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Abstract. Different bootstrap methods and estimation techniques for inference for struc-
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tional heteroskedasticity (GARCH) are reviewed and compared in a Monte Carlo study.
The bootstrap methods considered are a wild bootstrap, a moving blocks bootstrap and a
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1 Introduction

In the 1970s major advances in economic time series analysis initiated in part by seminal

books such as Box and Jenkins (1976), Fuller (1976) and Granger and Newbold (1977)

triggered the development of new tools for macroeconomic analysis. Important new in-

sights by Granger and Newbold (1974) and others regarding problems related to inference

in time series regression models involving trending variables led to a rethinking of the stan-

dard simultaneous equations model (SEM) methodology. In related research, there were

major advances in time series forecasting at that time (e.g., Bates and Granger (1969),

Newbold and Granger (1974), Box and Jenkins (1976)). The newly developed models and

methods of that time showed that forecasts based on simple univariate time series mod-

els could outperform large scale SEMs (see, e.g., Nelson (1972), Cooper (1972), Granger

and Newbold (1975) and the discussion in Granger and Newbold (1977, Section 8.4)).

This insight and the difficulties related to identifying large-scale SEMs culminated in the

proposal by Sims (1980) to use vector autoregressive (VAR) models instead of SEMs for

economic analysis.

Since then a large part of time series econometrics has developed VAR based tools

for macroeconometric analysis (see, e.g., Kilian and Lütkepohl (2017)). Impulse response

analysis is one such tool. One branch of research in this area has focussed on tools for

identifying structural shocks and related impulse responses that allow for meaningful eco-

nomic analysis. In this context, using heteroskedasticity and conditional heteroskedas-

ticity for identification has been proposed (see Rigobon (2003), Lanne and Lütkepohl

(2008), Lütkepohl (2013)). The present study contributes to this literature by exploring

inference methods related to impulse responses based on structural VAR (SVAR) models

with generalized autoregressive conditionally heteroskedastic (GARCH) innovations, as

proposed by Normandin and Phaneuf (2004) in this context.

Specifically, we consider bootstrap methods that capture GARCH type dynamics and

compare their suitability for inference in SVAR models identified by conditional het-

eroskedasticity. Alternative bootstrap methods have been proposed in the literature that

are capable of capturing conditional heteroskedasticity more generally. For example, a

wild bootstrap was explored by Gonçalves and Kilian (2004, 2007) for conditionally het-

eroskedastic autoregressive models. For the VAR framework considered in the present

study, Brüggemann, Jentsch and Trenkler (2016) point out, however, that the wild boot-

strap is not valid asymptotically for structural impulse response analysis and propose

an asymptotically valid residual-based moving blocks bootstrap instead for models with

conditional heteroskedasticity of unknown form.

Assuming that the conditional heteroskedasticity is of GARCH type, yet another pos-

sibility is to use a GARCH residual-based bootstrap (see Hidalgo and Zaffaroni (2007),
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Jeong (2017) and Bruder (2018)). Some previous studies on bootstrap methods for con-

ditionally heteroskedastic SVAR models focus on possible improvements for inference if

identified structural shocks and impulse responses are considered. In contrast, in this

study we investigate inference for the case where identification is obtained via conditional

heteroskedasticity. Thus, in our setup, estimating the second moment structure well may

be of particular importance because it is used for identifying the structural parameters.

Therefore it is noteworthy that the GARCH residual-based bootstrap results in higher

order precision gains for the GARCH parameters, if the GARCH model is correctly spec-

ified.

We explore and compare the small sample suitability of the alternative bootstrap

methods for inference on structural impulse responses in the present study. In particular,

we are interested in inference methods that are compatible with the identification of

structural shocks through GARCH.

Given that a full maximum likelihood (ML) estimation of multivariate GARCH models

is computationally demanding and, hence, is problematic in bootstrapping algorithms, we

also explore other estimation methods that offer significant computational advantages to

make the bootstrap methods operational. For example, we also consider an estimation

method that has been proposed as a first step in a Gaussian ML procedure by Lanne and

Saikkonen (2007).

It is found that the relative coverage frequencies for the impulse responses are quite

heterogeneous when the structural parameters are identified purely via GARCH. They

are partly below the nominal coverage rates and partly above, depending on the impulse

response function considered. Bootstrap and estimation methods designed for more pre-

cise estimation of the GARCH structure have no advantages for the coverage precision of

the confidence intervals and confidence bands. In fact, the methods that condition on the

first round ML estimates of the GARCH parameters in the bootstrap tend to result in

smaller intervals and bands with similar coverage properties which may be substantially

smaller than the nominal level, however. Overall, the most accurate coverage is obtained

if such a conditional approach is combined with a wild bootstrap.

We use the alternative bootstrap procedures and estimation methods to assess the

effects of monetary policy shocks in the United States based on a benchmark study by

Caldara and Herbst (2018). These authors use Bayesian estimation techniques and iden-

tify the structural shocks with an external instrument approach based on high frequency

data. We use conditional heteroskedasticity for identification instead and consider a

three-dimensional model consisting of the federal funds rate and variables measuring the

excess bond premium and industrial production growth. We find plausible responses to

a monetary policy and a financial shock.

The remainder of this study is organized as follows. In the next section the model
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setup is laid out. In Section 3 the alternative bootstrap and estimation methods are

presented. In Section 4 the Monte Carlo study is described for comparing the methods in

small samples and the simulation results are discussed. Section 5 considers the empirical

example and Section 6 concludes. The Appendix contains computational details and

supplementary results.

2 The Model

2.1 Model Setup

The reduced-form model is assumed to be a K-dimensional VAR(p) process,

yt = ν + A1yt−1 + · · ·+ Apyt−p + ut, (1)

where ν is a K-dimensional constant term, the Aj (j = 1, . . . , p) are (K ×K) coefficient

matrices and ut is the conditionally heteroskedastic, serially uncorrelated error term with

mean zero and unconditional covariance matrix Σu. Given that we are interested in the

higher-order moment structure of the variables, we make the simplifying assumption that

all variables are integrated of order zero and the VAR process is stable and stationary. In

other words, the polynomial

det(IK − A1z − · · · − Apzp)

has no roots inside and on the complex unit circle. Denoting the lag operator by L,

stability of the VAR process ensures that the matrix operator A(L) = IK−A1L−· · ·−ApLp

is invertible. This assumption simplifies the exposition but could be relaxed to allow for

cointegration, for example.

The structural errors, εt, are assumed to be instantaneously uncorrelated with uncondi-

tional identity covariance matrix Σε = IK . They are determined as a linear transformation

of ut,

εt = B−1ut or ut = Bεt. (2)

Of course, the structural errors are also white noise and, hence, serially uncorrelated but

conditionally heteroskedastic. The transformation matrix B is such that BB′ = Σu. It

is the matrix of instantaneous effects or impact effects of the structural shocks on the

observed variables yt. This structural model will be called the B-model in the following.

Alternatively, we consider a structural model which is often referred to as A-model

(see Lütkepohl (2005, Chapter 9)). It normalizes the diagonal elements of B−1 to one and

leaves the unconditional variances of the structural shocks unrestricted. In other words,

for the A-model, we have Σu = BΣεB
′, where the unconditional covariance matrix of the
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structural innovations Σε = E(εtε
′
t) is a diagonal matrix. This model is often preferred

in the SVAR literature if the instantaneous relations between the variables represent

economically meaningful relations (see, e.g., Christiano, Eichenbaum and Evans (1999)

and Belongia and Ireland (2015)). In this model, the structural shocks have sizes that will

typically differ from one (unconditional) standard deviation which is implicitly assumed

by not restricting B but choosing it such that BB′ = Σu. Technically, for our purposes

the main difference between the A- and the B-model is that the matrix of impact effects

is unrestricted in the latter model (apart from the constraint BB′ = Σu).

The structural impulse responses are the elements of the coefficient matrices of the

MA representation

yt = µ+
∞∑
i=0

Θiεt−i = µ+ Θ(L)εt, (3)

where Θ(L) = (IK − A1L− · · · − ApLp)−1B and µ is the mean vector of yt.

2.2 GARCH Structure

It is assumed that the GARCH structure of the error term is such that it identifies the

structural parameters B. In the context of GARCH volatility, the GO-GARCH model

originally proposed by van der Weide (2002) is convenient for this purpose. For identifying

structural VAR models this setup was considered by Normandin and Phaneuf (2004),

Bouakez and Normandin (2010), Lütkepohl and Milunovich (2016) and others. It assumes

that

E(utu
′
t|Ft−1) = Σt|t−1 = BΛt|t−1B

′, (4)

where Ft denotes the information available at time t and

Λt|t−1 = diag(σ2
1,t|t−1, . . . , σ

2
K,t|t−1)

is a diagonal matrix with univariate GARCH(1,1) diagonal elements,

σ2
k,t|t−1 = (1− γk − gk) + γkε

2
k,t−1 + gkσ

2
k,t−1|t−2, k = 1, . . . , K. (5)

Here εk,t is the kth component of εt which is assumed to have mean zero and identity

covariance matrix in the B-model, εt ∼ (0, IK). Thus, GARCH enters the model by each

structural shock having univariate GARCH dynamics. This setup implies an uncondi-

tional residual covariance matrix

E(utu
′
t) = Σu = BB′.

It is assumed that gk ≥ 0 and γk > 0 with gk + γk < 1 for at least K − 1 of the univariate

GARCH processes. Under this condition, the matrix B is locally identified (see Milunovich

and Yang (2013) and Lütkepohl and Milunovich (2016)).
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More precisely, the columns of B are identified up to sign and permutation. Since the

kth column of B contains the impact effects of the kth structural shock on the components

of yt, this means that the signs and the order of the shocks are not uniquely determined by

the GARCH structure. However, given the sign of a shock and its position in the vector

εt, its effects on the variables on impact are uniquely specified in our B-model setup.

To obtain uniqueness of B, the shocks have to be ordered uniquely and their sign has to

be fixed. In specific applications this should ideally be linked to economic considerations

or features of economic variables. For example, in our application in Section 5 we choose

the shock which explains the largest share of the variance of the policy interest rate as the

monetary policy shock and fix the sign such that it increases the policy rate on impact.

In our Monte Carlo study reported in Section 4, the shocks are ordered according to the

size of the impact effects on specific variables and the sign is fixed by ensuring a positive

impact response of specific variables (see Section 4 for the details).

As mentioned earlier, for the A-model it is assumed that B−1 has ones on the main

diagonal and is such that B−1ΣuB
−1′ = Σε is a diagonal matrix. In this case, εt ∼ (0,Σε)

and the GARCH(1,1) processes in (5) become

σ2
k,t|t−1 = ξk + γkε

2
k,t−1 + gkσ

2
k,t−1|t−2, k = 1, . . . , K, (6)

with unconditional variance σ2
ε,k = ξk/(1 − γk − gk). Here σ2

ε,k denotes the kth diagonal

element of Σε. In the A-model model, the signs of the rows and columns are identified

by the requirement that the diagonal elements of B−1 are unity. In applied work, the

row ordering is ideally also linked to economic or institutional considerations, as for the

B-model. The specific orderings used in the Monte Carlo experiment and the application

are discussed in Sections 4 and 5, respectively.

2.3 Estimation

Assuming a Gaussian conditional distribution, ut|Ft−1 ∼ N (0,Σt|t−1), the log-likelihood

of the model is

log l =
T∑
t=1

log ft|t−1(yt),

where the conditional densities have the form

ft|t−1(yt) = (2π)−K/2 det(Σt|t−1)
−1/2 exp

(
−1

2
u′tΣ

−1
t|t−1ut

)
. (7)

Lanne and Saikkonen (2007) use a polar decomposition of B, B = CR, where C is a

symmetric, positive definite (K×K) matrix and R is an orthogonal (K×K) matrix and
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observe that the expression in (7) can be rewritten as

ft|t−1(yt) = (2π)−K/2 det(Σu)
−1/2 exp

(
−1

2
u′tΣ

−1
u ut

) r∏
k=1

σ−1k,t|t−1

× exp

(
−1

2
u′tC

−1R(Λ−1t|t−1 − IK)R′C−1ut

)
.

They note that Σu = CC and propose to break down the estimation in two main steps.

First, C is obtained as the unique square root of Σu, which is estimated as a sample covari-

ance matrix. Second, the rows of R′ and the GARCH equation parameters are estimated

separately for k = 1, . . . , K, conditionally on the estimated C. In fact, equation k + 1

is estimated conditionally on the previously estimated equation k. The exact procedure

is described in Section 4 of Lanne and Saikkonen (2007). Thereby initial estimates of

the parameters of the volatility model are obtained and in a second step a full, joint ML

estimation of the parameters is performed starting from the initial estimates obtained in

the first step.

This procedure is used for ML estimation in the simulation experiment reported later.

The VAR slope coefficients ν,A1, . . . , Ap are estimated by least squares (LS) and then the

LS residuals are used in the likelihood function and the first step of the Lanne/Saikkonen

procedure. Further details on the implementation of the likelihood optimization are given

in Appendix B.

Lanne and Saikkonen (2007) show the consistency and asymptotic normality of the

Gaussian ML estimator under assumptions that allow the true conditional distributions

of the ut to be non-Gaussian. In other words, standard asymptotic properties of the

estimators are obtained even if the estimation procedure is only a Gaussian quasi-ML

procedure. Lanne and Saikkonen (2007) also suggest that the estimator obtained in the

first step of their procedure may be consistent under suitable conditions, although it may

be inefficient relative to a full Gaussian quasi-ML estimator.

3 Bootstrapping Impulse Responses

In our setup, where the structural parameters are identified through conditional het-

eroskedasticity, a bootstrap procedure for inference on structural impulse responses has

to mimic the GARCH structure in the innovations so that the structural parameters

B are maintained and can be estimated from the bootstrap samples. Three bootstrap

procedures that satisfy this condition are considered in the following: a recursive-design

wild bootstrap, a recursive-design residual-based moving blocks bootstrap and a GARCH

residual-based bootstrap. They can all be used to generate samples from which structural

impulse responses can be estimated.
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3.1 The Bootstrap procedures

Recursive-design wild bootstrap (WB)

Kreiss (1997) and Gonçalves and Kilian (2004, 2007) consider a wild bootstrap (WB)

which preserves the second moment structure of autoregressive (AR) errors and, hence,

maintains conditional heteroskedastic innovations of AR models. For our setup, bootstrap

samples are constructed recursively as

y∗t = ν̂ + Â1y
∗
t−1 + · · ·+ Âpy

∗
t−p + u∗t (8)

for t = 1, . . . , T , given a set of initial values y∗−p+1, . . . , y
∗
0. Here ν̂, Â1, . . . , Âp denote LS

estimates and the errors u∗t = ηtût, where the ût = yt − ν̂ − Â1yt−1 − · · · − Âpyt−p are LS

residuals and the ηt are independent random variables with zero mean and unit variance

which are independent of the VAR innovations. Hence, ηtût has the same variance as ût

and the bootstrap errors mimic the second moment structure of the original innovations.

For the WB, we always use the original initial values y∗−p+1 = y−p+1, . . . , y
∗
0 = y0.

Moreover, standard normal ηt are used, i.e., ηt ∼ i.i.d.N (0, 1), as in Brüggemann et al.

(2016). These authors provide a theoretical justification for this choice to be preferable

to some other distributions for ηt. Such alternative distributions for ηt have been used in

some related SVAR studies considering identification through heteroskedasticity without

theoretical justification. For example, Herwartz and Lütkepohl (2014), Lütkepohl and

Netšunajev (2017) and Netšunajev (2013) use a Rademacher distribution.

Gonçalves and Kilian (2004) are interested in inference for the slope parameters of

AR processes. They use WB methods among others and prove the asymptotic validity

in the presence of conditional heteroskedasticity. In a simulation study they find that

their WB procedures improve inference in the presence of conditionally heteroskedastic

innovations relative to an i.i.d. bootstrap which ignores heteroskedasticity or conditional

heteroskedasticity. Clearly, such results do not ensure that the WB also improves inference

for structural impulse responses. In fact, Brüggemann et al. (2016) show that the WB

does not properly capture the higher-order moment properties of the original distribution,

except possibly for larger propagation horizons. Since the structural matrix B is related

to the residual variances, the WB is actually not asymptotically valid for inference on

structural impulse responses. However, Brüggemann et al. (2016) show by simulation that

it performs well in comparison to a valid bootstrap method. Moreover, the asymptotic

problems of the WB are caused by the fact that confidence intervals for structural impulse

responses of one standard deviation in size involve estimates of the variances of the second

moments and hence higher-order moments. If the variances of the structural shocks are not

standardized to one, as in the A-model setup, the impulse responses may not be affected

by the problem of not capturing higher-order moments well. Therefore we include the
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WB, although its theoretical basis is weak for some of the impulse responses considered

in our Monte Carlo study.

In our setup we are actually facing an even more challenging problem than Brüggemann

et al. (2016) because we want to identify the structural parameters through GARCH.

We are nevertheless including the WB in our comparison because it has been used for

inference in SVAR analysis. Initially, we have also included a fixed-design wild bootstrap

in our comparison.2 It turned out to be notably inferior to the presently considered WB

procedure in terms of our performance criteria to be discussed later. The fixed-design

WB was also found to be inferior to the recursive-design variant in a study by Gonçalves

and Kilian (2004). Therefore we dropped it from the comparison.

VAR residual-based moving blocks bootstrap (MBB)

Brüggemann et al. (2016) show that a recursive-design residual-based moving blocks boot-

strap (MBB) is asymptotically valid for structural impulse responses. They propose fitting

a VAR(p) model by LS and consider sampling blocks of the LS residuals ût, t = 1, . . . , T .

They choose a block length l < T such that s = [T/l] is the number of nonoverlapping

blocks, where ls ≥ T .3 The blocks of length l of the LS residuals are arranged in the form

of the matrix
û1 û2 . . . ûl

û2 û3 . . . û1+l
...

...
...

ûT−l+1 ûT−l+2 . . . ûT

 .

The bootstrap residuals are recentered by removing the columnwise mean to ensure that

the bootstrap residuals have mean zero. More precisely, the recentering is done by con-

structing

ũjl+i = ûjl+i −
1

T − l + 1

T−l∑
r=0

ûi+r

for i = 1, 2, . . . , l and j = 0, 1, . . . , s− 1. Bootstrap residuals are generated by drawing s

times with replacement from the recentered rows of the matrix. These draws are combined

in a time series of bootstrap residuals, [u∗1, . . . , u
∗
T ], by joining them end-to-end and re-

taining the first T bootstrap residuals. Starting from a draw for the bootstrap presample

observations y∗−p+1, . . . , y
∗
0 obtained by randomly drawing p consecutive observations from

2A fixed-design wild bootstrap uses a fixed set of regressors in generating the bootstrap samples,

that is, instead of using the recursive scheme in (8), the bootstrap samples are generated as y∗t =

ν̂ + Â1yt−1 + · · ·+ Âpyt−p + u∗t .
3[x] denotes the smallest integer greater than or equal to the real number x.
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the sample, the bootstrap sample, y∗1, . . . , y
∗
T , is generated recursively for t = 1, . . . , T as

y∗t = ν̂ + Â1y
∗
t−1 + · · ·+ Âpy

∗
t−p + u∗t .

Brüggemann et al. (2016) use zero initial values. However, in their simulations they use

very large samples compared to the smaller samples we will consider in our simulations.

In smaller samples the initial values may be more important. Hence, we favour to vary

them as well to get a better impression of the bootstrap uncertainty.

Brüggemann et al. (2016) show that this bootstrap method allows for asymptotically

correct inference for statistics that depend on the slope parameters and the unconditional

covariance matrix of stable VAR processes with conditionally heteroskedastic innovations

because it replicates the fourth moment structure correctly if the impulse responses have

proper nonsingular asymptotic distributions. Thus, this method provides valid inference

for structural impulse responses. The asymptotic results are derived under the assumption

that the block length goes to infinity with the sample size but much more slowly (l3/T →
0). In our benchmark simulations we make the block lengths dependent on the sample

sizes considered. We also explore the impact of the block length by varying it for some

Monte Carlo designs.

Brüggemann et al. (2016) also show by simulation that the MBB and the WB tend to

underestimate the uncertainty in structural impulse responses in some situations. Thus,

they tend to result in too narrow confidence intervals for the structural impulse responses

with true coverage below the desired nominal coverage.

These results are obtained for SVAR models identified by conventional exclusion re-

strictions. In other words, in their bivariate setup, the B matrix is identified by setting

one element to zero. Thus, their setup is very different from ours because they do not

use the conditional heteroskedasticity for identifying B and, thus, their simulation results

may differ from ours.

GARCH residual-based bootstrap (RBB)

A bootstrap method that is known to result in asymptotically valid inference for the

GARCH parameters is based on the deep GARCH innovations. Bootstrap draws of the

GARCH residual-based bootstrap (RBB) are obtained using the following steps:

(1) Get a quasi-ML estimate B̂−1 with rows b̂k and GARCH estimates γ̂k, ĝk, k =

1, . . . , K.

(2) Generate sequences

σ̂2
k,t|t−1 = (1− γ̂k − ĝk) + γ̂k(b̂kût−1)

2 + ĝkσ̂
2
k,t−1|t−2 (9)
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recursively for t = 1, . . . , T starting with û0 = 0 and σ̂2
k,0|−1 = 1. Thereby we get

estimates

Λ̂t|t−1 = diag(σ̂2
1,t|t−1, . . . , σ̂

2
K,t|t−1)

from which we can compute deep innovations η̂t = Λ̂
−1/2
t|t−1B̂

−1ût for t = 1, . . . , T .

(3) Draw bootstrap innovations e∗1, . . . , e
∗
T from the demeaned innovations η̂t and gen-

erate reduced-form errors as

u∗t = B̂Λ̂
1/2
t|t−1e

∗
t . (10)

(4) Get bootstrap observations as

y∗t = ν̂ + Â1y
∗
t−1 + · · ·+ Âpy

∗
t−p + u∗t .

Repeat Steps 3 and 4 a large number of times. It is worth pointing out that the same

bootstrap time series are used for the B- and the A-model.

For univariate GARCH processes the asymptotic validity of the GARCH residual-

based bootstrap was established by Jeong (2017) who shows that it can lead to higher

order improvements and is asymptotically superior to a block bootstrap for inference

regarding the GARCH parameters. Bruder (2018) considers a slightly different version

of this bootstrap which generates u∗t = B̂Λ
∗1/2
t|t−1e

∗
t in step (3), where Λ∗t|t−1 = diag(σ∗21,t|t−1,

. . . , σ∗2K,t|t−1) with

σ∗2k,t|t−1 = (1− γ̂k − ĝk) + γ̂k(e
∗2
k,t−1 + ĝk)σ

∗2
k,t−1|t−2.

Moreover, he standardizes the innovations η̂t by mean- and variance-adjusting them to

obtain the e∗t errors. He shows the asymptotic validity of this bootstrap for the case of

structural impulse responses identified by GARCH. We have also used this alternative

RBB method for some simulations and we will comment on the results briefly in Section

4, where it is labelled as ‘alt. RBB’. Bruder (2018) also studies a modified version of

his RBB which turned out to have similar small sample properties and is therefore not

considered in the following.

Other bootstrap procedures

There are also other bootstrap variants which maintain heteroskedasticity and conditional

heteroskedasticity. For example, Gonçalves and Kilian (2004) also consider a pairwise

bootstrap. They found, however, that even when the pairwise bootstrap is asymptoti-

cally valid, it tends to be less accurate in small samples than the recursive-design WB.

Moreover, Brüggemann et al. (2016) show that, like the wild bootstrap, the pairwise
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bootstrap is not consistent for structural impulse responses. In their simulations it is

inferior to their wild bootstraps in particular for persistent GARCH processes. We also

did not consider the stationary bootstrap proposed by Politis and Romano (1994) which

randomly chooses the block length of a block bootstrap. Although such a procedure might

be adequate in the present context, it did not work as well as other related procedures

in a simulation study reported by Berkowitz, Birgean and Kilian (2000) based on ho-

moskedastic univariate time series. Thus, we do not include such alternative procedures

in our comparison.

3.2 Estimation Methods

For each of these bootstraps, the structural VAR parameters and impulse responses have

to be estimated in each replication. Since a full ML estimation of the model is compu-

tationally demanding, in particular for larger models, we consider four alternatives for

estimating the impulse responses in the bootstrap replications.

Full ML (ML) A full ML estimation based on the Lanne/Saikkonen procedure men-

tioned in Section 2.3 is used in each bootstrap replication. Depending on the size of

the model this option may in fact not always be feasible in practice. In our Monte

Carlo study we always use Gaussian ML estimation, that is, we maximize the Gaus-

sian likelihood function even for non-Gaussian processes. In that case, ML is more

precisely Gaussian quasi-ML. There may be applications where other distributions

are of interest.

First step Lanne/Saikkonen (L/S) The estimates in each bootstrap replication are

based on the first step estimation of the Lanne/Saikkonen procedure for the GARCH

parameters. As mentioned earlier, these authors expect the estimator to be con-

sistent under suitable conditions but it is not necessarily efficient. Given that the

computations of the procedure are much less demanding than a full ML estimation,

it is included here to investigate the small sample efficiency losses when it is com-

bined with a bootstrap procedure. In the following the procedure is abbreviated as

L/S.

Conditioning on estimated GARCH parameters (CB) We also consider a compu-

tational short-cut where in each bootstrap replication we use the ML estimates of the

GARCH parameters based on the original data. That is, we condition on the first

round ML estimates of the GARCH parameters and estimate only the ν,A1, . . . , Ap

and B parameters in the bootstrap replications. Thereby substantial computational

savings can be realized. The procedure is abbreviated by CB in the following.
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Conditioning on true GARCH parameters (true GARCH) To see how much we

loose by not knowing the true GARCH processes which drive the volatility changes,

we also condition on the true GARCH parameters in the bootstraps and only esti-

mate the VAR parameters and the structural matrix B in the bootstrap replications.

Although this method is not feasible in practice, it may give an indication how much

can be gained by refining the estimation methods for the second moment structure.

The method is labelled as ‘true GARCH’ in the following.

The CB procedure requires only one full ML estimation. Such procedures were used

as ad hoc methods in a related structural VAR context by Herwartz and Lütkepohl

(2014), Lütkepohl and Netšunajev (2017) and others although the asymptotic validity

has not been shown. It is a short-cut which reduces the computational complexity of the

bootstraps considerably.

Instead of conditioning on the estimated GARCH parameters as in the CB method,

one could alternatively condition on the estimated sequences of the conditional variances.

Such a bootstrap was considered by Cavaliere, Pedersen and Rahbek (2018) in a different

context for univariate processes. In our context of inference for structural impulse re-

sponses, we found in a limited simulation comparison that it produces very similar results

to the CB method. Therefore we do not consider it in the following.

Bruder (2018) considers an alternative estimation method for the GARCH parameters

and the structural parameters originally due to Boswijk and van der Weide (2011) which

has computational advantages over our full ML procedure. We have not considered that

estimator because refinements of the estimator of the GARCH parameters do not seem to

be essential for improving inference for impulse responses, as we will see when we discuss

our simulation results.

Generally, we use Gaussian ML type estimates of the reduced-form VAR slope coeffi-

cients although for inference on impulse responses, bias-adjusted estimates were found to

be preferable in the related literature (e.g., Kilian (1998, 1999)). These results are related

to homoskedastic VARs, however, and there is no evidence that they would be beneficial

in the present context. In fact, it is not clear whether they may be detrimental to our

objective of using heteroskedasticity for identification. Therefore we consider only the ML

based estimates of the slope parameters without bias adjustment in the present study. An

alternative way to reduce estimation bias may be the use of Hall’s bootstrap confidence

intervals (see Hall (1992) or Section 12.2.6 of Kilian and Lütkepohl (2017)). Given that

the processes used in our simulations are such that estimation bias in the VAR slope

coefficients may not be a severe problem and in a limited simulation experiment Hall’s

intervals were not uniformly better than percentile intervals, we prefer to use the more

conventional percentile intervals in this study. They are presented in detail in Section 4.2.
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4 Monte Carlo Comparison

A large-scale simulation comparison of the WB, the MBB and some other bootstrap

methods for inference for structural impulse responses in the presence of conditional het-

eroskedasticity is also reported by Brüggemann et al. (2016). As mentioned earlier, these

authors do not consider identification through heteroskedasticity, however. They just use

heteroskedasticity to adjust variance estimates and confidence intervals and they identify

the structural shocks by conventional exclusion restrictions. Thus, they face inference

problems quite different from those of interest in the present study and therefore they

also use different VAR and GARCH dynamics in their simulations. In the context of

the present study, the second moment structure is used for parameter identification and,

hence, it may be important to estimate it well.

4.1 Monte Carlo Setup

Our simulations are based on bivariate and trivariate DGPs, i.e., K = 2, 3, that evolve

from

yt = ν + A1yt−1 + · · ·+ Apyt−p + ut, ut ∼ (0, BB′). (11)

In order to generate GARCH innovations, we follow Lütkepohl and Schlaak (2018) and

first generate random variates with zero mean and unit variance, (e1t, . . . , eKt)
′ ∼ (0, IK),

and

σ2
k,t|t−1 = (1− γk − gk) + γkε

2
k,t−1 + gkσ

2
k,t−1|t−2, k = 1, . . . , K,

where εk,t = ek,tσk,t|t−1 for t = 1, . . . , T . Finally, the ut = BΛ
1/2
t|t−1et are generated, where

Λt|t−1 = diag(σ2
1,t|t−1, . . . , σ

2
K,t|t−1). Thereby, the unconditional covariance matrix of ut is

Σu = BB′.

The number of replications of the simulation experiment for each design is 500. Al-

though this is a rather modest number, the number of replications is limited by the

substantial computation times for each replication. For further details see also Appendix

B. The sample sizes used are T = 200 and 500, and the number of bootstrap replications

is N = 1000.

4.1.1 Bivariate Benchmark DGPs

First, we use bivariate VAR(1) DGPs similar to those used in the related literature on con-

structing bootstrap confidence bands for impulse responses (e.g., Kilian (1998), Lütkepohl,

Staszewska-Bystrova and Winker (2015a, 2015b), Lütkepohl and Schlaak (2018)). We
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choose

A1 =

[
α 0

0.5 0.5

]
, ν =

[
0

0

]
, (12)

where α = 0.5 and 0.9. Thus, the processes are stable and stationary because |α| < 1.

Although the constant terms in the DGPs are zero, they are always included in the models

which are estimated. The matrix

B =

[
1 0

−1 10

]
.

This matrix is chosen such that the two columns are clearly distinct. Although the upper

right-hand element is zero, a full, unrestricted B matrix is estimated, that is, the zero

restriction is not imposed in the estimation. To ensure an identified B matrix in the B-

model, where B is only identified up to sign and column permutation through GARCH,

we normalize the diagonal elements to be positive which takes care of the sign and we

order the columns such that the largest element appears in the lower right-hand corner of

B. The latter choice ensures a unique column ordering. The elements of B have different

estimation variance. Thereby we can get a better picture of the impact of estimation

precision on the results. The structural matrix of the corresponding A-model is obtained

by inverting our B matrix and standardizing its main diagonal,

A =

[
1 0

1 1

]
.

We use GARCH parameters (γ1, g1) = (0.1, 0.85) and (γ2, g2) = (0.05, 0.92) and stan-

dard normal variates, (e1t, e2t)
′ ∼ N (0, I2), for our benchmark setup. The choice of the

GARCH parameters ensures rather persistent volatility patterns as they are often ob-

served in practice (see, e.g., Bouakez and Normandin (2010, Table 1)). Both processes

satisfy the necessary conditions for the existence of unconditional fourth moments (see He

and Teräsvirta (1999)) which is relevant for the asymptotic estimation theory for GARCH

processes. We will also briefly comment on results for other distributions for the inno-

vations and alternative parameter combinations which correspond to less well identified

models. The results are similar to our benchmark results and are therefore not discussed

in detail.

4.1.2 Three-dimensional DGP

In contrast to the quite stylized simulation design of our bivariate DGPs we also simulate a

more sophisticated DGP that mimics the properties of an observed dataset. Its parameters

are based on estimates of a trivariate model that has been used in the literature to analyze
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the effects of monetary policy shocks (see, e.g., Caldara and Herbst (2018)). The model

entails the federal funds rate, an excess bond premium variable, and the growth rate of

industrial production. For a detailed description of the model and the data we refer to

Section 5 where the same model is used in an empirical application. The data is at monthly

frequency spanning from June 1993 to June 2007, hence, the sample size is T = 169. We

choose a lag length of p = 6. The identification of the structural parameters is obtained

by exploiting the time-varying volatility of the data using the GARCH model outlined in

Section 2. The estimated coefficients are treated as parameters of our trivariate DGP.4

The estimates of the autoregressive coefficient matrices are presented in Appendix A.

We ensure that our system is stable and stationary by checking that all eigenvalues of

the companion matrix of the VAR have modulus less then 1. We find that the largest

eigenvalue of the system is λ̂ = 0.946, thus, clearly less than 1. The impact effects matrix

is

B =


0.208 0.020 0.020

0.003 0.119 0.000

0.000 0.000 0.004

 .

The coefficients on the main diagonal ofB are normalized to have positive signs. Moreover,

to achieve full identification, we impose a unique ordering by permuting the columns of

B such that the column with the largest value in absolute terms in the first row of the

matrix is ordered first. For the remaining columns of B, the largest value of the second

row is ordered as second column which ensures identification.

Two pairs of estimated GARCH processes exhibit a similar persistence as our bivari-

ate benchmark simulation designs ((γ1, g1) = (0.063, 0.905) and (γ2, g2) = (0.211, 0.757)).

In contrast, the persistence of the third GARCH process is much lower. The parame-

ters for that process are (γ3, g3) = (0.302, 0.136). The innovations are standard normal,

(e1t, e2t, e3t)
′ ∼ N (0, I3).

4.2 Computing Bootstrapped Confidence Intervals and Confi-

dence Bands

For all simulation designs we compute impulse response estimates as

Θ̂i = Φ̂iB̂, i = 0, 1, . . . , H,

where the Φi are computed recursively as Φi =
∑i

j=1 Φi−jAj starting with Φ0 = IK and

setting Aj = 0 for j > p. The propagation horizon is H = 10. We check how often

the true impulse responses fall within the estimated confidence intervals and also how

4All estimated coefficients are truncated after the third digit.
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often a full impulse response function, θkl,i, i = 0, 1, . . . , H, falls within a confidence band

obtained by connecting the pointwise confidence intervals.

We consider structural impulse responses based on B-models as well as A-models.

For the B-model the estimate B̂ is such that it satisfies B̂B̂′ = Σ̂u = T−1
∑T

t=1 ûtû
′
t.

The estimate of B−1 for the A-model is obtained from this B̂ estimate by inverting the

matrix B̂ and dividing each row of the inverse by the corresponding element of the main

diagonal to obtain Â. Thus, all differences between the A- and the B-model are due to

the standardization of diagonal elements in the matrix B−1 and not, for example, due to

convergence to a different local optimum of the estimation algorithm.

The bootstrap confidence intervals for the individual impulse response coefficients are

constructed as percentile intervals. For 0 < γ < 1, a 1 − γ interval is constructed as

[θ∗γ/2, θ
∗
1−γ/2], where θ∗η is the η quantile of the bootstrap sample of the impulse response

coefficient of interest. Percentile intervals are the most common bootstrap confidence

intervals for structural impulse responses, although sometimes other types of intervals

are used (see Kilian and Lütkepohl (2017, Chapter 12)). For our purposes the relative

performance of the different bootstrap methods is of interest. Therefore the issue which

confidence interval is used may be of limited importance because all methods will be af-

fected in a similar way by the choice of confidence interval. Moreover, simulation evidence

suggests that none of the other options uniformly dominates percentile intervals in terms

of coverage and width (see Kilian and Lütkepohl (2017, p. 362)).

The confidence bands for an impulse response function, constructed by joining the

pointwise confidence intervals, can be interpreted as Bonferroni confidence sets with

a lower coverage probability than the individual intervals (see Lütkepohl, Staszewska-

Bystrova and Winker (2015b) for further discussion). Note that, if a Bonferroni band is

constructed for H + 1 individual confidence intervals with nominal coverage probability

1− γ, then, according to the Bonferroni inequality, the joint band has a coverage proba-

bility of at least 1− γ(H + 1). In other words, in order to ensure a 1− γ joint confidence

band, 1− γ/(H + 1) individual confidence intervals have to be chosen.

In the simulations we use individual confidence levels of 1− γ = 0.9 and 0.99 as well

as impulse response functions up to propagation horizon H = 10. Thus, the Bonferroni

inequality ensures that the nominal coverage rate of a joint band based on the individual

99% confidence intervals is bounded below by roughly 0.9. The joint bands reported later

ideally should have coverage levels of 90% or more. Of course, the Bonferroni inequality

provides only a lower bound for the coverage probability. The actual coverage level may

be larger.

Although the actual asymptotic coverage probability of the joint bands obtained in

this way is unknown, for our purposes the bands are still useful because an interval or

band with prespecified coverage probability can be obtained from the given set by a
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multiplicative factor. Thus, if two intervals or bands have the same coverage, the smaller

one is preferable. In turn, if two bands have the same widths, the one with the larger

coverage is to be preferred. We measure the width of a joint confidence band by the sum

of the widths of the individual confidence intervals involved. In other words, denoting the

width of the confidence interval of the hth impulse response coefficient associated with

an impulse response function of interest by `h, the width of the band for H + 1 impulse

responses is measured as `band =
∑H

h=0 `h.

4.3 Monte Carlo Results

We first discuss the results for the bivariate DGPs and then report the results for the

three-dimensional DGP. Some details are presented in tables and figures in the Appendix

of Supplementary Results. A prefix A is attached to the numbers of these tables and

figures.

4.3.1 Results for Bivariate DGPs

Since the estimates of the impulse responses crucially depend on the estimates of the

structural parameters in the matrix B = [bij] and because this matrix also represents the

impact effects of the shocks, we first discuss relative coverage frequencies of bootstrap

confidence intervals for the elements of the B matrix along with average interval widths

for our benchmark DGPs. Then we discuss results for longer propagation horizons and

finally we report on a robustness analysis based on alternative methods and bivariate

processes.

Impact effects Relative coverage frequencies of confidence intervals for the elements

of B and average interval widths for the bivariate DGP with α = 0.9 are shown in Table

1. The table contains results for sample sizes T = 200 and 500. Results for nominal

coverage levels of 90% are presented. We also determined intervals for confidence levels

95% and 68% which turned out to be qualitatively identical and therefore are not shown.

A coverage level of 90% is quite common in SVAR studies in practice.

Looking first at the relative coverage frequencies for the B-model, it is seen in Table 1

that they vary substantially depending on the element under consideration. For example,

in Table 1 for T = 200, combining ML estimation with the MBB gives relative coverage

frequencies of 0.51, 0.98, 0.97 and 0.54 for b11, b21, b12 and b22, respectively. Thus, the

intervals are quite conservative for b21 and b12 while they are too small for b11 and b22.

This pattern is repeated for all combinations of estimation and bootstrap methods. It

can also be seen for sample size T = 500, although for the larger sample size the actual

coverage frequencies for b21 and b12 are closer to the nominal level of 90%, as one would
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expect. It should be noted that the same pattern is obtained when the true GARCH

parameters are used instead of estimates.

Overall the WB generates the largest relative coverage frequencies which in some cases

exceed the nominal coverage probabilities. The MBB and RBB result in lower coverage

frequencies for T = 200 while the relative coverage frequencies of the MBB intervals are

for most of the parameters closer to the nominal 90% than the RBB and WB intervals

for T = 500. The focus of the RBB on estimating the GARCH parameters well does

not lead to improved inference for the elements of the B matrix. In fact, knowing the

true GARCH parameters does not help much to improve the coverage accuracy of the

bootstrap confidence intervals.

Looking now at the interval widths for the B-model in Table 1, it is striking that

the CB method, for a given bootstrap method and element of B, apart from very few

exceptions, leads to the shortest intervals as compared to ML and L/S estimation. Even

the intervals based on the true GARCH parameters are often wider and in the other cases

very similar to the corresponding CB intervals. Thus, there is no scope for improving

inference on the impact effects of the structural shocks by refining the estimation of the

GARCH parameters.

The smallest intervals are typically obtained by combining CB with the WB or MBB.

In contrast, RBB often leads to slightly larger intervals and is not competitive in terms

of interval width. This is even true when we condition on the true GARCH parameters.

The overall best procedure is a combination of the WB with the CB estimation method.

The WB tends to have better coverage for elements with coverage below the nominal 90%

level and MBB tends to provide shorter intervals. This often comes with lower coverage

rates, however. Consequently, the computationally most efficient feasible method turns

out to be the best. Even if the gains from using the WB/CB or MBB/CB methods in

terms of coverage and interval length are often not substantial, there is little point in

using any of the computationally more demanding estimation methods.

The situation for the A-model is similar in that the WB/CB method is typically at least

as good as the other methods in terms of coverage and MBB/CB has a slight advantage

in terms of interval width. For this model the WB/CB method tends to be conservative

even for sample size T = 200. All methods result in conservative intervals with coverage

levels close to 1.00 for b21 and b12 while, for example, the MBB method leads to lower

than nominal coverage levels for b11 and b22 when T = 200. Another remarkable result

for the A-model is perhaps that the intervals for b12, which is actually zero, are quite

small, meaning that this element is estimated very precisely by all methods. On the other

hand, the confidence intervals for b21 = −1 are very wide, meaning that the element is

not estimated very accurately.

Overall, based on the intervals for the impact effects and comparing feasible methods
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only, the WB/CB method is preferable in terms of coverage while MBB/CB tends to

provide the smallest intervals. This result is remarkable because the WB method is

asymptotically invalid at least for the B-model and the CB method does not re-estimate

the GARCH parameters in each bootstrap replication. For the precision of the bootstrap

confidence intervals for the impact effects of the shocks the estimation precision of the

GARCH parameters appears to be of limited importance. Not even knowing the true

GARCH parameters can help improving inference for the impact effects of the structural

shocks.

Our results are to some extent in line with simulation results reported by Brüggemann

et al. (2016) who found situations in which the WB and the MBB resulted in coverage

rates below the nominal level. They also found that the WB often performs well in small

samples despite its asymptotic invalidity. It is important to recall, however, that Brügge-

mann et al. (2016) are using a very different simulation setup. They identify the structural

parameters with zero restrictions and the smallest sample size they consider is T = 500.

Impulse response functions Since for a VAR(1) process the impulse responses for

propagation horizon i are estimated as Θ̂i = Âi1B̂, they all involve the estimated matrix

of structural parameters B̂. Thus, the estimation precision for this matrix will determine

to some extent the confidence intervals and confidence bands for the impulse responses for

larger propagation horizons. For the bivariate benchmark DGP with α = 0.9, we present

relative coverage frequencies of joint confidence bands for impulse response functions of

propagation horizons i = 0, 1, . . . , 10 in Figure 1 along with relative band widths. Precise

numbers are available in Table A.1 of the Appendix. Figure 1 contains results for both

the B- and the A-models and sample sizes T = 200 and 500. The nominal coverage level

of the individual impulse responses is now 99% so that we get a Bonferroni lower bound

for the joint confidence level of about 90%.

In Figure 1, the widths of the confidence bands are divided by the width of the

band obtained with the MBB in combination with the true GARCH parameters for each

of the impulse response functions. Thus, the band widths are depicted relative to the

corresponding MBB/true GARCH band and the width of the MBB/true GARCH band

is 1. This normalization is useful to present very different interval widths in one figure

and it also facilitates the comparison of intervals obtained with different methods. On

the other hand, the normalization covers up any differences between the B- and the A-

models. Therefore the actual bandwidths (not normalized) are shown in Table A.1 of the

Appendix.

In Figure 1 it can be seen that there is some heterogeneity in the coverage levels for

both the B- and the A-models across the different impulse response functions. However,

in particular for the A-model the coverage levels are all remarkably close to 90% or
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even larger. This holds even for the smaller sample size of T = 200. The situation

for the B-model is different in that, for example, for the impulse response function θ11,i,

i = 0, . . . , 10, the coverage is still only around 60% for T = 200 if MBB or RBB are used

while WB achieves a better coverage of more than 70%. The differences in the coverage

rates diminish for T = 500. The choice of estimation method has very little impact on the

coverage rates. In fact, the plots corresponding to the alternative estimation methods are

very similar and difficult to distinguish visually. This even holds when the true GARCH

parameters are used in the bootstraps.

Turning now to the band widths, the relative widths in Figure 1 are all very close

to one or greater than one, meaning that the MBB/true GARCH bands are always the

smallest or very close to the smallest because all band widths are depicted relative to

the corresponding MBB/true GARCH bands. It is remarkable, however, that also the

MBB/CB band widths are very close to one. Thus, even in terms of band width, the CB

method is as good as knowing the true GARCH parameters. In some cases the MBB and

RBB bands are considerably larger than the WB bands (see, e.g., θ12,i). Comparing only

the WB and the MBB, it turns out that the latter often leads to smaller band widths

but also smaller coverage levels. In larger samples both methods are similar in terms of

coverage and MBB tends to produce smaller band widths.

Comparing now the estimation methods in Figure 1, it is obvious that they provide

very similar results for a given impulse response function, bootstrap and sample size.

Again the CB method often leads to smaller bands than the other methods without

sacrificing coverage. Since it is also the computationally most efficient method it is clearly

preferable to the other methods. Thus, overall using the WB/CB method is recommended

on the basis of our simulation results.

Since the MBB procedure depends on the block length used, we have also performed

some of the simulations of the MBB/CB method with smaller block lengths. Some results

are presented in Table 2. The table also contains the results for the previously used block

lengths for comparison purposes. Table 2 shows coverage rates of nominal 90% confidence

intervals for the impact effects and the relative coverage frequencies of joint bands based

on pointwise nominal 99% confidence levels.

Comparing the results for different block lengths in Table 2, it can be seen that for

T = 200 the coverage of the individual intervals and joint bands for l = 10 is typically

very similar to the corresponding coverage for block length l = 20. On the other hand,

the corresponding interval and band widths tend to be slightly smaller for l = 20 than

for l = 10. Overall there is not much to choose between l = 10 and l = 20 for sample size

T = 200.

Considering the intervals and bands for T = 500, it is found that a larger block size of

l = 50 is better than l = 10 with respect to coverage and widths. The coverage level moves
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closer to the nominal 90% and the interval and band widths tend to decline for l = 50.

The accuracy of the intervals and bands for the A-model is, in fact, quite remarkable.

There is still some under-coverage for the B-model impulse responses, but even for that

model the larger block size is helpful for improving coverage precision and often reduces

width. In some cases the reduction in width is quite substantial (e.g., the θ21 bands for

l = 50 maintain a coverage above 90% and reduce the band width from 28.29 for l = 10 to

22.96 for l = 50). Thus, for the larger sample size of T = 500, using a larger block length

than l = 10 is beneficial and makes the MBB/CB method relatively more attractive.

This finding motivated us to present the results for the larger block lengths in Table 1

and Figure 1.

Robustness analysis We have investigated the robustness of our results with respect

to changes in the DGPs and the bootstrap methods used. A number of related results

can be found in the Appendix of Supplementary Results. For example, we show results

for α = 0.5 in Tables A.2 and A.3 of that Appendix. They are qualitatively the same as

those for α = 0.9. Thus, the persistence of the process does not matter much, at least in

the range considered in our simulations.

We have also considered alternative GARCH processes for the error terms. In par-

ticular, we have used bivariate VAR processes with α = 0.9 and three alternative sets of

GARCH parameters:

(γ1, g1) = (0, 0)

(γ2, g2) = (0.3, 0.5)

(γ1, g1) = (0, 0)

(γ2, g2) = (0.92, 0.05)

(γ1, g1) = (0.45, 0.1)

(γ2, g2) = (0.55, 0.05)
.

The first DGP has only one genuine GARCH component which, in addition, is not very

persistent such that there is only weak conditional heteroskedasticity in the reduced-form

errors. This may translate into weak identification of the structural parameters. Recall,

however, that even with one GARCH component the structural shocks are still fully

identified via GARCH. The second DGP also has just one nontrivial GARCH component

which is more persistent, however. Finally, the third DGP has two nonpersistent GARCH

components.

Relative coverage frequencies and interval and band widths for the first DGP are

given in Tables A.5 and A.6 in the Appendix. It turns out that for this DGP the relative

coverage frequencies are generally as good or even better than for the corresponding

benchmark process (compare to Tables 1 and A.1) and also the interval and band widths

are typically not larger. Thus, the rather weak GARCH in the errors is apparently

sufficient to identify the structural parameters. Put differently, identification can be

obtained even with little change in volatility. Results in the same range were also obtained

with the other GARCH components and are therefore not reported in separate tables.
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Overall, the main conclusions from the benchmark case are unaffected for these DGPs.

The results in Tables A.5 and A.6 also show that the benchmark case is not a particularly

easy one for our methods but there are processes where they perform better than in the

benchmark case.

We have also considered a DGP with non-Gaussian structural errors. Since it is well-

known that the asymptotic properties of Gaussian quasi-ML estimators even of univariate

ARMA-GARCH processes with asymmetric error distributions are very different from

symmetric error distributions (see Francq and Zaköıan (2004)), we have also done some

simulations with skewed error distributions. Specifically we have used a standardized

χ2(4) distribution for the errors, that is, ekt ∼ i.i.d. −(χ2(4) − 4)/
√

8, k = 1, 2. Such

a negatively skewed distribution may mimic some left-skewed financial time series. The

results are shown in Tables A.7 and A.8 of the Appendix and are quite similar to our

benchmark case. They give rise to the same overall conclusions regarding the relative

performance of the different bootstrap methods.

Our results are not fully comparable to those of Bruder (2018) who also considers

bivariate DGPs in his simulations. However, he uses other parameter values and alter-

native non-Gaussian innovations. Moreover, he considers a different estimation method

for the structural parameters. He includes bootstrap methods in his comparison which

are similar to our MBB and RBB methods and finds that for some of his DGPs the cov-

erage of the RBB is better than that of MBB which is to some extent in line with our

results. As mentioned in Section 3, Bruder’s version of the RBB method differs from ours.

Therefore we have also used his RBB method (apart from the choice of initial values) on

our benchmark setup. The corresponding relative coverage frequencies and interval/band

widths are presented in Tables A.9 and A.10 of the Appendix. We find that Bruder’s RBB

method performs better than our RBB method. In fact, for larger sample sizes (T = 500)

it performs as well as WB in terms of coverage accuracy and often leads to smaller inter-

val and band widths (see, e.g., the results for b22 in Table A.9). For smaller sample sizes

(T = 200) WB is still often clearly superior, however. Bruder (2018) does not consider

the WB procedure. Therefore we do not know whether his RBB method is competitive

to WB more generally. In any case, our results suggest that for computational efficiency

it may be worth using it with the CB which is also not considered by Bruder (2018).5

4.3.2 Results for Three-dimensional DGP

Results for confidence intervals for the impact effects and confidence bands for impulse

response functions for the 3-dimensional DGP are presented in Table 3 and Figure 2,

5We thank a referee for pointing out Bruder’s alternative RBB method. Since we became aware of it

only after completing large parts of our simulations, we maintain the original RBB results in the other

tables and figures for comparability.
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respectively. We only report results for the CB method and true GARCH parameters to

reduce the computational burden and because ML and L/S estimation did not improve

inference for the bivariate processes.

The results in Table 3 and Figure 2 paint in many respects a very similar picture as the

results for the bivariate DGPs although the underlying models are much bigger. Since

we have fitted VAR(6) processes the number of estimated parameters is substantially

larger than for the bivariate DGPs and, hence, one would expect much larger estimation

uncertainty because we are using the same sample sizes (T = 200, 500) as for the bivariate

DGPs. In Table 3 it is seen that the heterogeneity in the coverage rates of the nominal

90% confidence intervals for the impact effects is again substantial. For example, for the

B-model and RBB it ranges from 18% for b11 to 100% for some other impact effects. The

very small coverage rates were not observed for the bivariate DGPs and are likely to be an

implication of the much larger models we are dealing with now. The situation improves

a little when the sample size increases from T = 200 to T = 500 but does not reach

satisfactory levels. Even when the true GARCH parameters are used, the coverage rates

are not improved for those structural parameters that have coverage rates much below the

nominal 90%. As for the bivariate DGPs, the coverage rates are better in most cases for

the A-model intervals. Again the pattern is the same for CB and when the true GARCH

parameters are used.

Looking at the coverage rates and widths of joint bands for the impulse responses in

Figure 2 the impression is also that there is not much difference between using estimated

or true GARCH parameters. Again, using A-models leads to better coverage rates for

some impulse response functions which are not covered well for the B-model.

Comparing the different bootstrap methods it becomes again clear that there is not

much scope for improving them by using better estimation methods for the GARCH pa-

rameters because the results for CB are not much different from those for the true GARCH

parameters. There is actually not much to choose between the different bootstraps now,

although rather low relative coverage frequencies are achieved by RBB for b33 when the

A-model is used.

The overall recommendation for inference for structural impulse responses identified

via GARCH from our limited simulation results is to use estimation conditional on fixed

GARCH parameters in the bootstrap replications. For smaller samples, WB leads to the

best balance between coverage precision and width. If the size of the shocks to be traced

through the system is not important, then considering the A-model is preferable to using

the B-model.
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5 Empirical Example

In this section, we compare the outcome of the different bootstrap procedures and esti-

mation methods by means of an empirical example. We work with a trivariate model that

was used by Caldara and Herbst (2018) to assess the effects of monetary policy shocks

in the United States. These authors use Bayesian estimation techniques combined with

an external instrument approach based on high frequency data to conduct a structural

SVAR analysis. Their main focus is the identification of monetary policy shocks during

the Great Moderation period. They show that by the inclusion of a financial market

indicator the response of real activity to monetary policy shocks changes substantially

compared to a bivariate benchmark model. In contrast to their identification technique,

we use identification through GARCH in the following.

The dataset of the model consists of the effective nominal federal funds rate (FF ) as

monetary policy indicator, the excess bond premium (i.e., the spread between private cor-

porates and government bond yields after having controlled for default risks) constructed

by Gilchrist and Zakraǰsek (2012) as financial market indicator (EBP) and the first dif-

ferences of the logarithm of industrial production (∆ip) as a measure for real activity

growth.6 The data is monthly and spans from June 1993 to June 2007 and, accordingly,

the sample size is T = 169.

We follow Caldara and Herbst (2018) and fit a (homoskedastic) VAR model with six

lags to the data. As suggested by Lütkepohl and Schlaak (2018), we check for the presence

of time-varying volatility by testing the reduced form errors of the homoskedastic VAR(6)

using Portmanteau-ARCH and ARCH-LM tests. These tests support the presence of

conditional heteroskedasticity in the data. Moreover, the AIC information criterion clearly

favors the GARCH-SVAR(6) model over a homoskedastic VAR(6) model. Based on this

finding we fit the GARCH model from Section 2, i.e., we assume that each underlying

structural shock is driven by a univariate GARCH(1,1) process and use the conditional

heteroskedasticity for the identification of the structural shocks.

Since the simulation results suggest that better coverage rates of the confidence inter-

vals are obtained for the A-model setup, we use that for inference. The model is estimated

by the two-step Gaussian ML algorithm of Lanne and Saikkonen (2007) and we apply the

three different bootstrap methods and estimation techniques from Section 3 to compute

confidence intervals for the impulse responses of the structural shocks. We compare the

intervals obtained with the different methods in the following.

Our comparison of bootstrap procedures is based on pointwise 90% confidence intervals

for two reasons. First, in their analysis Caldara and Herbst (2018) use pointwise 90%

6We denote variables in levels by capital letters while variables in logarithms are signified by lower

case letters.
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Bayesian credible sets which are comparable to pointwise confidence intervals. Second,

using 90% joint Bonferroni confidence bands would simply lead to wider confidence bands

in our economic analysis. The relative performance of the different methods is not affected

by changing the confidence level.

Of course, prior to a structural analysis we have to label the three shocks of our system

identified by conditional heteroskedasticity. Our main interest lies in the monetary policy

shock and the financial shock. After labeling these two shocks, the last shock of the

system clearly resembles a real activity shock which we do not include in the analysis,

however.

Because the federal funds rate is the main policy instrument of the central bank, the

monetary policy shock is chosen to be the shock which explains the largest share of the

variance of the federal funds rate on impact. A contractionary monetary policy shock is

expected to tighten financial market conditions by leading to higher credit spreads, i.e.,

a rise of the excess bond premium. As a reaction to a tightening of monetary policy, real

activity should eventually slow down as investments become more costly for the economic

agents.

The financial shock is chosen to be the shock which, on impact, explains the largest

share of the variance of the excess bond premium. It is expected to slacken output growth

due to higher financing costs for corporations. Based on the findings of Rigobon and Sack

(2003), we expect the central bank to ease the stance of monetary policy as a reaction to

a financial shock.

5.1 Monetary Policy Shock

The responses of our variables to a contractionary monetary policy shock are depicted

in Figure 3. After rising for about half a year, the federal funds rate gradually declines

and the effect of the shock disappears after roughly two years. The excess bond premium

increases initially in response to the monetary policy shock. It remains at this level before

starting to return to zero after about three years. Judging on the basis of the confidence

intervals, this response is not significant however. Also industrial production does not

respond significantly to a monetary policy shock, although it shows a negative response

some time after the monetary policy shock has hit the system, as one would expect.

We now turn to the comparison of the bootstrap confidence intervals. As Figure 3

shows, for the monetary policy shock all bootstrapping procedures yield qualitatively

similar results which is in line with the findings of our simulation study that did not

reveal severe differences between the different bootstrapping procedures. They all lead to

qualitatively similar conclusions. Also the differences between the alternative estimation

strategies remain small in general.
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Economically, our findings somewhat differ from the results reported by Caldara and

Herbst (2018). The monetary policy shock identified by conditional heteroskedasticity

is comparable in the shape of the impulse responses (see Figure 2 (bottom row) in Cal-

dara and Herbst (2018)). However, in contrast to these authors’ conclusion that during

the Great Moderation period monetary policy affected asset prices considerably and also

played a prominent role in business cycle fluctuations, our analysis, based on three dif-

ferent bootstrap procedures for inference, reveals that the responses of credit spreads

and the real activity to a contractionary monetary policy shock remain inconclusive since

considerable uncertainty prevails about the reactions of the variables.

5.2 Financial Shock

We proceed with the financial shock which, on impact, explains the largest share of the

excess bond premium in a variance decomposition. The corresponding impulse responses

are presented in Figure 4. The shock leads to an initial increase of the excess bond

premium, which tapers off thereafter and becomes negative after roughly two years before

starting to return towards zero. The federal funds rate does not react on impact to

a financial shock but then accommodative monetary policy leads to a decrease of the

federal funds rate for about two years. After that, monetary policy remains expansionary

while fading out. Real activity does not react contemporaneously to a financial shock but

slackens in the following months.

Again, all bootstrapping and estimation approaches produce quite similar confidence

intervals, as expected from our trivariate simulation study. Clearly, they all lead to

qualitatively the same conclusions.

The point estimates of the impulse responses to a financial shock are remarkably

similar to those of Caldara and Herbst (2018) (see Figure 5 bottom row in Caldara and

Herbst (2018)) who use a very different identification approach. In their paper, Caldara

and Herbst (2018) remain silent about inference on their financial shock. We fill this gap

and find that a financial shock which increases the spreads on financial markets (EBP ),

reduces the federal funds rate and industrial production. In other words, monetary policy

reacts expansionary with significant reductions of the policy rate at medium horizons.

This result is robust across all bootstraps and estimation methods. Yet, the exact timing

and strength of the estimated central bank reaction differs slightly depending on the

bootstrap procedure. Similarly, our estimates suggest that output contracts significantly

after about six to twelve months and remains depressed for eight to 24 months depending

on the bootstrap and even more on the estimation method applied. The qualitative

findings, however, are supported by all bootstrap procedures and estimation techniques.
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6 Conclusions

In this study we have compared a range of bootstrap methods for inference in SVAR mod-

els identified by conditional heteroskedasticity. The model for conditional heteroskedas-

ticity is a multivariate GARCH model which fully identifies the structural parameters

of the SVAR model. Three types of bootstrap methods are included in the comparison:

A recursive-design residual-based wild bootstrap (WB), a residual-based moving blocks

bootstrap (MBB) and a bootstrap which draws samples from the GARCH innovations

(RBB). They are all used for setting up confidence intervals and confidence bands for

structural impulse responses. Based on previous theoretical and simulation studies all the

methods are expected to do well for the case considered in the present study.

For all three bootstrap methods, full Gaussian ML and a computationally cheaper esti-

mation method due to Lanne and Saikkonen (2007) as well as a method which conditions

on the first round GARCH parameter estimates are used for estimating the structural

parameters and impulse responses in the bootstrap replications. The last method, which

conditions on one set of the GARCH parameter estimates in all bootstrap replications,

is comparable to the first step of the Lanne/Saikkonen method in terms of computation

time and it is about 10 times faster than using full ML in each bootstrap replication.

It is found that conditioning in the bootstrap replications on the GARCH parame-

ters estimated from the original data and using the WB gives overall the best balance

between accurate coverage probability and interval or band width. Thus, the simplest,

computationally most efficient method provides the best confidence intervals and bands

and, thus, there is no reason for re-estimating the GARCH parameters in each bootstrap

replication. However, in particular for smaller samples as they are not uncommon in

macroeconometric studies, the actual coverage can still be substantially below the nomi-

nal coverage especially for the B-model. In our simulations, the coverage rates were often

better for the A-model.

Our results are roughly in line with earlier simulation evidence by Brüggemann et al.

(2016) who found that the true coverage rates of confidence intervals for impulse responses

tended to be below the nominal rates for some of the bootstrap methods considered in

our comparison. The crucial difference to their study is, however, that we identify the

structural parameters via GARCH while they use conventional identification by exclusion

restrictions. In contrast, Bruder (2018) also studies inference in SVARs identified by

heteroskedasticity. He uses a different estimation method for the structural parameters

and also different bivariate DGPs in his simulation comparison of different methods. In

his study, a method similar to our RBB is often preferable to other methods in terms of

coverage frequency. He does not include the wild bootstrap in his comparison, however.

Our Monte Carlo study has, of course, limitations. Clearly, it may be of interest to
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explore the robustness of our results with respect to extensions of the simulation setup.

For example, using alternative GARCH parameters, including other bootstrap procedures

and considering other VAR slope coefficients would be of interest.

We also provide an empirical application to macroeconomic data from the United

States. For that purpose we consider a three-dimensional model consisting of the federal

funds rate, a measure for an excess bond premium and industrial production growth.

We identify a monetary policy shock and a financial shock via GARCH which turn out

to have plausible impulse responses. The confidence intervals for the impulse responses

generated with our different estimation and bootstrap methods are all quite similar and

lead to roughly the same qualitative conclusions.

Since our results hold for volatility changes generated by GARCH dynamics and since

a number of other volatility models have been considered in the context of identification

through heteroskedasticity in SVAR analysis, our results suggest that similar studies may

be worthwhile for other volatility models. Such studies may be an interesting direction for

future research. More generally, the reliability of identification through heteroskedasticity

in SVAR models may be of interest in future research.

Appendix

A VAR parameters for three-dimensional DGP

ν =


−0.08

0.03

0

 ,

A1 =


0.667 0.119 1.390

−0.160 1.281 5.590

0 0.005 −.149

 , A2 =


0.262 0.038 −3.015

−0.024 −0.197 0.026

0.002 −0.011 0.107

 ,

A3 =


−0.022 −0.274 1.202

−0.063 0.036 4.550

0 0.006 0.172

 , A4 =


0.180 0.078 −1.894

0.026 −0.124 3.013

−0.002 −0.005 0.004

 ,

A5 =


−0.199 0.031 −0.071

0.053 0.065 −0.132

0.001 0.005 0.118

 , A6 =


0.049 0.024 1.891

−0.020 −0.077 −0.489

0 −0.001 0.147


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B Notes on Computations

All estimations of this Monte Carlo study were conducted with the statistical computing

software R3.2.3. For maximization of the log-likelihood function the R-package “nloptr”

provides the optimization routine “slsqp”, a sequential (least-squares) quadratic program-

ming (SQP) algorithm for nonlinearly constrained, gradient-based optimization. The al-

gorithm supports both equality and inequality constraints. The former are applied in

the first step (L/S) and the full maximization (ML) procedure by Lanne and Saikkonen

(2007). Inequality constraints are used in all three estimation procedures to ensure the

(joint) restrictions gk ≥ 0 and γk > 0 with gk + γk < 1 on the GARCH parameters γk and

gk for k = 1, . . . , K.

To generate starting values for the GARCH parameters γk and gk for k = 1, . . . , K,

we first draw γk from a uniform distribution on the interval (0,1). Second, conditional on

the draw for γk the interval for drawing gk is restricted to fulfill γk + gk < 1. As starting

values for the impact effects matrix B we use the square root of the unconditional reduced

form covariance matrix Σu of the (bootstrapped) data.

After every optimization of the log-likelihood, convergence of the optimization algo-

rithm is checked. In case no convergence was achieved the optimization is repeated with

a fresh draw of starting values. In our setup, however, this check does not exclude the

possibility of a local optimum of the highly nonlinear log-likelihood function.

The runtime of one simulation replication for the bivariate DGP with α = 0.5 or 0.9

with parallelized bootstrap replications of sample size T = 500 (200) using 100 cores

(Intel Xeon Westmere X5650 processors) on the high performance computing server at

Freie Universität Berlin is approximately 140 (45) minutes. The runtime of one simulation

replication of the three-dimensional DGP using the conditional estimation methods based

on estimated and true GARCH parameters for T = 500 (200) is 90 (40) minutes. For

each simulation design this time has to be multiplied by 500 because we are using 500

replications of the simulations.
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Netšunajev, A. (2013). Reaction to technology shocks in Markov-switching structural
VARs: Identification via heteroskedasticity, Journal of Macroeconomics 36: 51–62.

Newbold, P. and Granger, C. W. J. (1974). Experience with forecasting univariate time se-
ries and combination of forecasts, Journal of the Royal Statistical Society A137: 131–
146.

Normandin, M. and Phaneuf, L. (2004). Monetary policy shocks: Testing identification
conditions under time-varying conditional volatility, Journal of Monetary Economics
51: 1217–1243.

Politis, D. N. and Romano, J. P. (1994). The stationary bootstrap, Journal of the Amer-
ican Statistical Association 89: 1303–1313.

Rigobon, R. (2003). Identification through heteroskedasticity, Review of Economics and
Statistics 85: 777–792.

Rigobon, R. and Sack, B. (2003). Measuring the reaction of monetary policy to the stock
market, The Quarterly Journal of Economics 118(2): 639–669.

Sims, C. A. (1980). Macroeconomics and reality, Econometrica 48: 1–48.

van der Weide, R. (2002). GO-GARCH: A multivariate generalized orthogonal GARCH
model, Journal of Applied Econometrics 17: 549–564.

33



Table 1: Relative Coverage Frequencies of Impact Effects with Average Confidence In-
terval Widths in Parentheses for Nominal Level of 90% for Bivariate Benchmark DGP
(α = 0.9)

Estim. T = 200 T = 500
method WB MBB RBB WB MBB RBB

B-Model

ML

b11 0.58 (0.39) 0.51 (0.34) 0.48 (0.33) 0.69 (0.27) 0.70 (0.26) 0.53 (0.21)
b21 1.00 (10.48) 0.98 (8.25) 1.00 (11.11) 1.00 (8.08) 0.92 (4.58) 1.00 (8.02)
b12 1.00 (1.03) 0.97 (0.80) 1.00 (1.08) 1.00 (0.79) 0.94 (0.44) 1.00 (0.78)
b22 0.72 (3.53) 0.54 (2.76) 0.59 (2.97) 0.74 (2.56) 0.68 (2.09) 0.62 (2.07)

L/S

b11 0.58 (0.39) 0.52 (0.34) 0.49 (0.33) 0.70 (0.29) 0.71 (0.27) 0.55 (0.23)
b21 1.00 (10.68) 0.98 (8.74) 1.00 (11.25) 1.00 (9.03) 0.94 (5.33) 1.00 (8.76)
b12 1.00 (1.05) 0.98 (0.85) 1.00 (1.09) 1.00 (0.89) 0.95 (0.51) 1.00 (0.85)
b22 0.72 (3.55) 0.54 (2.82) 0.59 (2.99) 0.75 (2.71) 0.69 (2.18) 0.63 (2.23)

CB

b11 0.57 (0.37) 0.50 (0.32) 0.49 (0.33) 0.68 (0.24) 0.70 (0.25) 0.55 (0.22)
b21 0.99 (9.47) 0.92 (7.21) 0.99 (11.01) 1.00 (6.77) 0.90 (4.01) 1.00 (8.31)
b12 0.98 (0.93) 0.91 (0.70) 0.99 (1.07) 1.00 (0.67) 0.91 (0.39) 1.00 (0.81)
b22 0.71 (3.40) 0.52 (2.63) 0.58 (2.94) 0.73 (2.33) 0.67 (2.00) 0.62 (2.10)

True
GARCH

b11 0.58 (0.37) 0.50 (0.32) 0.54 (0.32) 0.67 (0.24) 0.70 (0.25) 0.62 (0.20)
b21 1.00 (9.54) 0.95 (7.37) 1.00 (10.57) 1.00 (6.79) 0.92 (4.00) 1.00 (7.74)
b12 1.00 (0.93) 0.94 (0.71) 1.00 (1.03) 1.00 (0.66) 0.93 (0.38) 1.00 (0.76)
b22 0.71 (3.40) 0.53 (2.66) 0.59 (2.86) 0.74 (2.33) 0.67 (1.99) 0.66 (1.97)

A-Model

ML

b11 0.93 (0.39) 0.77 (0.31) 0.93 (0.41) 0.98 (0.28) 0.90 (0.14) 0.98 (0.26)
b21 1.00 (9.32) 0.97 (7.66) 1.00 (9.52) 1.00 (7.30) 0.92 (4.39) 1.00 (7.16)
b12 1.00 (0.09) 0.97 (0.07) 1.00 (0.09) 1.00 (0.07) 0.94 (0.04) 1.00 (0.07)
b22 0.93 (0.39) 0.77 (0.31) 0.93 (0.41) 0.98 (0.28) 0.90 (0.14) 0.98 (0.26)

L/S

b11 0.91 (0.40) 0.77 (0.33) 0.90 (0.41) 0.96 (0.32) 0.88 (0.17) 0.97 (0.30)
b21 1.00 (9.46) 0.98 (8.07) 1.00 (9.59) 1.00 (8.01) 0.94 (5.07) 1.00 (7.68)
b12 1.00 (0.09) 0.98 (0.07) 1.00 (0.09) 1.00 (0.08) 0.95 (0.05) 1.00 (0.07)
b22 0.91 (0.40) 0.77 (0.33) 0.90 (0.41) 0.96 (0.32) 0.88 (0.17) 0.97 (0.30)

CB

b11 0.91 (0.35) 0.74 (0.26) 0.91 (0.40) 0.98 (0.21) 0.90 (0.11) 0.98 (0.27)
b21 0.98 (8.56) 0.92 (6.76) 0.99 (9.40) 1.00 (6.29) 0.90 (3.89) 1.00 (7.35)
b12 0.98 (0.08) 0.91 (0.06) 0.99 (0.09) 1.00 (0.06) 0.91 (0.04) 1.00 (0.07)
b22 0.91 (0.35) 0.74 (0.26) 0.91 (0.40) 0.98 (0.21) 0.90 (0.11) 0.98 (0.27)

True
GARCH

b11 0.94 (0.35) 0.81 (0.26) 0.97 (0.38) 0.99 (0.21) 0.92 (0.11) 0.99 (0.24)
b21 1.00 (8.65) 0.95 (6.93) 1.00 (9.19) 1.00 (6.31) 0.93 (3.90) 1.00 (6.96)
b12 1.00 (0.08) 0.94 (0.06) 1.00 (0.09) 1.00 (0.06) 0.93 (0.04) 1.00 (0.07)
b22 0.94 (0.35) 0.81 (0.26) 0.97 (0.38) 0.99 (0.21) 0.92 (0.11) 0.99 (0.24)

Note: GARCH parameters (γ1, g1) = (0.1, 0.85) and (γ2, g2) = (0.05, 0.92);
band widths used for MBB: l = 20 and 50 for T = 200 and 500, respectively.
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Table 2: Comparison of Different Block Lengths for MBB/CB Method for Bivariate
Benchmark DGP (α = 0.9), Relative Coverage Frequencies with Average Interval/Band
Widths in Parentheses

T = 200 T = 500
Block length 10 20 10 50

B-Model
Confidence level 90%

Impact effects

b11 0.50 (0.31) 0.50 (0.32) 0.62 (0.21) 0.70 (0.25)
b21 0.96 (8.20) 0.92 (7.21) 0.98 (5.86) 0.90 (4.01)
b12 0.95 (0.80) 0.91 (0.70) 0.97 (0.57) 0.91 (0.39)
b22 0.51 (2.62) 0.52 (2.63) 0.61 (1.84) 0.67 (2.00)

Pointwise confidence level 99%

Joint bands

θ11 0.54 (5.61) 0.53 (5.46) 0.69 (4.17) 0.69 (4.12)
θ21 0.91 (36.83) 0.88 (34.32) 0.96 (28.29) 0.92 (22.96)
θ12 0.99 (8.67) 0.98 (7.89) 1.00 (7.07) 0.98 (5.32)
θ22 0.68 (22.53) 0.64 (21.20) 0.77 (15.57) 0.76 (13.99)

A-Model
Confidence level 90%

Impact effects

b11 0.78 (0.30) 0.74 (0.26) 0.94 (0.11) 0.90 (0.11)
b21 0.96 (7.56) 0.92 (6.76) 0.98 (3.89) 0.90 (3.89)
b12 0.95 (0.07) 0.91 (0.06) 0.97 (0.04) 0.91 (0.04)
b22 0.78 (0.30) 0.74 (0.26) 0.94 (0.11) 0.90 (0.11)

Pointwise confidence level 99%

Joint bands

θ11 0.78 (5.59) 0.71 (5.30) 0.89 (4.20) 0.83 (3.59)
θ21 0.92 (34.54) 0.90 (32.92) 0.97 (25.77) 0.92 (22.14)
θ12 0.99 (0.74) 0.98 (0.69) 1.00 (0.61) 0.98 (0.49)
θ22 0.90 (2.28) 0.87 (2.11) 0.96 (1.60) 0.92 (1.30)

Note: GARCH parameters (γ1, g1) = (0.1, 0.85) and (γ2, g2) = (0.05, 0.92).
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Table 3: Relative Coverage Frequencies of Impact Effects with Average Confidence Inter-
val Widths in Parentheses for Nominal Level of 90% for Three-dimensional DGP

Estimation T = 200 T = 500

method WB MBB RBB WB MBB RBB

B-Model

CB

b11 0.21 (0.072) 0.27 (0.080) 0.19 (0.067) 0.27 (0.056) 0.44 (0.090) 0.23 (0.050)
b21 0.99 (0.100) 0.99 (0.091) 0.99 (0.117) 1.00 (0.062) 0.99 (0.045) 0.99 (0.075)
b31 0.99 (0.003) 0.99 (0.003) 0.99 (0.004) 1.00 (0.002) 0.94 (0.002) 0.99 (0.003)
b12 0.99 (0.148) 0.99 (0.132) 0.99 (0.169) 1.00 (0.094) 1.00 (0.066) 1.00 (0.107)
b22 0.30 (0.044) 0.28 (0.039) 0.37 (0.044) 0.51 (0.036) 0.53 (0.034) 0.58 (0.038)
b32 0.99 (0.004) 0.99 (0.004) 0.99 (0.005) 1.00 (0.004) 1.00 (0.004) 1.00 (0.005)
b13 0.99 (0.159) 0.99 (0.140) 0.99 (0.181) 1.00 (0.106) 0.97 (0.078) 1.00 (0.137)
b23 0.99 (0.126) 0.99 (0.121) 0.99 (0.135) 1.00 (0.122) 1.00 (0.106) 1.00 (0.141)
b33 0.26 (0.002) 0.20 (0.001) 0.19 (0.002) 0.53 (0.001) 0.45 (0.001) 0.46 (0.001)

True
GARCH

b11 0.20 (0.072) 0.26 (0.081) 0.18 (0.068) 0.27 (0.058) 0.45 (0.090) 0.22 (0.051)
b21 1.00 (0.101) 1.00 (0.091) 1.00 (0.120) 1.00 (0.066) 0.99 (0.046) 0.99 (0.080)
b31 1.00 (0.004) 1.00 (0.003) 1.00 (0.004) 1.00 (0.002) 0.94 (0.002) 0.99 (0.003)
b12 1.00 (0.148) 1.00 (0.130) 1.00 (0.171) 1.00 (0.099) 1.00 (0.066) 1.00 (0.113)
b22 0.35 (0.046) 0.30 (0.041) 0.39 (0.046) 0.51 (0.037) 0.54 (0.035) 0.58 (0.039)
b32 1.00 (0.004) 1.00 (0.004) 1.00 (0.005) 1.00 (0.004) 1.00 (0.004) 1.00 (0.005)
b13 1.00 (0.161) 1.00 (0.143) 1.00 (0.184) 1.00 (0.112) 0.97 (0.079) 1.00 (0.141)
b23 1.00 (0.126) 1.00 (0.121) 1.00 (0.136) 1.00 (0.125) 1.00 (0.107) 1.00 (0.143)
b33 0.28 (0.002) 0.23 (0.002) 0.20 (0.002) 0.53 (0.001) 0.45 (0.001) 0.44 (0.001)

A-Model

CB

b11 0.66 (0.480) 0.61 (0.436) 0.39 (0.524) 0.87 (0.245) 0.81 (0.164) 0.67 (0.301)
b21 0.99 (0.523) 0.99 (0.496) 0.99 (0.562) 1.00 (0.324) 0.99 (0.256) 1.00 (0.364)
b31 0.99 (0.018) 0.99 (0.017) 0.99 (0.019) 1.00 (0.012) 0.94 (0.010) 0.99 (0.013)
b12 0.99 (1.164) 0.99 (1.057) 0.99 (1.218) 1.00 (0.742) 1.00 (0.545) 1.00 (0.751)
b22 0.27 (0.520) 0.28 (0.490) 0.12 (0.545) 0.46 (0.425) 0.52 (0.369) 0.33 (0.458)
b32 0.99 (0.032) 0.99 (0.032) 0.99 (0.032) 1.00 (0.030) 1.00 (0.027) 1.00 (0.030)
b13 0.99 (35.877) 0.99 (32.450) 0.99 (38.638) 1.00 (24.716) 0.97 (19.022) 0.99 (28.859)
b23 0.99 (28.358) 0.99 (27.641) 0.99 (28.887) 1.00 (26.456) 1.00 (24.010) 1.00 (28.471)
b33 0.19 (0.564) 0.21 (0.522) 0.05 (0.598) 0.31 (0.434) 0.40 (0.372) 0.10 (0.477)

True
GARCH

b11 0.70 (0.488) 0.67 (0.442) 0.38 (0.532) 0.86 (0.268) 0.82 (0.168) 0.63 (0.316)
b21 1.00 (0.527) 1.00 (0.495) 1.00 (0.570) 1.00 (0.341) 0.99 (0.259) 1.00 (0.382)
b31 1.00 (0.019) 1.00 (0.017) 1.00 (0.019) 1.00 (0.013) 0.94 (0.010) 0.99 (0.014)
b12 1.00 (1.167) 1.00 (1.047) 1.00 (1.235) 1.00 (0.778) 1.00 (0.545) 1.00 (0.791)
b22 0.32 (0.543) 0.34 (0.510) 0.10 (0.568) 0.44 (0.442) 0.52 (0.375) 0.28 (0.472)
b32 1.00 (0.032) 1.00 (0.031) 1.00 (0.032) 1.00 (0.030) 1.00 (0.028) 1.00 (0.030)
b13 1.00 (36.632) 1.00 (33.187) 1.00 (39.583) 1.00 (25.723) 0.97 (19.217) 0.99 (29.453)
b23 1.00 (28.109) 1.00 (27.431) 1.00 (28.700) 1.00 (26.669) 1.00 (24.142) 1.00 (28.525)
b33 0.18 (0.570) 0.23 (0.526) 0.04 (0.604) 0.27 (0.449) 0.38 (0.379) 0.09 (0.489)

Note: Band widths used for MBB: l = 20 and 50 for T = 200 and 500, respectively.
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Figure 1: Relative coverage frequencies of joint confidence bands for impulse response functions with
propagation horizon up to 10 and corresponding average normalized band widths for pointwise 99% con-
fidence level for bivariate benchmark DGP (α = 0.9) with GARCH parameters (γ1, g1) = (0.1, 0.85) and
(γ2, g2) = (0.05, 0.92) (block lengths for MBB: l = 20 and 50 for T = 200 and 500, respectively).
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Figure 2: Relative coverage frequencies of joint confidence bands for impulse response functions with prop-
agation horizon up to 10 and corresponding average normalized band widths for pointwise 99% confidence
level for three-dimensional DGP (block lengths for MBB: l = 20 and 50 for T = 200 and 500, respectively).
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Figure 3: Comparison of 90% pointwise confidence intervals of different bootstrap proce-
dures and estimation methods for a monetary policy shock.
Notes: The solid black line depicts the response of the variables to a shock for the A-model. The response
of ∆ip has been cumulated and multiplied by 100. The symboled lines (black dot, dark grey triangle, light
grey asterisk) represent the different bootstrapped confidence intervals (WB, MBB, RBB, respectively).
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Figure 4: Comparison of 90 % Pointwise Confidence Intervals of Different Bootstrap
Procedures and Estimation Methods for a Financial Shock.
Notes: The solid black line depicts the response of the variables to a shock for the A-model. The response
of ∆ip has been cumulated and multiplied by 100. The symboled lines (black dot, dark grey triangle, light
grey asterisk) represent the different bootstrapped confidence intervals (WB, MBB, RBB, respectively).
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Appendix. Supplementary Results
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Table A.1: Relative Coverage Frequencies of Joint Bands for Impulse Response Func-
tions with Average Band Widths in Parentheses for Pointwise Nominal Level of 99% for
Bivariate Benchmark DGP (α = 0.9)

Estim. T = 200 T = 500
method WB MBB RBB WB MBB RBB

B-Model

ML

θ11 0.70 (6.40) 0.53 (5.57) 0.56 (5.83) 0.80 (4.84) 0.70 (4.24) 0.67 (4.31)
θ21 0.94 (40.80) 0.90 (36.56) 0.94 (40.68) 0.97 (33.14) 0.93 (25.62) 0.97 (32.16)
θ12 1.00 (10.04) 1.00 (8.71) 1.00 (9.92) 1.00 (8.85) 1.00 (6.16) 1.00 (8.38)
θ22 0.88 (26.76) 0.66 (22.24) 0.74 (25.18) 0.91 (18.99) 0.77 (14.89) 0.78 (17.31)

L/S

θ11 0.71 (6.41) 0.54 (5.61) 0.57 (5.84) 0.80 (4.94) 0.70 (4.37) 0.67 (4.40)
θ21 0.94 (40.97) 0.90 (37.09) 0.94 (40.86) 0.97 (34.31) 0.93 (28.09) 0.97 (33.22)
θ12 1.00 (10.14) 1.00 (8.95) 1.00 (10.00) 1.00 (9.32) 1.00 (7.00) 1.00 (8.80)
θ22 0.88 (26.89) 0.67 (22.59) 0.74 (25.30) 0.91 (19.70) 0.78 (15.93) 0.78 (17.96)

CB

θ11 0.70 (6.30) 0.53 (5.46) 0.57 (5.82) 0.79 (4.63) 0.70 (4.12) 0.66 (4.30)
θ21 0.93 (39.47) 0.88 (34.32) 0.93 (40.44) 0.97 (30.64) 0.92 (22.96) 0.97 (32.20)
θ12 0.99 (9.52) 0.98 (7.89) 0.99 (9.85) 1.00 (7.89) 0.98 (5.32) 1.00 (8.41)
θ22 0.88 (26.01) 0.64 (21.20) 0.73 (25.12) 0.91 (17.61) 0.76 (14.00) 0.78 (17.36)

True
GARCH

θ11 0.70 (6.28) 0.53 (5.46) 0.63 (5.83) 0.78 (4.63) 0.70 (4.11) 0.72 (4.28)
θ21 0.93 (39.54) 0.90 (34.51) 0.94 (40.30) 0.97 (30.54) 0.92 (22.97) 0.97 (32.15)
θ12 1.00 (9.50) 1.00 (7.95) 1.00 (9.77) 1.00 (7.83) 0.99 (5.30) 1.00 (8.44)
θ22 0.88 (25.92) 0.65 (21.29) 0.77 (24.67) 0.90 (17.55) 0.77 (13.97) 0.80 (17.18)

A-Model

ML

θ11 0.85 (6.09) 0.72 (5.53) 0.83 (5.94) 0.91 (4.93) 0.83 (3.88) 0.91 (4.66)
θ21 0.95 (37.05) 0.92 (34.44) 0.94 (36.31) 0.97 (28.62) 0.93 (24.09) 0.97 (27.72)
θ12 1.00 (0.81) 1.00 (0.74) 1.00 (0.80) 1.00 (0.71) 1.00 (0.54) 1.00 (0.67)
θ22 0.95 (2.54) 0.88 (2.25) 0.96 (2.51) 0.96 (1.92) 0.93 (1.45) 0.96 (1.81)

L/S

θ11 0.85 (6.10) 0.73 (5.59) 0.83 (5.95) 0.91 (5.07) 0.83 (4.15) 0.90 (4.79)
θ21 0.95 (37.16) 0.92 (34.81) 0.94 (36.42) 0.96 (29.31) 0.93 (25.85) 0.97 (28.31)
θ12 1.00 (0.82) 1.00 (0.76) 1.00 (0.81) 1.00 (0.73) 1.00 (0.60) 1.00 (0.69)
θ22 0.95 (2.55) 0.90 (2.29) 0.96 (2.52) 0.96 (2.00) 0.93 (1.59) 0.97 (1.88)

CB

θ11 0.83 (5.94) 0.71 (5.30) 0.81 (5.91) 0.92 (4.58) 0.83 (3.59) 0.91 (4.64)
θ21 0.93 (36.20) 0.90 (32.92) 0.93 (36.08) 0.97 (27.24) 0.92 (22.14) 0.97 (27.74)
θ12 0.99 (0.79) 0.98 (0.69) 0.99 (0.80) 1.00 (0.66) 0.98 (0.49) 1.00 (0.68)
θ22 0.94 (2.46) 0.87 (2.11) 0.94 (2.50) 0.97 (1.75) 0.92 (1.30) 0.97 (1.81)

True
GARCH

θ11 0.85 (5.94) 0.74 (5.32) 0.83 (5.92) 0.92 (4.57) 0.84 (3.58) 0.92 (4.62)
θ21 0.94 (36.37) 0.92 (33.04) 0.94 (36.00) 0.98 (27.14) 0.93 (22.17) 0.97 (27.65)
θ12 1.00 (0.79) 1.00 (0.69) 1.00 (0.80) 1.00 (0.65) 0.99 (0.49) 1.00 (0.68)
θ22 0.96 (2.46) 0.90 (2.13) 0.97 (2.49) 0.97 (1.74) 0.92 (1.30) 0.97 (1.81)

Note: GARCH parameters (γ1, g1) = (0.1, 0.85) and (γ2, g2) = (0.05, 0.92);
band widths used for MBB: l = 20 and 50 for T = 200 and 500, respectively.
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Table A.2: Relative Coverage Frequencies of Impact Effects with Average Confidence
Interval Widths in Parentheses for Nomial Level of 90% for Bivariate Benchmark DGP
(α = 0.5)

Estim. T = 200 T = 500
method WB MBB RBB WB MBB RBB

B-Model

ML

b11 0.59 (0.39) 0.51 (0.34) 0.50 (0.33) 0.67 (0.27) 0.68 (0.26) 0.53 (0.21)
b21 1.00 (10.54) 0.97 (8.35) 1.00 (11.11) 1.00 (8.05) 0.92 (4.55) 1.00 (8.08)
b12 1.00 (1.04) 0.97 (0.81) 1.00 (1.08) 1.00 (0.78) 0.94 (0.43) 1.00 (0.78)
b22 0.72 (3.54) 0.54 (2.78) 0.56 (2.97) 0.76 (2.56) 0.70 (2.11) 0.63 (2.10)

L/S

b11 0.58 (0.39) 0.52 (0.35) 0.50 (0.33) 0.68 (0.29) 0.69 (0.27) 0.56 (0.23)
b21 1.00 (10.77) 0.98 (8.92) 1.00 (11.29) 1.00 (9.07) 0.95 (5.33) 1.00 (8.84)
b12 1.00 (1.06) 0.98 (0.86) 1.00 (1.10) 1.00 (0.88) 0.95 (0.51) 1.00 (0.85)
b22 0.72 (3.56) 0.55 (2.84) 0.56 (2.99) 0.76 (2.72) 0.71 (2.21) 0.64 (2.25)

CB

b11 0.58 (0.37) 0.51 (0.32) 0.50 (0.33) 0.67 (0.24) 0.68 (0.25) 0.54 (0.22)
b21 0.98 (9.41) 0.90 (7.20) 0.98 (10.93) 0.99 (6.68) 0.89 (3.93) 1.00 (8.39)
b12 0.98 (0.93) 0.90 (0.70) 0.98 (1.06) 0.99 (0.65) 0.90 (0.38) 1.00 (0.81)
b22 0.70 (3.39) 0.52 (2.62) 0.56 (2.93) 0.75 (2.33) 0.68 (2.01) 0.63 (2.13)

True
GARCH

b11 0.58 (0.37) 0.51 (0.32) 0.56 (0.32) 0.67 (0.24) 0.70 (0.25) 0.62 (0.20)
b21 1.00 (9.54) 0.94 (7.35) 1.00 (10.72) 1.00 (6.81) 0.93 (4.02) 1.00 (7.70)
b12 1.00 (0.93) 0.94 (0.71) 1.00 (1.05) 1.00 (0.67) 0.94 (0.38) 1.00 (0.76)
b22 0.70 (3.41) 0.54 (2.66) 0.61 (2.89) 0.74 (2.33) 0.68 (1.99) 0.66 (1.95)

A-Model

ML

b11 0.93 (0.40) 0.76 (0.31) 0.92 (0.41) 0.98 (0.28) 0.89 (0.14) 0.98 (0.26)
b21 1.00 (9.34) 0.97 (7.72) 1.00 (9.52) 1.00 (7.30) 0.92 (4.39) 1.00 (7.22)
b12 1.00 (0.09) 0.97 (0.07) 1.00 (0.09) 1.00 (0.07) 0.94 (0.04) 1.00 (0.07)
b22 0.93 (0.40) 0.76 (0.31) 0.92 (0.41) 0.98 (0.28) 0.89 (0.14) 0.98 (0.26)

L/S

b11 0.92 (0.41) 0.75 (0.33) 0.90 (0.41) 0.97 (0.32) 0.87 (0.17) 0.96 (0.30)
b21 1.00 (9.50) 0.98 (8.18) 1.00 (9.62) 1.00 (8.08) 0.95 (5.09) 1.00 (7.74)
b12 1.00 (0.09) 0.98 (0.08) 1.00 (0.09) 1.00 (0.08) 0.95 (0.05) 1.00 (0.07)
b22 0.92 (0.41) 0.75 (0.33) 0.90 (0.41) 0.97 (0.32) 0.87 (0.17) 0.96 (0.30)

CB

b11 0.89 (0.35) 0.74 (0.26) 0.89 (0.40) 0.98 (0.21) 0.90 (0.11) 0.96 (0.27)
b21 0.98 (8.51) 0.90 (6.72) 0.98 (9.32) 0.99 (6.23) 0.89 (3.83) 1.00 (7.41)
b12 0.98 (0.08) 0.90 (0.06) 0.98 (0.09) 0.99 (0.06) 0.90 (0.04) 1.00 (0.07)
b22 0.89 (0.35) 0.74 (0.26) 0.89 (0.40) 0.98 (0.21) 0.90 (0.11) 0.96 (0.27)

True
GARCH

b11 0.95 (0.35) 0.80 (0.27) 0.97 (0.39) 0.98 (0.21) 0.92 (0.11) 1.00 (0.24)
b21 1.00 (8.64) 0.94 (6.90) 1.00 (9.25) 1.00 (6.32) 0.93 (3.92) 1.00 (6.93)
b12 1.00 (0.08) 0.94 (0.06) 1.00 (0.09) 1.00 (0.06) 0.94 (0.04) 1.00 (0.07)
b22 0.95 (0.35) 0.80 (0.27) 0.97 (0.39) 0.98 (0.21) 0.92 (0.11) 1.00 (0.24)

Note: GARCH parameters (γ1, g1) = (0.1, 0.85) and (γ2, g2) = (0.05, 0.92);
band widths used for MBB: l = 20 and 50 for T = 200 and 500, respectively.
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Table A.3: Relative Coverage Frequencies of Joint Bands for Impulse Response Func-
tions with Average Band Widths in Parentheses for Pointwise Nominal Level of 99% for
Bivariate Benchmark DGP (α = 0.5)

Estim. T = 200 T = 500
method WB MBB RBB WB MBB RBB

B-Model

ML

θ11 0.82 (2.27) 0.62 (1.90) 0.64 (2.05) 0.84 (1.59) 0.75 (1.37) 0.69 (1.39)
θ21 0.99 (34.55) 0.96 (30.73) 0.99 (34.62) 0.99 (28.58) 0.95 (21.25) 0.99 (27.64)
θ12 1.00 (3.53) 0.97 (3.07) 1.00 (3.47) 1.00 (2.85) 0.98 (2.06) 1.00 (2.71)
θ22 0.88 (21.00) 0.66 (17.49) 0.75 (19.36) 0.92 (14.60) 0.79 (12.28) 0.77 (13.26)

L/S

θ11 0.82 (2.27) 0.62 (1.92) 0.64 (2.06) 0.84 (1.63) 0.76 (1.42) 0.70 (1.43)
θ21 0.99 (34.79) 0.96 (31.33) 0.99 (34.80) 0.99 (29.85) 0.96 (23.84) 0.99 (28.91)
θ12 1.00 (3.56) 0.97 (3.14) 1.00 (3.49) 1.00 (2.99) 0.98 (2.31) 1.00 (2.84)
θ22 0.88 (21.05) 0.68 (17.65) 0.74 (19.41) 0.92 (14.93) 0.80 (13.65) 0.78 (13.59)

CB

θ11 0.81 (2.22) 0.61 (1.84) 0.64 (2.04) 0.83 (1.50) 0.76 (1.32) 0.70 (1.39)
θ21 0.97 (32.93) 0.92 (27.97) 0.97 (34.16) 0.98 (25.78) 0.92 (18.41) 0.98 (27.74)
θ12 0.97 (3.36) 0.94 (2.79) 0.97 (3.43) 0.99 (2.55) 0.96 (1.79) 1.00 (2.72)
θ22 0.89 (20.65) 0.66 (16.99) 0.73 (19.28) 0.92 (13.90) 0.78 (11.82) 0.77 (13.28)

True
GARCH

θ11 0.81 (2.22) 0.62 (1.85) 0.71 (2.06) 0.84 (1.51) 0.76 (1.33) 0.77 (1.38)
θ21 0.99 (33.15) 0.94 (28.37) 0.99 (34.24) 0.98 (25.81) 0.94 (18.59) 0.98 (27.50)
θ12 1.00 (3.36) 0.97 (2.82) 0.99 (3.47) 1.00 (2.57) 0.96 (1.81) 1.00 (2.74)
θ22 0.88 (20.67) 0.66 (17.04) 0.78 (19.23) 0.91 (13.84) 0.78 (11.76) 0.80 (12.97)

A-Model

ML

θ11 0.96 (2.15) 0.89 (1.87) 0.96 (2.07) 0.97 (1.60) 0.92 (1.23) 0.96 (1.48)
θ21 0.99 (30.39) 0.96 (28.13) 0.99 (29.95) 0.99 (24.00) 0.95 (19.70) 0.98 (23.14)
θ12 1.00 (0.29) 0.97 (0.27) 1.00 (0.29) 1.00 (0.23) 0.98 (0.18) 1.00 (0.22)
θ22 0.96 (2.09) 0.91 (1.86) 0.96 (2.05) 0.98 (1.57) 0.94 (1.22) 0.97 (1.48)

L/S

θ11 0.96 (2.15) 0.90 (1.90) 0.95 (2.08) 0.97 (1.65) 0.93 (1.32) 0.96 (1.53)
θ21 0.99 (30.52) 0.96 (28.54) 0.99 (30.03) 0.99 (24.72) 0.96 (21.45) 0.99 (23.84)
θ12 1.00 (0.29) 0.97 (0.27) 1.00 (0.29) 1.00 (0.24) 0.98 (0.20) 1.00 (0.23)
θ22 0.96 (2.10) 0.91 (1.89) 0.96 (2.06) 0.97 (1.63) 0.95 (1.32) 0.97 (1.54)

CB

θ11 0.94 (2.08) 0.85 (1.76) 0.92 (2.05) 0.97 (1.47) 0.92 (1.11) 0.95 (1.48)
θ21 0.97 (29.37) 0.92 (26.22) 0.96 (29.55) 0.98 (22.41) 0.92 (17.63) 0.98 (23.21)
θ12 0.97 (0.28) 0.94 (0.25) 0.97 (0.28) 0.99 (0.22) 0.96 (0.17) 1.00 (0.22)
θ22 0.93 (2.03) 0.86 (1.75) 0.94 (2.03) 0.97 (1.43) 0.93 (1.09) 0.97 (1.48)

True
GARCH

θ11 0.96 (2.09) 0.90 (1.78) 0.95 (2.07) 0.96 (1.47) 0.92 (1.12) 0.96 (1.48)
θ21 0.98 (29.66) 0.95 (26.57) 0.99 (29.52) 0.98 (22.35) 0.93 (17.72) 0.98 (22.93)
θ12 1.00 (0.29) 0.97 (0.25) 0.99 (0.29) 1.00 (0.22) 0.96 (0.17) 1.00 (0.22)
θ22 0.97 (2.04) 0.91 (1.77) 0.97 (2.05) 0.97 (1.43) 0.93 (1.10) 0.97 (1.47)

Note: GARCH parameters (γ1, g1) = (0.1, 0.85) and (γ2, g2) = (0.05, 0.92);
band widths used for MBB: l = 20 and 50 for T = 200 and 500, respectively.
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Table A.4: Comparison of Different Block Lengths for MBB/CB Method for Bivariate
Benchmark DGP (α = 0.5), Relative Coverage Frequencies with Average Interval/Band
Widths in Parentheses

T = 200 T = 500
Block length 10 20 10 50

B-Model
Confidence level 90%

Impact effects

b11 0.50 (0.31) 0.51 (0.32) 0.62 (0.21) 0.69 (0.25)
b21 0.95 (8.16) 0.90 (7.20) 0.97 (5.80) 0.89 (4.07)
b12 0.94 (0.80) 0.90 (0.70) 0.97 (0.57) 0.91 (0.39)
b22 0.50 (2.61) 0.52 (2.62) 0.61 (1.83) 0.66 (1.98)

Pointwise confidence level 99%

Joint bands

θ11 0.63 (1.92) 0.61 (1.84) 0.75 (1.36) 0.77 (1.33)
θ21 0.94 (30.37) 0.92 (27.97) 0.98 (23.50) 0.93 (18.72)
θ12 0.97 (3.04) 0.94 (2.79) 0.99 (2.32) 0.96 (1.83)
θ22 0.68 (17.76) 0.66 (16.99) 0.77 (12.32) 0.77 (11.79)

A-Model
Confidence level 90%

Impact effects

b11 0.78 (0.30) 0.74 (0.26) 0.94 (0.18) 0.90 (0.11)
b21 0.94 (7.48) 0.90 (6.72) 0.97 (5.42) 0.89 (3.94)
b12 0.94 (0.07) 0.90 (0.06) 0.97 (0.05) 0.91 (0.04)
b22 0.78 (0.30) 0.74 (0.26) 0.94 (0.18) 0.90 (0.11)

Pointwise confidence level 99%

Joint bands

θ11 0.89 (1.90) 0.85 (1.76) 0.95 (1.34) 0.92 (1.13)
θ21 0.94 (27.75) 0.92 (26.22) 0.98 (20.92) 0.93 (17.80)
θ12 0.97 (0.27) 0.94 (0.25) 0.99 (0.20) 0.96 (0.17)
θ22 0.90 (1.87) 0.86 (1.75) 0.96 (1.32) 0.93 (1.11)

Note: GARCH parameters (γ1, g1) = (0.1, 0.85) and (γ2, g2) = (0.05, 0.92)
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(d) T = 500

Figure A.1: Relative coverage frequencies of joint confidence bands for impulse response functions with
propagation horizon up to 10 and corresponding average normalized band widths for pointwise 99% con-
fidence level for bivariate benchmark (α = 0.5) DGP with GARCH parameters (γ1, g1) = (0.1, 0.85) and
(γ2, g2) = (0.05, 0.92) (block lengths for MBB: l = 20 and 50 for T = 200 and 500, respectively).
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Table A.5: Relative Coverage Frequencies of Impact Effects with Average Confidence
Interval Widths in Parentheses for Nominal Level of 90% for Bivariate DGP (α = 0.9)
with Alternative GARCH Parameters

Estim. T = 200 T = 500
method WB MBB RBB WB MBB RBB

B-Model

ML

b11 0.95 (0.36) 0.71 (0.21) 0.85 (0.41) 0.99 (0.22) 0.82 (0.11) 0.78 (0.29)
b21 1.00 (8.96) 0.94 (5.40) 1.00 (10.94) 1.00 (6.20) 0.88 (2.61) 1.00 (8.82)
b12 1.00 (0.95) 0.93 (0.60) 1.00 (1.20) 1.00 (0.66) 0.85 (0.30) 1.00 (0.98)
b22 0.69 (3.73) 0.64 (3.50) 0.52 (3.12) 0.72 (2.61) 0.72 (2.50) 0.55 (2.38)

L/S

b11 0.95 (0.36) 0.70 (0.21) 0.87 (0.41) 0.98 (0.23) 0.83 (0.11) 0.82 (0.31)
b21 1.00 (9.09) 0.94 (5.72) 1.00 (11.21) 1.00 (6.41) 0.88 (2.76) 1.00 (9.71)
b12 1.00 (0.97) 0.94 (0.63) 1.00 (1.23) 1.00 (0.68) 0.85 (0.31) 1.00 (1.08)
b22 0.69 (3.75) 0.64 (3.52) 0.53 (3.14) 0.72 (2.64) 0.72 (2.52) 0.58 (2.54)

CB

b11 0.95 (0.35) 0.70 (0.20) 0.88 (0.43) 0.99 (0.22) 0.82 (0.11) 0.88 (0.34)
b21 0.99 (8.64) 0.93 (5.01) 0.99 (11.71) 0.99 (5.78) 0.87 (2.47) 0.99 (10.55)
b12 0.99 (0.91) 0.90 (0.57) 0.99 (1.29) 0.99 (0.61) 0.83 (0.29) 0.99 (1.17)
b22 0.69 (3.70) 0.64 (3.46) 0.52 (3.21) 0.72 (2.54) 0.72 (2.49) 0.58 (2.68)

True
GARCH

b11 0.95 (0.36) 0.70 (0.21) 0.86 (0.43) 0.99 (0.22) 0.83 (0.11) 0.85 (0.33)
b21 1.00 (9.03) 0.95 (5.43) 1.00 (11.67) 1.00 (6.17) 0.88 (2.60) 1.00 (10.44)
b12 1.00 (0.96) 0.93 (0.61) 1.00 (1.29) 1.00 (0.65) 0.86 (0.30) 1.00 (1.16)
b22 0.68 (3.75) 0.64 (3.52) 0.51 (3.21) 0.72 (2.61) 0.73 (2.51) 0.56 (2.67)

A-Model

ML

b11 0.96 (0.34) 0.87 (0.20) 0.93 (0.42) 0.99 (0.20) 0.93 (0.06) 0.98 (0.31)
b21 1.00 (7.90) 0.94 (4.97) 1.00 (8.40) 1.00 (5.73) 0.88 (2.52) 1.00 (6.99)
b12 1.00 (0.09) 0.93 (0.06) 1.00 (0.10) 1.00 (0.06) 0.85 (0.03) 1.00 (0.09)
b22 0.96 (0.34) 0.87 (0.20) 0.93 (0.42) 0.99 (0.20) 0.93 (0.06) 0.98 (0.31)

L/S

b11 0.95 (0.35) 0.88 (0.21) 0.91 (0.43) 0.98 (0.22) 0.92 (0.07) 0.98 (0.35)
b21 1.00 (7.98) 0.94 (5.26) 1.00 (8.52) 1.00 (5.89) 0.88 (2.66) 1.00 (7.53)
b12 1.00 (0.09) 0.94 (0.06) 1.00 (0.10) 1.00 (0.06) 0.85 (0.03) 1.00 (0.09)
b22 0.95 (0.35) 0.88 (0.21) 0.91 (0.43) 0.98 (0.22) 0.92 (0.07) 0.98 (0.35)

CB

b11 0.94 (0.33) 0.85 (0.19) 0.85 (0.45) 0.98 (0.18) 0.91 (0.06) 0.94 (0.38)
b21 0.99 (7.68) 0.92 (4.65) 0.99 (8.74) 0.99 (5.40) 0.86 (2.40) 0.99 (7.92)
b12 0.99 (0.08) 0.90 (0.06) 0.99 (0.10) 0.99 (0.06) 0.83 (0.03) 0.99 (0.10)
b22 0.94 (0.33) 0.85 (0.19) 0.85 (0.45) 0.98 (0.18) 0.91 (0.06) 0.94 (0.38)

True
GARCH

b11 0.96 (0.35) 0.87 (0.20) 0.84 (0.45) 0.99 (0.20) 0.91 (0.06) 0.92 (0.38)
b21 1.00 (7.95) 0.95 (5.00) 1.00 (8.75) 1.00 (5.70) 0.88 (2.51) 1.00 (7.85)
b12 1.00 (0.09) 0.93 (0.06) 1.00 (0.11) 1.00 (0.06) 0.86 (0.03) 1.00 (0.10)
b22 0.96 (0.35) 0.87 (0.20) 0.84 (0.45) 0.99 (0.20) 0.91 (0.06) 0.92 (0.38)

Note: GARCH parameters (γ1, g1) = (0, 0) and (γ2, g2) = (0.3, 0.5);
band widths used for MBB: l = 20 and 50 for T = 200 and 500, respectively.
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Table A.6: Relative Coverage Frequencies of Joint Bands for Impulse Response Func-
tions with Average Band Widths in Parentheses for Pointwise Nominal Level of 99% for
Bivariate DGP (α = 0.9) with Alternative GARCH Parameters

Estim. T = 200 T = 500
method WB MBB RBB WB MBB RBB

B-Model

ML

θ11 0.86 (6.05) 0.69 (4.95) 0.91 (6.92) 0.94 (4.27) 0.82 (3.19) 0.95 (5.29)
θ21 0.95 (39.43) 0.92 (31.54) 0.95 (40.97) 0.98 (30.12) 0.90 (18.65) 0.97 (33.84)
θ12 1.00 (9.73) 1.00 (7.49) 1.00 (11.13) 1.00 (8.02) 0.96 (4.36) 1.00 (10.18)
θ22 0.86 (29.47) 0.69 (23.52) 0.66 (26.34) 0.90 (20.74) 0.75 (15.61) 0.68 (19.19)

L/S

θ11 0.86 (6.06) 0.69 (4.98) 0.91 (6.92) 0.93 (4.30) 0.82 (3.25) 0.96 (5.37)
θ21 0.95 (39.57) 0.92 (32.27) 0.94 (41.16) 0.98 (30.71) 0.90 (19.79) 0.97 (34.63)
θ12 1.00 (9.77) 1.00 (7.72) 1.00 (11.25) 1.00 (8.21) 0.96 (4.74) 1.00 (10.58)
θ22 0.86 (29.54) 0.69 (23.75) 0.67 (26.55) 0.90 (20.99) 0.75 (15.94) 0.68 (19.87)

CB

θ11 0.86 (6.03) 0.68 (4.89) 0.90 (6.96) 0.94 (4.20) 0.81 (3.16) 0.97 (5.43)
θ21 0.94 (39.18) 0.90 (30.59) 0.93 (41.53) 0.97 (29.51) 0.89 (18.25) 0.96 (34.98)
θ12 0.99 (9.55) 0.98 (7.11) 0.99 (11.46) 0.99 (7.73) 0.95 (4.25) 0.99 (10.79)
θ22 0.87 (29.25) 0.69 (23.11) 0.65 (27.06) 0.89 (20.30) 0.74 (15.46) 0.68 (20.38)

True
GARCH

θ11 0.86 (6.07) 0.68 (4.93) 0.91 (6.96) 0.94 (4.24) 0.81 (3.17) 0.95 (5.42)
θ21 0.95 (39.52) 0.91 (31.26) 0.94 (41.62) 0.98 (30.02) 0.90 (18.86) 0.97 (34.96)
θ12 1.00 (9.73) 0.99 (7.38) 1.00 (11.48) 1.00 (7.92) 0.95 (4.46) 1.00 (10.75)
θ22 0.86 (29.47) 0.69 (23.45) 0.65 (27.05) 0.90 (20.56) 0.75 (15.65) 0.67 (20.29)

A-Model

ML

θ11 0.84 (5.79) 0.78 (5.10) 0.86 (6.10) 0.91 (4.39) 0.85 (3.13) 0.93 (5.01)
θ21 0.95 (35.26) 0.92 (29.39) 0.92 (32.75) 0.98 (26.51) 0.90 (18.10) 0.95 (25.86)
θ12 1.00 (0.83) 1.00 (0.72) 1.00 (0.92) 1.00 (0.68) 0.96 (0.44) 1.00 (0.81)
θ22 0.97 (2.72) 0.90 (2.18) 0.90 (2.62) 0.97 (1.98) 0.89 (1.28) 0.89 (2.01)

L/S

θ11 0.84 (5.80) 0.78 (5.15) 0.86 (6.12) 0.91 (4.44) 0.85 (3.25) 0.94 (5.11)
θ21 0.95 (35.37) 0.92 (29.91) 0.93 (32.82) 0.98 (26.86) 0.91 (18.95) 0.95 (26.22)
θ12 1.00 (0.83) 1.00 (0.73) 1.00 (0.92) 1.00 (0.69) 0.96 (0.47) 1.00 (0.83)
θ22 0.97 (2.72) 0.91 (2.22) 0.91 (2.63) 0.97 (2.01) 0.90 (1.34) 0.88 (2.08)

CB

θ11 0.83 (5.75) 0.77 (4.98) 0.84 (6.11) 0.90 (4.28) 0.84 (3.07) 0.91 (5.13)
θ21 0.94 (35.14) 0.90 (28.80) 0.91 (32.89) 0.97 (26.23) 0.89 (17.81) 0.94 (26.36)
θ12 0.99 (0.82) 0.98 (0.69) 0.99 (0.93) 0.99 (0.67) 0.95 (0.44) 0.99 (0.85)
θ22 0.95 (2.69) 0.89 (2.11) 0.89 (2.66) 0.96 (1.92) 0.88 (1.25) 0.87 (2.11)

True
GARCH

θ11 0.83 (5.80) 0.77 (5.04) 0.85 (6.13) 0.91 (4.33) 0.84 (3.14) 0.92 (5.12)
θ21 0.95 (35.40) 0.92 (29.29) 0.93 (33.01) 0.98 (26.55) 0.91 (18.29) 0.95 (26.43)
θ12 1.00 (0.83) 0.99 (0.71) 1.00 (0.94) 1.00 (0.68) 0.95 (0.45) 1.00 (0.85)
θ22 0.97 (2.71) 0.91 (2.16) 0.89 (2.66) 0.97 (1.95) 0.89 (1.29) 0.88 (2.10)

Note: GARCH parameters (γ1, g1) = (0, 0) and (γ2, g2) = (0.3, 0.5);
band widths used for MBB: l = 20 and 50 for T = 200 and 500, respectively.
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Table A.7: Relative Coverage Frequencies of Impact Effects with Average Confidence
Interval Widths in Parentheses for Nominal Level of 90% for Bivariate DGP (α = 0.9)
with χ2 GARCH Innovations

Estim. T = 200 T = 500
method WB MBB RBB WB MBB RBB

B-Model

ML

b11 0.59 (0.44) 0.53 (0.41) 0.48 (0.39) 0.59 (0.31) 0.62 (0.34) 0.54 (0.29)
b21 1.00 (9.92) 0.97 (8.48) 1.00 (11.05) 1.00 (7.46) 0.92 (5.14) 0.99 (8.65)
b12 1.00 (0.95) 0.97 (0.80) 1.00 (1.05) 1.00 (0.72) 0.93 (0.49) 0.99 (0.83)
b22 0.65 (4.00) 0.54 (3.32) 0.55 (3.42) 0.65 (2.96) 0.62 (2.84) 0.55 (2.68)

L/S

b11 0.59 (0.44) 0.53 (0.42) 0.47 (0.40) 0.60 (0.32) 0.63 (0.35) 0.55 (0.30)
b21 1.00 (10.16) 0.97 (8.95) 1.00 (11.18) 1.00 (8.18) 0.95 (5.84) 0.99 (9.25)
b12 1.00 (0.98) 0.98 (0.84) 1.00 (1.07) 1.00 (0.79) 0.96 (0.55) 0.99 (0.88)
b22 0.64 (4.02) 0.55 (3.36) 0.55 (3.43) 0.66 (3.06) 0.62 (2.91) 0.57 (2.78)

CB

b11 0.57 (0.43) 0.52 (0.40) 0.47 (0.40) 0.59 (0.30) 0.62 (0.34) 0.56 (0.32)
b21 0.95 (9.15) 0.91 (7.95) 0.95 (11.08) 0.99 (7.19) 0.90 (5.14) 0.99 (10.14)
b12 0.95 (0.89) 0.89 (0.76) 0.95 (1.07) 0.99 (0.70) 0.92 (0.49) 1.00 (0.97)
b22 0.63 (3.89) 0.53 (3.21) 0.52 (3.41) 0.66 (2.90) 0.62 (2.85) 0.57 (2.90)

True
GARCH

b11 0.55 (0.44) 0.51 (0.42) 0.46 (0.41) 0.59 (0.31) 0.61 (0.35) 0.56 (0.34)
b21 1.00 (10.14) 0.97 (9.44) 1.00 (12.09) 0.99 (7.74) 0.89 (5.71) 1.00 (10.64)
b12 1.00 (0.97) 0.97 (0.90) 1.00 (1.16) 1.00 (0.75) 0.92 (0.54) 1.00 (1.02)
b22 0.63 (3.88) 0.51 (3.34) 0.52 (3.46) 0.65 (2.94) 0.60 (2.92) 0.56 (2.95)

A-Model

ML

b11 0.96 (0.38) 0.80 (0.32) 0.89 (0.41) 0.96 (0.26) 0.88 (0.17) 0.92 (0.30)
b21 1.00 (9.34) 0.97 (8.29) 1.00 (9.82) 1.00 (7.00) 0.91 (5.07) 0.99 (7.67)
b12 1.00 (0.08) 0.97 (0.07) 1.00 (0.09) 1.00 (0.07) 0.93 (0.05) 0.99 (0.07)
b22 0.96 (0.38) 0.80 (0.32) 0.89 (0.41) 0.96 (0.26) 0.88 (0.17) 0.92 (0.30)

L/S

b11 0.94 (0.39) 0.78 (0.34) 0.86 (0.42) 0.94 (0.29) 0.88 (0.20) 0.90 (0.32)
b21 1.00 (9.53) 0.98 (8.68) 1.00 (9.91) 1.00 (7.58) 0.96 (5.74) 0.99 (8.10)
b12 1.00 (0.09) 0.98 (0.08) 1.00 (0.09) 1.00 (0.07) 0.96 (0.05) 0.99 (0.07)
b22 0.94 (0.39) 0.78 (0.34) 0.86 (0.42) 0.94 (0.29) 0.88 (0.20) 0.90 (0.32)

CB

b11 0.88 (0.35) 0.71 (0.30) 0.78 (0.42) 0.95 (0.24) 0.86 (0.17) 0.86 (0.36)
b21 0.95 (8.63) 0.91 (7.72) 0.95 (9.66) 0.99 (6.76) 0.90 (5.05) 0.99 (8.63)
b12 0.95 (0.08) 0.89 (0.07) 0.95 (0.09) 0.99 (0.06) 0.92 (0.05) 1.00 (0.08)
b22 0.88 (0.35) 0.71 (0.30) 0.78 (0.42) 0.95 (0.24) 0.86 (0.17) 0.86 (0.36)

True
GARCH

b11 0.91 (0.38) 0.70 (0.36) 0.64 (0.46) 0.94 (0.27) 0.83 (0.20) 0.76 (0.38)
b21 1.00 (9.43) 0.97 (8.92) 1.00 (10.46) 0.99 (7.15) 0.90 (5.51) 1.00 (8.92)
b12 1.00 (0.08) 0.97 (0.08) 1.00 (0.09) 1.00 (0.07) 0.92 (0.05) 1.00 (0.08)
b22 0.91 (0.38) 0.70 (0.36) 0.64 (0.46) 0.94 (0.27) 0.83 (0.20) 0.76 (0.38)

Note: GARCH parameters (γ1, g1) = (0.1, 0.85) and (γ2, g2) = (0.05, 0.92);
distribution of innovations: ekt ∼ i.i.d. −(χ2(4)− 4)/

√
8, k = 1, 2;

band widths used for MBB: l = 20 and 50 for T = 200 and 500, respectively.
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Table A.8: Relative Coverage Frequencies of Joint Bands for Impulse Response Func-
tions with Average Band Widths in Parentheses for Pointwise Nominal Level of 99% for
Bivariate DGP (α = 0.9) with χ2 GARCH Errors

Estim. T = 200 T = 500
method WB MBB RBB WB MBB RBB

B-Model

ML

θ11 0.68 (6.91) 0.50 (5.96) 0.57 (6.48) 0.74 (5.25) 0.62 (4.75) 0.67 (4.97)
θ21 0.95 (40.88) 0.89 (36.75) 0.95 (41.36) 0.97 (32.42) 0.91 (26.77) 0.97 (33.60)
θ12 1.00 (9.74) 1.00 (8.35) 1.00 (9.78) 1.00 (8.38) 0.99 (6.30) 1.00 (8.63)
θ22 0.82 (28.30) 0.60 (23.49) 0.69 (26.99) 0.82 (20.36) 0.69 (17.15) 0.73 (19.92)

L/S

θ11 0.69 (6.92) 0.51 (6.01) 0.57 (6.48) 0.75 (5.33) 0.63 (4.84) 0.67 (5.03)
θ21 0.95 (41.13) 0.90 (37.47) 0.95 (41.48) 0.97 (33.60) 0.92 (28.98) 0.97 (34.44)
θ12 1.00 (9.86) 1.00 (8.61) 1.00 (9.86) 1.00 (8.81) 1.00 (7.09) 1.00 (8.94)
θ22 0.82 (28.45) 0.61 (23.81) 0.70 (27.07) 0.83 (20.95) 0.70 (18.85) 0.73 (20.32)

CB

θ11 0.68 (6.83) 0.50 (5.90) 0.56 (6.48) 0.74 (5.17) 0.62 (4.75) 0.67 (5.09)
θ21 0.90 (39.38) 0.86 (35.23) 0.90 (40.91) 0.97 (31.64) 0.91 (26.34) 0.96 (35.08)
θ12 0.95 (9.34) 0.93 (8.01) 0.95 (9.80) 1.00 (8.13) 0.99 (6.16) 1.00 (9.25)
θ22 0.81 (27.84) 0.58 (23.21) 0.67 (27.21) 0.83 (19.97) 0.69 (17.05) 0.72 (20.97)

True
GARCH

θ11 0.66 (6.86) 0.49 (6.00) 0.55 (6.54) 0.73 (5.23) 0.62 (4.79) 0.66 (5.14)
θ21 0.94 (40.97) 0.89 (37.44) 0.95 (42.38) 0.97 (32.25) 0.91 (27.26) 0.96 (35.51)
θ12 1.00 (9.72) 1.00 (8.71) 1.00 (10.31) 1.00 (8.33) 0.99 (6.51) 1.00 (9.42)
θ22 0.79 (28.26) 0.58 (24.11) 0.67 (27.98) 0.82 (20.28) 0.69 (17.57) 0.72 (21.32)

A-Model

ML

θ11 0.84 (6.10) 0.76 (5.60) 0.84 (6.07) 0.91 (4.92) 0.84 (4.09) 0.91 (4.89)
θ21 0.96 (39.20) 0.91 (36.77) 0.95 (38.34) 0.97 (29.31) 0.94 (25.91) 0.98 (29.16)
θ12 1.00 (0.83) 1.00 (0.74) 1.00 (0.82) 1.00 (0.70) 0.99 (0.57) 1.00 (0.69)
θ22 0.94 (2.54) 0.90 (2.29) 0.97 (2.57) 0.97 (1.92) 0.92 (1.56) 0.97 (1.94)

L/S

θ11 0.84 (6.12) 0.75 (5.68) 0.83 (6.07) 0.90 (5.06) 0.83 (4.34) 0.90 (4.98)
θ21 0.96 (39.40) 0.92 (37.30) 0.96 (38.37) 0.98 (30.07) 0.94 (27.51) 0.97 (29.68)
θ12 1.00 (0.84) 1.00 (0.76) 1.00 (0.82) 1.00 (0.72) 1.00 (0.61) 1.00 (0.71)
θ22 0.94 (2.56) 0.90 (2.32) 0.96 (2.58) 0.97 (1.99) 0.93 (1.69) 0.97 (1.99)

CB

θ11 0.80 (5.95) 0.71 (5.45) 0.79 (6.02) 0.91 (4.80) 0.82 (4.06) 0.89 (5.03)
θ21 0.91 (37.85) 0.87 (35.32) 0.91 (37.65) 0.98 (28.82) 0.92 (25.62) 0.97 (30.05)
θ12 0.95 (0.80) 0.93 (0.72) 0.95 (0.82) 1.00 (0.68) 0.99 (0.55) 1.00 (0.73)
θ22 0.90 (2.47) 0.84 (2.23) 0.91 (2.56) 0.96 (1.87) 0.89 (1.54) 0.97 (2.04)

True
GARCH

θ11 0.84 (6.07) 0.73 (5.66) 0.82 (6.15) 0.91 (4.87) 0.80 (4.16) 0.88 (5.09)
θ21 0.96 (39.18) 0.90 (36.99) 0.96 (38.73) 0.98 (29.18) 0.92 (26.21) 0.97 (30.22)
θ12 1.00 (0.83) 1.00 (0.76) 1.00 (0.85) 1.00 (0.69) 0.99 (0.58) 1.00 (0.74)
θ22 0.94 (2.54) 0.87 (2.34) 0.96 (2.64) 0.97 (1.90) 0.89 (1.61) 0.96 (2.07)

Note: GARCH parameters (γ1, g1) = (0.1, 0.85) and (γ2, g2) = (0.05, 0.92);
distribution of innovations: ekt ∼ i.i.d. −(χ2(4)− 4)/

√
8, k = 1, 2;

band widths used for MBB: l = 20 and 50 for T = 200 and 500, respectively.
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Table A.9: Relative Coverage Frequencies of Impact Effects with Average Confidence
Interval Widths in Parentheses for Nominal Level of 90% for Bivariate Benchmark (α =
0.9) with Alternative RBB Method

Estim. T = 200 T = 500
method WB MBB RBB alt. RBB WB MBB RBB alt. RBB

B-Model

ML

b11 0.58 (0.39) 0.51 (0.34) 0.48 (0.33) 0.60 (0.44) 0.69 (0.27) 0.70 (0.26) 0.53 (0.21) 0.78 (0.32)
b21 1.00 (10.48) 0.98 (8.25) 1.00 (11.11) 0.99 (9.02) 1.00 (8.08) 0.92 (4.58) 1.00 (8.02) 0.95 (4.25)
b12 1.00 (1.03) 0.97 (0.80) 1.00 (1.08) 0.98 (0.85) 1.00 (0.79) 0.94 (0.44) 1.00 (0.78) 0.95 (0.40)
b22 0.72 (3.53) 0.54 (2.76) 0.59 (2.97) 0.60 (3.32) 0.74 (2.56) 0.68 (2.09) 0.62 (2.07) 0.75 (2.41)

L/S

b11 0.58 (0.39) 0.52 (0.34) 0.49 (0.33) 0.61 (0.44) 0.70 (0.29) 0.71 (0.27) 0.55 (0.23) 0.78 (0.33)
b21 1.00 (10.68) 0.98 (8.74) 1.00 (11.25) 0.99 (9.38) 1.00 (9.03) 0.94 (5.33) 1.00 (8.76) 0.97 (4.87)
b12 1.00 (1.05) 0.98 (0.85) 1.00 (1.09) 0.99 (0.89) 1.00 (0.89) 0.95 (0.51) 1.00 (0.85) 0.97 (0.46)
b22 0.72 (3.55) 0.54 (2.82) 0.59 (2.99) 0.61 (3.34) 0.75 (2.71) 0.69 (2.18) 0.63 (2.23) 0.75 (2.47)

CB

b11 0.57 (0.37) 0.50 (0.32) 0.49 (0.33) 0.60 (0.43) 0.68 (0.24) 0.70 (0.25) 0.55 (0.22) 0.78 (0.32)
b21 0.99 (9.47) 0.92 (7.21) 0.99 (11.01) 0.98 (8.25) 1.00 (6.77) 0.90 (4.01) 1.00 (8.31) 0.93 (3.97)
b12 0.98 (0.93) 0.91 (0.70) 0.99 (1.07) 0.97 (0.78) 1.00 (0.67) 0.91 (0.39) 1.00 (0.81) 0.94 (0.38)
b22 0.71 (3.40) 0.52 (2.63) 0.58 (2.94) 0.60 (3.23) 0.73 (2.33) 0.67 (2.00) 0.62 (2.10) 0.75 (2.36)

True
GARCH

b11 0.58 (0.37) 0.50 (0.32) 0.54 (0.32) 0.60 (0.44) 0.67 (0.24) 0.70 (0.25) 0.62 (0.20) 0.78 (0.32)
b21 1.00 (9.54) 0.95 (7.37) 1.00 (10.57) 0.99 (8.91) 1.00 (6.79) 0.92 (4.00) 1.00 (7.74) 0.95 (4.24)
b12 1.00 (0.93) 0.94 (0.71) 1.00 (1.03) 0.99 (0.85) 1.00 (0.66) 0.93 (0.38) 1.00 (0.76) 0.95 (0.40)
b22 0.71 (3.40) 0.53 (2.66) 0.59 (2.86) 0.61 (3.32) 0.74 (2.33) 0.67 (1.99) 0.66 (1.97) 0.75 (2.40)

A-Model

ML

b11 0.93 (0.39) 0.77 (0.31) 0.93 (0.41) 0.83 (0.34) 0.98 (0.28) 0.90 (0.14) 0.98 (0.26) 0.92 (0.11)
b21 1.00 (9.32) 0.97 (7.66) 1.00 (9.52) 0.99 (8.57) 1.00 (7.30) 0.92 (4.39) 1.00 (7.16) 0.96 (4.24)
b12 1.00 (0.09) 0.97 (0.07) 1.00 (0.09) 0.98 (0.08) 1.00 (0.07) 0.94 (0.04) 1.00 (0.07) 0.95 (0.04)
b22 0.93 (0.39) 0.77 (0.31) 0.93 (0.41) 0.83 (0.34) 0.98 (0.28) 0.90 (0.14) 0.98 (0.26) 0.92 (0.11)

L/S

b11 0.91 (0.40) 0.77 (0.33) 0.90 (0.41) 0.81 (0.35) 0.96 (0.32) 0.88 (0.17) 0.97 (0.30) 0.91 (0.14)
b21 1.00 (9.46) 0.98 (8.07) 1.00 (9.59) 0.99 (8.85) 1.00 (8.01) 0.94 (5.07) 1.00 (7.68) 0.97 (4.82)
b12 1.00 (0.09) 0.98 (0.07) 1.00 (0.09) 0.99 (0.08) 1.00 (0.08) 0.95 (0.05) 1.00 (0.07) 0.97 (0.04)
b22 0.91 (0.40) 0.77 (0.33) 0.90 (0.41) 0.81 (0.35) 0.96 (0.32) 0.88 (0.17) 0.97 (0.30) 0.91 (0.14)

CB

b11 0.91 (0.35) 0.74 (0.26) 0.91 (0.40) 0.81 (0.30) 0.98 (0.21) 0.90 (0.11) 0.98 (0.27) 0.92 (0.10)
b21 0.98 (8.56) 0.92 (6.76) 0.99 (9.40) 0.98 (7.95) 1.00 (6.29) 0.90 (3.89) 1.00 (7.35) 0.94 (3.96)
b12 0.98 (0.08) 0.91 (0.06) 0.99 (0.09) 0.97 (0.07) 1.00 (0.06) 0.91 (0.04) 1.00 (0.07) 0.94 (0.04)
b22 0.91 (0.35) 0.74 (0.26) 0.91 (0.40) 0.81 (0.30) 0.98 (0.21) 0.90 (0.11) 0.98 (0.27) 0.92 (0.10)

True
GARCH

b11 0.94 (0.35) 0.81 (0.26) 0.97 (0.38) 0.85 (0.33) 0.99 (0.21) 0.92 (0.11) 0.99 (0.24) 0.92 (0.11)
b21 1.00 (8.65) 0.95 (6.93) 1.00 (9.19) 1.00 (8.46) 1.00 (6.31) 0.93 (3.90) 1.00 (6.96) 0.95 (4.22)
b12 1.00 (0.08) 0.94 (0.06) 1.00 (0.09) 0.99 (0.08) 1.00 (0.06) 0.93 (0.04) 1.00 (0.07) 0.95 (0.04)
b22 0.94 (0.35) 0.81 (0.26) 0.97 (0.38) 0.85 (0.33) 0.99 (0.21) 0.92 (0.11) 0.99 (0.24) 0.92 (0.11)

Note: GARCH parameters (γ1, g1) = (0.1, 0.85) and (γ2, g2) = (0.05, 0.92);
band widths used for MBB: l = 20 and 50 for T = 200 and 500, respectively.
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Table A.10: Relative Coverage Frequencies of Joint Bands for Impulse Response Func-
tions with Average Band Widths in Parentheses for Pointwise Nominal Level of 99% for
Bivariate Benchmark DGP (α = 0.9) with Alternative RBB Method

Estim. T = 200 T = 500
method WB MBB RBB alt. RBB WB MBB RBB alt. RBB

B-Model

ML

θ11 0.70 (6.40) 0.53 (5.57) 0.56 (5.83) 0.70 (7.23) 0.80 (4.84) 0.70 (4.24) 0.67 (4.31) 0.87 (5.57)
θ21 0.94 (40.80) 0.90 (36.56) 0.94 (40.68) 0.94 (39.63) 0.97 (33.14) 0.93 (25.62) 0.97 (32.16) 0.97 (26.48)
θ12 1.00 (10.04) 1.00 (8.71) 1.00 (9.92) 1.00 (9.11) 1.00 (8.85) 1.00 (6.16) 1.00 (8.38) 1.00 (5.98)
θ22 0.88 (26.76) 0.66 (22.24) 0.74 (25.18) 0.79 (26.06) 0.91 (18.99) 0.77 (14.89) 0.78 (17.31) 0.84 (16.64)

L/S

θ11 0.71 (6.41) 0.54 (5.61) 0.57 (5.84) 0.70 (7.25) 0.80 (4.94) 0.70 (4.37) 0.67 (4.40) 0.87 (5.68)
θ21 0.94 (40.97) 0.90 (37.09) 0.94 (40.86) 0.94 (40.02) 0.97 (34.31) 0.93 (28.09) 0.97 (33.22) 0.97 (29.14)
θ12 1.00 (10.14) 1.00 (8.95) 1.00 (10.00) 1.00 (9.25) 1.00 (9.32) 1.00 (7.00) 1.00 (8.80) 1.00 (6.87)
θ22 0.88 (26.89) 0.67 (22.59) 0.74 (25.30) 0.78 (26.20) 0.91 (19.70) 0.78 (15.93) 0.78 (17.96) 0.85 (17.52)

CB

θ11 0.70 (6.30) 0.53 (5.46) 0.57 (5.82) 0.70 (7.17) 0.79 (4.63) 0.70 (4.12) 0.66 (4.30) 0.87 (5.49)
θ21 0.93 (39.47) 0.88 (34.32) 0.93 (40.44) 0.92 (38.64) 0.97 (30.64) 0.92 (22.96) 0.97 (32.20) 0.97 (24.88)
θ12 0.99 (9.52) 0.98 (7.89) 0.99 (9.85) 0.98 (8.70) 1.00 (7.89) 0.98 (5.32) 1.00 (8.41) 1.00 (5.47)
θ22 0.88 (26.01) 0.64 (21.20) 0.73 (25.12) 0.79 (25.49) 0.91 (17.61) 0.76 (14.00) 0.78 (17.36) 0.85 (16.10)

True
GARCH

θ11 0.70 (6.28) 0.53 (5.46) 0.63 (5.83) 0.71 (7.22) 0.78 (4.63) 0.70 (4.11) 0.72 (4.28) 0.87 (5.52)
θ21 0.93 (39.54) 0.90 (34.51) 0.94 (40.30) 0.94 (39.42) 0.97 (30.54) 0.92 (22.97) 0.97 (32.15) 0.97 (25.66)
θ12 1.00 (9.50) 1.00 (7.95) 1.00 (9.77) 1.00 (9.06) 1.00 (7.83) 0.99 (5.30) 1.00 (8.44) 1.00 (5.75)
θ22 0.88 (25.92) 0.65 (21.29) 0.77 (24.67) 0.79 (25.97) 0.90 (17.55) 0.77 (13.97) 0.80 (17.18) 0.85 (16.39)

A-Model

ML

θ11 0.85 (6.09) 0.72 (5.53) 0.83 (5.94) 0.86 (5.96) 0.91 (4.93) 0.83 (3.88) 0.91 (4.66) 0.92 (4.12)
θ21 0.95 (37.05) 0.92 (34.44) 0.94 (36.31) 0.95 (37.99) 0.97 (28.62) 0.93 (24.09) 0.97 (27.72) 0.98 (25.48)
θ12 1.00 (0.81) 1.00 (0.74) 1.00 (0.80) 1.00 (0.78) 1.00 (0.71) 1.00 (0.54) 1.00 (0.67) 1.00 (0.54)
θ22 0.95 (2.54) 0.88 (2.25) 0.96 (2.51) 0.95 (2.47) 0.96 (1.92) 0.93 (1.45) 0.96 (1.81) 0.97 (1.47)

L/S

θ11 0.85 (6.10) 0.73 (5.59) 0.83 (5.95) 0.85 (5.99) 0.91 (5.07) 0.83 (4.15) 0.90 (4.79) 0.91 (4.40)
θ21 0.95 (37.16) 0.92 (34.81) 0.94 (36.42) 0.95 (38.25) 0.96 (29.31) 0.93 (25.85) 0.97 (28.31) 0.99 (27.30)
θ12 1.00 (0.82) 1.00 (0.76) 1.00 (0.81) 1.00 (0.79) 1.00 (0.73) 1.00 (0.60) 1.00 (0.69) 1.00 (0.60)
θ22 0.95 (2.55) 0.90 (2.29) 0.96 (2.52) 0.95 (2.49) 0.96 (2.00) 0.93 (1.59) 0.97 (1.88) 0.97 (1.62)

CB

θ11 0.83 (5.94) 0.71 (5.30) 0.81 (5.91) 0.83 (5.86) 0.92 (4.58) 0.83 (3.59) 0.91 (4.64) 0.92 (3.92)
θ21 0.93 (36.20) 0.90 (32.92) 0.93 (36.08) 0.93 (37.23) 0.97 (27.24) 0.92 (22.14) 0.97 (27.74) 0.99 (24.29)
θ12 0.99 (0.79) 0.98 (0.69) 0.99 (0.80) 0.98 (0.75) 1.00 (0.66) 0.98 (0.49) 1.00 (0.68) 1.00 (0.51)
θ22 0.94 (2.46) 0.87 (2.11) 0.94 (2.50) 0.94 (2.40) 0.97 (1.75) 0.92 (1.30) 0.97 (1.81) 0.97 (1.37)

True
GARCH

θ11 0.85 (5.94) 0.74 (5.32) 0.83 (5.92) 0.86 (5.95) 0.92 (4.57) 0.84 (3.58) 0.92 (4.62) 0.92 (4.01)
θ21 0.94 (36.37) 0.92 (33.04) 0.94 (36.00) 0.95 (37.80) 0.98 (27.14) 0.93 (22.17) 0.97 (27.65) 0.98 (24.85)
θ12 1.00 (0.79) 1.00 (0.69) 1.00 (0.80) 1.00 (0.78) 1.00 (0.65) 0.99 (0.49) 1.00 (0.68) 1.00 (0.53)
θ22 0.96 (2.46) 0.90 (2.13) 0.97 (2.49) 0.96 (2.46) 0.97 (1.74) 0.92 (1.30) 0.97 (1.81) 0.97 (1.42)

Note: GARCH parameters (γ1, g1) = (0.1, 0.85) and (γ2, g2) = (0.05, 0.92);
band widths used for MBB: l = 20 and 50 for T = 200 and 500, respectively.
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Table A.11: Relative Coverage Frequencies of Joint Bands for Impulse Response Func-
tions with Band Widths in Parentheses for Pointwise Nominal Level of 99% of Three-
dimensional DGP

T = 200 T = 500

Estimation Element WB MBB RBB WB MBB RBB

B-Model

CB

θ11 0.28 (1.49) 0.20 (1.43) 0.22 (1.48) 0.40 (1.25) 0.44 (1.20) 0.34 (1.18)
θ21 0.98 (2.96) 0.97 (2.81) 0.99 (3.22) 0.99 (2.27) 0.98 (2.04) 0.99 (2.52)
θ31 0.95 (0.02) 0.93 (0.02) 0.96 (0.02) 0.92 (0.01) 0.87 (0.01) 0.93 (0.01)
θ12 0.96 (1.78) 0.94 (1.71) 0.97 (1.89) 1.00 (1.42) 0.99 (1.27) 1.00 (1.50)
θ22 0.50 (2.23) 0.31 (2.03) 0.47 (2.30) 0.73 (1.87) 0.62 (1.71) 0.73 (1.98)
θ32 0.97 (0.02) 0.94 (0.02) 0.97 (0.02) 0.99 (0.01) 0.96 (0.01) 0.98 (0.02)
θ13 0.98 (1.85) 0.97 (1.74) 0.99 (1.97) 0.99 (1.55) 0.98 (1.36) 0.99 (1.69)
θ23 0.98 (3.07) 0.96 (2.87) 0.99 (3.24) 1.00 (2.94) 1.00 (2.78) 1.00 (3.22)
θ33 0.63 (0.02) 0.37 (0.02) 0.41 (0.02) 0.83 (0.01) 0.58 (0.01) 0.70 (0.01)

True
GARCH

θ11 0.28 (1.49) 0.20 (1.43) 0.22 (1.48) 0.40 (1.26) 0.45 (1.20) 0.33 (1.18)
θ21 1.00 (2.98) 0.99 (2.81) 1.00 (3.25) 0.99 (2.34) 0.98 (2.03) 0.99 (2.58)
θ31 0.96 (0.02) 0.93 (0.02) 0.96 (0.02) 0.92 (0.01) 0.88 (0.01) 0.93 (0.01)
θ12 0.96 (1.77) 0.94 (1.69) 0.97 (1.90) 1.00 (1.45) 0.99 (1.24) 0.99 (1.53)
θ22 0.52 (2.24) 0.34 (2.04) 0.47 (2.33) 0.73 (1.88) 0.63 (1.71) 0.72 (2.00)
θ32 0.97 (0.02) 0.94 (0.02) 0.97 (0.02) 0.98 (0.02) 0.96 (0.01) 0.98 (0.02)
θ13 0.99 (1.85) 0.98 (1.73) 1.00 (1.97) 1.00 (1.57) 0.98 (1.36) 0.99 (1.70)
θ23 0.98 (3.06) 0.97 (2.86) 0.99 (3.24) 1.00 (2.96) 1.00 (2.78) 1.00 (3.25)
θ33 0.67 (0.02) 0.39 (0.02) 0.41 (0.02) 0.84 (0.01) 0.58 (0.01) 0.71 (0.01)

A-Model

CB

θ11 0.71 (7.98) 0.61 (7.45) 0.62 (7.88) 0.89 (6.04) 0.80 (5.26) 0.83 (5.90)
θ21 0.99 (14.84) 0.99 (14.63) 0.99 (15.17) 1.00 (10.69) 0.99 (10.40) 1.00 (11.22)
θ31 0.97 (0.10) 0.95 (0.10) 0.97 (0.10) 0.97 (0.06) 0.93 (0.06) 0.97 (0.06)
θ12 0.95 (14.05) 0.93 (13.62) 0.94 (13.90) 0.99 (10.75) 0.99 (9.94) 0.99 (10.40)
θ22 0.72 (19.31) 0.58 (18.40) 0.64 (19.38) 0.89 (16.50) 0.80 (15.39) 0.82 (16.56)
θ32 0.97 (0.15) 0.94 (0.15) 0.95 (0.15) 0.97 (0.11) 0.96 (0.11) 0.95 (0.11)
θ13 0.98 (425.36) 0.97 (406.05) 0.98 (434.37) 0.99 (338.67) 0.98 (307.00) 0.99 (349.64)
θ23 0.97 (699.22) 0.96 (668.60) 0.97 (706.02) 1.00 (621.40) 1.00 (597.26) 1.00 (649.72)
θ33 0.90 (4.36) 0.83 (4.17) 0.83 (4.37) 0.90 (3.04) 0.82 (2.85) 0.87 (3.07)

True
GARCH

θ11 0.72 (8.04) 0.62 (7.52) 0.64 (7.89) 0.89 (6.10) 0.81 (5.25) 0.81 (5.94)
θ21 1.00 (14.88) 1.00 (14.75) 1.00 (15.27) 1.00 (10.90) 0.98 (10.43) 1.00 (11.40)
θ31 0.98 (0.10) 0.96 (0.10) 0.98 (0.10) 0.97 (0.06) 0.94 (0.06) 0.97 (0.07)
θ12 0.96 (14.10) 0.93 (13.59) 0.96 (13.99) 0.99 (10.87) 0.99 (9.79) 0.99 (10.50)
θ22 0.78 (19.60) 0.67 (18.65) 0.70 (19.61) 0.90 (16.59) 0.81 (15.44) 0.82 (16.69)
θ32 0.97 (0.15) 0.94 (0.15) 0.95 (0.15) 0.98 (0.11) 0.97 (0.11) 0.95 (0.11)
θ13 0.99 (429.62) 0.98 (410.58) 0.99 (438.89) 0.99 (342.88) 0.98 (306.29) 0.99 (351.63)
θ23 0.98 (697.38) 0.96 (666.72) 0.98 (705.24) 1.00 (622.77) 1.00 (597.18) 1.00 (650.17)
θ33 0.93 (4.38) 0.86 (4.18) 0.86 (4.37) 0.92 (3.06) 0.84 (2.86) 0.88 (3.08)

Note: Band widths used for MBB: l = 20 and 50 for T = 200 and 500, respectively.
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