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Abstract

We propose a framework to identify and estimate earnings distributions and worker 
composition on matched panel data, allowing for two-sided worker-firm unobserved het-

erogeneity. We introduce two models: a static model that allows for nonlinear interactions 
between workers and firms, and a dynamic model that allows in addition for Markovian 
earnings dynamics and endogenous mobility. We establish identification in short panels, 
and develop tractable two-step estimators where firms are classified into heterogeneous 
classes in a first step. Applying our method to Swedish administrative data, we find that 
log-earnings are approximately additive in worker and firm heterogeneity, with a strong 
association between workers and firms, and a small relative contribution of firm hetero-

geneity to earnings dispersion. In addition, we document that wages have a direct effect 
on mobility, and that, beyond their dependence on the current firm, earnings after a job 
move also depend on the past firm.
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1 Introduction

Identifying the contributions of worker and firm heterogeneity to earnings dispersion is an

important step towards answering a number of economic questions, such as the nature of sorting

patterns between heterogeneous workers and firms or the sources of earnings inequality.

Two influential literatures have approached these questions from different angles. The

method of Abowd, Kramarz, and Margolis (1999) (AKM hereafter) relies on two-way fixed-

effect regressions to account for unobservable worker and firm effects, and allows quantifying

their respective contributions to earnings dispersion and correlations between worker and firm

heterogeneity. The AKM method is widely used in labor economics and outside.1 A second

literature tackles similar issues from a structural perspective, by developing and estimating

fully specified theoretical models of sorting on the labor market.2

Reconciling these reduced-form and structural literatures has proven difficult. While the

AKM method provides a tractable way to deal with two-sided unobserved heterogeneity, the

AKM model relies on substantive, possibly restrictive assumptions. The absence of interactions

between worker and firm attributes restricts complementarity patterns in earnings. However,

since Gary Becker’s work, numerous theories have emphasized the link between complementarity

and sorting (Shimer and Smith, 2000, Eeckhout and Kircher, 2011). In addition, the AKM

model is static, in the sense that worker mobility does not depend on earnings realizations

conditional on worker and firm heterogeneity, and that earnings after a job move do not depend

on the previous firm’s attributes. These assumptions may conflict with implications of dynamic

economic models.3

On the other hand, attempts at structurally estimating dynamic models of sorting have

faced computational and empirical challenges. The dimensions involved are daunting: how to

estimate a model of workers’ mobility and earnings with hundreds of thousands of workers and

dozens of thousands of firms in the presence of both firm and worker unobserved heterogeneity?

1Applications of the method to earnings data include Gruetter and Lalive (2009), Mendes et al. (2010),

Woodcock (2008), Card et al. (2013), Goldschmidt and Schmieder (2015), Song et al. (2015), and Sorkin (2016),

among others. The AKM estimator has been used in a variety of other fields, for example to link banks to firms

or teachers to schools or students, or to document differences across areas in patients’ health care utilization

(e.g., Kramarz et al., 2015, Jackson, 2013, Finkelstein et al., 2016).
2Many structural models proposed in the literature build on Becker (1973). Examples are De Melo (2009),

Lise et al. (2008), Bagger et al. (2014), Hagedorn et al. (2014), Lamadon et al. (2013), and Bagger and Lentz

(2014).
3For example, they may not be consistent with wage posting models with match-specific heterogeneity, or

with sequential auctions mechanisms as in Postel-Vinay and Robin (2002), as we discuss below.
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And how informative are functional form assumptions in these often tightly parameterized

models?

In this paper we introduce an empirical framework with two-sided unobserved heterogeneity

that nests a range of theoretical mechanisms emphasized in the literature. While allowing for

rich patterns of complementarities, sorting, and dynamics, the framework preserves parsimony

using a dimension reduction technique to model firm heterogeneity. We propose two models,

static and dynamic, which allow for interaction effects between worker and firm heterogeneity.

In the dynamic model we let job mobility depend on earnings realizations in addition to worker

and firm attributes, and we allow earnings after a job move to depend on attributes of the

previous firm beyond those of the current one. Dynamic persistence is specified as first-order

Markov.

We provide conditions for identification under discrete worker heterogeneity. The primary

source of identification is given by job movers. For the static model we rely on two periods,

while we use four periods to identify the dynamic model. The ability of our method to deal with

short panels is important, since assuming time-invariant heterogeneity over long periods may be

unattractive. In addition, although we focus on workers and firms in this paper, our framework

could be useful in other applications using matched data, such as teacher-student sorting, where

long panels may not be available. Our results emphasize that, in order to identify models with

complementarities, there must be variation in the latent types of job movers between different

firms. In particular, worker-firm interaction effects would not be identified if workers’ allocation

to firms was fully random.

We define the relevant level of firm unobserved heterogeneity as the class of a firm. In

principle, these classes could be the firms themselves. However, in typical matched employer

employee data sets the number of job movers per firm tends to be small, which creates an

incidental parameter bias of a similar nature as in fixed-length panel data.4 In such environ-

ments, reducing the number of classes can alleviate small-sample biases. We use a k-means

clustering estimator to classify firms based on how similar their earnings distributions are. The

classification may also be based on mobility patterns or longitudinal earnings information, and

it can be modified to incorporate firm characteristics such as value added. We establish the

asymptotic consistency of the classification under discrete firm heterogeneity by providing con-

ditions under which the main theorems in Bonhomme and Manresa (2015) hold. Under these

conditions, estimation error in classification does not affect inference on parameters estimated

4See Abowd et al. (2004) and Andrews et al. (2008, 2012) for illustrations of incidental parameter bias in

fixed-effects regressions.
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in a second step. This provides a formal justification for clustering in our models.5

We use a two-step approach for estimation. In the classification step we group firms into

classes using k-means clustering, and in the estimation step we estimate the model by allowing

for firm class heterogeneity. We model worker types as discrete and allow for unrestricted

interactions between worker and firm heterogeneity. We use maximum likelihood for estimation.

We verify in simulations that our estimator performs well in data sets similar to the one of our

application. In addition, we also confirm the ability of our estimator to recover wage functions in

data sets generated according to the theoretical model of Shimer and Smith (2000), extended to

allow for on-the-job search, under both positive and negative assortative matching. Finally, we

show that, when the model is specified as a static or dynamic extension of the AKM regression

model that allows for interaction effects between firms and workers, parameters can be estimated

using simple linear instrumental variables and covariance-based estimators conditional on the

firm classes. We analyze such regression-based estimators, and use them to show the robustness

of our main results.

We take our approach to Swedish matched employer employee panel data on the 2002-2004

period. The estimates of our static model imply that an additive model of log-earnings provides

a good first-order approximation to the variance structure of log-earnings. However, in both the

static and dynamic models we find the presence of stronger complementarities between firms and

lower-type workers than with workers of higher types. We show that those are quantitatively

relevant in a reallocation exercise where we shut down the association between firm and worker

heterogeneity and assess the distributional impacts of the reallocation.

We find that firm heterogeneity (net of the effect of worker composition) accounts for less

than 5% of the variance of log-earnings, most of the variance being explained by worker hetero-

geneity. In addition, we find a substantial remaining contribution due to the strong association

between worker and firm heterogeneity, with a correlation ranging between 40% and 50%. Our

estimates on Swedish data suggest a stronger association between worker and firm heterogene-

ity, and a smaller role for firm heterogeneity, compared to many empirical estimates in the

literature. We estimate a battery of additional specifications that show the robustness of our

estimates and highlight the ability of our method to deal with the low mobility rates in the

5Similarly as in most of the literature on discrete estimation, this result is derived under the assumption that

the population of firms consists of a finite number of classes. In Bonhomme et al. (2017) we consider a more

general setting where the discrete modeling is viewed as an approximation to an underlying, possibly continuous,

distribution of firm unobserved heterogeneity, and we provide consistency results and rates of convergence. In

this alternative asymptotic framework, estimation error in the classification generally affects post-classification

inference. These results provide further justification for the use of clustering methods.
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data and the resulting biases.

While they are in line with the cross-sectional variance decomposition implied by our static

model, the estimates of our dynamic model on the 2001-2005 period shed light on several

mechanisms that have been emphasized in the structural literature. In particular, we find that

low earnings realizations, conditional on worker and firm heterogeneity, tend to increase the

propensity to change job, hence challenging the strict exogeneity assumption often made in

the literature. We also find evidence of an effect of the past firm’s class on current earnings,

conditional on the current firm’s class.

Literature and outline. The methods we propose contribute to a large literature on the

identification and estimation of models with latent heterogeneity. Discrete fixed-effects ap-

proaches have recently been proposed in single-agent panel data analysis (Hahn and Moon,

2010, Lin and Ng, 2012, Bonhomme and Manresa, 2015). The k-means clustering algorithm

we use to classify firms is widely used in a number of fields, and efficient computational rou-

tines are available (Steinley, 2006). Here we apply such an approach to models with two-sided

heterogeneity.

Nonparametric identification and estimation of finite mixtures, which we use to specify

worker heterogeneity, have been extensively studied, see for example Hall and Zhou (2003), Hu

(2008), Henry et al. (2014), Levine et al. (2011), or Bonhomme et al. (2014). Our framework

can also accommodate continuous worker heterogeneity. Identification of continuous mixture

models is the subject of important work by Hu and Schennach (2008) and Hu and Shum

(2012). Our conditional mixture approach is also related to mixed membership models, which

have become popular in machine learning and statistics (Blei et al., 2003, Airoldi et al., 2008).

Compared to this previous work, we rely on a hybrid “one-sided random-effects” approach

that models the firm classes as discrete fixed-effects and the worker types as (discrete or contin-

uous) random-effects. This approach is motivated by the structure of typical matched employer

employee data sets. With sufficiently many workers per firm, firm class membership will be

accurately estimated. In contrast, the number of observations for a given worker is typically

small. This approach can alleviate the incidental parameter bias of fixed-effects estimators,

particularly in short panels. It also offers a tractable way of allowing for complementarities and

dynamics.

Lastly, two recent innovative contributions rely on estimation methods for models with

latent heterogeneity to study questions related to worker-firm sorting on the labor market.

Abowd et al. (2015) propose a Bayesian approach where both firm and worker heterogeneity
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are discrete. Their setup allows for latent match effects to drive job mobility, in a way that

is related to, but different from, our dynamic model. Unlike this paper they do not study

identification formally, and they rely on a two-sided random-effects approach for estimation.

Hagedorn et al. (2014) propose to recover worker types by ranking workers by their earnings

within firms, and aggregating those partial rankings across firms. Their method relies on long

panels, and exploits the implications of a structural model to identify firm heterogeneity.6 In

contrast, while our framework nests a number of theoretical models of wages and mobility it

is not tied to a specific structural model. In addition, we provide conditions for identification

and consistency in short panels. Bonhomme (2017) reviews existing econometric methods for

bipartite network data.

The outline of the paper is as follows. In Section 2 we present the framework. In Sections

3 and 4 we study identification and estimation. In Sections 5 and 6 we show empirical results

based on the static and dynamic models. Lastly, we conclude in Section 7. A supplementary

appendix with additional results can be found on the authors’ web pages.

2 Framework of analysis

We consider an economy composed of N workers and J firms. We denote as jit the identifier

of the firm where worker i is employed at time t. Job mobility between a firm at t and another

firm at t+ 1 is denoted as mit = 1.

Heterogeneity across firms is characterized by their class. We denote as kit in {1, ..., K}
the class of firm jit. Classes form a partition of the set of firms into K classes, and kit is a

shorthand for k(jit).
7 There may be as many classes as firms, in which case K = J and kit = jit.

Alternatively, firm classes could be defined in terms of observables such as industry or size. In

Section 4 we describe a method to consistently estimate the latent classes kit from the data,

under the assumption that population heterogeneity has a finite number of points of support.

Workers are also heterogeneous, and we denote the type of worker i as αi. These types can

be discrete or continuous, depending on the model specification. In addition to their unobserved

types, workers may also differ in terms of their observable characteristics Xit.
8

Lastly, worker i receives log-earnings Yit at time t. The observed data for worker i is thus

a sequence of earnings (Yi1, ..., YiT ), firm and mobility indicators (ji1,mi1, ..., ji,T−1,mi,T−1, jiT ),

6Also related is Bartolucci et al. (2015), who rank firms according to their profits, and find evidence of

positive sorting using Italian data.
7In other words, k : {1, ..., J} 7→ {1, ...,K} maps firm j to firm class k(j).
8Here we abstract from firm-level observable characteristics. We return to this issue in Section 4.
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and covariates (Xi1, ..., XiT ). We consider a balanced panel setup for simplicity, and we focus

on workers receiving positive earnings in each period.9

In this framework we will be interested in recovering the conditional distribution of log-

earnings for a worker of type α in a firm of class k, and the proportion of type-α workers in

a class-k firm. Conditional earnings distributions will be informative about the form of the

earnings function, in particular complementarities, while type proportions will be informative

about sorting patterns. In addition, within our framework we will be able to document dynamic

aspects.

We consider two different models: a static model where current earnings do not affect job

mobility or future earnings conditional on worker type and firm class, and a dynamic model

that allows for these possibilities. We now describe these two models in turn. Next we discuss

how our assumptions map to theoretical sorting models proposed in the literature. Throughout

we denote Zt
i = (Zi1, ..., Zit) the history of random variable Zit up to period t.

2.1 Static model

There are two main assumptions in the static model. First, job mobility may depend on the

type of the worker and the classes of the firms, but not directly on earnings. As a result, the

firm and mobility indicators, and firm classes, are all strictly exogenous in the panel data sense.

In addition, covariates are also strictly exogenous. Second, log-earnings after a job move are

not allowed to depend on previous firm classes or previous earnings, conditional on the worker

type and the new firm’s class.

Before stating the assumptions formally let us describe the model’s timing. In period 1 the

type of a worker i, αi, is drawn from a distribution that depends on the class ki1 of the firm

where she is employed and her characteristics Xi1. The worker draws log-earnings Yi1 from a

distribution that depends on αi, ki1, and Xi1.

At the end of every period t ≥ 1, the worker moves to another firm (that is, mit = 1 or 0)

with a probability that may depend on her type αi, her characteristics X t
i , the fact that she

moved in previous periods mt−1
i , and current and past firm classes kti . This probability, like all

other probability distributions in the model, may depend on t unrestrictedly. Moreover, the

probability that the class of the firm she moves to is ki,t+1 = k′ may also depend on αi, X
t
i ,

mt−1
i , and kti (while also varying with k′). Lastly, covariates Xi,t+1 are drawn from a distribution

depending on αi, X
t
i , m

t
i, and kt+1

i .

9Incorporating an extensive employment margin within our framework could be done by adding a “non-

employment” firm class kit = 0.
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If the worker changes firm (that is, when mit = 1), log-earnings Yi,t+1 in period t + 1 are

drawn from a distribution that depends on αi, Xi,t+1, and ki,t+1. If instead the worker remains

in the same firm between t and t + 1 (that is, mit = 0), Yi,t+1 are drawn from an unrestricted

distribution that may depend on Y t
i , αi, X

t+1
i , and kt+1

i .

Formally the two main assumptions are thus as follows.

Assumption 1. (static model)

(i) (mobility determinants) mit, ki,t+1 and Xi,t+1 are independent of Y t
i conditional on αi,

kti, m
t−1
i , and X t

i .

(ii) (serial independence) Yi,t+1 is independent of Y t
i , kti, m

t−1
i and X t

i conditional on αi,

ki,t+1, Xi,t+1, and mit = 1.

A simple example of the static model is the following log-earnings regression:

Yit = at(kit) + bt(kit)αi +X ′itct + εit, (1)

where E
(
εit |αi, kTi ,mT

i , X
T
i

)
= 0. This model simplifies to the one of Abowd et al. (1999) in

the absence of interaction effects, i.e. when bt(k) = 1, and firms jit and classes kit coincide.10

2.2 Dynamic model

There are two main differences between the dynamic and static models. First, at the end of

period t the worker moves to another firm with a probability that depends on her current log-

earnings Yit in addition to her type αi, Xit, and kit, and likewise the probability to move to a

firm of class ki,t+1 = k′ also depends on Yit. Second, log-earnings Yi,t+1 in period t+1 are drawn

from a distribution depending on the previous log-earnings Yit and the previous firm class kit,

in addition to αi, Xi,t+1, and ki,t+1. Job movers and job stayers draw their log-earnings from

different distributions conditional on these variables. As we discuss in the next subsection,

allowing for these features is important in order to nest a number of structural models of wage

and employment dynamics that have been proposed in the literature. Formally we make the

following assumptions.

Assumption 2. (dynamic model)

(i) (mobility determinants) mit, ki,t+1 and Xi,t+1 are independent of Y t−1
i , kt−1i , mt−1

i and

X t−1
i conditional on Yit, αi, kit, and Xit.

10While both parts in Assumption 1 are needed to identify the full model, restrictions on the dependence

structure of earnings are not needed to identify parameters such as at(k), bt(k) and ct in (1), as we will see

below.
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(ii) (serial dependence) Yi,t+1 is independent of Y t−1
i , kt−1i , mt−1

i and X t
i conditional on Yit,

αi, ki,t+1, kit, Xi,t+1, and mit.

Assumption 2 consists of two first-order Markov conditions. In part (i), log-earnings Yit are

allowed to affect the probability to change job directly between t and t + 1, but the previous

earnings Yi,t−1 do not have a direct effect.11 Similarly, in part (ii) log-earnings Yi,t+1 may

depend on the first lag of log-earnings Yit, and on the current and lagged firm classes ki,t+1 and

kit, but not on the further past such as Yi,t−1 and ki,t−1. Also note that, unlike in the static

model, Assumption 2 (ii) restricts the evolution of log-earnings within as well as between jobs.

As a simple dynamic extension of (1) one may consider the following specification for the

earnings of job movers between t− 1 and t (i.e., mi,t−1 = 1):

Yit = ρtYi,t−1 + a1t(kit) + a2t(ki,t−1) + bt(kit)αi +X ′itct + vit, (2)

where E
(
vit |αi, kti ,mt−1

i , Y t−1
i , X t

i

)
= 0. Here log-earnings after a job move may depend on

earnings and firm class in the previous job.

2.3 Links with theoretical models

In this subsection we study whether our assumptions are compatible with various theoretical

models of the labor market. We consider models that abstract from hours of work, so we refer

to earnings and wages indistinctively.

Models where the relevant state space is (α, kt). We first consider models where wages

are a function, possibly non-linear or non-monotonic, of the worker type α, the firm class kt,

and a time-varying effect, say εt, where εt does not affect mobility decisions. This structure

is compatible for instance with wage posting models (as in Burdett and Mortensen, 1998,

Delacroix and Shi, 2006, or Shimer, 2005), where the wage paid to a worker does not have any

history dependence and εt is classical measurement error or an i.i.d. match effect realized after

mobility. This means that, while allowing for rich mobility and earnings patterns, such models

are compatible with the assumptions of our static model, see Assumption 1.

Similarly, Assumption 1 is compatible with models where the wage is set as the outcome of

a bargaining process between the firm and the worker under certain conditions on the worker’s

11Assumption 2 (i) allows Xi,t+1 to be drawn from a distribution that depends on Yit as well as αi, Xit,

mit, and ki,t+1. Our identification arguments apply to this case, and estimation could allow for predetermined

individual characteristics, such as job tenure.
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outside option. For example, this is the case in Shimer and Smith (2000), where the outside

option is unemployment since workers always go through unemployment before finding a new

job; see also Hagedorn et al. (2014). In such sorting models, specifying the wage function in

a way that allows for interactions between worker types and firm classes is key, since earnings

may be non-monotonic in firm productivity and different workers rank identical firms differently.

Our static model can accommodate both features.

Models with Markovian match effects and state dependence. In dynamic models

workers often move based on the realization of the match effect εt, which is allowed to be

serially correlated. This is compatible with the assumptions of our dynamic model provided εt

is first-order Markov, see Assumption 2. For example, in a wage posting model with match-

specific heterogeneity workers may observe potential wages before deciding whether or not to

move. While incompatible with Assumption 1, this is perfectly consistent with the dynamic

model’s assumptions provided mobility, the new firm’s class, and the new wage are jointly

first-order Markov.

To see this formally, consider an agent in period t with firm class kt and wage Yt. She

draws an offer, (Y ∗t+1, k
∗
t+1), jointly with a potential wage Ỹt+1 she would get should she decide

not to move, all of which may depend on the current wage Yt, firm class kt, and type α. The

decision to move is based on all this information. The realized firm class is then either kt+1 = kt

with associated wage Ỹt+1, or kt+1 = k∗t+1 with wage Y ∗t+1, depending on the outcome of the

mobility decision. Assumption 2 is satisfied in this model, since the effective conditioning set

is (α, Yt, kt).

Our dynamic model encompasses other mechanisms, such as endogenous search intensity

along the lines of Bagger and Lentz (2014), where the previous wage may affect offers through

an endogenous search decision. It also encompasses sequential contracting as in Postel-Vinay

and Robin (2002), where the Bertrand competition is captured by the fact that the outside

offer Y ∗t+1 and the firm’s wage counteroffer Ỹt+1 may depend on each other, and (α, Yt, kt) are

sufficient statistics for the history.12

In the setting of Assumption 2 the wage conditional on moving depends on the past wage

and the past firm. Our dynamic model allows for these selection effects.13 However, recovering

underlying primitives such as distributions of wage offers Y ∗t+1 would require making additional

12Related examples are contract posting models (as in Burdett and Coles, 2003, or Shi, 2008), where the

optimal contract is a tenure contract.
13Alternatively, εt may be thought of as a first-order Markov, one-dimensional human capital accumulation

process.
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assumptions. In the absence of those, our framework allows one to identify the distributions of

realized wages for job movers and stayers, as a function of worker and firm heterogeneity.

Time effects. Our static and dynamic models allow distributions to depend unrestrictedly

on calendar time. Lise and Robin (2013) develop a model of sorting in a labor market with

sequential contracting and aggregate shocks. Present values and earnings are functions of worker

and firm heterogeneity, as well as of an aggregate state and the current bargaining position.

Assumption 2 of our dynamic model is satisfied in this setting.

Outside our framework. However, non-Markovian earnings structures will violate the as-

sumptions of our dynamic model. This will happen if the structural model allows for permanent-

transitory earnings dynamics conditional on worker types, as in Hall and Mishkin (1982) for

example. This will also happen in models that combine a sequential contracting mechanism (à

la Postel-Vinay and Robin, 2002) with a match-specific effect. In this case agents need to keep

track of both the match effect and the bargaining position, so the one-to-one mapping between

earnings and the value to the worker no longer holds, making mobility decisions potentially

dependent on the whole history of wages. Such environments are not nested in a framework

such as ours, which only allows for uni-dimensional time-varying effects εt.

3 Identification

In this section we provide conditions for identification of earnings distributions for all worker

types and firm classes, and worker type distributions for all firm classes, given two periods

in the static model and four periods in the dynamic model. The analysis is conditional on a

partition of firms into classes. In the next section we will show how to consistently estimate

class membership k(j), for each firm j.

3.1 Intuition in an interactive regression model

We first provide an intuition for identification of complementarities in a stationary specification

of the interactive regression model of equation (1) with T = 2 periods, where we abstract from

covariates. Consider job movers between two firms of classes k and k′ 6= k, respectively, between

period 1 and 2. Here we study identification in a population where there is a continuum of
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workers moving from k to k′.14 Log-earnings in each period are given by:

Yi1 = a(k) + b(k)αi + εi1, Yi2 = a(k′) + b(k′)αi + εi2. (3)

where E(εit |αi, ki1 = k, ki2 = k′,mi1 = 1) = 0. In this sample of job movers, the ratio b(k′)/b(k)

is not identified without further assumptions.15

Consider now job movers from a firm in class k′ to a firm in class k. Their log-earnings are

given by:

Yi1 = a(k′) + b(k′)αi + εi1, Yi2 = a(k) + b(k)αi + εi2.

By comparing differences in log-earnings in each class between these two subpopulations of job

movers, we obtain:
b(k′)

b(k)
=

Ekk′(Yi2)− Ek′k(Yi1)
Ekk′(Yi1)− Ek′k(Yi2)

, (4)

provided that the following holds:

Ekk′(αi) 6= Ek′k(αi), (5)

where we have denoted Ekk′(Zi) = E(Zi | ki1 = k, ki2 = k′,mi1 = 1). This shows that, if (5)

holds, then b(k′)/b(k) is identified from mean restrictions on job movers between k and k′.

Conversely, if (5) does not hold then b(k′)/b(k) is not identified based on those restrictions.

Note that (5) requires the types of workers moving from k to k′ and from k′ to k to differ. If

b(k′) + b(k) 6= 0, (5) is equivalent to:

Ekk′ (Yi1 + Yi2) 6= Ek′k (Yi1 + Yi2) , (6)

so it can be empirically tested (under the maintained hypothesis of exogenous mobility).

An implication is that, when (5) does not hold, additivity of log-earnings in worker and

firm attributes (that is, the b(k)’s being equal in all firms) is not testable based on mean

restrictions. Graphical illustrations of mean log-earnings before and after a job move event,

as introduced in Card et al. (2013), are a popular way of providing suggestive evidence for

additivity. Our analysis implies that documenting symmetric wage gains and losses is not

14This intuitively means that this analysis will be relevant for data sets with a sufficient number of workers

moving between firm classes. Our grouping of firms into classes is motivated by the incidental parameter bias

due to low mobility. We will return to this issue in the estimation section.
15Model (3) is formally equivalent to a measurement error model where αi is the error-free regressor and Yi2

is the error-ridden regressor. It is well-known that identification fails in general. For example, b(k′)/b(k) is not

identified when εi1, εi2, and αi are independent Gaussian random variables (Reiersøl, 1950).
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sufficient to demonstrate that wage functions are additive. As an example, in the theoretical

model of Shimer and Smith (2000) wage gains and losses are symmetric around a job move, yet

the wage function can feature any degree of complementarity between worker types and firm

classes. In Figure E3 in Appendix E we illustrate this point by simulating the Shimer Smith

model under positive assortative matching, and showing the corresponding event study graph

around job mobility.

A main goal of this paper is to establish that, by fully exploiting earnings information

before and after a job move, complementarities can be identified and consistently estimated

under suitable rank conditions such as (5). In fact, such conditions will be satisfied in an

extension of the model of Shimer and Smith (2000) with on-the-job search. In Appendix C

we evaluate the performance of our estimator to recover the contributions of worker and firm

heterogeneity to earnings dispersion, when the data generating process follows this theoretical

model. We show that our estimator recovers the wage functions and contributions of firms and

workers to earnings dispersion, both under positive and negative assortative matching.

3.2 Identification in finite mixture models

In this subsection we consider the general static and dynamic models under Assumptions 1

and 2, respectively. We make no functional form assumptions on earnings distributions, except

that we consider models where worker types αi have finite support. Relying on discrete types

is helpful for tractability, and we will use a finite mixture specification in our empirical imple-

mentation. However, at the end of this subsection we also outline an extension to continuously

distributed worker types. We start by presenting the main identifying equations.

3.2.1 Identifying equations

Static model on two periods. We first consider the static model on T = 2 periods, which

suffice for identification. Let Fkα(y1) denote the cumulative distribution function (cdf) of log-

earnings in period 1, in firm class k, for worker type α. Let Fm
k′α(y2) denote the cdf of log-

earnings in period 2, for class k′ and type α, for job movers between periods 1 and 2 (that

is, when mi1 = 1). Let also pkk′(α) denote the probability distribution of αi for job movers

between a firm of class k and another firm of class k′. Finally, let qk(α) denote the distribution

of αi for workers in a firm of class k. All these distributions may be conditional on exogenous

covariates Xi1 and Xi2, although we omit the conditioning for conciseness.16

16With time-varying covariates the identification argument goes through provided Fkαx1 and Fmk′αx2
solely

depend on period-specific covariates. With time-invariant covariates it is not possible to nonparametrically link
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The model imposes the following restrictions on the bivariate log-earnings distribution for

job movers:

Pr [Yi1≤y1, Yi2≤y2 | ki1=k, ki2=k′,mi1=1] =

ˆ
Fkα(y1)F

m
k′α(y2)pkk′(α)dα. (7)

To see why (7) holds, note that Yi1 is independent of (ki2,mi1) conditional on (αi, ki1). This is

due to the fact that, by Assumption 1 (i), mobility is unaffected by log-earnings Yi1, conditional

on type and classes (and conditional on exogenous covariates). Moreover, Yi2 is independent

of (Yi1, ki1) conditional on (αi, ki2,mi1 = 1). This is due to the lack of dependence on the past

after a job move in Assumption 1 (ii). In addition, we have the following decomposition of the

cdf of log-earnings in period 1:

Pr [Yi1 ≤ y1 | ki1 = k] =

ˆ
Fkα(y1)qk(α)dα. (8)

The parameters in (7) and (8) allow documenting the sources of earnings inequality and

the allocation of workers to firms. For example, the Fkα are informative about the presence of

complementarities in the earnings function. Differences of qk(α) across k are indicative of cross-

sectional sorting. Moreover, from the qk(α), pkk′(α), and data on transitions between classes,

one can recover estimates of type-specific transition probabilities between classes, which are

informative about dynamic sorting patterns. We will report estimates of all these quantities in

the empirical analysis.

Dynamic model on four periods. In the dynamic model on T = 4 periods, let Gf
y2,kα

(y1)

(for “forward”) denote the cdf of log-earnings in period 1, in a firm class k, for a worker of type

α who does not change firm between periods 1 and 2 and earns y2 in period 2. Let Gb
y3,k′α

(y4)

(for “backward”) be the cdf of Yi4, in firm class k′, for a worker of type α who does not change

firm between periods 3 and 4 and earns y3 in period 3. Lastly, let py2y3,kk′(α) denote the type

distribution of workers who stay in the same firm of class k between periods 1 and 2, move

to another firm of class k′ in period 3, remain in that firm in period 4, and earn y2 and y3 in

periods 2 and 3, respectively. For conciseness we again omit the conditioning on covariates.

The bivariate cdf of log-earnings Yi1 and Yi4 is, for workers who change firm between periods

2 and 3:

type probabilities across covariates values, due to a labeling indeterminacy. This issue echoes the impossibility

to identify the coefficients of time-invariant regressors in fixed-effects panel data regressions.
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Pr [Yi1 ≤ y1, Yi4 ≤ y4 |Yi2=y2, Yi3=y3, ki1=ki2=k, ki3=ki4=k′,mi1=0,mi2=1,mi3=0]

=

ˆ
Gf
y2,kα

(y1)G
b
y3,k′α(y4)py2y3,kk′(α)dα. (9)

Equation (9) is a consequence of Assumption 2, which is a first-order Markov assumption on

the process (Yit, kit,mi,t−1), where in addition mit can only depend on Yit and kit but not on

mi,t−1. In particular, by Assumption 2 (ii), Yi4 is independent of past mobility, firm classes, and

earnings, conditional on (αi, Yi3, ki4, ki3,mi3). Similarly, Yi1 can be shown to be independent of

future classes, earnings and mobility conditional on (αi, Yi2, ki1, ki2,mi1).
17

In addition, here Fkα denotes the cdf of log-earnings Yi2 for workers in firm class k who remain

in the same firm in periods 1 and 2 (that is, mi1 = 0), while qk(α) denotes the distribution of

αi for these workers. The joint cdf of log-earnings in periods 1 and 2 is:

Pr [Yi1 ≤ y1, Yi2 ≤ y2 | ki1 = ki2 = k,mi1 = 0] =

ˆ
Gf
y2,kα

(y1)Fkα(y2)qk(α)dα. (10)

The mathematical structure of (9) is analogous to that of (7). This is useful to analyze the

static and dynamic models using similar methods. Intuitively, the conditioning on log-earnings

Yi2 and Yi3 immediately before and after the job move ensures conditional independence of

log-earnings Yi1 and Yi4, although in this model earnings have a direct effect on job mobility

and respond dynamically to lagged earnings and previous firm classes.

3.2.2 Results under discrete worker types

We start by considering the static model on two periods. Since the dynamic model has a similar

mathematical structure the identification arguments will be closely related. Let L be the number

of points of support of worker types, and let us denote the types as αi ∈ {1, ..., L}. We assume

that L is known.18 All distributions below may be conditional on (Xi1, Xi2), although we omit

the conditioning for conciseness.

In this finite mixture model, (7) and (8) imply restrictions on the cdfs Fkα and Fm
k′α, and on

the probabilities pkk′(α) and qk(α). We now provide conditions under which these quantities

are identified. We start with a definition.
17To see this, note that, by Assumption 2 (i), Yi1 is independent of (mi2, ki3) condi-

tional on (αi, Yi2, ki1, ki2,mi1); by Assumption 2 (ii), Yi1 is independent of Yi3 conditional on

(αi, Yi2, ki1, ki2, ki3,mi1,mi2); and, by Assumption 2 (i), Yi1 is independent of (mi3, ki4) conditional on

(αi, Yi2, Yi3, ki1, ki2, ki3,mi1,mi2).
18Identifying and estimating the number of types in finite mixture models is a difficult question. Kasahara

and Shimotsu (2014) provide a method to consistently estimate a lower bound on the number of types. In the

application we will check sensitivity by varying L (and also the number K of firm classes).
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Figure 1: An alternating cycle of length R = 2

k1

k2

k̃1

k̃2

Definition 1. An alternating cycle of length R is a pair of sequences of firm classes (k1, ..., kR)

and (k̃1, ..., k̃R), with kR+1 = k1, such that pkr,k̃r(α) 6= 0 and pkr+1,k̃r
(α) 6= 0 for all r in {1, ..., R}

and α in {1, ..., L}.

Assumption 3. (mixture model, static)

(i) For any two firm classes k 6= k′ in {1, ..., K}, there exists an alternating cycle (k1, ..., kR),

(k̃1, ..., k̃R), such that k1 = k and kr = k′ for some r, and such that the scalars a(1), ..., a(L)

are all distinct, where:

a(α) =
pk1,k̃1(α)pk2,k̃2(α)...pkR,k̃R(α)

pk2,k̃1(α)pk3,k̃2(α)...pk1,k̃R(α)
.

In addition, for all k, k′, possibly equal, there exists an alternating cycle (k′1, ..., k
′
R), (k̃′1, ..., k̃

′
R),

such that k′1 = k and k̃′r = k′ for some r.

(ii) There exist finite sets of M values for y1 and y2 such that, for all r in {1, ..., R}, the

matrices A(kr, k̃r) and A(kr, k̃r+1) have rank L, where:

A(k, k′) = {Pr [Yi1 ≤ y1, Yi2 ≤ y2 | ki1 = k, ki2 = k′,mi1 = 1]}(y1,y2) .

Assumption 3 requires that any two firm classes k and k′ belong to an alternating cycle. An

example is given in Figure 1, in which case the presence of an alternating cycle requires that

there is a positive proportion of every worker type in the sets of movers from k1 to k̃1, k1 to k̃2,

k2 to k̃1, and k2 to k̃2, respectively. Existence of cycles is related to, but different from, that

of graph connectedness in AKM (Abowd et al., 2002). As in AKM, in our setup identification

will fail in the presence of completely segmented labor markets where firms are not connected

between markets via job moves. One difference with AKM is that, in our nonlinear setting, we

need every firm class to contain job movers of all types of workers. Another difference is that in

our context the relevant notion of connectedness is between firm classes, as opposed to between

individual firms.
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Assumption 3 (i) requires some asymmetry in worker type composition between different

firm classes. This condition requires non-random mobility, as it fails when pkk′(α) does not

depend on (k, k′). Also, part (i) fails when pkk′(α) is symmetric in (k, k′). This situation

arises in the model of Shimer and Smith (2000) in the absence of on-the-job search, as we

discuss in Appendix C. In the mixture model analyzed here, the presence of asymmetric job

movements between firm classes is crucial for identification. This is similar to the case of the

simple interactive regression model studied above, see (6). In the empirical analysis we will

provide evidence of such asymmetry.19

Assumption 3 (ii) is a rank condition. It will be satisfied if, in addition to part i), for all r

the distributions Fkr,1, ..., Fkr,L are linearly independent, and similarly for Fk̃r,1, ..., Fk̃r,L, Fm
kr,1

,

..., Fm
kr,L

, and Fm
k̃r,1

, ..., Fm
k̃r,L

.

The next result shows that, with only two periods and given the structure of the static

model, both the type-and-class-specific earnings distributions and the proportions of worker

types for job movers can be uniquely recovered. The intuition for the result is similar to that

in the simple interactive regression model above. Due to the discrete heterogeneity setting,

identification holds up to an arbitrary and irrelevant choice of labeling of the latent worker

types. All proofs are in Appendix A.

Theorem 1. Let T = 2, and consider the joint distribution of log-earnings of job movers. Let

Assumptions 1 and 3 hold. Suppose that firm classes are observed. Then, up to labeling of the

types α, Fkα and Fm
k′α are identified for all (α, k, k′). Moreover, for all pairs (k, k′) for which

there are job moves from k to k′, pkk′(α) is identified for all α, for the same labeling.

The next corollary shows that the proportions of worker types α in each firm class k in

period 1 are also identified.

Corollary 1. Let T = 2. Consider the distribution of log-earnings in the first period. Let

Assumptions 1 and 3 hold. Suppose that firm classes are observed. Then the type proportions

qk(α) are identified for the same labeling as in Theorem 1.

Dynamic model. A similar approach allows us to establish identification of the dynamic

mixture model on four periods with discrete worker heterogeneity. Exploiting the link between

(7) and (9) on the one hand, and (8) and (10) on the other hand, we obtain the following

19The requirements on cycles can be relaxed, at the cost of loosing point-identification of some of the quantities

of interest. In Supplementary Appendix S1 we illustrate this in a model where worker types and firm classes are

ordered, there is strong positive assortative matching, and workers only move between “nearby” firm classes.
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corollary to Theorem 1 and Corollary 1. The required assumptions, particularly on the existence

of cycles, are more stringent than in the static case.

Corollary 2. Let T = 4. Consider the joint distribution of log-earnings of job movers between

periods 2 and 3. Let Assumption 2 hold. Let also Assumption 3 hold, with Yi2 replaced by Yi4,

k replaced by (k, y2), and k′ replaced by (k′, y3); see Appendix A for a complete formulation.

Suppose that firm classes are observed. Then, up to labeling of the types α:

(i) Gf
y2,kα

and Gb
y3,k′α

are identified for all (α, k, k′). Moreover, for all (k, y2, k
′, y3) for which

there are job moves from (k, y2) to (k′, y3), py2y3,kk′(α) is identified for all α.

(ii) Fkα and qk(α), and log-earnings cdfs in periods 3 and 4, are also identified. Lastly,

type-specific transition probabilities between firm classes are identified.

3.3 Continuous worker types

While our empirical results will be based on models with discrete worker heterogeneity, our

framework can accommodate the presence of continuous worker types. An example is the

regression model (1), which is of interest in its own right. In Supplementary Appendix S3 we

describe this model in detail, as well as its dynamic extension (2), and we provide conditions

for their identification. In particular, we exploit the fact that mean restrictions are linear in

parameters to derive simple mean and covariance restrictions. In turn, those restrictions lead

to convenient estimators, which we also describe in detail in the supplement. Hence, in such

regression models that feature complementarities and possibly dynamics, the simplicity of the

AKM regression approach is preserved. We will estimate such regression models as robustness

checks for our main empirical results.20

In more general models with continuous worker types, identification can be established under

conditions that have been used in the literature on nonlinear measurement error models, notably

Hu and Schennach (2008) and Hu and Shum (2012). In Supplementary Appendix S1 we outline

an identification argument in the static model when α is continuously distributed. Although we

do not pursue this route in this paper, it would be interesting to adapt our estimation strategy

to estimate mixture models with continuously distributed α’s.

20In addition, note that (4) holds irrespective of the serial dependence properties of εit. In regression models

it is thus not necessary to assume that the log-earnings of job movers are serially independent conditional on

worker type and firm classes, in order to identify the a(k)’s, b(k)’s, and means of αi. In contrast, to identify

the within-firm-class variances of worker types in finite-length panels, restrictions must be imposed on the

dependence structure of the ε’s of job movers, such as independence between εi1 and εi2 when T = 2.
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4 Estimation

In the previous section we have provided conditions under which earnings distributions are

identified in the presence of sorting and complementarities. These results hold at the firm

class level kit, where in principle the kit could coincide with the firm jit. However, in matched

employer employee panel data sets of typical sizes, estimating models with complementarities,

dynamics, and two-sided heterogeneity may be impractical due to the incidental parameter

biases caused by the large number of firm-specific parameters that are solely identified from

job movements. For this reason, we use a dimension reduction method to partition firms into

classes. We now describe a two-step grouped fixed-effects approach, where we classify firms in

a first step and estimate earnings and mobility parameters in a second step.

4.1 Recovering firm classes using k-means clustering

Clustering earnings distributions. In both the static and dynamic models described in

Section 2, the distributions of log-earnings Yit and characteristics Xit, and the probabilities of

mobility mit, are all allowed to depend on firm classes k, but not on the identity of the firm

within class k. In other words, unobservable firm heterogeneity operates at the level of firm

classes in the model, not at the level of individual firms. For example, in (8) the first period’s

distribution of log-earnings in firm j does not depend on j beyond its dependence on firm class

k = k(j):

Pr [Yi1 ≤ y1 | ji1 = j] =

ˆ
Fkα(y1)qk(α)dα, (11)

where the left-hand side thus only depends on k = k(j). This observation motivates classifying

firms into classes in terms of their earnings distributions, as we now explain.

We propose partitioning the J firms in the sample into classes by solving the following

weighted k-means problem:

min
k(1),...,k(J),H1,...,HK

J∑
j=1

nj

ˆ (
F̂j(y)−Hk(j) (y)

)2
dµ(y), (12)

where F̂j denotes the empirical cdf of log-earnings in firm j, nj is the number of workers in

firm j, µ is a discrete or continuous measure, k(1), ..., k(J) denotes a partition of firms into K

classes, and H1, ..., HK are cdfs. We minimize (12) with respect to all possible partitions and to

class-specific cdfs. While global minima in k-means may be challenging to compute, k-means
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algorithms are widely used in many fields and efficient heuristic computational methods have

been developed (e.g., Steinley, 2006).

Through the classification in (12) we estimate firm classes as “discrete fixed-effects”, allowing

them to be correlated to firm-specific covariates. In our application on short panels we will

assume that the firms’ classification is time-invariant, and we will correlate the estimated classes

ex-post to firm observables.21

To provide a formal justification for the classification, in Appendix B we consider a setting

where the model (either static or dynamic) is well-specified and there exists a partition of the

J firms into K classes in the population. We consider an asymptotic sequence where both

the number of firms and the number of workers per firm tend to infinity. Using a result from

Bonhomme and Manresa (2015) we show that estimated firm classes, k̂(j), converge uniformly

to the population ones up to an arbitrary labeling as the sample size grows. As a result,

the asymptotic distribution of parameter estimates in the second step (which are the main

quantities of interest in this paper, see the next subsection) is not affected by the estimation of

firm classes.

Using other moments for classification. Consistency of the classification still holds, under

analogous assumptions, if instead of empirical cdfs other moments of the log-earnings distri-

bution are used in k-means, provided these moments are informative about firm heterogeneity.

For example one could use firm-specific means and variances. A potential issue with identifying

firm classes from cross-sectional observations only is that two cross-sectional earnings distribu-

tions might be identical between two firms of different classes, if for example one offers a higher

earnings schedule but has low-type workers, and the other one offers a lower earnings schedule

but has high-type workers. This possibility has been emphasized in the theoretical sorting lit-

erature (Eeckhout and Kircher, 2011). It is reflected in the violation of one of the assumptions

for classification consistency (see Assumption B2 (iii) in Appendix B). So it may be impossible

to separate two different classes from the cross-section, even though their conditional earnings

distributions given worker types are different. For this reason, adding other moments to classify

firms, beyond cross-sectional earnings moments, can be beneficial. In Supplementary Appendix

S1 we outline a bi-clustering method which fully exploits longitudinal information on earnings

and mobility to classify firms. A different approach is to use other information on the firm.

In the empirical analysis we will refine our earnings-based classification using firm value added

21In longer panels, the clustering method could be generalized to account for time-varying classes, allowing

one to document how the evolution of the classes relates to time variation in observables such as firm size. We

outline this extension in Supplementary Appendix S1.
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and mobility measures.

Properties under continuous firm heterogeneity. The asymptotic justification for k-

means-based classification does not necessarily hinge on discreteness. Indeed, second-step pa-

rameters estimated from the classification are still consistent even when firm heterogeneity is

continuous in the population, although asymptotically exact classification no longer holds. In

Bonhomme et al. (2017) we study asymptotic properties of k-means clustering and two-step

methods in settings where the K classes are viewed as approximating a possibly continuous

heterogeneity structure. This analysis provides a justification for such discrete methods in

continuous settings too.

4.2 Two-step grouped fixed-effects estimation

Our two-step grouped fixed-effects estimation strategy is as follows. In the first step (classifi-

cation) we estimate the firm classes k̂(j) for all firms j in the sample, by solving a classification

problem such as (12). In the second step (estimation) we impute a class k̂it = k̂(jit) to each

worker-period observation in the sample, and we estimate the model conditional on the k̂it’s.

Static model. To describe the estimation step we consider a specification where workers

belong to L latent types, and the model is parametric given worker and firm heterogeneity. We

focus on a two-period version of the static model and a four-period version of the dynamic model,

both of which we will estimate on Swedish data.22 In the static case we let fkα(y; θf ) (first-

period earnings), fmkα(y; θfm) (second-period earnings for job movers), qk(α; θq) (worker-type

proportions), and pkk′(α; θp) (worker-type proportions for job movers) be indexed by parameter

vectors θf , θfm , θq, θp. In our baseline specification we will let both earnings densities be log-

normal with (k, α)-specific means and variances. That is, means and variances of earnings are

allowed to differ between all combinations of worker types and firm classes. In addition, in

the time dimension we will allow for full interactions between firm classes and time indicators,

as well as unrestricted non-stationary variances. Lastly, we will treat all qk(α) and pkk′(α) as

unrestricted parameters.23

22In Supplementary Appendix S1 we describe estimation on T periods.
23Identification in Theorem 1 and Corollaries 1 and 2 does not rely on functional form assumptions. Several

methods have recently been proposed to estimate finite mixture models while treating the type-conditional

distributions nonparametrically (e.g., Levine et al., 2011, Bonhomme et al., 2014). It would be interesting to

use such methods to estimate our models. In the empirical analysis we will report results based on mixture of

normals, in addition to those based on normal distributions.
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Following the spirit of the identification strategy, we first estimate log-earnings densities

using job movers only, and we then estimate worker type proportions in the first period using

both job movers and job stayers.24 Under the assumption that worker types and earnings

realizations are independent across workers conditional on mobility indicators and firm classes,

the log-likelihood of job movers conditional on mobility patterns and estimated firm classes

takes the following form (Nm denoting the number of job movers):

Nm∑
i=1

K∑
k=1

K∑
k′=1

1{k̂i1 = k}1{k̂i2 = k′} ln

(
L∑
α=1

pkk′(α; θp)fkα(Yi1; θf )f
m
k′α(Yi2; θfm)

)
. (13)

In turn, the log-likelihood of all workers in period 1 is:

N∑
i=1

K∑
k=1

1{k̂i1 = k} ln

(
L∑
α=1

qk(α; θq)fkα(Yi1; θ̂f )

)
. (14)

Hence, conditional on the estimated firm classes, (13) and (14) are conventional, single-agent

correlated random-effects log-likelihood functions. We estimate θ̂f , θ̂fm , θ̂p by maximizing (13),

and then θ̂q by maximizing (14). We use the EM algorithm (Dempster et al., 1977) for compu-

tation.

Exogenous worker covariates can be readily incorporated in estimation, by modifying the

form of the likelihood. In the empirical analysis, given the short length of the panel we will use

a nonstationary specification, and relate the latent worker types to time-invariant covariates a

posteriori. This will allow us to account for sorting on observables such as education or cohort.

In Supplementary Appendix S1 we explain how we modify (14) for this purpose.

Dynamic model. We use a similar approach for the dynamic finite mixture model on four

periods, see equations (9) and (10). In this case we specify the conditional mean of Yi4 given Yi3

and worker and firm heterogeneity as µ4k′α + ρ4|3Yi3, where µ4k′α is a (k′, α)-specific intercept.

Likewise, the conditional mean of Yi1 given Yi2 and worker and firm heterogeneity is µ1kα +

ρ1|2Yi2. The parameters ρ4|3 and ρ1|2 capture the persistence of log-earnings within job. For

parsimony we have imposed that those parameters are homogeneous across worker types and

firm classes, although this could easily be relaxed with a larger sample.

In addition we specify the mean of (Yi2, Yi3) for job movers between classes k and k′ as

(µ2kα+ξ2(k
′), µ3k′α+ξ3(k)), and we let its covariance matrix depend on (k, k′). The term ξ2(k

′)

24Proceeding in this way has the advantage of recovering earnings parameters from job movements directly,

albeit at some efficiency cost. In practice we estimate the type proportions of job stayers in the last step, and

combine them with the pkk′(α) to recover the unconditional proportions qk(α).
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reflects that, conditional on moving between k and k′, mean log-earnings before the move can

differ with the firm of destination, due to the presence of endogenous mobility. The term ξ3(k)

reflects that the previous firm is allowed to have a direct effect on log-earnings after a move,

through the presence of state dependence. Neither of those effects is allowed for in the static

version of the model. Lastly, we specify the mean of (Yi2, Yi3) for job stayers in a firm of class

k as (µs2kα, µ
s
3kα), and we let its covariance matrix depend on k.25

Given estimates ρ̂4|3 and ρ̂1|2 of the persistence parameters, the other parameters can be

estimated using a very similar approach as in the static case, based on the following log-

likelihood functions:

Nm∑
i=1

K∑
k=1

K∑
k′=1

1{k̂i2 = k}1{k̂i3 = k′} × ...

ln

(
L∑
α=1

pkk′(α; θp)f
f
Yi2,kα

(Yi1; ρ̂1|2, θff )fmkk′α(Yi2, Yi3; θfm)f bYi3,k′α(Yi4; ρ̂4|3, θfb)

)
, (15)

and:

N∑
i=1

K∑
k=1

1{k̂i2 = k} ln

(
L∑
α=1

qk(α; θq)f
f
Yi2kα

(Yi1; ρ̂1|2, θ̂ff )f skα(Yi2, Yi3; θfs)f
b
Yi3,k′α

(Yi4; ρ̂4|3, θ̂fb)

)
.(16)

We estimate θ̂p, θ̂ff , θ̂fm , θ̂fb based on (15), and then θ̂q, θ̂fs based on (16), using the EM algo-

rithm in both cases.

While it is in principle possible to estimate ρ4|3 and ρ1|2 by maximizing a joint likelihood

function across movers and stayers with respect to all parameters, doing so would be compu-

tationally cumbersome. A convenient alternative, which we adopt in the empirical analysis,

is to estimate these parameters in an initial step based on covariance restrictions. Under the

assumption that the effect of worker types on mean log-earnings is constant over time within

firm, simple restrictions on the ρ’s can be obtained by exploiting the particular form of the

conditional means of Yi4 given Yi3 and Yi1 given Yi2, respectively. We provide details on the

covariance-based estimation of ρ4|3 and ρ1|2 in Supplementary Appendix S1.

Related estimators. The estimation approach outlined in this section can be modified in sev-

eral ways that we will implement empirically. A first extension is a model-based re-classification.

Given estimates of the θ parameters one may re-classify every firm j to the class k = k̃(j) which

25We impose that the best linear predictors in the regressions of Yi3 on Yi2, for both stayers and movers, do

not depend on worker types or firm classes, and that the residual variances in the case of movers only depend

on k′. This could be relaxed with a large enough sample.
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corresponds to the maximal value of the k-specific likelihoods of firm j’s observations. This

approach can be iterated further.

A second related estimation strategy is the use of half-sample estimates and bias reduction.

Fixed-effects estimators and discrete grouped fixed-effects estimators can be subject to inci-

dental parameter biases. In the present case biases can arise if the number of job movers per

firm, or the number of workers per firm, is relatively small so the corresponding parameters

are poorly estimated. We use the following simple check which closely mirrors the method of

Dhaene and Jochmans (2015). Let θ̂ be an estimator of θ (or a function of θ such as a variance

component) computed on the full data. We will also estimate θ on two half-samples where

workers are selected with probability 1/2 within every firm and mobility status (i.e., mover

and stayer). Letting θ̂1 and θ̂2 denote the half-sample estimates we will then compare θ̂ to

θ̃ = 2θ̂ − (θ̂1 + θ̂2)/2. Under the assumption that observations are independent across workers

within firms, we will interpret a discrepancy between θ̂ and θ̃ as indicative of bias.

Lastly, while we have described estimation in the context of finite mixture models the two-

step approach can be used in other settings. Relevant examples are regression models such as

the AKM model and its interactive counterparts (1) and (2) that allow for complementarities

or dynamics. In such models two-step grouped fixed-effects methods deliver computationally

convenient estimation algorithms based on mean and covariance restrictions, as we show in

detail in Supplementary Appendix S3.

5 Empirical results I: Static model

We now present results for the static model on the Swedish data. We first report estimates of

firm classes, worker types and earnings based on our preferred specification, and then study

the robustness of our findings.

5.1 Results

Data. We use administrative data covering the entire working age population in Sweden

between 1997 and 2008. We follow Friedrich et al. (2014) for sample selection and construction

of monthly log-earnings. We estimate the static model on males in 2002 and 2004. We keep

workers who are both fully employed in the same firm in 2002 and fully employed in the same

firm in 2004, and firms with at least one fully-employed worker during the period. Descriptive

statistics for our sample are shown in Table E2 in Appendix E. In Appendix D we provide details

on the Swedish context and sample construction. We define job movements in a conservative
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way, which we describe in detail in the appendix. This results in low mobility rates, with a

proportion of job movers to job stayers of 3.3% in the sample.

Firm classes. As described in Section 4, we estimate firm classes using a weighted k-means

algorithm. We use firms’ cdfs of 2002 log-earnings on a grid of 20 percentiles of the overall

log-earnings distribution. We weight measurements by firm size, and only include job stayers

in the classification.26

Table 1: Data description, by estimated firm classes

class: 1 2 3 4 5 6 7 8 9 10 all

number of workers 16,868 50,906 74,073 76,616 80,562 66,120 105,485 61,272 47,164 20,709 599,775

number of firms 5,808 6,832 4,983 5,835 3,507 4,149 3,672 3,467 2,886 2,687 43,826

mean firm reported size 12.43 20.92 42.68 28.47 65.06 32.3 60.08 51.24 54.16 50.86 37.59

number of firms ≥ 10 (actual size) 160 1,034 1,519 1,357 1,192 930 999 855 632 415 9,093

number of firms ≥ 50 (actual size) 7 87 260 225 270 162 245 183 147 52 1,638

firm actual size for median worker 4 13 39 47 121 100 429 112 134 22 72

% high school drop out 28.5% 27.8% 25.9% 26.8% 22.2% 23.8% 18.9% 12.9% 6.1% 3.2% 20.6%

% high school graduates 61.3% 63.4% 62.3% 63.3% 59.1% 62.7% 58.4% 49.3% 34.9% 25.6% 56.7%

% some college 10.2% 8.8% 11.8% 9.9% 18.7% 13.5% 22.8% 37.8% 59% 71.2% 22.7%

% workers younger than 30 24.3% 19.5% 19.8% 17.5% 18.6% 15.4% 13.8% 14.3% 15% 14.3% 16.8%

% workers between 31 and 50 54.1% 54.6% 55% 56.2% 56% 57.6% 58.5% 58.9% 60% 64.2% 57.2%

% workers older than 51 21.7% 25.9% 25.1% 26.3% 25.5% 27% 27.6% 26.8% 25% 21.5% 26%

% workers in manufacturing 24.3% 39.3% 46.8% 53% 51.5% 52% 53% 40.3% 31.5% 7.6% 45.4%

% workers in services 39.3% 32.1% 23.3% 19.7% 14.4% 15% 16% 29.7% 52.1% 72.6% 25.3%

% workers in retail and trade 26.4% 19% 24.9% 10.6% 29.3% 7.9% 8.4% 17.7% 14.8% 18.7% 16.7%

% workers in construction 9.9% 9.6% 5.1% 16.8% 4.9% 25.1% 22.5% 12.3% 1.5% 1.1% 12.6%

mean log-earnings 9.69 9.92 10.01 10.06 10.15 10.16 10.24 10.36 10.5 10.77 10.18

variance of log-earnings 0.101 0.054 0.085 0.051 0.102 0.051 0.077 0.096 0.109 0.173 0.124

between-firm variance of log-earnings 0.0462 0.0044 0.0036 0.0018 0.0032 0.0016 0.0016 0.0045 0.0057 0.0435 0.0475

mean log-value-added per worker 14.48 14.97 15.54 15.21 15.82 15.26 15.61 15.69 15.76 15.78 15.3

Notes: Males, fully employed in the same firm 2002 and 2004, continuously existing firms. Actual size is the

number of workers per firm in our sample. Figures for 2002.

Table 1 provides summary statistics on the estimated firm classes for our baseline choice of

number of classes K = 10. We order firm classes from 1 to 10 according to mean log-earnings

in each class. Classes capture substantial heterogeneity between firms. The between-firm-

class log-earnings variance is 0.0421, that is, 89% of the overall between-firm variance. This

26We use the Hartigan-Wong algorithm in the code “kmeansW” in the R package “FactoClass”, with 10, 000

randomly generated starting values.
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is important since it suggests that assuming homogeneity within each of the 10 classes might

not result in major losses of information, at least in terms of variance of log-earnings. There

are also substantial differences between classes in terms of worker characteristics. While lower

classes (according to their mean log-earnings) show high percentages of high school dropouts

and low percentages of workers with some college, higher classes show the opposite pattern.

Lower classes also tend to have higher percentages of workers less than 30 years old, and lower

percentages of workers between 30 and 50, while higher classes have more workers between 30

and 50. This relationship broadly reflects the life cycle pattern of earnings in these data.

Firm size reported by the firm tends to increase with firm class, although the relationship

is not monotonic. Classes 1 and 2 contain smaller firms than the other classes. There is also

evidence of both between- and within-sector variation between classes, which is not monotonic

in mean earnings. For example, the proportion of workers in services is U-shaped in firm class,

and that in manufacturing is inverse U-shaped. Lastly, log value added per worker tends to

increase with firm class, although again there is not a monotonic relationship. Moreover, classes

explain only 13.2% of the between-firm variance in log value added per worker.

We next describe some patterns of mobility and earnings across firm classes. In Table E3 in

Appendix E we report the number of movers between all pairs of classes. There is substantial

worker mobility between firm classes, especially between adjacent classes. This is important

since our identification strategy is based on exploiting mobility. Figure E4 in Appendix E shows

means of log-earnings for workers moving from class k to k′ (x-axis) and for those moving from

k′ to k (y-axis), for each pair of firm classes (k, k′) with k < k′. The graph shows that on

average workers “moving up” (i.e., from k to k′) tend to have lower earnings than workers

“moving down” (from k′ to k). We emphasized the importance of such empirical differences in

our identification analysis, see equation (6).

Wages, worker heterogeneity and firm heterogeneity. Our baseline estimates are based

on a Gaussian finite mixture model with L = 6 types of workers and K = 10 firm classes. As

explained in Section 4 we estimate earnings distributions on the sample of job movers between

2002-2004, as well as the type proportions of movers. We then estimate proportions of worker

types of job stayers in 2002. Maximum likelihood estimation of finite mixture models is often

subject to local maxima, and our setting is no exception. In addition, in some of the locally

optimal solutions some worker types only move within a subset of firm classes, resulting in

unstable parameter estimates. In Supplementary Appendix S2 we describe how we use the

EM algorithm to explore the likelihood function. We also explain how we use a measure of
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network connectedness recently studied in Jochmans and Weidner (2017) to select our preferred

estimates.27

Figure 2: Main parameter estimates of the static model
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Notes: Static model, 2002-2004. The left graph plots estimates of the means of log-earnings distributions, by

worker type and firm class. The K = 10 firm classes (on the x-axis) are ordered by mean log-earnings. On the

y-axis we report estimates of mean log-earnings for L = 6 worker types. The right graph shows estimates of

the proportions of worker types in each firm class. Left: brackets indicate parametric bootstrap 2.5% and 97.5%

quantiles (100 replications).

On the left panel of Figure 2 we plot estimates of the means of log-earnings for each firm

class and each worker type.28 On the x-axis, firm classes are ordered by mean log-earnings.

The brackets show 95% confidence intervals based on the parametric bootstrap.29 The results

show clear evidence of worker heterogeneity. They also show some variation in log-earnings

27Among the 10 best local maximum likelihood values out of 50 we select the solution where the minimum

connectedness measure across worker types is the highest. This strategy mainly improves stability across

bootstrap repetitions and has little impact on the main estimates. We also computed our main results at the

best likelihood value and found very similar results, in both the static and dynamic models.
28In Figures S3, S4 and S5 we report measures of fit of the static model on earnings distributions and

covariances.
29The bootstrap draws are conditional on worker and firm links in the data, and firm classes are re-estimated

in each replication. This bootstrap procedure provides a measure of parameter uncertainty that accounts

for uncertainty in firm classes. In Appendix B we derive the asymptotic distribution of the estimators. See

Supplementary Appendix S2 for implementation details.
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between firm classes, although to a lesser extent. Moreover, lower-type workers (where “lower”

and “higher” types refer to low and high mean log-earnings) appear to gain the most from

working in a higher-wage firm. This suggests the presence of some complementarity between

firms and lower-type workers, which we will further explore below.

On the right panel of Figure 2 we report the estimated proportions of worker types in each

firm class. The results show how the composition of worker types differs markedly across firm

classes. For example, the lowest-class firms (in terms of mean log-earnings) employ mostly the

bottom two worker types, while the highest-class firms employ mostly the top three worker

types. Overall, the two graphs in Figure 2 suggest that variation in log-earnings between firm

classes is mainly due to firms employing different workers, rather than differences in earnings

for a given worker type.

Table 2: Variance decomposition and reallocation exercise in the static model

Variance decomposition (×100)
V ar(α)

V ar(α+ψ)
V ar(ψ)

V ar(α+ψ)
2Cov(α,ψ)
V ar(α+ψ)

Corr(α, ψ) R2

80.3
(.8)

3.4
(.2)

16.3
(.6)

49.1
(.9)

74.8
(.6)

Reallocation exercise (×100)

Mean Median 10%-quantile 90%-quantile Variance

.5
(.09)

.6
(.10)

2.7
(.20)

−1.2
(.30)

−1.1
(.11)

Notes: Static model, 2002-2004. Top panel: α is the worker effect, ψ is the firm effect, variance decomposition

based on a linear regression of simulated 2002 log-earnings on α and ψ. Bottom panel: differences in means,

quantiles and variances of log-earnings between a sample where workers are randomly reallocated to firms and the

original sample. 1, 000, 000 simulations. Parametric bootstrap standard errors in parentheses (100 replications).

Variance decomposition and reallocation. We next report the results of two exercises

that illustrate how earnings and heterogeneity relate to each other. We start with a decom-

position of the variance of 2002 log-earnings. In the literature since Abowd et al. (1999) it

is common to decompose the variance of log-earnings, net of observed covariates, into four

components: the variance of worker effects (that is, coefficients of worker type indicators), the

variance of firm effects (i.e, coefficients of firm class indicators), twice the covariance between

the two, and the variance of residuals. In our nonlinear model a similar decomposition can be

performed by working with a linear projection of log-earnings on worker type indicators and
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firm class indicators, in a regression without interactions.30 In the top panel of Table 2 we

show percentages of explained variance due to worker and firm heterogeneity and due to the

covariance between the two. In addition we report the correlation between worker and firm

effects and the R2 in the linear regression. The results show two main features. First, worker

heterogeneity explains substantially more variation in earnings than firm heterogeneity. Differ-

ences in firm classes only account for 3.4% of the explained variance, compared to 80.3% for the

part due to differences in worker types. The second main finding is that the part explained by

the covariance is substantial. The correlation between worker and firm effects is 49.1%, which

suggests the presence of strong sorting between workers and firms. This is in line with the

evidence documented on the right panel of Figure 2.

As a first way to quantify the economic magnitude of complementarities, we next assess the

explanatory power of worker types and firm classes when entered interactively as opposed to

additively in the regression. The R2 coefficient in the linear regression is 74.8%, while in the

regression that includes all interactions between worker type indicators and firm class indicators

the R2 is 75.8%. This suggests that, while the left panel of Figure 2 shows the presence of some

complementarity between firms and low-type workers, those complementarities explain only a

small part of the overall variance of log-earnings.

We next consider the impact on log-earnings of a reallocation exercise where workers are

allocated randomly to firms. Such an exercise aims at assessing the contribution of sorting to the

distribution of earnings.31 We show the results of the reallocation on the bottom panel of Table

2. In the first column we report the estimate of the difference in mean log-earnings between a

counterfactual sample where workers are randomly allocated among firms and our sample, using

our estimates that account for the presence of complementarities. In an additively separable

economy between workers and firms, such as under the AKM model, there should be no effect

of the reallocation on mean log-earnings (e.g., Graham et al., 2014). However we find a positive

mean impact (.5%), which, albeit moderate, suggests that the effect of complementarities on

average log-earnings is not insignificant.

To provide an intuition on the mean effect of the reallocation, consider the regression model

(1). In this specification the difference between mean outcomes in a population where workers

30We compute the variance decomposition by simulation. See Supplementary Appendix S2 for details.
31In the exercise we assume that earnings functions, for all worker types and firm classes, are not affected by

the reallocation. Hence this exercise abstracts from equilibrium effects through which changes in composition

could affect the form of the conditional earnings distributions.
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are randomly allocated to firms and in our data is, abstracting from time indices for clarity:

Erandom(Yi)− E(Yi) = −Cov (b(ki),E(αi | ki)) . (17)

In particular the reallocation has no effect on the mean if b(k) does not depend on k, or more

generally if complementarities b(k) are uncorrelated with the mean worker type in the firm

class E(αi | k). Our results on Swedish data show that, while the mean worker type tends to

increase with firm class k, complementarities are stronger in low firm classes, yielding a negative

covariance. This explains why the effect of the reallocation is positive.

Moreover, in our distributional framework we are able to estimate the entire distribution

corresponding to a given reallocation of workers to firms. In columns 2 to 4 of the bottom

panel of Table 2, we show the differences in medians and 10% and 90% percentiles of log-

earnings between the random allocation and our sample. Those are “quantile treatment effects”

corresponding to the change. We also report differences in variances in the last column. We see

that, while the median effect is in line with the mean effect, the bottom of the distribution would

tend to benefit in the random allocation, while the top would be hurt. Those differences reflect

both the fact that log-earnings are less dispersed in the random allocation, as shown by the

reduction in variance, and the presence of complementarities at the bottom of the distribution.

In addition, our framework allows us to analyze dynamic aspects of worker-firm interactions.

We will present such analyses in the next section, using our dynamic model.

5.2 Robustness

In this subsection we present several exercises to show the robustness of our main results. For

brevity, most results can be found in Supplementary Appendix S4.

Firm classes and worker types. The number K of firm classes is an important input for

the two-step grouped fixed effects method. In Table S2 we show the results of the variance

decomposition when varying K between 3 and 20 classes. The results are quite stable across K

values.32 In Table S4 we show the results of varying the number of worker types between L = 3

and L = 9. The results show that taking L = 3 or L = 4 seems to understate the contribution

32We also computed the BIC criterion of Schwarz (1978) based on the overall likelihood function. BIC points

to a relatively small number (K = 7) of classes. In Bonhomme et al. (2017) we used a different rule to select K

motivated by an asymptotic theory where firm heterogeneity may not be discrete in the population, and taking

too small a K may lead to a poor approximation. That rule also gave K = 7.
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of worker heterogeneity and overstate that of firm heterogeneity. The results are very stable

between L = 5 and L = 9.33

We next consider a series of specifications in which firm classification uses additional infor-

mation beyond earnings distributions. In the top panel of Table S3 we report variance decom-

position results for three different splits within the 10 classes we estimated using k-means. We

split each class in two subclasses according to a firm-specific “mobility rank” (first row), the

percentage of job movers in the firm (second row), and value added per worker (third row). We

construct the mobility rank of a firm as the number of workers who move to that firm from

a firm whose mean log-earnings belongs to the lowest tercile, divided by the total number of

movers to the firm.34 We split the class in two depending on the firm ranking above or below

the median value of the measure in the class. These specifications capture other information,

beyond differences in log-earnings distributions, which may be contained in mobility patterns

and value added.35 The results show some differences with our baseline estimates. For exam-

ple, when splitting the classes according to value added the firm effects variance becomes 4.7%,

compared to 3.4% in the baseline. The three specifications also give slightly smaller correlations

between worker and firm effects. However the differences are small, suggesting that the initial

classification captures most of the firm heterogeneity which is relevant to earnings variation.

In the second panel of Table S3 we re-classify firms into classes based on the mixture model

given our estimates. Unlike our baseline classification, this method incorporates information

from both periods, including earnings associated with job mobility. To alleviate biases associ-

ated with low mobility rates (see below) we only use half of the job movers within each firm

for classification in addition to job stayers, and the other half for estimation. We report results

based on one and five iterations. Compared to the baseline results based on k-means clustering

of cross-sectional log-earnings cdfs, the results using the re-classification are similar except for

a slightly smaller correlation parameter. In our setting, where mobility is unrestricted as a

function of worker types and firm classes, the model-based re-classification has little impact

on the results compared to two-step grouped fixed-effects. In fact the correlation between firm

classes in the two cases is 94% after five iterations.

33BIC points to L = 6 in this case.
34This measure is closely related to the poaching rank introduced by Bagger and Lentz (2014), except that

it combines mobility and earnings information. Bagger and Lentz’ poaching rank uses workers coming from

unemployment.
35However, using any of the measures to rank firms directly would not be well-suited for the exercise we

conduct. For example, the mobility rank explains less than 20% of the variance of log-earnings.
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Other specifications. In Table S5 we report variance decomposition results corresponding

to several additional specifications. In the second row of the table we show the results for a

model where log-earnings are distributed as three-component mixtures of Gaussians conditional

on worker types and firm classes. This provides additional flexibility in earnings distributions,

at the cost of adding parameters to an already richly parameterized model. The results are very

similar to the baseline. In the third row we show the results of the decomposition obtained from

our baseline mixture model, when controlling for the effect of two worker covariates: age and

education. We find that, once worker covariates are controlled for, the contribution of worker

unobserved heterogeneity is 67% of the variance explained by worker and firm unobservables,

as opposed to 80% in the baseline. The relative contribution of firm heterogeneity is larger

than in the baseline.36 In rows four and five we report decompositions estimated on smaller

firms (less than 50 workers per firm in 2002) and large firms (more than 50). While still qual-

itatively similar, the results show interesting heterogeneity: in smaller firms the contribution

of worker heterogeneity is reduced compared to that of firm heterogeneity and the covariance

term. In comparison, in larger firms worker heterogeneity accounts for a greater share (i.e., 85%

versus 72%) of the log-earnings variance. Lastly, in the sixth row we show that the variance

decomposition implied by a fully nonstationary model gives very close results to our baseline

estimates.

In panel B of Table S5 we show the results for the interactive regression model (1).37 This

model is a valuable complement to our baseline model for several reasons. First, worker types

are not discretely distributed in the regression model. Second, estimation only relies on mean

and covariance restrictions, not on other features of the multivariate distribution of the data.

For example, the parameters at(k) and b(k) are estimated from mean restrictions alone, which

do not rely on assumptions on serial dependence. In addition, the regression estimator is

straightforward to compute. On the other hand, unlike our baseline specification the model’s

functional forms restrict the shape of interaction effects between worker and firm heterogeneity.

The results show a very similar variance decomposition as in our baseline model, the only

notable difference being that the R2 is lower. Finally, in the last row of the table we report

the results for a regression model where we additionally impose that b(k) = 1 for all k. This

corresponds to a one-sided random-effects version of the additive model of Abowd et al. (1999).

36In Figure S6 in Supplementary Appendix S4 we show how the proportions of worker types by firm classes

within age×education cells (9 categories). In Supplementary Appendix S1 we explain how we estimate those

parameters.
37We abstract away from covariates (i.e., ct = 0) and we assume that the worker-firm interaction coefficients

bt(k) are constant over time. We explain in detail how we estimate the model in Supplementary Appendix S3.
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However, our estimator based on classification and mean and covariance restrictions differs

from the AKM estimator, and is arguably more robust to incidental parameter bias in our

data (see the next paragraph). Overall, these estimates confirm the stability of the variance

decomposition results.

Incidental parameter bias. We next investigate the bias of parameter estimates and vari-

ance decomposition. We first document the bias of the estimator of Abowd et al. (1999) of the

variance of firm effects on samples with different selections on the number of movers per firm.38

The solid line with circles in Figure E5 in Appendix E shows that the firm effects variance

decreases substantially and monotonically, from .011 to 0.006 when the number of movers per

firm increases from ≥ 4 to ≥ 40. On the same figure the solid line with triangles shows the

firm effects variance estimated using a bias-corrected estimator.39 The dashed line varies much

less with the number of movers, and gives a firm effects variance of .004 in the subsample with

more than 40 movers per firm. This suggests the presence of substantial low mobility bias in

this data. Interestingly, .004 is close to the number implied by our baseline estimates (in Table

2), which we report on the dotted horizontal line. Hence, with respect to the variance contribu-

tion of firm effects, there is little difference between our estimate of the variance contribution

of firms and an estimate based on a bias-corrected AKM estimator, although there are more

substantial differences with the results using the original AKM estimator.40

We next move on to study the finite sample bias of our estimator. In Figure S7 we first

report results based on two half-subsamples of the data, where each firm is randomly split in

two.41 We implement this procedure in an attempt to assess the incidental parameter bias due

to the fact that some firms are small or have few job movers, resulting in noisy estimates of

some of the parameters. We see that the results are similar to the full-sample results of Figure

38In each subsample we focus on the largest connected set of firms. To increase the stability of the results, for

this exercise we work with a larger sample constructed by pooling the 2002-2004 sample together with similar

samples from 1997-1999 to 2006-2008 (while not keeping track of workers’ identities across subpanels). Our

main results are very similar in this larger sample, and they are available upon request.
39The estimator is based on half-sample estimation (as in Dhaene and Jochmans, 2015) where, within each

firm, job stayers and job movers out of the firm are split into two random subsamples of equal sizes. The

bias-corrected estimate is equal to twice the full-sample estimate minus the mean of the half-sample estimates.
40In a previous version of the paper we also estimated fixed-effects AKM regressions on data simulated from

our mixture model. We found large incidental parameter biases in the variance decomposition. For example,

we found a negative correlation between worker and firm effects (around −25%), compared to a population

parameter of more than 40%. At the same time, the biases were substantially reduced when we let the number

of job movers per firm increase tenfold and we increased the lengths of job spells.
41We use the same procedure to generate the two random subsamples as described in footnote 39.
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2. This suggests that biases due to low firm sizes and low mobility rates have little impact on

our results. This is also confirmed by the results of the variance decompositions in the two half-

samples, which are very similar to the decomposition on the full sample, see the last two rows

of panel A in Table S5. The results point to a slight underestimation of the firm contribution

and the covariance component, and a slight overestimation of the worker contribution, but the

biases appear very small.42

Lastly, we show in Table S6 the means and 2.5%-97.5% percentiles of the 100 replications

of the parametric bootstrap, for each of the main results of Table 2. The bootstrap means

do not exactly coincide with our estimates, and standard errors are small given the large

sample size. The presence of bias is not surprising in a nonlinear model with rich two-sided

heterogeneity and a large number of parameters, including not only earnings parameters but

also type proportions by mobility and firm classes. Nevertheless, the biases of the variance

decomposition and reallocation effects are economically small.

6 Empirical results II: Dynamic model

In this section we present empirical results for our dynamic model. We first report parameter

estimates, and then analyze cross-sectional and dynamic features of the model in turn.

6.1 Parameter estimates, cross-sectional decomposition and reallo-

cation

We estimate the dynamic model on 2001-2005, focusing on males both fully-employed in the

same firm in 2001-2002, and fully-employed in the same firm in 2004-2005. In order to estimate

firm classes we use the same weighted k-means algorithm as in the static model.43 We then

estimate the model in three steps, as explained in Section 4: we estimate the earnings persistence

parameters ρ4|3 and ρ1|2, the wage functions and type probabilities of job movers, and finally

those of job stayers.

Table 3 shows estimates of several parameters of the model.44 The parameter ξ2(k
′) is the

42A bias-corrected estimate of the firm component can be constructed as 2× 3.4− 1/2× (3.0 + 3.0) = 3.8%.

Likewise, bias-corrected worker component and covariance component are 78.7% and 17.6%, respectively. Those

are close to the un-corrected estimates.
43We show descriptive statistics in Table E2 in Appendix E. In Appendix D we provide details on sample

selection. Summary statistics on the partition of firms are shown in Table S7 in Supplementary Appendix S4.
44In Figures S8, S9 and S10 in Supplementary Appendix S4 we report measures of fit of the dynamic model.
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Table 3: Parameter estimates of the dynamic model

Earnings effects ξ2(k
′) of future firm classes

k′ = 2 3 4 5 6 7 8 9 10

estimate −.005
(.008)

.004
(.009)

.005
(.011)

.022
(.012)

.003
(.011)

.015
(.010)

.009
(.011)

.016
(.011)

.023
(.011)

Earnings effects ξ3(k) of past firm classes

k = 2 3 4 5 6 7 8 9 10

estimate .051
(.015)

.038
(.015)

.045
(.014)

.061
(.015)

.040
(.018)

.072
(.015)

.058
(.016)

.087
(.015)

.090
(.016)

Persistence parameters ρ

ρ1|2 ρm3|2 ρs3|2 ρ4|3

estimate .227
(.009)

.246
(.040)

.681
(.023)

.651
(.004)

Notes: Dynamic model, 2001-2005. ρm3|2 is the autoregressive coefficient of log-earnings for job movers between

2002 and 2004; ρs3|2 is the coefficient for job stayers. ξ2(k′) and ξ3(k) are the mean effects on log-earnings before

and after a job move between firm classes k and k′, respectively. k′ = 1 (resp., k = 1) is the omitted category.

Parametric bootstrap standard errors in parentheses (100 replications).

effect of firm class k′ on the mean log-earnings in period 2 of a worker moving from k in period

2 to k′ in period 3. It would be zero for all k′ under the strict exogeneity assumption on

mobility, which is imposed in our static model and many models in the literature.45 We see

that the effects are quantitatively small, with at most a 2% effect relative to the omitted class

k′ = 1. The parameter ξ3(k), in turn, is the state dependence effect of firm class k on the mean

log-earnings of a worker moving between k and k′. Our static model, and many models in the

literature, would also rule out the presence of a direct effect of the past firm’s class on current

earnings. This effect appears empirically quite large in the dynamic model. It is approximately

monotonic in firm class, and amounts to a 9% effect in the highest classes. This suggests that

past firms have an impact on future earnings.

In the bottom panel of Table 3 we report the estimates of earnings persistence parameters.

Persistence estimates are higher for job stayers than for job movers. Notice however that

45Strict exogeneity of mobility also imposes that earnings realizations are independent of the subsequent

decision to move, conditional on firm and worker heterogeneity, irrespective of the class of the firm the worker

wishes to move to. This assumption cannot be tested from Table 3, but we will check its empirical plausibility

in Table 5 below.
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Figure 3: Parameter estimates of the dynamic model (continued)

Mean log-earnings Proportions of worker types

9.5

10.0

10.5

11.0

1 2 3 4 5 6 7 8 9 10

firm class k

lo
g

−
e

a
rn

in
g

s

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 10

firm class k
ty

p
e

 p
ro

p
o

rt
io

n
s

Notes: Dynamic model, 2001-2005. See notes to Figure 2.

the autoregressive coefficient of .246 upon job move is significantly different from zero, which

suggests that the conditional independence assumption of the static model does not hold in

our data. As a robustness check we estimated the persistence parameters based on covariance

restrictions in first differences, as opposed to levels. The literature has documented differences

between level estimates and first difference estimates of the dynamics of earnings in several

data sets, see for example Daly et al. (2016). We found ρ1|2 = .506, ρ4|3 = .451, ρm3|2 = .194, and

ρs3|2 = .605. Despite the differences in persistence estimates, variance decomposition results are

similar in this case.46

Next, in Figure 3 we show estimates of mean log-earnings for each worker type and firm

class (left panel) and type proportions in each firm class (right panel). The results correspond

to 2002. We see similar cross-sectional patterns as for the static model, with approximate

additivity of log-earnings in worker types and firm classes, relatively small differences across

firms for all worker types except the lowest one, and strong evidence of association between

worker types and firm classes. This suggests that the dynamic and static models have similar

46The results of the variance decomposition for ρ4|3 and ρ1|2 estimated in differences are shown in the fourth

row of Table S11 in the supplement. The dynamic implications of the model (i.e., endogenous mobility and state

dependence) are also similar. In Figures S11 and S12 we show the fit to covariances in levels and covariances in

differences of the models estimated in levels and first differences, respectively.
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implications for cross-sectional earnings distributions.

Table 4: Variance decomposition and reallocation exercise in the dynamic model

Variance decomposition (×100)
V ar(α)

V ar(α+ψ)
V ar(ψ)

V ar(α+ψ)
2Cov(α,ψ)
V ar(α+ψ)

Corr(α, ψ) R2

77.4
(1.2)

5.5
(.9)

17.2
(.5)

41.9
(2.4)

77.9
(.7)

Reallocation exercise (×100)

Mean Median 10%-quantile 90%-quantile Variance

.3
(.35)

.8
(.18)

2.5
(.73)

−3.0
(.47)

−1.0
(.88)

Notes: Dynamic model, 2001-2005. α is the worker effect, ψ is the firm effect. In the reallocation exercise we

randomly assign workers to firms. See the notes to Table 2.

We next report the results of a cross-sectional variance decomposition exercise in the top

panel of Table 4. As in the static case we perform the decomposition on 2002 earnings. The

variance decomposition is quite similar to the one we obtained from the static model, with some

differences: the contribution of firm effects increases from 3.4% to 5.5%, and the correlation

between worker and firm effects decreases from 49.1% to 41.9%. As in the static model, adding

interactions between worker types and firm effects has relatively small effects on the R2 of the

linear regression (i.e., 78.5% versus 77.9%).

The bottom panel of Table 4 shows that the distributional effects of randomly reallocating

workers across firms are also in line with the static results. The reallocation has a positive effect

on mean (now insignificant) and median (significant) log-earnings, with asymmetric effects on

the two tails of the distribution.47

Our estimates are stable across a range of specifications. We report the results of the

following robustness checks in Supplementary Appendix S4: varying the number of firm classes

and worker types (see Tables S9 and S10), using an interactive regression estimator estimated

from mean and covariance restrictions, and estimating the model on random half-samples (see

Table S11 and Figure S13). We also report means and percentiles of the parametric bootstrap

in Table S12.

47Note that the variance effect takes into account both between type-and-class and within type-and-class

dispersion, since our earnings model allows for heteroskedasticity. The between component, which can directly

be compared to the covariance term in the first row of Table 4, decreases by 1.7% (with a standard error of

.45%), while the effect of the within component is insignificantly positive at .7% (with a standard error of .7%).
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6.2 Dynamic effects: endogenous mobility and state dependence

While the cross-sectional variance decomposition of log-earnings and the reallocation exercise

give comparable results as in the static case, the estimates of our dynamic model challenge some

assumptions commonly made in empirical work, such as exogenous mobility and the absence

of state dependence in firm effects. Moreover, these findings based on an empirical model

with worker and firm heterogeneity are suggestive of theoretical mechanisms that have been

emphasized in the structural literature.

Table 5: Transition probabilities (×100) by conditional decile of previous earnings

All

All movers k′ = 1− 3 k′ = 4− 7 k′ = 8− 10

k = 1− 3 2.2
(.03)

.8
(.02)

1.1
(.03)

.3
(.02)

k = 4− 7 1.9
(.03)

.4
(.02)

1.0
(.02)

.5
(.01)

k = 8− 10 2.8
(.05)

.5
(.06)

1.0
(.03)

1.4
(.02)

First conditional decile of earnings

All movers k′ = 1− 3 k′ = 4− 7 k′ = 8− 10

k = 1− 3 3.3
(.22)

1.4
(.09)

1.5
(.13)

.4
(.05)

k = 4− 7 3.3
(.17)

.9
(.08)

1.7
(.09)

.7
(.04)

k = 8− 10 5.0
(.29)

.9
(.16)

1.8
(.13)

2.2
(.12)

Tenth conditional decile of earnings

All movers k′ = 1− 3 k′ = 4− 7 k′ = 8− 10

k = 1− 3 3.1
(.20)

1.0
(.08)

1.6
(.13)

.5
(.06)

k = 4− 7 1.9
(.10)

.4
(.04)

1.0
(.06)

.5
(.03)

k = 8− 10 2.0
(.13)

.3
(.06)

.7
(.06)

1.0
(.07)

Notes: Probability of moving, overall and by destination firm class k′, for each origin firm class. Top panel: all

workers. Middle and bottom panels: first and tenth decile of log-earnings Yi2 conditional on worker type αi and

current firm class ki2 = k. Dynamic model, 10, 000, 000 simulations. Standard errors based on the parametric

bootstrap (100 replications) in parentheses.
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Endogenous mobility. We start by computing the overall probability of a job move between

2002 and 2004 conditional on the firm class at origin, and the job move probability by firm

class at destination.48 In the top panel of Table 5 we show those numbers in the full sample,

while in the middle and bottom panels we select workers for whom the conditional earnings

rank in 2002, given firm class and worker type, is below .10 and above .90, respectively.49 In

the first column we see that while the overall 2002-2004 mobility rate lies between 2% and 3%

it is substantially higher for workers who had a low earnings realization in 2002. This suggests

the presence of endogenous mobility, in line with estimates in Abowd et al. (2015) and with

the predictions of wage posting models with match-specific heterogeneity (for example). In

contrast, high earnings realizations do not seem to strongly affect mobility. Lastly, results by

firm class at destination do not seem to vary much with earnings realizations, which is in line

with the small estimates of ξ2(k
′) in Table 3.

State dependence. We next document the dynamics of earnings after a job move. For this,

we decompose the within-worker-type variances of log-earnings of job movers in 2004 and 200550

and compare, within type, the earnings effect of the current firm class to the effect of the past

firm class. Unlike most models (such as AKM and our static model), our dynamic model allows

past firm classes to affect earnings.51

In the first two rows of Table 6 we decompose the within-worker type variance of 2004 and

2005 log-earnings into three terms: a between-current firm class component (first column), a

within-current and between-past firm class component (second column), and a residual com-

ponent within both classes (third column). We find that, in the year after the move, the past

firm class contributes to .86% of the within-type variance. This is 10% of the contribution of

the current firm class. One year after (that is, in 2005) the contribution of the past firm class is

twice as small (.37%). This suggests that the contribution of state dependence is not negligible,

but tends to decrease over time.

48The joint distribution of firm classes upon job mobility is shown in Figure E6 in Appendix E.
49We compute probabilities of job mobility by simulation, drawing earnings for movers and stayers according

to the model and weighting movers and stayers according to their empirical frequencies, see Supplementary

Appendix S2. Note that the bootstrap procedure that we use to compute standard errors holds the links

between firms and workers fixed across replications. To account for variability in the links we also computed

bootstrap standard errors where we resampled individual sequences of firm indicators independently. We found

qualitatively similar, albeit slightly larger standard errors compared to Table 5.
50Within-type variances amount to about 40% of the overall variances.
51In fact, our model also allows the future firm class to affect earnings before the move (in 2001 and 2002).

However, those effects are empirically very small, in line with our estimates of the parameters ξ2(k′) in Table 3.
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Table 6: Decomposition of the within-worker-type variance of log-earnings (×100) implied by

the dynamic model

Within type

year within current firm

between current firm between past firm residual

2004 8.6
(.87)

.86
(.46)

90.6
(1.2)

2005 10.0
(1.0)

.37
(.21)

89.6
(1.2)

Within type and past firm

total network effect state dependence

2004 2.6
(.76)

.87
(.13)

1.7
(.68)

2005 2.0
(.51)

1.0
(.15)

1.0
(.40)

Notes: All numbers are in percentage of the within-type variance of log-earnings. Job movers between 2002

and 2004 only. Bottom panel: “network effect” and “state dependence” effects are defined in the text. Dy-

namic model, 1, 000, 000 simulations. Standard errors based on the parametric bootstrap (100 replications) in

parentheses.

To better understand the relevance of state dependence effects we perform a last decompo-

sition. In our dynamic model there are two reasons why the earnings of a worker of a given type

may depend on the firm where she previously worked. First, working in a particular firm may

make her more likely to move to particular firms. This network effect is also present in AKM

and our static model. In fact, in those models mobility can depend in an unrestricted way on

all firms where the worker ever worked or will work. In addition, in our dynamic model the past

firm can have a direct effect on the worker’s earnings after a job move. This state dependence

effect, which is represented by the coefficients ξ3(k
′), is absent from AKM and our static model.

Both effects are theoretically well-grounded. Consider as an example the sequential bargaining

model of Postel-Vinay and Robin (2002), where firms are characterized by their productivities.

Due to the process of offers and counter-offers, workers tend to work in similarly productive

firms over time (network effect). Moreover, a worker coming from a more productive firm is

able to extract a higher share of the surplus from the poaching firm, compared to a worker

40



coming from a less productive firm (state dependence).

To study those effects, we focus on 2004 and 2005 log-earnings of job movers; that is, after

the job move. We compute the following counterfactual variance where we shut down the effect

of state dependence (omitting the conditioning on worker types for simplicity):

Varnetw (Yi3) = Var
(
E
[
E(Yi3 | ki3)

∣∣ ki2] ).
In Varnetw (Yi3), the dependence on the past firm class ki2 only reflects the dependence of ki3

on ki2; that is, the network effect associated to mobility across classes being non-random.

Hence, in a static model Varnetw (Yi3) would be identical to the between-ki2 variance of Yi3.

In our dynamic model, the difference between the two reflects the degree of state dependence

by which the earnings of a worker of a certain type in a current firm class are affected by the

past firm class. The results in the last two rows of Table 6 show that, in the year 2004 after

a job move, the total effect of the past firm amounts 2.6% of the within-type variance. One

third of it is due to the network effect, while two thirds reflect state dependence. In 2005,

the relative contribution of state dependence is smaller. Those findings should be of interest

for the modeling of mobility and earnings since they show that, at least in the short run,

state dependence is of a similar order of magnitude (in fact, larger) compared to the network

effect, although standard static empirical models rule out the former and leave the latter fully

unrestricted.

7 Conclusion

In this paper we propose a framework to allow for two-sided unobserved heterogeneity in

matched employer employee data sets. We introduce empirical models which allow for worker-

firm interactions and dynamics, hence for mechanisms that have been emphasized in theoretical

work. We provide conditions for identification in short panels, and develop estimators for finite

mixtures and regression specifications.

Our application to Swedish administrative data shows that an additive model provides a

good first-order approximation to the variance structure of log-earnings, while at the same time

showing a strong association between worker and firm heterogeneity and a small relative con-

tribution of firms to earnings dispersion. The magnitudes we find differ from many estimates of

variance components in the literature. A recent paper by Borovickova and Shimer (2017) pro-

poses a different measure of sorting and also finds a strong worker-firm association on Austrian

data. Another recent paper by Lentz et al. (2017) uses an estimator related to ours to study

wages and mobility using Danish administrative data while accounting for unemployment.

41



Our results show complementarities between lower-type workers and firm heterogeneity.

Although they do not have large effects on the variance structure of log-earnings, these nonlin-

earities matter to quantify the impact of worker reallocations on the mean and other features

of the distribution. Using our dynamic model we also find that endogenous mobility, by which

earnings shocks affect mobility decisions, and state dependence, by which past firms have a

direct impact on earnings after a job move, are features of our data. These findings support

mechanisms that have been emphasized in the structural literature. At the same time, our es-

timates call for theoretical models that, unlike standard sorting models where complementaries

between agents drive the nature of the allocation, can rationalize the presence of a relatively

small firm effect and a strong association between worker and firm heterogeneity.

Our two-step estimation approach preserves parsimony by reducing the dimension of firm

heterogeneity to a smaller number of classes, and modeling the conditional distributions of

worker types. We show this strategy is helpful in alleviating small-sample biases arising from

low mobility rates. In companion work (Bonhomme et al., 2017) we further study the theoretical

properties of approaches based on an initial clustering step, viewing discrete estimation as an

approximation to individual or firm heterogeneity.

Two-step estimation could be useful in structural settings too, where joint estimation of the

distribution of two-sided heterogeneity and the structural parameters may be computationally

prohibitive. An attractive feature is that the classification does not rely on the entire model’s

structure, solely on the fact that unobserved firm heterogeneity operates at the class level. Our

identification results could also prove useful for structural work on workers and firms. In this

light, an interesting extension of our results would be to allow for time-varying processes of

worker types that could vary in response to firm-level shocks.

Lastly, this paper proposes a portable methodology for empirical work. Our methods may

reveal interesting patterns of sorting and complementarities in other studies of workers and

firms, including in relatively small samples such as a particular occupation or a short period of

time (e.g., around a recession), where dimension reduction is likely to be particularly helpful.

More generally, we expect our methods to be useful in other settings involving matched panel

data, for example in economics of education, urban economics, or finance.
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APPENDIX

A Proofs

Proof of Theorem 1. Let k ∈ {1, ...,K}, and let (k1, ..., kR), (k̃1, ..., k̃R) as in Assumption 3, with

k1 = k. From (7) we have, considering workers who move from kr to k̃r′ for some r ∈ {1, ..., R} and

r′ ∈ {r − 1, r}:

Pr
[
Yi1 ≤ y1, Yi2 ≤ y2 | ki1 = kr, ki2 = k̃r′ ,mi1 = 1

]
=

L∑
α=1

p
kr,k̃r′

(α)Fkr,α(y1)F
m
k̃r′ ,α

(y2). (A1)

Consider sets of M values for y1 and y2 that satisfy Assumption 3 ii). Note that one can augment

those sets with a finite number of other values, including +∞, while preserving the rank condition in

Assumption 3 ii). Writing (A1) in matrix notation we obtain:

A(kr, k̃r′) = F (kr)D(kr, k̃r′)F
m(k̃r′)

ᵀ, (A2)

where A(kr, k̃r′) is M ×M with generic element:

Pr
[
Yi1 ≤ y1, Yi2 ≤ y2 | ki1 = kr, ki2 = k̃r′ ,mi1 = 1

]
,

F (kr) is M ×L with element Fkr,α(y1), F
m(k̃r′) is M ×L with element Fm

k̃r′ ,α
(y2), D(kr, k̃r′) is L×L

diagonal with element p
kr,k̃r′

(α), and Aᵀ denotes the transpose of matrix A.

Note that A(kr, k̃r′) has rank L by Assumption 3 ii). Consider a singular value decomposition of

A(k1, k̃1):

A(k1, k̃1) = F (k1)D(k1, k̃1)F
m(k̃1)

ᵀ = USV ᵀ,

where S is L× L diagonal and non-singular, and U and V have orthonormal columns. We define the

following matrices:

B(kr, k̃r′) = S−
1
2UᵀA(kr, k̃r′)V

ᵀS−
1
2 ,

Q(kr) = S−
1
2UᵀF (kr).

B(kr, k̃r′) and Q(kr) are non-singular by Assumption 3 ii). Moreover, we have, for all r ∈ {1, ..., R}:

B(kr, k̃r)B(kr+1, k̃r)
−1 = S−

1
2UᵀA(kr, k̃r)V

ᵀS−
1
2

(
S−

1
2UᵀA(kr+1, k̃r)V

ᵀS−
1
2

)−1
= S−

1
2UᵀF (kr)D(kr, k̃r)

(
S−

1
2UᵀF (kr+1)D(kr+1, k̃r)

)−1
= Q(kr)D(kr, k̃r)D(kr+1, k̃r)

−1Q(kr+1)
−1.

Let Er = B(kr, k̃r)B(kr+1, k̃r)
−1. We thus have:

E1E2...ER = Q(k1)D(k1, k̃1)D(k2, k̃1)
−1...D(kR, k̃R)D(k1, k̃R)−1Q(k1)

−1.
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The eigenvalues of this matrix are all distinct by Assumption 3 i), so Q(k1) = Q(k) is identified up to

right-multiplication by a diagonal matrix and permutation of its columns.

Now, note that F (k) = UUᵀF (k), so:

F (k) = US
1
2Q(k)

is identified up to right-multiplication by a diagonal matrix and permutation of its columns. Hence

Fkα(y1)λα is identified up to a choice of labeling, where λα 6= 0 is a scale factor. As pointed out above,

without loss of generality we can assume that the set of y1 values contains y1 = +∞. This implies

that λα is identified, so Fkα(y1) is identified up to labeling. As a result, Fk,σ(α)(y1) is identified for

some permutation σ : {1, ..., L} → {1, ..., L}. To identify Fk,σ(α) at a point y different from the grid of

M values considered so far, simply augment the set of values with y as an additional value, and apply

the above arguments.

Let now k′ 6= k, and let (k1, ..., kR), (k̃1, ..., k̃R), be an alternating cycle such that k1 = k and

k′ = kr for some r, by Assumption 3 i). We have:

A(k, k̃1) = F (k)D(k, k̃1)F
m(k̃1)

ᵀ.

As Fk,σ(α) is identified and F (k) has rank L:

p
k,k̃1

(σ(α))Fm
k̃1,σ(α)

(y2)

is identified, so by taking y2 = +∞, both p
k,k̃1

(σ(α)) and Fm
k̃1,σ(α)

are identified. Next we have:

A(k2, k̃1) = F (k2)D(k2, k̃1)F
m(k̃1)

ᵀ,

so, using similar arguments, p
k2,k̃1

(σ(α)) and F
k̃2,σ(α)

are identified. By induction, p
kr,k̃r′

(σ(α)),

Fkr,σ(α), and Fm
k̃r′ ,σ(α)

are identified for all r and r′ ∈ {r − 1, r}. As k′ = kr, it follows that Fk′,σ(α)

are identified. Moreover, for each k′ (possibly equal to k), using an alternating cycle as in the second

part of Assumption 3 i) we obtain by a similar argument that Fmk′,σ(α) is identified.

Lastly, let (k, k′) ∈ {1, ...,K}2. Then, from:

A(k, k′) = F (k)D(k, k′)Fm(k′)ᵀ,

and, from the fact that Fk,σ(α) and Fmk′,σ(α) are both identified, and that F (k) and Fm(k′) have rank

L by Assumption 3 ii), it follows that pkk′(σ(α)) is identified.

Proof of Corollary 1. By Theorem 1 there exists a permutation σ : {1, ..., L} → {1, ..., L} such

that Fk,σ(α) is identified for all k, α. Now we have, writing (8) for the L worker types and M values of

y1 given by Assumption 3 ii) in matrix form:

H(k) = F (k)P (k),
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where H(k) has generic element Pr [Yi1 ≤ y1 | ki1 = k], the L × 1 vector P (k) has generic element

qk(σ(α)), and the columns of F (k) have been ordered with respect to σ. By Assumption 3 ii), F (k)

has rank L, from which it follows that:

P (k) = [F (k)ᵀF (k)]−1 F (k)ᵀH(k)

is identified. So qk(σ(α)) is identified.

Proof of Corollary 2. We start by listing the required assumptions.

Definition A1. An augmented alternating cycle of length R is a pair of sequences of firm classes and

log-earnings values (k1, y1, ..., kR, yR) and (k̃1, ỹ1, ..., k̃R, ỹR), with kR+1 = k1 and yR+1 = y1, such that

p
yr,ỹr,kr,k̃r

(α) 6= 0 and p
yr+1,ỹr,kr+1,k̃r

(α) 6= 0 for all r in {1, ..., R} and α in {1, ..., L}.

Assumption A1. (mixture model, dynamic)

i) For any two firm classes k 6= k′ in {1, ...,K} and any two log-earnings values y 6= y′, there exists an

augmented alternating cycle (k1, y1, ..., kR, yR) and (k̃1, ỹ1, ..., k̃R, ỹR), such that (k1, y1) = (k, y), and

(kr, yr) = (k′, y′) for some r, and such that the scalars a(1), ..., a(L) are all distinct, where:

a(α) =
p
y1,ỹ1,k1,k̃1

(α)p
y2,ỹ2,k2,k̃2

(α)...p
yR,ỹR,kR,k̃R

(α)

p
y2,ỹ1,k2,k̃1

(α)p
y3,ỹ2,k3,k̃2

(α)...p
y1,ỹR,k1,k̃R

(α)
.

In addition, for all k, k′ and y, y′, possibly equal, there exists an augmented alternating cycle (k′1, y
′
1, ..., k

′
R, y

′
R),

(k̃′1, ỹ
′
1, ..., k̃

′
R, ỹ

′
R), such that k′1 = k, y′1 = y, and k̃′r = k′, ỹ′r = y′ for some r.

ii) There exist finite sets of M values for y1 and y4 such that, for all r in {1, ..., R}, the matrices

A(yr, ỹr, kr, k̃r) and A(yr, ỹr+1, kr, k̃r+1) have rank L, where:

A(y, y′, k, k′) =
{

Pr
[
Yi1 ≤ y1, Yi4 ≤ y4 |Yi2 = y, Yi3 = y′, ki2 = k, ki3 = k′,mi2 = 1

]}
(y1,y4)

.

We are now in position to prove Corollary 2.

Part (i) is a direct application of Theorem 1, under Assumption A1.

For part (ii) we have, from (10):

Pr [Yi1 ≤ y1 |Yi2 = y2, ki1 = ki2 = k,mi1 = 0] =

L∑
α=1

Gfy2,kα(y1)πy2,k(α),

where:

πy2,k(α) =
qk(α)fkα(y2)∑L
α̃=1 qk(α̃)fkα̃(y2)

are the posterior probabilities of worker types given Yi2 = y2, ki2 = k, and mi1 = 0, with fkα denoting

the density of log-earnings given αi = α, ki2 = k, and mi1 = 0, and qk(α) denoting the proportion of

workers of type α with ki2 = k and mi1 = 0.
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Given the rank condition on the M ×L matrix with generic element Gfy2,kα(y1), which is identified

up to labeling of α, πy2,k(α) are thus identified up to the same labeling. Hence:

qk(α) = Pr [αi = α | ki2 = k,mi1 = 0] = E [πYi2,k(α) | ki2 = k,mi1 = 0]

is also identified up to labeling. By Bayes’ rule, the second period’s log-earnings cdf:

Fkα(y2) = Pr [Yi2 ≤ y2 |αi = α, ki2 = k,mi1 = 0] = E
[
πYi2,k(α)

qk(α)
1{Yi2 ≤ y2}

∣∣∣∣ ki2 = k,mi1 = 0

]
is thus also identified up to labeling. Similarly, the log-earnings cdfs in all other periods can be uniquely

recovered up to labeling, the period-3 and period-4 ones by making use of the bivariate distribution

of (Yi3, Yi4). Transition probabilities associated with job change are identified as:

Pr
[
ki3 = k′ |αi = α, Yi2 = y2, ki2 = k,mi2 = 1

]
=

´
py2y3,kk′(α)qkk′(y2, y3)dy3∑K

k̃=1

´
p
y2y3,kk̃

(α)q
kk̃

(y2, y3)dy3
,

where qkk′(y2, y3) is defined by:

ˆ y

−∞
qkk′(y2, y3)dy3 = Pr

[
Yi3 ≤ y, ki3 = k′ |Yi2 = y2, ki2 = k,mi2 = 1

]
.

Finally, note that qk(α) and fkα are conditional on the worker not moving between periods 1 and

2 (i.e., mi1 = 0). One could also recover unconditional probabilities by also using job movers in the

first periods (mi1 = 1), although we do not provide details here.

B Consistency of firm classification and asymptotic dis-

tribution of parameter estimates

Firm classification. We consider a setting where the model is well-specified and there exists a

partition of the J firms into K classes in the population. We focus on an asymptotic sequence where

the number of firms J may grow with the number of workers N and the numbers of workers per firm

nj . We make the following assumptions, where µ is a discrete measure on {y1, ..., yD}, k0(j) denote

firm classes in the population, H0
k denote the population class-specific cdfs, and ‖H‖2 =

∑D
d=1H(yd)

2.

Assumption B2. (clustering)

(i) Yi1 are independent across workers and firms.

(ii) For all k ∈ {1, ...,K}, plimJ→∞
1
J

∑J
j=1 1{k0(j) = k} > 0.

(iii) For all k 6= k′ in {1, ...,K},
∥∥H0

k −H0
k′

∥∥ > 0.

(iv) Let n = minj=1,...,J nj. There exists δ > 0 such that J/nδ → 0 as n tends to infinity.
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Assumption B2 (i) could be relaxed to allow for weak dependence both across and within firms, in

the spirit of the analysis of Bonhomme and Manresa (2015) who analyzed panel data on individuals

over time as opposed to workers within firms. Parts B2 (ii) and (iii) require that the clusters be large

and well-separated in the population. Assumption B2 (iv) allows for asymptotic sequences where the

number of workers per firm grows polynomially more slowly than the number of firms.52

Verifying the assumptions of Theorems 1 and 2 in Bonhomme and Manresa (2015), we now show

that the estimated firm classes, k̂(j), converge uniformly to the population classes up to an arbitrary

labeling. As a result, we obtain that the asymptotic distribution of the log-earnings cdf Ĥk coincides

with that of the empirical cdf of log-earnings in the population class k (that is, the true one).53

Proposition B1. Let Assumption B2 hold. Then, up to labeling of the classes k:

(i) Pr
(
k̂(j) 6= k0(j) for some j ≤ J

)
= o(1).

(ii) For all y,
√
Nk

(
Ĥk(y)−H0

k(y)
)

d→ N
(
0, H0

k(y)
(
1−H0

k(y)
))

, where Nk is the number of

workers in firms of class k; that is: Nk =
∑N

i=1 1
{
k0(ji1) = k

}
.

Proof. Note that (12) is equivalent to the following weighted k-means problem:

min
k(1),...,k(J),H1,..,HK

N∑
i=1

ˆ (
1{Yi1 ≤ y1} −Hk(ji1) (y1)

)2
dµ(y1).

We now verify Assumptions 1 and 2 in Bonhomme and Manresa (2015). Note that their setup allows

for unbalanced structures (that is, different nj across j) provided the assumptions are formulated

in terms of the minimum firm size in the sample: n = minj nj . Their Assumptions 1a and 1c are

satisfied because 1{Yi1 ≤ y1} is bounded. Assumptions 1d, 1e, and 1f hold because of Assumption

B2 (i). Assumptions 2a and 2b hold by Assumptions B2 (ii) and (iii). Finally, Assumptions 2c and

2d are also satisfied by Assumption B2 (i) and boundedness of 1{Yi1 ≤ y1}. Theorems 1 and 2 in

Bonhomme and Manresa (2015) and Assumption B2 (iv) then imply the result.

Parameter estimates. We next consider second-step estimation of parameters. In the static

model the likelihood function of log-earnings Yi conditional on mobility mi, firm indicators ji1, ji2,

and population firm classes k0(j), takes the form:

f
(
Y1, ..., YN |m1, ...,mN , j11, j12..., jN1, jN2, k

0(1), ..., k0(J); θ
)

=
N∏
i=1

f
(
Yi |mi, k

0(ji1), k
0(ji2); θ

)
,

where θ is a finite-dimensional vector of parameters with population value θ0. Conditional indepen-

dence follows from the assumption that worker types and idiosyncratic shocks to log-earnings are

52Note that while it imposes conditions on the rate of growth of the minimum firm size, this condition allows

some firms to asymptotically represent a non-vanishing fraction of the sample.
53While here we prove a pointwise result for Ĥk the equivalence also holds uniformly in y.
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independent across workers, conditionally on firm classes and mobility indicators. The likelihood

function takes a similar form in the dynamic model.

Let us define the following infeasible parameter estimate:

θ̃ = argmax
θ

N∑
i=1

ln f
(
Yi |mi, k

0(ji1), k
0(ji2); θ

)
.

Assumption B3. (infeasible estimator)

There is a positive-definite matrix V such that, as N tends to infinity:

√
N
(
θ̃ − θ0

)
d→ N (0, V ).

Since θ̃ is a standard finite-dimensional maximum likelihood estimator, and observations are in-

dependent across individuals, Assumption B3 is not restrictive. Under correct specification V is the

inverse of the Hessian matrix.

Let now:

θ̂ = argmax
θ

N∑
i=1

ln f
(
Yi |mi, k̂(ji1), k̂(ji2); θ

)
denote the second-step parameter estimate given the estimated firm classes. The following result

shows that θ̂ and θ̃ have the same asymptotic distribution. In practice this means that, under those

assumptions, one can treat the estimated firm classes as known when computing standard errors of

estimators based on them.

Proposition B2. Let Assumptions B2 and B3 hold. Then, as N tends to infinity:

√
N
(
θ̂ − θ0

)
d→ N (0, V ).

Proof. This is immediate since:

Pr
(√

N
(
θ̂ − θ0

)
6=
√
N
(
θ̃ − θ0

))
≤ Pr

(
k̂(j) 6= k0(j) for some j ≤ J

)
,

which is o(1) by Proposition B1. See Hahn and Moon (2010) for a similar argument.

Under Proposition B2, asymptotically valid confidence intervals for θ0 (or smooth functions of θ0

such as variance components) can be obtained using analytical methods or the parametric bootstrap,

without the need to account for the uncertainty arising from the classification. However, in our

experience estimating classes tends to add finite sample noise to the parameter estimates. As an

attempt to account for this finite sample variability we re-classify firms into classes in each bootstrap

replication.

Lastly, here we have provided a result for a maximum likelihood estimator. Our estimator is

slightly different since it is based on a sequential approach: estimating first some parameters using

job movers only, and then estimating other parameters using job stayers. Asymptotic equivalence still

goes through in this case, although the analytical form of the matrix V is different.
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C Estimation on data from a theoretical model

In this section we consider a variation of the model of Shimer and Smith (2000) with on-the-job search.

Relative to the main text we modify some of the notation, in order to be closer to the original paper.

Environment. The economy is composed of a uniform measure of workers indexed by x with

unit mass and a uniform measure of jobs indexed by y with mass V̄ . A match (x, y) produces output

f(x, y) and separates exogenously at rate δ. Workers are employed or unemployed. We denote u(x)

the measure of unemployed, h(x, y) the measure of matches, and v(y) the measure of vacancies. We

let U =
´
u(x)dx the mass of unemployed, and V =

´
v(y)dy the mass of vacancies. Unemployed

workers meet vacancies at rate λ0, and employed workers meet vacancies at rate λ1. Vacancies meet

unemployed workers at rate µ0, and employed workers at rate µ1. A firm cannot advertise for a job

that is currently filled. Unemployed workers collect benefits b(x), and vacancies have to pay a flow

cost c(y).

Timing. Each period is divided into four stages. In stage one, active matches collect output and

pay wages. In stage two, active matches exogenously separate with probability δ. In stage three vacant

jobs can advertise and all workers can search. In stage four workers and vacant jobs meet randomly

and, upon meeting, the worker and the firm must decide whether or not to match based on expected

surplus generated by the match. The wage is set by Nash bargaining, where α is the bargaining power

of the worker. We assume that wages are continuously renegotiated with the value of unemployment;

see Shimer (2006) for a discussion. Since workers and firms can search in the same period as job losses

occur, it is convenient to introduce within-period distributions:

v1/2(y) :=
δ + (1− δ)v(y)

δ + (1− δ)V
, u1/2(x) :=

δ + (1− δ)u(x)

δ + (1− δ)U
, h1/2(x, y) :=

h(x, y)

1− U
,

where each distribution integrates to one by construction.

Value functions. We then write down the value functions for this model. Let S(x, y) be the

surplus of the match, W0(x) the value of unemployment, and Π0(y) the value of a vacancy. We have:

rW0(x) = (1 + r)b(x) + λ0

ˆ
M(x, y)αS(x, y)v1/2(y)dy, (BE-W0)

and:

rΠ0(y) = µ0

ˆ
M(x, y)(1− α)S(x, y)u1/2(x)dx+ µ1

ˆˆ
P (x, y′, y)(1− α)S(x, y)h1/2(x, y

′)dy′dx,

(BE-P0)

whereM(x, y) := 1{S(x, y) ≥ 0} is the matching decision, and P (x, y′, y) is one when S(x, y) > S(x, y′)

(that is, when y is preferred to y′ by x), zero when S(x, y) < S(x, y′), and 1/2 when S(x, y) = S(x, y′).
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We write the Bellman equation for a job y that currently employs a worker x at wage w:

(r + δ)Π1(x, y, w) = (1 + r) [f(x, y)− w + δ (Π0(y) + c(y))]

− (1− δ)λ1q(x, y)(1− α)S(x, y),

where q(x, y) =
´
P (x, y, y′)v1/2(y

′)dy′ represents the total proportion of firms y′ that can poach a

worker x from firm y. We then turn to the Bellman equation for the employed worker:

(r + δ)W1(x, y, w) = (1 + r) [w + δ (W0(x)− b(x))]

+ (1− δ)λ1
ˆ
P (x, y, y′)(αS(x, y′)− αS(x, y))v1/2(y

′)dy′.

(BE-W1)

Finally, we derive the value of the surplus associated with the match (x, y), defined by S := W1 +

Π1 −W0 −Π0:

(r + δ)S(x, y) = (1 + r) [f(x, y)− δ (b(x)− c(y))]− r(1− δ) (Π0(y) +W0(x))

+ (1− δ)λ1
ˆ
P (x, y, y′)(αS(x, y′)− S(x, y))v1/2(y

′)dy′. (BE-S)

Flow equations. Lastly we write the flow equation for the joint distribution of matches at the

beginning of the period:(
δ + (1− δ)λ1q(x, y)

)
h(x, y) = λ0 (δ + (1− δ)U)u1/2(x)v1/2(y)M(x, y)

+ λ1(1− δ)(1− U)

ˆ
P (x, y′, y)h1/2(x, y

′)dy′v1/2(y),

(EQ-H)

where:

µ0 (δ + (1− δ)V ) = λ0 (δ + (1− δ)U) , and µ1 (δ + (1− δ)V ) = λ1(1− δ)(1− U), (MC-S)

are the total number of matches coming out of unemployment and coming from on-the-job transitions,

respectively. The market clearing conditions on the labor market are given by:

ˆ
h(x, y)dx+ v(y) = V̄ , and

ˆ
h(x, y)dy + u(x) = 1. (MC-L)

Equilibrium. For a set of primitives δ, λ0, λ1, f(x, y), b(x), c(y), α, the stationary equilibrium

is characterized by the values S(x, y),W0(x),Π0(y) and the measure of matches h(x, y) such that

i) Bellman equations (BE-W0), (BE-P0) and (BE-S) are satisfied, ii) h satisfies the flow equation

(EQ-H), and iii) the constraints (MC-S) and (MC-L) hold.

56



Wages. We then derive the wage function using equation (BE-W1) and using that Nash bargaining

gives W1(x, y, w(x, y)) = αS(x, y) +W0(x):

(1+r)w(x, y) = (r+δ)αS(x, y)+(1−δ)rW0(x)−(1−δ)λ1
ˆ
P (x, y, y′)(αS(x, y′)−αS(x, y))v1/2(y

′)dy′.

Mapping to our framework. From there we can recover our static model’s cross-sectional

worker type proportions conditional on firm heterogeneity (qk(α) in the body of the paper):

qy(x) =
h(x, y)

1− v(y)
,

and the type proportions for job movers (pk′k(α) in the main text), which are given by:

pyy′(x) =

(
δλ0 + (1− δ)λ11{S(x, y′) > S(x, y)}

)
h(x, y)M(x, y′)´ (

δλ0 + (1− δ)λ11{S(x̃, y′) > S(x̃, y)}
)
h(x̃, y)M(x̃, y′)dx̃

.

Lastly, we assume that the wage is measured with a multiplicative independent measurement error:

w̃ = w(x, y) exp(ε),

from which we can derive the marginal log-wage distributions (Fkα in the main text).

Without on-the-job search (λ1 = µ1 = 0). Let us consider the case without on-the-job

search. Equation (EQ-H) gives:

δh(x, y) = λ0 (δ + (1− δ)U)u1/2(x)v1/2(y)M(x, y).

Hence:

pyy′(x) =
M(x, y)M(x, y′)u1/2(x)´
M(x̃, y)M(x̃, y′)u1/2(x̃)dx̃

. (PX-YY’)

These probabilities are symmetric in (y, y′). In the context of Theorem 1 this means that Assumption

3 i) is not satisfied, as a(α) = 1 for all α. This is the setup considered in Shimer and Smith (2000).

Symmetry occurs because, in that case, all job changes are associated with an intermediate unem-

ployment spell, where all information about the previous firm disappears. Empirically the majority

of job changes occur via job-to-job transitions. Moreover, in Figure E4 we find evidence against the

particular symmetry of equation (PX-YY’).

Simulation and estimation. We pick two parameterizations of the model associated with

positive assortative matching (PAM) and negative assortative matching (NAM) in equilibrium. We

set b(x) = b = 0.3, c(y) = c = 0, and V̄ = 2. We solve the model at a yearly frequency, and we set

δ = 0.02, λ0 = 0.4 and λ1 = 0.1. The production function is CES:

f(x, y) = a+ (νxρ + (1− ν)yρ)1/ρ ,
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Figure C1: Model solutions: production, surplus and allocation

Production PAM

xy

Surplus PAM

xy

Allocation PAM

xy

Production NAM

xy

Surplus NAM

xy

Allocation NAM

xy

Notes: The graphs show the model solution in terms of production f(x, y), surplus S(x, y), and allocation h(x, y).

Positive assortative matching (top panel), and negative assortative matching (bottom panel).

where we set ν = 0.5 and a = 0.7. The relative variance of measurement error is set to 10%. Finally

we consider ρ = −3 (PAM) and ρ = 3 (NAM).

We simulate a sample of 500,000 individuals working in 5,000 firms, in an economy with K = 10

firm classes and L = 6 worker types. In Figure C1 we plot the model solutions, in terms of production,

surplus, and allocation. On the left graph of Figure C2 we show means and quantiles of log wages in

the simulated samples. We see that, while mean log wages are monotonic in firm productivity under

PAM they are non-monotonic under NAM. However, as we will see, there is sufficient variation in

wage distributions to separate firm classes. On the middle graph of Figure C2 we report the wage

functions for the different worker types. We see clear differences between PAM and NAM. Lastly, on

the right graph we show the wage functions as estimated by our static model. In estimation we use

the same procedure as on the Swedish data, with K = 10 and L = 6. In particular, firm classes are

estimated using k-means clustering on empirical cdfs of log wages evaluated at 20 grid points. The

estimates seem to capture nonlinearities in log wages remarkably well.54

54Note that the ordering of firm classes on the x-axis is arbitrary, since the ranking of firms in terms of

productivity (that is, y) is not identified using wage information only. However the variance decompositions
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Figure C2: True and estimated wage functions, and quantiles of log wages in a sample simulated

according to the theoretical model

Quantiles of log wages (PAM) Log wages (PAM, true) Log wages (PAM, estimated)
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Notes: The left graphs show deciles of log wages (with measurement error) by firm class. The thick lines

correspond to mean log wages. The middle graphs show log wages (without measurement error), by worker type

and firm class. The right graphs show estimates from our static model. Positive assortative matching (top

panel), and negative assortative matching (bottom panel).

On the first four rows of Table C1 we next report the results of variance decompositions on the

samples generated according to the theoretical model, and based on estimates from our static model.

We see that the decomposition is very well reproduced under both PAM and NAM. On the last four

rows we report the results of an exercise where we randomly reallocate workers to firms. We see that,

under PAM, the reallocation has a negative effect of mean log-earnings. This differs from the sign

of the reallocation we estimated on the Swedish data. Under NAM the mean effect is also negative,

though smaller. The results are again well reproduced by our static model.

Overall this set of results shows that our method is able to accurately recover the link between wages

and worker-firm heterogeneity in simulated economies that feature positive or negative assortative

matching.

and reallocation results we report below are not affected by this labeling indeterminacy.
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Table C1: Variance decomposition and reallocation exercise on a sample simulated according

to the theoretical model

Variance decomposition (×100)
V ar(α)

V ar(α+ψ)
V ar(ψ)

V ar(α+ψ)
2Cov(α,ψ)
V ar(α+ψ)

Corr(α, ψ) R2

PAM

True 78.8 5.5 15.6 37.5 81.9

Estimated 79.4 5.1 15.5 38.4 81.7

NAM

True 107.6 12.4 -20.1 -27.4 83.9

Estimated 106.3 10.9 -17.2 -25.3 84.2

Reallocation exercise (×100)

Mean Median 10%-quantile 90%-quantile Variance

PAM

True -1.1 -.7 -1.5 -1.2 -.1

Estimated -1.2 -.8 -1.6 -2.1 -.1

NAM

True -.5 -.5 -.3 -.7 .0

Estimated -.4 -.7 .3 -.8 .0

Notes: Variance decomposition and reallocation effects based on data generated from the theoretical sorting model

with positive (PAM) or negative (NAM) assortative matching. See notes to Table 2.

D Data

We use a match of four different databases from Friedrich et al. (2014) covering the entire working

age population in Sweden between 1997 and 2008. The Swedish data registry (ANST), which is

part of the register-based labor market statistics at Statistics Sweden (RAMS), provides information

about individuals, their employment, and their employers. This database is collected yearly from the

firm’s income statements. The other databases provide additional information on worker and firm

characteristics, as well as unemployment status of workers: LOUISE/LINDA contains information

on the workers, SBS provides accounting data and balance sheet information for all non-financial

corporations in Sweden, and the Unemployment Register contains spells of unemployment registered
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at the Public Employment Service.

The RAMS dataset allows constructing individual employment spells within a year, as it provides

the first and last remunerated month for each employee in a plant as well as firm and plant identifier.

We define firms through firm identifiers. We define the main employment of each individual in a year

as the one providing the highest earnings in that year. The main employer determines the employer

of a worker in a given year. RAMS provides pre-tax yearly earnings for each spell. We use the ratio

between total earnings at the main employer and the number of months employed as our measure of

monthly earnings. We compute real earnings in 2007 prices.

Sample selection. Following Friedrich et al. (2014) we perform a first sample selection by dropping

all financial corporations and some sectors such as fishery and agriculture, education, health and social

work. In addition, all workers from the public sector or self-employed are discarded. We focus on

workers employed in years 2002 and 2004. These two years correspond to periods 1 and 2 in the static

model. We restrict the sample to males. We choose not to include female workers in the analysis in

order to avoid dealing with gender differences in labor supply, since we do not have information on

hours worked. We keep firms which have at least one worker who is fully employed in both 2002 and

2004 (“continuing firms”), where fully employed workers are those employed in all twelve months in

a year in one firm. From this 2002-2004 sample we define the sub-sample of movers as workers whose

firm identifier changes between 2002 and 2004.55

Restricting workers to be fully employed in 2002 and 2004, and firms to be present in both periods,

is not innocuous, and we will see that this results in a substantial reduction of the number of workers

whose firm identifier changes in the course of 2003. The reason for this conservative sample selection

is that we want to capture, as closely as possible, individual job moves between existing firms. In

particular, a firm may appear in only one period because of a merger or acquisition, entry or exit, or

due to a re-definition of the firm identifier over time. Although we conduct robustness checks, in our

preferred specification we do not include these job moves as we do not think that they map naturally

to our model. For the dynamic model we consider a subsample that covers the years 2001 to 2005.

In addition to the criteria used to construct the 2002-2004 sample, we require that workers be fully

employed in the same firm in 2001 and 2002, and in 2004 and 2005.

Descriptive Statistics We now report descriptive statistics on the 2002-2004 and 2001-2005 sam-

ples, as well as on the subsamples of job movers. Figures can be found in Table E2. The 2002-2004

sample contains about 600,000 workers and 44,000 firms. Hence the average number of workers per

firm is 13.7. The mean firm size as reported by the firm is higher, 37.6, due to our sample selection

that focuses on fully employed male workers. In the 2001-2005 sample, the mean number of workers

55If a worker returns in 2004 to the firm he worked for in 2002 we do not consider this worker to be a mover.

This represents 4.3% of the 2002-2004 sample.
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and mean reported size are 12.3 and 37.1, respectively. The distribution of firm size is skewed, and me-

dians are smaller. At the same time, reported firm sizes in the subsamples of movers are substantially

higher.

Identification relies on workers moving between firms over time. In the 2002-2004 sample, the

mobility rate, which we define as the fraction of workers fully employed in 2002 and 2004 whose firm

identifiers are different in these two years, is 19557/599775 = 3.3%. In the 2001-2005 sample the rate

is 2.4%. These numbers are lower than the ones calculated by Skans et al. (2009), who document

between-plant mobility rates ranging between 4% and 6% between 1986 and 2000.56 To understand

how our sample selection influences the mobility rate, we have computed similar descriptive statistics

on the entire 2002-2004 sample, without imposing that workers are fully employed in 2002 and 2004

or that firms exist in the two periods, see Table S1 in Supplementary Appendix S4. Removing the

requirements of full-year employment in both 2002 and 2004 and continuously existing firms results

in a considerably less restrictive definition of mobility, as the mobility rate is 11.2% in this case.57

Although we prefer to focus on a more restrictive definition for estimation, as a robustness check we

have also estimated the models on this larger sample, finding comparable results.

The between-firm log-earnings variance represents 38.3% of total log-earnings variance in 2002.

This number is higher than the 31% percentage explained between plants in 2000, as reported by

Skans et al. (2009). However, despite growing steadily over the past decades, the between-firm (or

plant) component is still lower compared with other economies such as Germany, Brazil, or the US.

In Germany and Brazil, between components are closer to 50%, see Baumgarten and Lehwald (2014)

or Akerman et al. (2013), for example. In the US, Barth et al. (2014) report a between-establishment

log-earnings component of 46% to 49% in 1996-2007.

While differences across countries need to be interpreted cautiously due to differences in earnings

definition or data collection, lower levels of between-firm earnings dispersion in Sweden are often

attributed to historically highly unionized labor market and the presence of collective wage bargaining

agreements. In particular, after World War II the introduction of the so-called solidarity wage policy,

which had as guiding principle “equal pay for equal work”, significantly limited the capacity of firms to

differentially pay their employees. However, several reforms over the last two decades have contributed

to an increase in between-firm wage variation due to a more informal coordination in wage setting (see

Skans et al., 2009, and Akerman et al., 2013). It is important to keep these features of the Swedish

labor market in mind when interpreting our results.

Finally, comparing the first two columns (or the last two columns) of Table E2 shows that job

movers are on average younger and more educated than workers who remain in the same firm. They

56See their Figure 7.14. Skans et al. (2009) report the fraction of workers employed in plants with more than

25 employees in years t− 1 and t who changed plant between t− 1 and t.
57As a comparison, for Germany Fitzenberger and Garloff (2007) report yearly between-employers transition

rates of 7.5% in the period 1976 to 1996 for male workers.
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also tend to work more in service sectors as opposed to manufacturing. In the last row we also see that

firms with a non-zero fraction of job movers seem more productive, as their value added per worker is

higher. At the same time, characteristics of job movers and stayers show substantial overlap.

E Additional tables and figures

Figure E3: Event study in the Shimer-Smith model in the presence of complementarities

Wage functions Event study
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Notes: Sample generated according to the model of Shimer and Smith (2000), without on-the-job search. Param-

eter values imply positive assortative matching, see Appendix C for details on the model and simulation. Left:

log-wage functions for each worker type (y-axis), by firm class (x-axis). Right: log-wages of workers moving

between firms within classes 4 and 10 (solid), and moving between firms between classes 4 and 10 (dashed),

between periods 2 and 3.
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Table E2: Data description

years: 2002-2004 2002-2004 2001-2005 2001-2005

all movers all movers

number of workers 599,775 19,557 442,757 9,645

number of firms 43,826 7,557 36,928 4,248

number of firms ≥ 10 23,389 6,231 20,557 3,644

number of firms ≥ 50 4,338 2,563 3,951 1,757

mean firm reported size 37.59 132.33 39.67 184.77

median firm reported size 10 28 11 36

firm reported size for median worker 154 159 162 176

firm actual size for median worker 72 5 64 3

% high school drop out 20.6% 14% 21.5% 14.7%

% high school graduates 56.7% 57.3% 57% 59%

% some college 22.7% 28.7% 21.4% 26.3%

% workers younger than 30 16.8% 28% 13.9% 23.8%

% workers between 31 and 50 57.2% 59% 59.4% 62.1%

% workers older than 51 26% 13% 26.7% 14.2%

% workers in manufacturing 45.4% 35.1% 48.5% 40.4%

% workers in services 25.3% 33.7% 22.4% 27.8%

% workers in retail and trade 16.7% 20.3% 16.3% 20.8%

% workers in construction 12.6% 10.9% 12.8% 11%

mean log-earnings 10.18 10.17 10.19 10.17

variance of log-earnings 0.124 0.166 0.113 0.148

between-firm variance of log-earnings 0.0475 0.1026 0.0441 0.0947

mean log-value-added per worker 15.3 16.35 15.37 16.63

Notes: Swedish registry data. Males, fully employed in the same firm in 2002 and 2004 (columns 1 and 2), and

fully employed in the same firm in 2001-2002 and 2004-2005 (columns 3 and 4), continuously existing firms.

Figures for 2002. Mean log value added per worker reported for firms with positive value added (98.7% of firms

in the 2002-2004 sample).
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Table E3: Number of job movers between firm classes

firm class in period 2

1 2 3 4 5 6 7 8 9 10
fi
rm

cl
as

s
in

p
er

io
d

1

1 76 120 95 87 94 50 63 42 29 10

2 129 348 352 237 241 164 147 76 62 18

3 128 292 417 349 399 203 217 146 126 49

4 59 318 304 356 249 303 210 102 68 24

5 60 190 502 294 424 235 271 198 139 64

6 39 115 154 267 172 230 275 128 79 32

7 48 158 204 253 355 355 363 331 457 100

8 14 315 145 110 243 157 348 461 609 258

9 11 77 114 187 217 195 323 384 368 402

10 12 21 83 39 114 27 161 229 313 369

Notes: Males, fully employed in the same firm in 2002 and in 2004, continuously existing firms. Movers from

firm class in 2002 (vertical axis) to firm class in period 2.

Figure E4: Earnings of job movers
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Notes: Mean log-earnings over 2002 and 2004 of movers from firm class k to firm class k′ (x-axis), and of

movers from k′ to k (y-axis), where k < k′. The size of the dots is proportional to the number of job movers in

the cells.
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Figure E5: Fixed-effects and bias-corrected fixed-effects estimates of the variance of firm effects

when varying the number of job movers per firm
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Notes: The solid line with circles shows the variance of the firm fixed-effects estimates of Abowd et al. (1999),

in subsamples from the 2002-2004 Swedish sample. Each point on the x-axis corresponds to selecting out firms

which have less than 4 job movers, 5 movers, and so on. The solid line with triangles shows half-sample bias-

corrected estimates, see the text for a description. The dotted line shows our baseline estimate of the variance

of firm effects, scaled by the variance of the sample with at least 4 movers per firm. The number of movers per

firm in the whole sample is 0.45%, which would be outside the figure.
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Figure E6: Mobility across firm classes, dynamic model
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Notes: Joint probability of firm classes in 2002 (x-axis) and 2004 (y-axis) for job movers. The size of the dots

is proportional to the number of job movers in the cells. Dynamic model, 2001-2005.
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Supplementary Appendix to

“A Distributional Framework for Matched Employer Employee Data”

Stéphane Bonhomme, Thibaut Lamadon and Elena Manresa

S1 Complements to the main analysis

S1.1 Accounting for worker covariates

In order to account for time-invariant worker covariates Xi we modify (14) and maximize, in the last

estimation step:
N∑
i=1

K∑
k=1

1{k̂i1 = k} ln

(
L∑
α=1

qk,Xi
(α; θq)fkα(Yi1; θ̂f )

)
, (S1)

with respect to θq, where qkx(α; θq) denotes the proportion of type α workers in class k with covariate

x. In practice we use the EM algorithm to maximize (S1).

We estimate the proportions qkx(α) in (S1) by allowing them to depend on time-invariant worker

covariates Xi: education and age in the first period (9 categories). Given those probabilities we

simulate 1, 000, 000 observations from the model and run a linear regression of log-earnings on type

indicators, class indicators, and covariates indicators. The results of the variance decomposition are

shown on the third row of Table S5.

Note that this specification also allows us to distinguish sorting in terms of x from sorting in terms

of unobservables. For example, for all (k, α) we can write:

qk(α) =
∑
x

p(x)qkx(α) +
∑
x

(pk(x)− p(x)) qkx(α), (S2)

where p(x) = Pr(Xi = x), and pk(x) = Pr(Xi = x | ki1 = k). The first term on the right-hand side

of (S2) represents the type proportion in a counterfactual economy where covariates x are equally

distributed across firm classes. Hence the two terms on the right-hand side of (S2) reflect the contri-

bution of unobservables and observables, respectively, to differences in worker type composition across

firm classes.
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Lastly, note that it would be straightforward to also introduce observable characteristics in fkα,

fmkα, and pkk′(α) in (13), although we do not estimate such a specification in our application on short

panel data.

S1.2 Estimation of ρ4|3 and ρ1|2 in the dynamic model

Consider the dynamic model under the specification described in Subsection 4.2. Note that the

unconditional means of log-earnings of job stayers of type α in class k are: µ1kα+ρ1|2µ
s
2kα, µs2kα, µs3kα,

and µ4kα + ρ4|3µ
s
3kα, respectively. We make the following assumption, for all worker types α, α′ and

all firm classes k:

µs2kα′ − µs2kα = µ1kα′ + ρ1|2µ
s
2kα′ − (µ1kα + ρ1|2µ

s
2kα)

= µs3kα′ − µs3kα

= µ4kα′ + ρ4|3µ
s
3kα′ − (µ4kα + ρ4|3µ

s
3kα). (S3)

(S3) imposes that the effect of worker heterogeneity on mean log-earnings is constant over time within

firm. On the other hand it allows for unrestricted interactions between firm classes and time.

When (S3) holds, the persistence parameters ρ4|3 and ρ1|2 can be estimated using simple covariance

restrictions, as we now explain. The four periods’ log-earnings of a job stayer of type α in class k can

be written as:

Yi1 = c1k + (1− ρ1|2)µs2kα + ρ1|2Yi2 + νi1,

Yi2 = c2k + µs2kα + νi2,

Yi3 = c3k + µs2kα + νi3,

Yi4 = c4k + (1− ρ4|3)µs2kα + ρ4|3Yi3 + νi4,

where νi1 is independent of (νi2, νi3, νi4), νi4 is independent of (νi3, νi2, νi1), and (taking as reference

type α′ = 1): c1k = µ1k1 +ρ1|2µ
s
2k1−µs2k1, c2k = 0, c3k = µs3k1−µs2k1, and c4k = µ4k1 +ρ4|3µ

s
3k1−µs2k1.

The within-firm covariances between Yi1 and Yi2 − Yi3 and between Yi4 and Yi3 − Yi2 then deliver

consistent estimators under standard rank conditions. As an example the model implies the panel-IV

restriction Cov(Yi4, Yi3− Yi2 | k) = ρ4|3 Cov(Yi3, Yi3− Yi2 | k). Notice that here µs2kα plays the role of a

“fixed effect” within firm class k. In practice we combine those restrictions with all other covariance

restrictions, hence also estimating the within-firm variances of the ν’s and covariances of (νi2, νi3) (in
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particular the parameter ρs3|2). We estimate the parameters by minimum-distance with equal weights

within firm classes, weighting each firm class according to the number of firms in the class.

S1.3 Identification of log-earnings distributions: an example

Here we consider a setting where worker types and firm classes are ordered (e.g., by their productivity)

and there is strong positive assortative matching in the economy. Formally, we suppose that K = L,

that qk(α) 6= 0 if and only if |k−α| ≤ 1, and that pkk′(α) 6= 0 if and only if (|k−α| ≤ 1, |k′−α| ≤ 1).

Borrowing the notation from the proof of Theorem 1, we assume that all matrices F (k) and Fm(k′)

have full-column rank L, for all k, k′. We also assume that the required conditions on alternating

cycles are satisfied, in particular regarding the a(α) coefficients.

Then rankA(1, 1) = rankA(1, 2) = rankA(2, 1) = rankA(2, 2) = 2. It follows as in the proof

of Theorem 1 that (F11, F12), (F21, F22), (Fm11 , F
m
12), and (Fm21 , F

m
22), are identified up to a choice of

labeling.

Likewise, rankA(2, 2) = rankA(2, 3) = rankA(3, 2) = rankA(3, 3) = 3. It follows that, for some

(α1, α2, α3), (F2α1 , F2α2 , F2α3) and (F3α1 , F3α2 , F3α3) are identified, and similarly for the corresponding

Fm’s.

As F (2) has full column rank, one can pin down which one of the types (α1, α2, α3) are equal to

1 or 2. Without loss of generality, let α1 = 1 and α2 = 2. Set α3 = 3. Then (F21, F22, F23) and

(F31, F32, F33) are identified, and similarly for the corresponding Fm’s.

Continuing the argument we identify: (F11, F12), (Fm11 , F
m
12), (F12, F22, F32), (Fm12 , F

m
22 , F

m
32), and so

on, until (FK−1,K−2, FK−1,K−1, FK−1,K), (FmK−1,K−2, F
m
K−1,K−1, F

m
K−1,K), (FK,K−1, FKK), and finally

(FmK,K−1, F
m
KK).

The other Fkα’s are not identified. These correspond to the (k, α) combinations such that qk(α) =

0. In this example, without additional structure one cannot assess the earnings effects of randomly

allocating workers to jobs, for instance.

S1.4 Nonparametric identification for continuous worker types

Here we outline an extension where worker types αi are continuously distributed. We focus on the

static model, but similar arguments apply to the dynamic model. As in Hu and Schennach (2008) (HS

hereafter) we assume bounded joint and conditional densities. We have, by Assumption 1 and for all
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k, k′:

fkk′(y1, y2) =

ˆ
fkα(y1)f

m
k′α(y2)pkk′(α)dα, (S4)

where the f ’s are densities corresponding to the cdfs in (7). The structure of (S4) is closely related to

the one analyzed in HS. Indeed, Assumption 1 implies that Yi1 and Yi2 are independent conditional

on (αi, ki1, ki2,mi1 = 1). However, here independence holds between two outcomes only, while HS

assume conditional independence between three outcomes. Nevertheless, under conditions related to

those in HS, by relying in addition on the structure of workers’ movements between firms it is possible

to establish nonparametric identification using similar arguments as in the proof of Theorem 1.

To proceed with the identification argument let us define the following operators, in analogy with

HS:

Lkk′g(y1) =

ˆ
fkk′(y1, y2)g(y2)dy2,

Akh(y1) =

ˆ
fkα(y1)h(α)dα,

Bmk′g(α) =

ˆ
fmk′α(y2)g(y2)dy2,

Dkk′h(α) = pkk′(α)h(α).

In operator form, (S4) becomes:

Lkk′ = AkDkk′Bmk′ . (S5)

Consider an alternating cycle of length R = 2. Suppose that Ak are Bmk′ are injective, and that

pkk′(α) > 0, for all (k, k′) ∈ {k1, k2} × {k̃1, k̃2}. Lastly, suppose that, for all α 6= α′:

p
k1k̃1

(α)p
k2k̃2

(α)

p
k1k̃2

(α)p
k2k̃1

(α)
6=
p
k1k̃1

(α′)p
k2k̃2

(α′)

p
k1k̃2

(α′)p
k2k̃1

(α′)
. (S6)

A condition similar to (S6) arises in the analysis of Hu and Shum (2012). Operator injectivity is

related to completeness in the literature on nonparametric instrumental variables estimation. It is a

nonparametric analog of a rank condition. However, injectivity or completeness are high-level condi-

tions that may be difficult to test formally (Canay et al., 2013). With T = 2, injectivity requires αi

to be one-dimensional.

Under these assumptions the operators Lkk′ , Ak, Bmk′ , and Dkk′ are invertible. Moreover, analo-

gously to HS one can show that the following spectral decomposition is unique:

L
k1k̃1
L−1
k2k̃1
L
k2k̃2
L−1
k1k̃2

= Ak1
[
D
k1k̃1
D−1
k2k̃1
D
k2k̃2
D−1
k1k̃2

]
A−1k1 .
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This implies that the density fkα(y1) is identified up to a one-to-one transformation of α. Identi-

fication holds if there exists a known functional F such that Ffkα is monotonic in α. As an example,

identification is achieved if E [Yi1 |αi = α, ki1 = k] is monotonic in α. In that case one may nor-

malize worker types as αi = E [Yi1 |αi, ki1 = k]. This condition might be natural if α represents a

worker’s productivity type, for example, although it rules out non-monotonic earnings profiles and

multi-dimensional worker types.1

This shows that earnings and worker type distributions can be identified based on an alternating

cycle of length R = 2. In the empirical analysis we do not attempt to estimate a nonparametric mixture

model with continuous worker types, although this would be an interesting question for future work.

On the other hand, note that worker types are continuous in regression models such as (1), which we

estimate empirically.

S1.5 A bi-clustering classification method

Here we describe a classification approach which consists in clustering firms based on longitudinal

information. Focusing on the static model on two periods we have, by (7) and due to the class-specific

nature of firm heterogeneity:

Pr
[
Yi1 ≤ y1, Yi2 ≤ y2 | ji1 = j, ji2 = j′,mi1 = 1

]
=

ˆ
Fkα(y1)F

m
k′α(y2)pkk′(α)dα, (S7)

which does not depend on (j, j′) beyond its dependence on k = k(j) and k′ = k(j′).

This motivates the following bi-clustering method to classify firms into classes:

min
k(1),...,k(J),H11,...,HKK

Nm∑
i=1

ˆ ˆ (
1{Yi1 ≤ y1}1{Yi2 ≤ y2} −Hk(ji1),k(ji2) (y1, y2)

)2
dµ(y1, y2), (S8)

for a bivariate measure µ, where the first Nm individuals in the sample are the job movers between

periods 1 and 2.2 Algorithms to solve (S8) have been comparatively less studied than k-means classi-

fication problems such as (12); see Bonhomme (2017) for references.

Under discrete worker heterogeneity, the separation condition for consistency of classification in

(S8) is weaker than in the cross-sectional case of Assumption B2 (iii). To see this, let Gkk′ denote

1Note in contrast that, when worker types are assumed to have a known finite support (as in Theorem 1),

no such assumption is needed and the only ambiguity lies in the arbitrary labeling of the latent types.
2Job stayers can be added to (S8), under suitable assumptions on within-job earnings dynamics. Also, the two

objective functions in (12) and (S8) can be combined, thus incorporating both cross-sectional and longitudinal

information into the classification.
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the bivariate cdf on the left-hand side of (S7). In (S7) the separation condition is the following: for

all k, k′ there exists k′′ such that Gkk′′ 6= Gk′k′′ or Gk′′k 6= Gk′′k′ . The following result shows that this

separation condition is weaker than the one in the cross-sectional case, see Assumption B2 (iii).

Corollary S1. Let k 6= k′ such that, for all k′′, Gkk′′ = Gk′k′′ and Gk′′k = Gk′′k′. Suppose that F (k′′)

and Fm(k′′) have rank L for all k′′, and that there exists k1, k2 such that pk,k2(α) > 0 and pk1,k(α) > 0

for all α. Then, Fkα = Fk′α and Fmkα = Fmk′α for all α ∈ {1, ..., L}.

Proof. Using similar notations as in the proof of Theorem 1, we have:

F (k)D(k, k′′)Fm(k′′)ᵀ = F (k′)D(k′, k′′)Fm(k′′)ᵀ.

Take k′′ = k2. By assumption, Fm(k2) has rank L. So:

F (k)D(k, k2) = F (k′)D(k′, k2).

We thus get Fkα(y1)pk,k2(α) = Fk′α(y1)pk′,k2(α), so taking y1 = +∞ we have pk′,k2(α) = pk,k2(α) > 0

and Fkα = Fk′α, for all α ∈ {1, ..., L}. Similarly, from Gk′′k = Gk′′k′ and the assumption that F (k1)

has rank L we obtain that Fmkα = Fmk′α.

Corollary S1 implies that, if type-specific earnings distributions are identified, then some of the

G’s must differ. In that case the bi-clustering method will reveal firm classes asymptotically. Hence,

information from the earnings sequences of job movers can allow one to identify firm classes even when

the cross-sectional earnings information is insufficient.

S1.6 Time-varying firm classes

To outline how to estimate time-dependent firm classes kt(j), note that the classes in period 1 can

be consistently estimated using (12). In the second period, one can estimate the period-specific

classification by solving the following k-means problem:

min
k2(1),...,k2(J),H11,...,HKK

J∑
j=1

nj

ˆ (
F̂2j(y)−H

k̂1(j),k2(j)
(y)
)2
dµ(y), (S9)

where F̂2j denotes the log-earnings cdf in period 2, and k̂1(j) are estimates from (12). This may be

iterated until the last period of the panel.3

3Alternatively, a multi-clustering approach may be used, as in (S8).
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S1.7 Estimation on T periods

Here we outline estimation in models with T periods. We focus on the dynamic model, given that the

static model is a particular case. Consider the dynamic model with a finite mixture specification for

worker types. The classification step is as in (12). In practice one may sum the objective function over

the T periods. With the class estimates k̂it at hand, in the second step we estimate the mixture model

using maximum likelihood. The different components of the likelihood function are as follows, where

for simplicity we assume that observed characteristics Xit are strictly exogenous. Also, we explicitly

indicate t as a conditioning variable, to emphasize that all distributions may depend on calendar time.

• Initial condition, types: Pr [αi = α | ki1, Xi1; θ1].

• Initial condition, log-earnings: Pr [Yi1 ≤ y1 |αi, ki1, Xi1; θ2].

• Transitions, mobility: Pr [mit = m |Yit, αi, kit, Xit, t; θ3].

• Transitions, classes: Pr [ki,t+1 = k′ |Yit, αi, kit, Xit,mit = 1, t; θ4].

• Transitions, log-earnings: Pr [Yi,t+1 ≤ yt+1 |Yit, αi, ki,t+1, kit, Xi,t+1,mit = m, t; θ5].

S2 Computation

In this section we provide details on the computation procedure we use to estimate the model and

compute bootstrap replications and model simulations.

S2.1 Estimation of parameters

Given the presence of local optima in our finite mixture model, the choice of initial conditions and

exploration strategy is important.4 We next describe how we explore the likelihood function to obtain

our baseline estimates of log-earnings in the static model, based on job movers. The final step, in

which we estimate worker type proportions in the cross-section, is numerically well-behaved as it is

based on a concave objective. We use similar exploration strategies in the dynamic case.

4The computational challenges in the estimation of our mixture models motivated us to also develop in-

teractive regression models, which do not suffer from local optima issues and are straightforward to compute.

In Section S3 we provide details on the identification and estimation of interactive regressions. We use these

estimators as robustness checks for our main results.
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Exploration of the likelihood function Although we have experimented with different choices

of starting values, we here describe the strategy that, in our experience, has consistently yielded higher

likelihood values. Our estimates (and estimates within the bootstrap) are based on 50 starting values.

To obtain a starting value we first draw L wages from a Gaussian distribution with mean equal

the mean of log-earnings in period 1 and standard deviation equal twice the standard deviation of log-

earnings in the same period. Using the EM algorithm, holding mean log-earnings fixed across firms,

we then compute estimates of proportions of worker types and type-and-class-specific log-earnings

variances. We use these estimates as starting values for another preliminary estimation where mean

log-earnings are held constant across firms, and are estimated jointly with log-earnings variances

and type proportions. The estimates obtained with this second estimation are then used as initial

conditions for our estimation based on job movers. The resulting parameter estimates are then used

in the final estimation step based on job stayers.

Graph connectedness. Our identification results emphasize the importance of connectedness,

through the presence of alternating cycles for each worker type. The mobility patterns of workers

define a graph across firm classes. A measure of connectedness of a graph is the smallest non-zero

eigenvalue of its normalized Laplacian, as recently studied in Jochmans and Weidner (2017).5 We

observed that the local optima of the likelihood function tended to vary substantially in terms of

their connectedness, some of the solutions having types with very low connectedness. To discriminate

between estimates that have similar likelihood values we favor estimates with higher connectedness.

Our main estimates are based on the best connected solution out of the ones yielding the 10 highest

likelihood values.

On the left panel of Figures S1 we plot the likelihood value against the connectedness measure for

the static model. In this case the solutions yielding the highest likelihood values (depicted as triangles

in the figure) coincide with the one showing highest connectedness (the star). On the right panel we

show the same relationship for the dynamic model. In this case there is more uncertainty about the

exact location of the highest likelihood value. We see that our solution (the star) not only has high

likelihood but also high connectedness.6

5Empirically, we measure connectedness as the minimum, across all worker types, of the smallest non-zero

eigenvalues of the normalized Laplacians of the type-specific graphs (weighted by number of movers), where the

graphs are at the firm-class level.
6In both cases the solutions using the maximum likelihood estimates are very similar to the ones we report.
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Figure S1: Likelihood and connectedness of locally optimal solutions
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Notes: The dots show the likelihood values (x-axis) and connectedness measures (y-axis) corresponding to all

local optima of the job mover part of the likelihood function starting at each of the 50 starting values. The

triangles show the 10 best likelihood values. The stars show our selected values.

Estimation of persistence parameters in the dynamic model. The covariance structure

estimation of ρ4|3 and ρ1|2, which we describe in Section S1.2, is numerically well-behaved. In Figure

S1.2 we plot the shape of the objective function in our baseline specification of the dynamic model,

marginalized with respect to both parameters.

S2.2 Model simulation

We use simulations for two different purposes: to compute variance decompositions, reallocation ex-

ercises and dynamic effects, and to draw simulated samples in the parametric bootstrap. Here we

explain the simulation strategy for the bootstrap. The simulation algorithm for the decompositions

and reallocations is related but simpler since the identity of the firm is irrelevant in that case.7

The simulation for the bootstrap is conditional on firm classes and the mobility links between firms

and workers, including the size of firms. We describe the simulation algorithm for the static model,

7In particular, to compute the frequencies in Table 5 we draw mobility status and firm classes in both periods

by sampling with replacement from their empirical distribution, and then draw worker types and earnings

realizations conditional on those values.
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Figure S2: Estimation of ρ parameters
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Notes: Using the full covariance structure for job stayers described in Section S1.2, we estimate ρ4|3 and ρ1|2.

The figure plots the value of the objective function as each ρ deviates from the optimal value. Left is ρ1|2; right

is ρ4|3.

the case of the dynamic model being analogous.

1. (Job stayers) For each firm in a given class we first draw, independently, the latent types of job

stayers in the firm according to the distribution of types in the class.

Given a worker of a given type and a firm of a given class, log-earnings are then indepen-

dently drawn across workers from the corresponding conditional distribution. In the baseline

specification this distribution is Gaussian with class-and-type-specific mean and variance.

2. (Job movers) For each pair of firms in periods 1 and 2 in given classes, the latent types of job

movers between those firms are drawn according to the their distribution in the pair of classes.

Given a worker of a given type and a pair of firms of given classes, log-earnings in periods 1

and 2 are drawn according to their conditional distribution. In the static model log-earnings

are drawn independently across periods.

Given a simulated sample, we then estimate the parameters as described above. In particular, firm

classes are re-estimated in each bootstrap replication using k-means, with 500 starting values.
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S3 Interactive regression models

In this section we study identification and estimation in regression models, (1) and (2), which feature

worker-firm interactions in log-earnings.

S3.1 Models and identification

S3.1.1 Static model

Consider the nonstationary static model (1) on T = 2 periods. Note that multiplying (1) by τt(kit) =

1/bt(kit), taking means for job movers, and taking time differences yields:

E
[
Zi
(
τ2(ki2)Yi2 − τ1(ki1)Yi1 − ã2(ki2) + ã1(ki1)−X ′i2c̃2(ki2) +X ′i1c̃1(ki1)

)
|mi1 = 1

]
= 0,

(S10)

where ãt(k) = τt(k)at(k), and c̃t(k) = τt(k)ct. The vector Zi stacks together Xi1, Xi2, as well as all

ki1 and ki2 dummies and their interactions, the interactions between Xi1 and ki1 dummies, and those

between Xi2 and the ki2 dummies.8

Note that (S10) is linear in parameters. Linearity is important in order to develop a practical

estimator. Let us fix, without loss of generality, a1(1) = 0 and b1(1) = 1. Our estimator in the next

subsection will be invariant to the choice of normalization. Let A be the (2dxK+K2)×(2dxK+4K−2)

matrix that corresponds to the linear system in (S10), with dx denoting the dimension of Xit. The

order condition for identification in (S10) requires K ≥ 4. We have the following result.

Theorem S1. Consider model (1) with T = 2 and E (εit |αi, ki1, ki2, Xi,mi1) = 0, where Xi =

(Xi1, Xi2). Suppose that bt(k) 6= 0 for all t, k.

(i) If A has maximal rank then the bt(k), at(k), and ct are all identified. Moreover, the means

E (αi | ki1 = k, ki2 = k′,mi1 = 1) and E (αi | ki1 = ki2 = k,mi1 = 0) are identified.

(ii) If, in addition to (i), Cov (εi1, εi2 | ki1, ki2,mi1 = 1) = 0, then Var (αi | ki1 = k, ki2 = k′,mi1 = 1)

are identified.

(ii) If, in addition to (i) and (ii), E
(
ε2i1 | ki1, ki2,mi1

)
= E

(
ε2i1 | ki1

)
and E

(
ε2i2 | ki1, ki2,mi1

)
=

E
(
ε2i2 | ki2

)
, then Var (αi | ki1 = ki2 = k,mi1 = 0), Var (εi1 | ki1 = k), and Var (εi2 | ki2 = k) are identi-

fied.

8An even richer set of instruments would also include interactions between X’s and interactions of ki1 and

ki2 dummies.
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Proof. Part (i). If A has maximal rank then (S10) identifies the τt(k), ãt(k) and c̃t(k). Hence the

bt(k), at(k), and ct, are identified.9 Identification of the means of αi conditional on mi1 = 0 or mi1 = 1

then follows directly. For example, we have:

E (αi | ki1, ki2,mi1) = E
(
τ1(ki1)Yi1 − ã1(ki1)−X ′i1c̃1(ki1) | ki1, ki2,mi1

)
.

Part (ii). Let Ỹit = Yit −X ′itct. If Cov (εi1, εi2 | ki1, ki2,mi1 = 1) = 0 then:

Var
(
αi | ki1 = k, ki2 = k′,mi1 = 1

)
= τ1(k)τ2(k

′) Cov
(
Ỹi1, Ỹi2 | ki1 = k, ki2 = k′,mi1 = 1

)
is identified.

Part (iii). If E
(
ε2i1 | ki1, ki2,mi1

)
= E

(
ε2i1 | ki1

)
then:

Var (εi1 | ki1 = k) = Var
(
Ỹi1 | ki1 = k, ki2 = k′,mi1 = 1

)
− b1(k)2 Var

(
αi | ki1 = k, ki2 = k′,mi1 = 1

)
is identified, and likewise for Var (εi2 | ki2 = k). Lastly:

Var (αi | ki1 = ki2 = k,mi1 = 0) = τ21 (k)
[
Var

(
Ỹi1 | ki1 = ki2 = k,mi1 = 0

)
−Var (εi1 | ki1 = k)

]
is thus identified.

S3.1.2 Dynamic model

An interactive dynamic regression model on four periods is as follows, where we abstract from covari-

ates for simplicity. We write:

Yit = ast (k) + bt(k)αi + εit, t = 1, ..., 4,

if mi1 = 0, mi2 = 0, mi3 = 0, (S11)

for workers who remain in the same firm of class k in all periods, where “s” stands for “stayers”.

Next, we consider workers who remain in the same firm of class k in periods 1 and 2 and move to

9By the same token one could also identify firm-class-specific coefficients ct(k).
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a firm of class k′ in periods 3 and 4. We specify their log-earnings as follows:

Yi1 = as1(k) + ρ1|2(a
m
2 (k)− as2(k)) + ρ1|2ξ2(k

′) + b1(k)αi + εi1,

Yi2 = am2 (k) + ξ2(k
′) + b2(k)αi + εi2,

Yi3 = am3 (k′) + ξ3(k) + b3(k
′)αi + εi3,

Yi4 = as4(k
′) + ρ4|3(a

m
3 (k′)− as3(k′)) + ρ4|3ξ3(k) + b4(k

′)αi + εi4,

if mi1 = 0, mi2 = 1, mi3 = 0, (S12)

where “m” stands for “movers”. In (S11) and (S12) we assume that:

E (εit |αi, ki1, ki2, ki3, ki4,mi1,mi2,mi3) = 0, t = 1, ..., 4.

In order to ensure first-order Markov restrictions as in Assumption 2, we take the parameters

ρ1|2 and ρ4|3 to be features of the covariance matrix of the ε’s. Specifically, we take ρ1|2 to be the

population regression coefficient of εi1 on εi2 for workers who remain in the same firm in periods 1

and 2. Similarly, we take ρ4|3 to be the regression coefficient of εi4 on εi3 for workers who remain in

the same firm in periods 3 and 4. For simplicity, neither ρ1|2 nor ρ4|3 depend on the class of the firm,

although this dependence may be allowed for. Likewise, one can let the bt’s differ between stayers in

(S11) and movers in (S12), see below.

The restrictions that ρ1|2 and ρ4|3 affect both the mean effects of firm classes on earnings for job

movers and the covariance structure of earnings are consistent with Assumption 2. To see this in

the case of ρ4|3 (the argument for ρ1|2 being similar), note that a mean independence counterpart to

Assumption 2 (ii) is the following “backward” dynamic restriction:

E (Yi4 |Yi1, Yi2, Yi3, αi, ki2, ki3,mi1 = 0,mi2,mi3 = 0) = E (Yi4 |Yi3, αi, ki3,mi3 = 0) ,

which holds in model (S11)-(S12), for both movers and stayers (that is, whether mi2 = 1 or mi2 = 0),

provided that:

E (εi4 | εi1, εi2, εi3, αi, ki2, ki3,mi1 = 0,mi2,mi3 = 0) = ρ4|3εi3.

The structure of the dynamic model restricts how the effect of the previous firm class on log-

earnings decays over time. Indeed, in (S12), log-earnings Yi3 after a job move may depend on the

previous firm class k via the term ξ3(k). Log-earnings one period further apart from the move, Yi4,

still depend on k but the effect is ρ4|3ξ3(k). In the special case where the ε’s are uncorrelated, Yi4 does
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not depend on k, although Yi3 does. Analogously, as the probability of a job move between periods 2

and 3 (that is, that mi2 = 1) depends on Yi2, conditional on mobility log-earnings Yi1 and Yi2 before

the move may depend on the class k′ of the future firm. At the same time, the effect on first period’s

log-earnings is ρ1|2ξ2(k
′), compared to ξ2(k

′) in period 2.

In addition, the model restricts how the effects of firm classes for job movers relate to those for

job stayers. As an example, the effect of k′ on Yi4 is a combination of the effect on Yi4 for job

stayers (as4(k
′)), and of the difference between the effects of k′ on Yi3 for job movers and job stayers

(am3 (k′)−as3(k′)). In the absence of serial correlation in ε’s this effect coincides with as4(k
′). In contrast,

in the presence of serial correlation, the log-earnings of job movers and job stayers generally differ from

each other in all periods. This is again due to the fact that in this model mobility mit depends on

log-earnings Yit directly.

From (S12) we have, for job movers between periods 2 and 3:

Yi1 − ρ1|2Yi2 = as1(k)− ρ1|2as2(k) +
[
b1(k)− ρ1|2b2(k)

]
αi + εi1 − ρ1|2εi2,

Yi4 − ρ4|3Yi3 = as4(k
′)− ρ4|3as3(k′) +

[
b4(k

′)− ρ4|3b3(k′)
]
αi + εi4 − ρ4|3εi3. (S13)

Equation (S13) has a similar structure as the static model on two periods. As a result, one can

derive moment restrictions analogous to (S10). For given ρ1|2 and ρ4|3, those restrictions are linear in

parameters. It is therefore possible to adapt the results of the static model to identify the intercept and

slope coefficients in (S13), as well as the means of αi for job movers, under suitable rank conditions.

Specifically, we have the following result, where for simplicity we omit the conditioning on mi1 = 0,

mi3 = 0, ki1 = ki2, and ki3 = ki4, all of which are true for both stayers (that is, mi2 = 0) and movers

(mi2 = 1). For simplicity we abstract away from covariates Xit.

Theorem S2. Suppose that ρ1|2 and ρ4|3 are known. Suppose also that the bt(k) coefficients are

identical for job movers and job stayers (that is, that they are independent of mi2).

(i) Suppose that the conditions of Theorem S1 hold, with Yi1, Yi2, εi1 and εi2 being replaced by

Yi1−ρ1|2Yi2, Yi4−ρ4|3Yi3, εi1−ρ1|2εi2, and εi4−ρ4|3εi3, respectively. Then as1(k)−ρ1|2as2(k), as4(k
′)−

ρ4|3a
s
3(k
′), b1(k) − ρ1|2b2(k), b4(k

′) − ρ4|3b3(k′), as well as E (αi | ki2, ki3,mi2), Var (αi | ki2, ki3,mi2),

Var
(
εi1 − ρ1|2εi2 | ki2 = k

)
, and Var

(
εi4 − ρ4|3εi3 | ki3 = k

)
, are all identified.

(ii) If, in addition to (i), the indicators 1{ki2 = k}, 1{ki3 = k′}, and the products 1{ki2 = k} ×

E (αi | ki2, ki3,mi2 = 1) are linearly independent conditional on mi2 = 1, and the indicators 1{ki2 = k},
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1{ki3 = k′}, and the products 1{ki3 = k′}×E (αi | ki2, ki3,mi2 = 1) are linearly independent conditional

on mi2 = 1, then am2 (k), ξm2 (k), b2(k), am3 (k), ξm3 (k), and b3(k), are identified.

(iii) If, in addition to (i) and (ii), the 1{ki2 = k} and b2(ki2) × E (αi | ki2,mi2 = 0) are linearly

independent conditional on mi2 = 0, and the 1{ki3 = k} and b3(ki3)E (αi | ki3,mi2 = 0) are linearly

independent conditional on mi2 = 0, then as2(k) and as3(k) are identified.

(iv) If (i), (ii) and (iii) hold, then the covariance matrices of εi1, εi2, εi3, εi4 are identified, for

movers and stayers, conditional on every sequence of firm classes.

Proof. Part (i). This follows from Theorem S1.

Part (ii). This comes from:

E
(
Yi2 | ki2 = k, ki3 = k′,mi2 = 1

)
= am2 (k) + ξ2(k

′) + b2(k)E
(
αi | ki2 = k, ki3 = k′,mi2 = 1

)
,

E
(
Yi3 | ki2 = k, ki3 = k′,mi2 = 1

)
= am3 (k′) + ξ3(k) + b3(k

′)E
(
αi | ki2 = k, ki3 = k′,mi2 = 1

)
.

Part (iii). This comes from:

E (Yi2 | ki2 = k,mi2 = 0) = as2(k) + b2(k)E (αi | ki2 = k,mi2 = 0) ,

E (Yi3 | ki2 = k,mi2 = 0) = as3(k) + b3(k)E (αi | ki2 = k,mi2 = 0) .

Part (iv). For movers, we have:

Var




εi1 − ρ1|2εi2

εi2

εi3

εi4 − ρ4|3εi3


∣∣∣∣ ki2 = k, ki3 = k′,mi2 = 1



=


Var

(
εi1 − ρ1|2εi2|ki2 = k

)
0 0 0

0 V2kk′ C23kk′ 0

0 C23kk′ V3kk′ 0

0 0 0 Var
(
εi4 − ρ4|3εi3|ki3 = k′

)

 ,

where V2kk′ = Var (εi2|ki2 = k, ki3 = k′,mi2 = 1), C23kk′ = Cov (εi2, εi3|ki2 = k, ki3 = k′,mi2 = 1), and
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V3kk′ = Var (εi3|ki2 = k, ki3 = k′,mi2 = 1). Hence:

Var




Yi1 − ρ1|2Yi2

Yi2

Yi3

Yi4 − ρ4|3Yi3


∣∣∣∣ ki2 = k, ki3 = k′,mi2 = 1



=


b1(k)− ρ1|2b2(k)

b2(k)

b3(k
′)

b4(k
′)− ρ4|3b3(k′)

×Var
(
αi | ki2 = k, ki3 = k′,mi2 = 1

)
×


b1(k)− ρ1|2b2(k)

b2(k)

b3(k
′)

b4(k
′)− ρ4|3b3(k′)


′

+


Var

(
εi1 − ρ1|2εi2|ki2 = k

)
0 0 0

0 V2kk′ C23kk′ 0

0 C23kk′ V3kk′ 0

0 0 0 Var
(
εi4 − ρ4|3εi3|ki3 = k′

)

 ,

from which we recover V2kk′ , C23kk′ and V2kk′ . The variances Var (εi1|ki2 = k, ki3 = k′,mi2 = 1) and

Var (εi4|ki2 = k, ki3 = k′,mi2 = 1) are then easy to recover. A similar argument allows recovering the

covariance matrix of ε’s for stayers.

Parameters ρ1|2 and ρ4|3 may be recovered by exploiting the model’s restrictions on the covariance

structure of log-earnings. Below we explain how this can be done using restrictions on both job movers

and job stayers. A simpler approach can be used under the additional assumptions that bt = b does

not depend on t. Note that, while this condition imposes that interaction terms b(k)αi do not vary

over time within firm and worker, the effects of firm classes ast (k) and amt (k) are allowed to vary freely

with time. Under this condition one can identify ρ1|2 and ρ4|3 using a set of covariance restrictions on

job stayers alone, as in Section S1.2. Indeed, within-firm log-earnings are the sum of a time-varying

intercept (ast (k)), a fixed effect (b(k)αi), and a first-order Markov shock (εit). The covariance matrix

of the shocks and the variance of the fixed-effect are identified based on T ≥ 3 periods, under suitable

rank conditions. For example, in the model with four periods we have the following restrictions on

ρ1|2 and ρ4|3:

Cov
(
Yi1 − ρ1|2Yi2, Yi2 − Yi3 | ki1 = ki2 = ki3 = ki4 = k,mi1 = mi2 = mi3 = 0

)
= 0,

Cov
(
Yi4 − ρ4|3Yi3, Yi3 − Yi2 | ki1 = ki2 = ki3 = ki4 = k,mi1 = mi2 = mi3 = 0

)
= 0. (S14)
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These are familiar covariance restrictions in autoregressive models with fixed-effects. For example,

the second equation in (S14) is the moment restriction corresponding to an instrumental variables

regression of Yi4 on Yi3, using Yi3−Yi2 as an instrument. A sufficient condition for identification of ρ4|3

is thus that Cov (Yi3, Yi3 − Yi2 | ki1 = ki2 = ki3 = ki4 = k,mi1 = mi2 = mi3 = 0) 6= 0. This condition

requires that ρ3|2 6= 1, where ρ3|2 denotes the regression coefficient of εi3 on εi2. Hence identification

fails when εit follows exactly a unit root process. Finally, note that (S14) shows that one could easily

allow for class-specific ρ1|2(k) and ρ4|3(k).

Dynamic model, unrestricted b’s. Let us consider an extension of the dynamic interactive

model where the bt vary with t, and may differ between movers (mi2 = 1) and stayers (mi2 = 0). In

order to enforce a Markovian structure as in Assumption 2 we impose:

bs1(k)− ρ1|2bs2(k) = bm1 (k)− ρ1|2bm2 (k), bs4(k
′)− ρ4|3bs3(k′) = bm4 (k′)− ρ4|3bm3 (k′).

Given the assumptions of Theorem S2, bm1 (k) − ρ1|2bm2 (k) and bm4 (k′) − ρ4|3bm3 (k′) are identified,

together with E (αi | ki2, ki3,mi2). Moreover we have, for movers:

E
(
Yi1 | ki2 = k, ki3 = k′,mi2 = 1

)
= as1(k) + ρ1|2(a

m
2 (k)− as2(k)) + ρ1|2ξ2(k

′)

+bm1 (k)E
(
αi | ki2 = k, ki3 = k′,mi2 = 1

)
,

E
(
Yi2 | ki2 = k, ki3 = k′,mi2 = 1

)
= am2 (k) + ξ2(k

′) + bm2 (k)E
(
αi | ki2 = k, ki3 = k′,mi2 = 1

)
,

E
(
Yi3 | ki2 = k, ki3 = k′,mi2 = 1

)
= am3 (k′) + ξ3(k) + bm3 (k′)E

(
αi | ki2 = k, ki3 = k′,mi2 = 1

)
,

E
(
Yi4 | ki2 = k, ki3 = k′,mi2 = 1

)
= as4(k

′) + ρ4|3(a
m
3 (k′)− as3(k′)) + ρ4|3ξ3(k)

+bm4 (k′)E
(
αi | ki2 = k, ki3 = k′,mi2 = 1

)
.

Hence, for given ρ1|2 and ρ4|3, the a’s, b’s, and ξ’s are identified under a suitable rank condition as in

Theorem S2 (ii).

For stayers we similarly have:

E (Yi1 | ki2 = k,mi2 = 0) = as1(k) + bs1(k)E (αi | ki2 = k,mi2 = 0) ,

E (Yi2 | ki2 = k,mi2 = 0) = as2(k) + bs2(k)E (αi | ki2 = k,mi2 = 0) ,

E (Yi3 | ki2 = k,mi2 = 0) = as3(k) + bs3(k)E (αi | ki2 = k,mi2 = 0) ,

E (Yi4 | ki2 = k,mi2 = 0) = as4(k) + bs4(k)E (αi | ki2 = k,mi2 = 0) .
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Note that the means E (αi | ki2 = k,mi2 = 0) are identified from Theorem S2. However, in this model

with non-stationary and mobility-specific b’s, the ast and bst are not identified based on mean restrictions

alone.

Now, covariance restrictions on stayers imply:

Var




Yi1 − ρ1|2Yi2

Yi2

Yi3

Yi4 − ρ4|3Yi3


∣∣∣∣ ki2 = ki3 = k,mi2 = 0



=


bs1(k)− ρ1|2bs2(k)

bs2(k)

bs3(k)

bs4(k)− ρ4|3bs3(k)

×Var (αi | ki2 = ki3 = k,mi2 = 0)×


bs1(k)− ρ1|2bs2(k)

bs2(k)

bs3(k)

bs4(k)− ρ4|3bs3(k)


′

+


Var

(
εi1 − ρ1|2εi2|ki2 = k

)
0 0 0

0 V s
2k Cs23k 0

0 Cs23k V s
3k 0

0 0 0 Var
(
εi4 − ρ4|3εi3|ki3 = k

)

 , (S15)

where: V s
2k = Var (εi2|ki2 = ki3 = k,mi2 = 0), Cs23k = Cov (εi2, εi3|ki2 = ki3 = k,mi2 = 0), and V s

3k =

Var (εi3|ki2 = ki3 = k,mi2 = 0). Note that bs1(k) − ρ1|2bs2(k) = bm1 (k) − ρ1|2bm2 (k), bs4(k) − ρ4|3bs3(k) =

bm4 (k) − ρ4|3b
m
3 (k), Var

(
εi1 − ρ1|2εi2|ki2 = k

)
, and Var

(
εi4 − ρ4|3εi3|ki3 = k

)
can be recovered from

movers’ mean and covariance restrictions. The system (S15) thus identifies bs2(k), bs3(k), V s
2k, C

s
23k,

V s
3k, and Var (αi | ki2 = ki3 = k,mi2 = 0), under suitable rank conditions.

Lastly, all the arguments above have been conducted for known ρ1|2 and ρ4|3. The ρ’s may be

recovered from jointly imposing covariance restrictions for stayers in (S15), and for movers in the
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following system:

Var




Yi1 − ρ1|2Yi2

Yi2

Yi3

Yi4 − ρ4|3Yi3


∣∣∣∣ ki2 = k, ki3 = k′,mi2 = 1



=


bm1 (k)− ρ1|2bm2 (k)

bm2 (k)

bm3 (k′)

bm4 (k′)− ρ4|3bm3 (k′)

×Var
(
αi | ki2 = k, ki3 = k′,mi2 = 1

)
×


bm1 (k)− ρ1|2bm2 (k)

bm2 (k)

bm3 (k′)

bm4 (k′)− ρ4|3bm3 (k′)


′

+


Var

(
εi1 − ρ1|2εi2|ki2 = k

)
0 0 0

0 V2kk′ C23kk′ 0

0 C23kk′ V3kk′ 0

0 0 0 Var
(
εi4 − ρ4|3εi3|ki3 = k′

)

 ,

across all values of k, k′. In this case also, identification relies on a rank condition to be satisfied.

S3.2 Estimation algorithms in interactive regression models

Consider the static regression model (1) on two periods. The mean restrictions in (S10) being linear

in parameters, estimation can be based on linear IV techniques. The LIML estimator is particularly

convenient here, as it is invariant to scaling of the moment conditions. In practice, this means that

the normalization on intercept and slope parameters (e.g., a1(1) = 0, b1(1) = 1) is immaterial for the

results. In addition, LIML is computationally convenient as it is the solution to a minimum eigenvalue

problem.10

The identification results in Theorem S1 thus suggest the following multi-step estimation method.

First, estimate firm classes k̂(j). Given the estimated firm classes, construct the instruments Zi in

(S10), and estimate intercepts, slopes, and coefficients associated with observables using LIML, see

part (i) in Theorem S1. Then estimate means of αi using linear regression, see also part (i). Finally,

estimate variances of αi, εi1, and εi2 using empirical counterparts to the covariance restrictions in parts

10Specifically, let us write the moment restrictions in (S10) as E(Z ′iWiβ) = 0, and stack the Zi and Wi into

matrices Z and W , respectively. Then the LIML estimator is given, up to scale, by:

β̂ = argmin
b

b′W ′Z(Z ′Z)−1Z ′Wb

b′W ′Wb
.

Equivalently, β̂ is the minimum eigenvalue of the matrix (W ′W )−1W ′Z(Z ′Z)−1Z ′W .
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(ii) and (iii) in Theorem S1. The latter restrictions are also linear in parameters, so computation is

straightforward.11

We now describe the estimation algorithms in static and dynamic models in detail.

S3.2.1 Static case

We consider estimation in the static interactive model (1) on two periods. The algorithm is as follows.

1. Estimate firm classes k̂(j).

2. Perform the following sub-steps:

• Construct Ẑi from dummies k̂i1 and k̂i2 and their interactions, as well as interactions with

(Xi1, Xi2). Estimate parameters ̂̃at(k), τ̂t(k), and ̂̃ct(k) using LIML based on (S10) with

scale and location normalizations.12 Recover b̂t(k) = 1/τ̂t(k), ât(k) = b̂t(k)̂̃at(k), and ĉt as

a mean of the ̂̃ct(k) = b̂t(k)̂c̃t(k) over k, weighted by the probabilities Pr(k̂i1 = k).

• Let µmkk′ = E(αi | ki1 = k, ki2 = k′,mi1 = 1), and µk = E(αi | ki1 = k). Estimate µ̂mkk′ as the

mean of:
1

2

2∑
t=1

τ̂t(k̂it)Yit − ̂̃at(k̂it)−X ′it̂̃ct(k̂it) (S16)

given k̂i1 = k, k̂i2 = k′,mi1 = 1. Estimate µ̂k as the mean of (S16) given k̂i1 = k. Note

that it is easy to also recover estimates of means of αi for job stayers (that is, mi1 = 0).

Construct Ỹit = Yit −X ′itĉt.

• Estimate the variances Var (αi | ki1 = k, ki2 = k′,mi1 = 1) = vmkk′ , Var (εi1 | ki1 = k) = V1k,

and Var (εi2 | ki2 = k) = V2k by minimizing:

K∑
k=1

K∑
k′=1

Nm
kk′

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣


V̂ar

(
Ỹi1 | k̂i1 = k, k̂i2 = k′,mi1 = 1

)
Ĉov

(
Ỹi1, Ỹi2 | k̂i1 = k, k̂i2 = k′,mi1 = 1

)
V̂ar

(
Ỹi2 | k̂i1 = k, k̂i2 = k′,mi1 = 1

)
−


b̂1(k)2vmkk′ + V1k

b̂1(k)̂b2(k
′)vmkk′

b̂2(k
′)2vmkk′ + V2k′


∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
2

,

11In practice, it may be useful to explicitly impose that variances be non-negative when fitting covariance

restrictions. This requires solving quadratic programming problems, which are convex and numerically well-

behaved, see below.
12Note that an additive specification is obtained as a special case, when one imposes that bt(k) = 1 for all t, k

in this step.
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subject to all vmkk′ ≥ 0, V1k ≥ 0, V2k′ ≥ 0, where V̂ar and Ĉov denote empirical variances

and covariances, respectively, and Nm
kk′ denotes the number of job movers from k̂i1 = k to

k̂i2 = k′. Lastly, estimate Var (αi | ki1 = k) = vk by minimizing:

K∑
k=1

Nk

∣∣∣∣∣∣V̂ar
(
Ỹi1 | k̂i1 = k

)
− b̂1(k)2vk − V̂1k

∣∣∣∣∣∣2 ,
subject to all vk ≥ 0, where Nk denotes the number of workers in firm class k̂i1 = k in

period 1.

S3.2.2 Dynamic case

We next consider estimation in the dynamic interactive model on four periods (S11)-(S12). We focus

on the case where the b coefficients are stationary and common across movers and stayers. A more

general estimation algorithm is readily constructed. For simplicity we do not include covariates Xit,

although their coefficients can be easily estimated from the LIML sub-step. The algorithm is as follows.

1. Estimate firm classes k̂(j).

2. Perform the following sub-steps:

• Consider the following objective function:

Q(ρ1, ρ4) = min

K∑
k=1

N s
k

∣∣∣∣∣
∣∣∣∣∣



V̂ar
(
Yi1 − ρ1Yi2 | k̂i2 = k̂i3 = k,mi2 = 0

)
Ĉov

(
Yi1 − ρ1Yi2, Yi2 | k̂i2 = k̂i3 = k,mi2 = 0

)
Ĉov

(
Yi1 − ρ1Yi2, Yi3 | k̂i2 = k̂i3 = k,mi2 = 0

)
Ĉov

(
Yi1 − ρ1Yi2, Yi4 − ρ4Yi3 | k̂i2 = k̂i3 = k,mi2 = 0

)
Ĉov

(
Yi2, Yi4 − ρ4Yi3 | k̂i2 = k̂i3 = k,mi2 = 0

)
Ĉov

(
Yi3, Yi4 − ρ4Yi3 | k̂i2 = k̂i3 = k,mi2 = 0

)
V̂ar

(
Yi4 − ρ4Yi3 | k̂i2 = k̂i3 = k,mi2 = 0

)



−



(1− ρ1)2ṽsk + V1k

(1− ρ1)ṽsk
(1− ρ1)ṽsk

(1− ρ1)(1− ρ4)ṽsk
(1− ρ4)ṽsk
(1− ρ4)ṽsk

(1− ρ4)2ṽsk + V4k



∣∣∣∣∣
∣∣∣∣∣
2

, (S17)
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subject to all ṽsk ≥ 0, V1k ≥ 0, V4k ≥ 0. Estimate ρ̂1|2 and ρ̂4|3 as:

(
ρ̂1|2, ρ̂4|3

)
= argmin

(ρ1,ρ4)
Q(ρ1, ρ4).

• Let c1(k) = as1(k) − ρ1|2a
s
2(k), c4(k) = as4(k) − ρ4|3a

s
3(k), d1(k) = b(k) − ρ1|2b(k), and

d4(k) = b(k) − ρ4|3b(k). Construct Ẑi from dummies k̂i2 and k̂i3 and their interactions.

Estimate parameters τ̂1(k) = 1/d̂1(k), τ̂4(k) = 1/d̂4(k), ̂̃c1(k) = ĉ1(k)/d̂1(k), and ̂̃c4(k) =

ĉ4(k)/d̂4(k) using LIML based on:

E
[
Zi
(
τ4(ki3)

(
Yi4 − ρ4|3Yi3

)
− τ1(ki2)

(
Yi1 − ρ1|2Yi2

)
− c̃4(ki3) + c̃1(ki2)

)
|mi2 = 1

]
= 0,

imposing scale and location normalizations and replacing ρ1|2 and ρ4|3 by ρ̂1|2 and ρ̂4|3, and

Zi by Ẑi. This yields estimates d̂1(k), d̂4(k), ĉ1(k), and ĉ4(k). This also yields estimates of

b̂(k) =
d̂1(k)

2(1− ρ̂1|2)
+

d̂4(k)

2(1− ρ̂4|3)
.

• Let µmkk′ = E(αi | ki2 = k, ki3 = k′,mi2 = 1). Estimate µ̂mkk′ as the mean of:

1

2

(
τ̂1(k̂i2)

(
Yi1 − ρ̂1|2Yi2

)
− ̂̃a1(k̂i2) + τ̂4(k̂i3)

(
Yi4 − ρ̂4|3Yi3

)
− ̂̃a4(k̂i3)) (S18)

given k̂i2 = k, k̂i3 = k′,mi2 = 1. Let µsk = E(αi | ki2 = ki3 = k,mi2 = 0). Estimate µ̂sk as

the mean of (S18) given k̂i2 = k̂i3 = k,mi2 = 0.

• Estimate âst (k) as the mean of:

Yit − b̂(k)µ̂sk,

given k̂i2 = k̂i3 = k,mi2 = 0.

• Estimate âm2 (k), âm3 (k′), ξ̂2(k), and ξ̂3(k
′) by minimizing:

K∑
k=1

K∑
k′=1

Nm
kk′

∣∣∣∣∣
∣∣∣∣∣


Ê
(
Yi1 | k̂i2 = k, k̂i3 = k′,mi2 = 1

)
+ ρ̂1|2â

s
2(k)− âs1(k)− b̂(k)µ̂mkk′

Ê
(
Yi2 | k̂i2 = k, k̂i3 = k′,mi2 = 1

)
− b̂(k)µ̂mkk′

Ê
(
Yi3 | k̂i2 = k, k̂i3 = k′,mi2 = 1

)
− b̂(k′)µ̂mkk′

Ê
(
Yi4 | k̂i2 = k, k̂i3 = k′,mi2 = 1

)
+ ρ̂4|3â

s
3(k
′)− âs4(k′)− b̂(k′)µ̂mkk′



−


ρ̂1|2 (am2 (k) + ξ2(k

′))

am2 (k) + ξ2(k
′)

am3 (k′) + ξ3(k)

ρ̂4|3 (am3 (k′) + ξ3(k))


∣∣∣∣∣∣∣∣2,

which is a quadratic objective function.
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• Let V αm
kk′ = Var (αi | ki2 = k, ki3 = k′,mi2 = 1), V2kk′ = Var (εi2|ki2 = k, ki3 = k′,mi2 = 1),

C23kk′ = Cov (εi2, εi3|ki2 = k, ki3 = k′,mi2 = 1), V3kk′ = Var (εi3|ki2 = k, ki3 = k′,mi2 = 1),

V ε12
k = Var

(
εi1 − ρ1|2εi2|ki2 = k

)
, and V ε43

k = Var
(
εi4 − ρ4|3εi3|ki3 = k

)
. Estimate V̂ αm

kk′ ,

V̂2kk′ , Ĉ23kk′ , V̂3kk′ , V̂
ε12
k , and V̂ ε43

k by minimizing:

K∑
k=1

K∑
k′=1

Nm
kk′

∣∣∣∣∣
∣∣∣∣∣V̂ar




Yi1 − ρ̂1|2Yi2

Yi2

Yi3

Yi4 − ρ̂4|3Yi3


∣∣∣∣ k̂i2 = k, k̂i3 = k′,mi2 = 1



−


b̂(k)− ρ̂1|2b̂(k)

b̂(k)

b̂(k′)

b̂(k′)− ρ̂4|3b̂(k′)

× V αm
kk′ ×


b̂(k)− ρ̂1|2b̂(k)

b̂(k)

b̂(k′)

b̂(k′)− ρ̂4|3b̂(k′)


′

−


V ε12
k 0 0 0

0 V2kk′ C23kk′ 0

0 C23kk′ V3kk′ 0

0 0 0 V ε43
k′


∣∣∣∣∣
∣∣∣∣∣
2

,

subject to all V αm
kk′ ≥ 0, V ε12

k ≥ 0, V ε43
k′ ≥ 0, V2kk′ ≥ 0, V3kk′ ≥ 0. This is a quadratic

programming problem. In addition one may impose the quadratic constraint: C2
23kk′ ≤

V2kk′V3kk′ . If needed, estimate Var (εi1|ki2 = k, ki3 = k′,mi2 = 1), Cov(εi1, εi2|ki2=k, ki3=k′,

mi2 = 1), Var (εi4|ki2 = k, ki3 = k′,mi2 = 1), and Cov (εi3, εi4|ki2 = k, ki3 = k′,mi2 = 1) by

simple matrix inversion.

• Let V αs
k = Var (αi | ki2 = ki3 = k,mi2 = 0), V s

2k = Var (εi2|ki2 = ki3 = k,mi2 = 0), Cs23k =

Cov (εi2, εi3|ki2 = ki3 = k,mi2 = 0), and V s
3k = Var (εi3|ki2 = ki3 = k,mi2 = 0). Estimate
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V̂ αs
k , V̂ s

2k, Ĉ
s
23k, and V̂ s

3k by minimizing:

K∑
k=1

N s
k

∣∣∣∣∣
∣∣∣∣∣V̂ar




Yi1 − ρ̂1|2Yi2

Yi2

Yi3

Yi4 − ρ̂4|3Yi3


∣∣∣∣ k̂i2 = k̂i3 = k,mi2 = 0



−


b̂(k)− ρ̂1|2b̂(k)

b̂(k)

b̂(k)

b̂(k)− ρ̂4|3b̂(k)

× V αs
k ×


b̂(k)− ρ̂1|2b̂(k)

b̂(k)

b̂(k)

b̂(k)− ρ̂4|3b̂(k)


′

−


V̂ ε12
k 0 0 0

0 V s
2k Cs23k 0

0 Cs23k V s
3k 0

0 0 0 V̂ ε43
k


∣∣∣∣∣
∣∣∣∣∣
2

,

subject to all V αs
k ≥ 0, V s

2k ≥ 0, Cs23k ≥ 0, and V s
3k ≥ 0. This is another quadratic program-

ming problem. Here also one may impose as quadratic constraints: (Cs23k)
2 ≤ V s

2kV
s
3k. If

needed, estimate Var (εi1|ki2 = ki3 = k,mi2 = 0), Cov (εi1, εi2|ki2=ki3=k,mi2=0), Var(εi4|

ki2=ki3=k,mi2=0), and Cov (εi3, εi4 | ki2=ki3=k,mi2=0).

S3.2.3 Stationary interactions and profiling

Estimating complementarities based on mean restrictions alone may lead to unstable parameters when

the conditions for identification are (nearly) violated in the data. Consider as an example the static

model (1). Identification relies on log-earnings in period 1 varying with future firm class conditional

on the current class, and analogously for log-earnings in period 2. As shown by Figure S14, there

appears to be more underlying firm variation in period 2 log-earnings than in period 1 log-earnings.

In our experience on the Swedish data this causes some instability in the estimation of interaction

parameters b1(k) corresponding to the first period. To overcome this issue we impose that interaction

parameters bt(k) do not vary with time t, while allowing for class-and-time-specific intercepts. In our

experience, orthogonally projecting log-earnings in period 1 and exploiting the variation from period 2

log-earnings led to reliable results while preserving computational feasibility. An interesting question

for future work will be to study the performance of an estimator of the bt(k) parameters that combines

mean and covariance restrictions.

24



S3.3 Interactive models on T periods

In this last part we consider the dynamic regression model on T periods. The static interactive model

is a special case of the latter. An important feature of interactive models is that they are defined

conditionally on a sequence of firm classes and mobility choices. We thus start by deriving restrictions

implied by Assumption 2 on earnings distributions conditional on the entire sequences of kit and mit.

Given that we work with interactive regression models, we focus on the implications of Assumption 2

on means and variances. We assume strictly exogenous X’s for simplicity, and focus on models where

the bt’s do not depend on mobility (although the a’s do).

The first-order Markov structure implies the following “forward” and “backward” restrictions,

denoting Zt:t+si = (Zit, ..., Zi,t+s).

• Forward restrictions:

E
[
Yit |Yi,t+s, αi, kTi ,mT−1

i , XT
i

]
= E

[
Yit |Yi,t+s, αi, k1:t+si ,m1:t+s−1

i , XT
i

]
, s > 0.

• Backward restrictions:

E
[
Yit |Yi,t−s, αi, kTi ,mT−1

i , XT
i

]
= E

[
Yit |Yi,t−s, αi, kt−s:Ti ,mt−s:T−1

i , XT
i

]
, s > 0.

A simple regression model that satisfies these conditions is defined as follows, conditionally on a

sequence (kTi ,m
T−1
i , XT

i ):

Yit = att(kit,mi,t−1,mit) + bt(kit)αi +X ′itct + εit

+

T−t∑
s=1

(
ρt|t+sat+s,t+s(ki,t+s,mi,t+s−1,mi,t+s) + ρt|t+s−1ξ

f
t+s(ki,t+s,mi,t+s−1)

)
+

t−1∑
s=1

(
ρt|t−sat−s,t−s(ki,t−s,mi,t−s−1,mi,t−s) + ρt|t−s−1ξ

b
t−s(ki,t−s,mi,t−s)

)
,

where εit is first-order Markov with E
(
εit |αi, kTi ,m

T−1
i , XT

i

)
= 0, and, for all s > 0:

E
(
εit | ε1:t−si , αi, k

T
i ,m

T−1
i , XT

i

)
= ρt|t−sεi,t−s, and E

(
εit | εt+s:Ti , αi, k

T
i ,m

T−1
i , XT

i

)
= ρt|t+sεi,t+s.

As a result: ρt+s+m|t = ρt+s+m|t+s ρt+s|t and ρt|t+s+m = ρt|t+s ρt+s|t+s+m for all s > 0,m > 0.
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Estimation. The main difference with the estimation of the dynamic model on four periods is in

the estimation of the mean parameters, i.e. the a’s, b’s, c’s, and ξ’s given the ρ’s. Let τt(k) = 1/bt(k),

and let:

W ′itγt = att(kit,mi,t−1,mit) +X ′itct

+
T−t∑
s=1

(
ρt|t+sat+s,t+s(ki,t+s,mi,t+s−1,mi,t+s) + ρt|t+s−1ξ

f
t+s(ki,t+s,mi,t+s−1)

)
+

t−1∑
s=1

(
ρt|t−sat−s,t−s(ki,t−s,mi,t−s−1,mi,t−s) + ρt|t−s−1ξ

b
t−s(ki,t−s,mi,t−s)

)
.

We have:

E
[
τt(kit)

(
Yit −W ′itγt

)
| kTi ,mT−1

i , XT
i

]
= 0,

which is a quadratic conditional moment restriction. Letting Zit = Zit(k
T
i ,m

T−1
i , XT

i ) be a vector of

instruments we can base estimation on:

E
[
Zitτt(kit)

(
Yit −W ′itγt

)]
= 0.

In order to ensure invariance to normalization, one can solve a continuously updated GMM problem

such as:

min
(τ,γ)

∑N
i=1

∑T
t=1 Z

′
itτt(kit) (Yit −W ′itγt)

(∑N
i=1

∑T
t=1 ZitZ

′
it

)−1∑N
i=1

∑T
t=1 Zitτt(kit) (Yit −W ′itγt)∑N

i=1

∑T
t=1 τt(kit) (Yit −W ′itγt)

2
.

In practice this objective function may be minimized iteratively, iterating between τ ’s and γ’s, each

step corresponding to a LIML-like minimum eigenvalue problem.

Finally, for implementation it is important to choose a parsimonious set of instruments.
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S4 Additional empirical results

Table S1: Data description, larger sample

all continuing firms, full year employed

years: 2002-2004 2002-2004 2001-2005

all movers all movers all movers

number of workers 795,419 88,771 599,775 19,557 442,757 9,645

number of firms 50,448 17,887 43,826 7,557 36,928 4,248

number of firms ≥ 10 26,834 13,233 23,389 6,231 20,557 3,644

number of firms ≥ 50 4,876 3,974 4,338 2,563 3,951 1,757

mean firm reported size 36.41 76.5 37.59 132.33 39.67 184.77

median firm reported size 10 18 10 28 11 36

firm reported size for median worker 154 158 154 159 162 176

firm actual size for median worker 83 23 72 5 64 3

% high school drop out 19.6% 15% 20.6% 14% 21.5% 14.7%

% high school graduates 56.6% 56.7% 56.7% 57.3% 57% 59%

% some college 23.7% 28.3% 22.7% 28.7% 21.4% 26.3%

% workers younger than 30 19.3% 26.8% 16.8% 28% 13.9% 23.8%

% workers between 31 and 50 56.8% 56.7% 57.2% 59% 59.4% 62.1%

% workers older than 51 23.9% 16.5% 26% 13% 26.7% 14.2%

% workers in manufacturing 43.5% 35.4% 45.4% 35.1% 48.5% 40.4%

% workers in services 27% 34.3% 25.3% 33.7% 22.4% 27.8%

% workers in retail and trade 16.2% 15% 16.7% 20.3% 16.3% 20.8%

% workers in construction 13.3% 15.3% 12.6% 10.9% 12.8% 11%

mean log-earnings 10.16 10.15 10.18 10.17 10.19 10.17

variance of log-earnings 0.146 0.2 0.124 0.166 0.113 0.148

between-firm variance of log-earnings 0.055 0.104 0.0475 0.1026 0.0441 0.0947

mean log-value-added per worker 15.28 15.86 15.3 16.35 15.37 16.63

Notes: Swedish registry data. Males, employed in the last quarter of 2002 and the first quarter of 2004. Number

of firms ≥ 10, 50 is according to reported firm size. Figures for 2002.
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Table S2: Variance decomposition (×100), static model, varying the number of firm classes

V ar(α)
V ar(α+ψ)

V ar(ψ)
V ar(α+ψ)

2Cov(α,ψ)
V ar(α+ψ)

Corr(α, ψ) R2

K = 3 86.8 1.8 11.4 45.3 75.9

K = 4 84.9 2.3 12.7 45.3 76.0

K = 5 83.4 2.7 13.9 46.5 75.9

K = 6 82.7 2.7 14.5 48.2 75.4

K = 7 81.9 3.1 15.0 47.0 76.9

K = 8 82.4 3.0 14.6 46.3 76.6

K = 9 82.2 2.9 14.7 46.0 76.4

K = 10 80.3 3.4 16.3 49.1 74.8

K = 12 82.3 3.0 14.7 46.6 76.5

K = 15 80.1 3.6 16.2 47.4 75.1

K = 20 79.2 4.0 16.8 47.4 72.7

Notes: Static model, 2002-2004. α is the worker effect, ψ is the firm effect. Variance decomposition based on

a linear regression of simulated 2002 log-earnings on α and ψ. 1, 000, 000 simulations. The number of worker

types is fixed to L = 6.

Table S3: Variance decomposition (×100), static model, refined firm classification

V ar(α)
V ar(α+ψ)

V ar(ψ)
V ar(α+ψ)

2Cov(α,ψ)
V ar(α+ψ)

Corr(α, ψ) R2

Within-cluster splits

by mobility rank 82.7 3.8 13.5 38.1 70.7

by percent of movers 87.1 1.9 11.0 42.5 77.1

by value added 77.7 4.7 17.6 46.0 71.3

Likelihood-based re-classification

iterated once 80.9 3.4 15.7 47.1 75.9

iterated 5 times 81.6 3.7 14.7 42.4 77.3

Notes: Static model, 2002-2004. α is the worker effect, ψ is the firm effect. Variance decomposition based on a

linear regression of simulated 2002 log-earnings on α and ψ. 1, 000, 000 simulations.
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Table S4: Variance decomposition (×100), static model, varying the number of worker types

V ar(α)
V ar(α+ψ)

V ar(ψ)
V ar(α+ψ)

2Cov(α,ψ)
V ar(α+ψ)

Corr(α, ψ) R2

L = 3 34.5 34.3 31.2 45.4 39.2

L = 4 47.6 20.9 31.6 50.1 46.3

L = 5 77.6 4.5 17.9 47.9 71.5

L = 6 80.3 3.4 16.3 49.1 74.8

L = 7 83.6 2.6 13.8 46.7 77.7

L = 8 80.0 3.7 16.3 47.6 76.0

L = 9 76.2 5.0 18.8 48.2 69.9

Notes: See the notes to Table S2. The number of firm classes is fixed to K = 10.
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Table S5: Variance decomposition (×100), static model, other specifications

V ar(α)
V ar(α+ψ)

V ar(ψ)
V ar(α+ψ)

2Cov(α,ψ)
V ar(α+ψ)

Corr(α, ψ) R2

A. Mixture models

baseline 80.3 3.4 16.3 49.1 74.8

mixture-of-mixtures 82.1 3.1 14.8 46.4 76.2

net of age and education 67.4 9.0 23.6 47.8 61.1

firms with ≤ 50 workers 71.5 5.4 23.1 59.1 73.6

firms with > 50 workers 85.1 3.7 11.2 31.6 70.6

fully nonstationary 79.9 3.7 16.5 48.3 75.7

random splits: first split 81.9 3.0 15.1 47.9 76.3

random splits: second split 82.0 3.0 15.0 48.0 76.9

B. Regression models

interactive regression model 81.4 3.0 15.6 50.2 69.4

linear regression model 83.7 2.4 13.8 48.5 72.4

Notes: Static model, 2002-2004. α is the worker effect, ψ is the firm effect. Variance decomposition based

on a linear regression of 2002 log-earnings on α and ψ. 1, 000, 000 simulations. “Mixture-of-mixtures” refers

to a nonstationary model where, conditional on firm classes and worker types, log-earnings are distributed as

three-component mixtures of Gaussians. The interactive regression model is given by (1), with ct = 0 and bt(k)

constant over time. The linear regression model has in addition bt(k) = 1 for all k. Identification and estimation

of the regression models is detailed in Section S3.
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Table S6: Variance decomposition and reallocation exercise, static model, parametric bootstrap

Variance decomposition (×100)
V ar(α)

V ar(α+ψ)
V ar(ψ)

V ar(α+ψ)
2Cov(α,ψ)
V ar(α+ψ)

Corr(α, ψ) R2

estimate 80.3 3.4 16.3 49.1 74.8

bootstrap mean 81.7 2.7 15.6 52.1 75.0

bootstrap 2.5%-quantile 80.1 2.3 14.4 50.4 73.9

bootstrap 97.5%-quantile 83.2 3.2 16.7 53.6 76.0

Reallocation exercise (×100)

Mean Median 10%-quantile 90%-quantile Variance

estimate .5 .6 2.7 -1.2 -1.1

bootstrap mean .6 .6 2.8 -1.0 -1.1

bootstrap 2.5%-quantile .5 .4 2.5 -1.5 -1.3

bootstrap 97.5%-quantile .8 .8 3.2 -.4 -.8

Notes: See notes to Table 2. Mean and percentiles of the parametric bootstrap distribution, 100 replications.
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Table S7: Data description, by estimated firm classes, in the sample used to estimate the

dynamic model

class: 1 2 3 4 5 6 7 8 9 10 all

number of workers 13,535 39,048 45,293 50,435 63,433 45,175 81,878 34,098 49,187 20,675 442,757

number of firms 5,017 5,565 3,390 4,695 2,836 3,763 2,316 3,300 3,160 2,886 36,928

mean firm reported size 13.37 21.24 50 28.05 70.57 30.1 89.69 30.36 63.28 54.43 39.67

number of firms ≥ 10 (actual size) 125 814 938 871 948 693 773 470 632 369 6,633

number of firms ≥ 50 (actual size) 2 78 155 137 214 110 190 81 134 58 1,159

firm actual size for median worker 4 13 36 37 109 59 399 79 130 25 64

% high school drop out 30.4% 28.9% 26.8% 27.6% 23.8% 25.4% 19.1% 18.5% 9.2% 3.9% 21.5%

% high school graduates 60.6% 62.9% 61% 63.4% 59.9% 63.4% 58.6% 57.4% 40.6% 29% 57%

% some college 9% 8.2% 12.2% 9% 16.3% 11.3% 22.2% 24.1% 50.2% 67.1% 21.4%

% workers younger than 30 18.9% 15.8% 16.8% 15.4% 15.5% 13.2% 12.4% 10.5% 11.6% 11% 13.9%

% workers between 31 and 50 57.6% 56.6% 57.8% 58.3% 58.1% 59.2% 60.6% 59.8% 62% 64.5% 59.4%

% workers older than 51 23.5% 27.6% 25.4% 26.3% 26.4% 27.6% 27% 29.8% 26.4% 24.5% 26.7%

% workers in manufacturing 29.7% 44.5% 51.1% 53.4% 54.9% 50.7% 58.1% 47% 40.1% 11.4% 48.5%

% workers in services 32.1% 29% 17.7% 19.9% 15.9% 15.7% 9.8% 23.9% 37.7% 65.1% 22.4%

% workers in retail and trade 27.1% 17.2% 27.8% 9.4% 25.1% 8.8% 9.7% 10.9% 16.8% 22.2% 16.3%

% workers in construction 11.1% 9.4% 3.3% 17.2% 4.2% 24.7% 22.4% 18.1% 5.5% 1.2% 12.8%

mean log-earnings 9.75 9.94 10.04 10.06 10.15 10.15 10.24 10.3 10.45 10.73 10.19

variance of log-earnings 0.073 0.044 0.085 0.043 0.086 0.04 0.08 0.056 0.105 0.152 0.113

between-firm variance of log-earnings 0.0337 0.0033 0.0033 0.0016 0.0022 0.0013 0.0019 0.0023 0.0063 0.0436 0.0441

mean log-value-added per worker 14.57 15.05 15.65 15.22 15.95 15.26 16.06 15.33 15.85 15.89 15.37

Notes: Males, fully employed in the same firm in 2001-2002 and 2004-2005, continuously existing firms. Figures

for 2002.
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Table S8: Number of job movers between firm classes, in the sample used to estimate the

dynamic model

firm class in period 2

1 2 3 4 5 6 7 8 9 10

fi
rm

cl
as

s
in

p
er

io
d

1

1 20 46 49 49 40 23 29 24 17 8

2 64 193 101 114 136 83 69 39 44 11

3 51 141 158 124 170 98 103 48 64 38

4 31 129 116 156 157 157 109 55 30 19

5 35 107 199 155 262 118 140 83 108 50

6 15 63 59 91 97 130 94 74 56 14

7 21 68 104 138 198 226 247 140 350 78

8 12 131 40 61 75 46 66 80 141 67

9 10 168 67 134 141 56 158 152 219 274

10 6 25 30 28 89 108 76 80 203 269

Notes: Males, fully employed in the same firm in 2002 and in 2004, continuously existing firms. Movers from

firm class k (vertical axis) to firm class k′ (horizontal axis).
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Table S9: Variance decomposition (×100), dynamic model, varying the number of firm classes

V ar(α)
V ar(α+ψ)

V ar(ψ)
V ar(α+ψ)

2Cov(α,ψ)
V ar(α+ψ)

Corr(α, ψ) R2

K = 3 81.8 4.1 14.1 38.4 77.6

K = 4 80.0 5.0 15.1 37.8 77.7

K = 5 78.7 5.2 16.2 40.0 77.7

K = 6 77.0 5.8 17.2 40.8 78.0

K = 7 77.2 5.5 17.2 41.7 77.5

K = 8 78.0 5.6 16.4 39.2 78.5

K = 9 76.1 6.7 17.2 38.2 76.9

K = 10 77.4 5.5 17.2 41.9 77.9

K = 12 75.9 6.1 18.0 41.7 76.7

K = 15 75.9 6.3 17.8 40.8 77.4

Notes: Dynamic model, 2001-2005. α is the worker effect, ψ is the firm effect. Variance decomposition based

on a linear regression of 2002 log-earnings on α and ψ. 1, 000, 000 simulations. The number of worker types is

fixed to L = 6.

Table S10: Variance decomposition (×100), dynamic model, varying the number of worker

types

V ar(α)
V ar(α+ψ)

V ar(ψ)
V ar(α+ψ)

2Cov(α,ψ)
V ar(α+ψ)

Corr(α, ψ) R2

L = 3 40.7 36.1 23.2 30.2 46.0

L = 4 52.5 21.9 25.6 37.7 54.8

L = 5 75.2 7.2 17.7 38.0 76.8

L = 6 77.4 5.5 17.2 41.9 77.9

L = 7 75.0 6.4 18.6 42.5 77.4

L = 8 77.0 5.7 17.4 41.6 77.4

L = 9 76.8 6.1 17.1 39.5 78.1

Notes: See the notes to Table S9. The number of firm classes is fixed to K = 10.
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Table S11: Variance decomposition (×100), dynamic model, other specifications

V ar(α)
V ar(α+ψ)

V ar(ψ)
V ar(α+ψ)

2Cov(α,ψ)
V ar(α+ψ)

Corr(α, ψ) R2

A. Mixture models

Baseline model

77.4 5.5 17.2 41.9 77.9

Random splits: first split

76.7 5.7 17.5 41.9 77.1

Random splits: second split

78.4 5.8 16.1 38.4 77.2

Persistence parameters estimated in first differences

77.1 5.9 17.1 40.1 76.1

B. Regression models

Interactive regression model

75.4 6.1 18.5 43.1 80.6

Linear regression model

83.8 3.3 12.9 38.9 87.0

Notes: Dynamic model, 2001-2005. α is the worker effect, ψ is the firm effect. Variance decomposition based on

a linear regression of 2002 log-earnings on α and ψ. 1, 000, 000 simulations. The interactive regression model

is given by (2), with ct = 0 and bt(k) constant over time. The linear regression model has in addition bt(k) = 1

for all k. Identification and estimation of the regression models is detailed in Section S3.
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Table S12: Variance decomposition and reallocation exercise, dynamic model, parametric boot-

strap

Variance decomposition (×100)
V ar(α)

V ar(α+ψ)
V ar(ψ)

V ar(α+ψ)
2Cov(α,ψ)
V ar(α+ψ)

Corr(α, ψ) R2

estimate 77.4 5.5 17.2 41.9 77.9

bootstrap mean 77.1 5.3 17.7 44.2 78.3

bootstrap 2.5%-quantile 73.3 4.5 16.5 37.0 76.1

bootstrap 97.5%-quantile 78.8 8.5 18.6 46.2 79.1

Reallocation exercise (×100)

Mean Median 10%-quantile 90%-quantile Variance

estimate .3 .8 2.5 -3.0 -1.0

bootstrap mean .2 .8 2.5 -3.1 -.8

bootstrap 2.5%-quantile -.1 .3 .8 -4.0 -1.6

bootstrap 97.5%-quantile .4 1.2 3.1 -1.8 2.0

Notes: See notes to Table S6. Dynamic model, 2001-2005. Mean and percentiles of the parametric bootstrap

distribution, 100 replications.
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Figure S3: Fit, static model, distributions of log-earnings of job movers
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Notes: Distributions of log-earnings for workers moving from k to k′ between 2002 and 2004, for all k, k′. We

merge two adjacent firm classes for readability. Solid is data, dashed is model. Kernel density estimates on data

simulated from the static model. 1, 000, 000 simulations.
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Figure S4: Fit, static model, distributions of log-earnings of job stayers

6 7 8 9 10

1 2 3 4 5

9 10 11 12 9 10 11 12 9 10 11 12 9 10 11 12 9 10 11 12

0

1

2

3

0

1

2

3

log earnings

pe
rio

d 
1 

de
ns

ity

Notes: Distributions of log-earnings for workers staying in a firm in k between 2002 and 2004, for all k. Solid

is data, dashed is model.

Figure S5: Fit, static model, covariance of log-earnings of job movers within each pair of firm

classes
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Notes: Covariance of log-earnings of job movers between k and k′ of log-earnings for all k, k′. Each dot corre-

sponds to a k, k′ pair. x-axis is data, y-axis is model. The size of the dots is proportional to the number of job

movers in the cells.
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Figure S6: Proportions of worker types by firm classes within age×education cells
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Notes: Static model, 2002-2004. Type proportions (y-axis) and firm classes (x-axis). The three age categories

are: less than 30, between 30 and 50, and more than 50. The education categories are: high-school dropouts,

high-school graduates, and some college.
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Figure S7: Static model estimates, half-sample estimation within firm
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Notes: See the notes to Figure 2. The model is estimated on two random halves of the data, split within firm

and mobility status. The figure shows parameter estimates in the first split.
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Figure S8: Fit, dynamic model, distributions of log-earnings of job movers
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Notes: Distributions of log-earnings for workers making a move from k to k′ between 2002 and 2004, for all k, k′.

We merge two adjacent firm classes for readability. Solid is data, dashed is model. Kernel density estimates on

data simulated from the dynamic model. 1, 000, 000 simulations.
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Figure S9: Fit, dynamic model, distributions of log-earnings of job stayers
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Notes: Dynamic model, 2001-2005. Distributions of log-earnings (2002) for workers staying in a firm in k

between 2001 and 2005, for all k. Solid is data, dashed is model.

Figure S10: Fit, dynamic model, covariance of log-earnings of job movers within each pair of

firm classes
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Notes: Covariance of log-earnings of job movers between k and k′ of log-earnings for all k, k′. Each dot corre-

sponds to a k, k′ pair. x-axis is data, y-axis is model. The size of the dots is proportional to the number of job

movers in the cells.
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Figure S11: Fit of covariances, level estimation of ρ4|3 and ρ1|2 in the dynamic model
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Notes: Covariance of log-earnings of job stayers in class k in levels, data (x-axis) and model (y-axis). Estimation

in levels. The size of the dots is proportional to the number of job stayers in the cells.

Figure S12: Fit of covariances, first-differenced estimation of ρ4|3 and ρ1|2 in the dynamic model
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Notes: Covariance of log-earnings of job stayers in class k in first differences, data (x-axis) and model (y-axis).

Estimation in first differences. The size of the dots is proportional to the number of job stayers in the cells.
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Figure S13: Dynamic model estimates, half-sample estimation within firm
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Notes: See the notes to Figure 3. Dynamic model, 2001-2005. The model is estimated on two random halves of

the data, split within firm and mobility status. The figure shows parameter estimates in the first split.

Figure S14: Mean log-earnings of job movers by firm classes
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Notes: Swedish sample, 2002-2004. Firm classes are aggregated into 5 groups on the y-axis.
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