), (1,1), (0,4), (2,!),(!, 4)], 
[(0,2), (1,5), (2,2), (0,5), (1,2), (2,5)]} 

ff = {[(0,0), (1,1), (2,2), (0,3), (1,4), (2,5)], 
[(0,1), (1,2), (2,3), (0,4), (1,5), (2,0)], 
[(0,2), (1,3), (2,4), (0,5), (1,0), (2,1)]} 

fg = {[(0,0), (2,2), (1,4), (0,2), (2,0), (1,2), 
(0,3), (2,!),(!,!), (0,5), (2,3), (1,3), 
(0,4),(2,4),(1,5),(0,1),(2,5),(1,0)],} 

fa = {[(0,0), (1,4), (2,0), (0,4), (1,2), (2,1)], 
[(0,1), (2,2), (1,3), (0,5), (2,5), (1,5), 
(0,3), (2,3), (1,1), (0,2), (2,4), (1,0)]} 

*4 = {[(0,0), (2,0), (1,1), (0,3), (2,4), (1,2), 
(0,2), (2,2), (1,0), (0,4), (2,5), (1,3), 
(0,1),(2,3),(1,4),(0,5),(2,!),(!,5)]} 

Fi = {[(0,0), (1,2), (2,2), (0,4), (1,4), (2,4)], 
[(0,1), (1,1), (2,5), (0,3), (1,3), (2,1)], 
[(0,2), (2,3), (1,5), (0,5), (2,0), (1,0)]} 

8 



{[(o, o), (1,7), (2,3), (0,4), (1,3), (2,1), (0,9), (1,9), (2,4), (0,3), (1,8), (2,0)], 
[(0,1), (1,6), (2,7), (0,7), (1,0), (2,8), (0,5), (1,4), (2,6), (0,8), (1,5), (2,2), 
(0,2), (1,2), (2,9), (0,6), (1,1), (2,5)]} 
{[(0,0), (1,3), (2,0), (0,6), (1,5), (2,5), (0,4), (1,2), (2,4), (0,8), 

(1,0), (2,6), (0,7), (1,7), (2,9), (0,5), (1,9), (2,3), (0,1), (1,4), 
(2.7), (0,3), (1,1), (2,1), (0,2), (1,8), (2,2), (0,9), (1,6), (2,8)]} 
{[(0,0), (1,8), (2,7), (0,9), (1,1), (2,3)], [(0,3), (1,2), (2,1), (0,6), (1,7), (2,5)], 
[(0,!),(!, 3), (2,8), (0,2), (1,5), (2,9), (0,7), (1,4), (2,0), (0,8), (1,9), (2,6)], 
[(0,4), (1,0), (2,4), (0,5), (1,6), (2,2)]} 

{[(0,0), (1,6), (2,9), (0,2), (1,0), (2,0), (0,5), (1,2), (2,7), (0,4), 
(1,9), (2,1), (0,3), (1,3), (2,5), (0,7), (1,1), (2,2), (0,6), (1,4), 
(2,4), (0,!),(!, 7), (2,8), (0,9), (1,5), (2,3), (0,8), (1,8), (2,6)]} 
{[(0,0), (1,0), (2,7), (0,1), (1,9), (2,5), (0,6), (1,8), (2,1), (0,8), 
(1,6), (2,3), (0,5), (1,5), (2,8), (0,4), (1,1), (2,4), (0,2), (1,7), 
(2.0), (0,7), (1,3), (2,2)], [(0,3), (1,4), (2,9), (0,9), (1,2), (2,6)]} 
{[(0,0), (1,2), (2,2), (0,3), (1,5), (2,0), (0,9), (1,4), (2,8), (0,1), 
(1.8), (2,4), (0,6), (1,3), (2,6), (0,4), (1,6), (2,5)], 
[(0,2), (1,1), (2,7), (0,5), (1,0), (2,3), (0,2), (1,1), (2,7), (0,5), (1,0), (2,3)]} 
{[(0,0), (1,1), (2,8), (0,3), (1,0), (2,9), (0,1), (1,5), (2,7), (0,6), 
(1.9), (2,2), (0,8), (1,2), (2,0), (0,4), (1,7), (2,6), (0,2), (1,4), 
(2.1), (0,5), (1,8), (2,5), (0,9), (1,3), (2,3), (0,7), (1,6), (2,4)]} 
{[(0,0), (1,5), (2,1), (0,1), (1,0), (2,5), (0,5), (1,7), (2,4), (0,4), 
(1,4), (2,2), (0,7), (1,2), (2,8), (0,8), (1,1), (2,6), (0,9), (1,8), 
(2,3), (0,6), (1,6), (2,0), (0,2), (1,3), (2,9), (0,3), (1,9), (2,7)]} 
{[(0,0), (1,4), (2,5), (0,8), (1,3), (2,4), (0,9), (1,7), (2,7), (0,2), 
(1,9), (2,0), (0,1), (1,2), (2,3), (0,3), (1,6), (2,1), (0,4), (1,8), 
(2,8), (0,7), (1,5), (2,6), (0,6), (1,0), (2,2), (0,5), (1,1), (2,9)]} 
{[(0,0), (1,9), (2,8), (0,6), (1,2), (2,5), (0,2), (1,6), (2,6), (0,5), 
(1,3), (2,7), (0,8), (1,4), (2,3), (0,9), (1,0), (2,1)], 
[(0,1), (1,1), (2,0), (0,3), (1,7), (2,2)], [(0,4), (1,5), (2,4), (0,7), (1,8), (2,9)]} 
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