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Abstract

Lack of transmission capacity hampers the integration of the European elec-
tricity market, and thereby precludes reaping the full benefits of competition. In
this work, we investigate the extent to which transmission grid expansion pro-
motes competition, efficiency and welfare. To this end, we propose a three-stage
model for grid investment: a benevolent planner decides on network upgrades,
considering welfare benefits of investments through a reduction of market power
exertion by strategic generators. These firms anticipate their impact on market
clearing, in particular when lines are congested. In this respect, we provide the
first model effectively endogenizing the trade-off between costs of grid investment
and benefits from reduced market power potential.

In a three-node network, we illustrate three distinct strategic effects: firstly,
by reducing market power exertion, network expansion can promote welfare be-
yond pure efficiency gains: optimally accounting for strategic generator behavior
can push welfare close to a first-best competitive benchmark. Myopically focusing
on bottlenecks only can yield suboptimal outcomes. Secondly, network upgrades
entail a relative shift of rents from producers to consumers, and thirdly, they
may yield suboptimal or even disequilibrium outcomes when strategic behavior
of certain market participants is neglected in network investment.

Keywords: market power, electricity transmission, network expansion, Generalized Nash
equilibrium (GNE), mixed-integer equilibrium problem under equilibrium constraints (MI-
EPEC)
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1 Policy: Market Power and Network Expansion

In the mid-1990s, the European Union started developing the institutional basis for an
integrated Internal Energy Market (IEM): formerly state-owned utilities were unbundled
and the electricity transmission grid was opened up to new generators entering the power
market. At the same time, regional energy exchanges were established in order to provide
market places with transparent wholesale prices.

The formation of the Council of European Energy Regulators (CEER) in 2000 and the
Agency for the Cooperation of Energy Regulators (ACER) in 2010 laid institutional cor-
nerstones for developing a level playing field. Nevertheless, market concentration remains
high: in ten Member States, the largest generating company has a market share above 70 %
(European Commission, 2012, data for 2010). By means of further European integration,
this high degree of concentration could be reduced, thereby mitigating the potential to exert
market power while consequently enhancing efficiency and increasing welfare.

Interconnectors between countries, however, were originally constructed for contingencies,
not to facilitate cross-border trade. What is missing, thus, are sufficient physical intercon-
nector capacities to accomplish a fully integrated market. Strong indicators for incomplete
integration in Europe are found through empirical analyses which detect persistent wholesale
price spreads between countries (Zachmann, 2008; ACER/CEER, 2013; Böckers, Haucap,
and Heimeshoff, 2013). This trend coincides with an increasing use of commercial transfer
capacities and a declining number of flows against the price differential, pointing to a more
efficient use of interconnector capacity. These findings, thus, lend stark evidence that, firstly,
physical capacities are still insufficient to achieve full integration, and, secondly, inefficiencies
in the allocation mechanism are not the principle drivers of this incomplete convergence since
the introduction of market coupling.

The economics of European electricity market integration has various dimensions. Be-
yond efficiency gains from trade, more efficient feed-in of variable renewables as well as
enhanced security of supply, integration is essential to ensure vigorous inter-regional compe-
tition where concentration on single markets remains high – this aspect is the focus of our
contribution.

While we motivate our research by the institutional setting in Europe, the underlying
mechanisms are present in other markets, in particular the US. Although featuring different
market designs, the federal structure with state-wide or regional systems can be seen as an
analogue to European countries with constrained interconnection and potentially dominant
generators in local markets.

Modeling the interaction between firms that strategically decide on output levels and
investment in networks is still challenging – especially to properly account for gaming op-
portunities between generators and network operators. In this paper, we investigate to what
extent transmission grid expansion between regional markets offers a way to realize welfare
improvements beyond efficiency gains; that is welfare gains due to a reduction of market
power exertion. The underlying mechanism is the following: in case transmission capacities
are scarce, regional markets are separated and incumbent firms face little outside compet-
itive pressure. Moreover, they also might find it profitable to aggressively congest lines to
adjacent regions in order to prevent competitors from entering their domestic market. These
implications of low network capacities hampering competition can be mitigated by means of
transmission grid expansion.

The major theoretical contribution of our work consists of endogenously including the
trade-off between costs and benefits of network expansion into one integrated model. In a
three-stage game, each agent anticipates the impact of her actions on subsequent decisions:
the transmission system planner accounts for their effect on strategic firms’ behavior, and
those, in turn, anticipate their impact on the system operator clearing the market. Thereby,
we endogenize transmission grid expansion decisions and do not have to rely on the exogenous
variation of parameters or the analysis of scenarios. To the best of our knowledge, this is
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the first contribution explicitly incorporating this trade-off. Moreover, we apply a recent
method for solving Equilibrium Problems under Equilibrium Constraints (EPEC) and extend
it mathematically as well as with respect to the interpretation of the players.

Applying our model to a sample network, we identify three distinct effects: firstly, net-
work expansion can increase welfare by mitigating market power potential – leading to a
second-best equilibrium close to the first-best outcome of perfectly competitive markets. In
some cases, a relatively “thin” line can be sufficient to enforce a higher degree of competi-
tion. Moreover, expansion of lines may be required to prohibit gaming – even if these lines
are not congested in equilibrium. In this vein, only focusing on existing bottlenecks may
yield suboptimal outcomes. Secondly, beyond an increase in welfare, optimal network ex-
pansion entails a relative shift of rents from producers to consumers. Due to the prevention
of strategically exploiting bottlenecks, excessive rent extraction by generators can be miti-
gated such that consumers benefit. Thirdly, ignoring strategic behavior by firms may yield
suboptimal decisions for network upgrades – and may possibly create situations in which no
stable equilibria can be attained.

The remainder of this paper is structured as follows: Section 2 gives an overview of the
existing literature and relates it to our research, Section 3 describes our modeling approach.
The mathematical formulation is explained in detail in Section 4, and Section 5 discusses
numerical results. Section 6 concludes and outlines avenues for further research.

2 Theory & Literature: Modeling Market Power in
Electricity Networks

The analysis of strategic generator behavior in networks has been in the focus of the academic
community for several years. Neuhoff et al. (2005) point out that the “devil is in the de-
tails”: comparing different approaches concerning the treatment of transmission constraints
in two-stage models, the authors identify the fundamental challenges in rendering a realistic
representation of interactions between strategic generation and clearing of multiple markets.
Specifically, there are two methods to incorporate the transmission system operators’ (TSO)
optimization programs (cf. Hobbs, Rijkers, and Boots, 2005), depending on whether strate-
gic players anticipate their impact on network operation (Stackelberg) or not (näıve). The
latter perspective considerably reduces model complexity at the cost of excluding strategic
effects between dominant firms and network operation. Examples comprise the exogenous
assumption of rationing mechanisms in case transmission capacity is scarce (Willems, 2002),
shifting of an inelastic demand parameter (Boffa, Pingali, and Vanconi, 2010), and strategic
players treating transmission charges arising from TSO optimization as exogenous in their
constraint sets (Tanaka, 2009). Hobbs and Rijkers (2004) choose an in-between approach
where generators hold conjectures concerning transmission price responses. The Stackelberg
assumption is pursued in Cunningham, Baldick, and Baughman (2002) and Ehrenmann and
Neuhoff (2009), who explicitly derive reaction functions and closed-form solutions under rigid
assumptions for some special cases. Alternatively, both Hobbs, Metzler, and Pang (2000)
and Ehrenmann and Neuhoff (2009) propose algorithmic solutions based on diagonalization
methods. For all of these approaches, however, network expansion remains exogenous to the
model and is restricted to a limited number of cases in varying line constraint parameters.

Theoretical and empirical research

For a reduced special case, the assumption of strategic firms anticipating their impact on the
network situation was picked up in the theoretical industrial organization literature: in their
seminal contribution, sometimes referred to as the thin-line paper, Borenstein, Bushnell,
and Stoft (2000) demonstrate that in a simple two-node network even a line with relatively
low capacity may be enough to foster competition and evoke substantial welfare gains. In
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this context, it is irrelevant whether the line is actually utilized as long as its capacity is
sufficiently high to prevent strategic generators from deliberately congesting the grid.

The literature also features contributions with a distinct theoretical industrial organi-
zation (Ruderer and Zöttl, 2012; Léautier, 2013) or empirical focus (Gebhardt and Höffler,
2013; Ryan, 2013; Wolak, 2012). Both streams provide evidence that network expansion is
a useful approach to mitigate market power potential.

Three-stage models

The modeling stream most similar to the work presented here was introduced by Sauma and
Oren (2006): under the label proactive planning, they present a methodology to evaluate
network expansion projects such that their effect on strategic players is taken into account.
Variations and extensions of this paper are developed by Pozo, Contreras, and Sauma (2013a)
and Pozo, Sauma, and Contreras (2013b). They propose an improved solution technique
allowing for more flexibility concerning line expansions. The results of all three analyses are
in line with intuition: network expansion has the potential to enhance social welfare, and this
increase is greater when the network planning entity proactively takes strategic behavior by
market participants into account. Although the studies are based on three-stage models and
incorporate strategic interactions among generating firms, we depart from their approach in
two fundamental ways:

Firstly, by employing results from duality theory following Ruiz, Conejo, and Smeers
(2012), we are able to reformulate the market model such that first order optimality con-
ditions can be explicitly derived. The virtue of this methodological contribution lies in
circumventing the inconvenient usage of iterative algorithms or discretization of decision
variables. Thereby, we are not restricted to evaluating a small number of predefined cases
as usually done in the analysis of network expansion options, but can endogenously trade off
the costs and benefits of line upgrades.

Secondly, we do not consider investments in generation capacity while inelastic demand
is satisfied by a perfectly competitive dispatch, as in Pozo, Contreras, and Sauma (2013a)
and Pozo, Sauma, and Contreras (2013b). Instead, we analyze strategic interaction on a spot
market with existing capacities: in Sauma and Oren (2006), and Pozo, Contreras, and Sauma
(2013a) there is only one generation technology whose marginal production costs decrease in
capacity invested, an assumption needed to justify investment activities by firms. On the one
hand, we do not find the assumption of lower marginal costs due to a “larger” generating unit
convincing. On the other hand, we believe that factors other than the potential exertion
of market power due to limited network capacities, which are not captured by a model
of this kind, also drive the decisions to invest in certain technologies. Among these are
predominantly the temporal patterns of demand and renewables, but also the existing fleet
of a firm, aspects of financing, fuel prices, or innovation processes. Léautier (2013) and, in a
more simplified form, Zöttl (2011), show that the analysis of strategic investment behavior,
even with only two distinct technologies (base and peak), is already complicated. Results
are substantially related to assumptions on expectations about the occurrence of different
spot market demand scenarios or the policy framework.

Summing up, if the potential to exert market power with an existing power plant park
does exist, strategic firms will have the incentive to exploit it. Therefore, we focus on the
analysis of strategic spot market behavior under endogenous network configurations.

3 Application: A Three-Stage Model

We propose a three-stage model in which a benevolent social planner anticipates the equi-
libria among strategic generators, which are potentially altered due to transmission grid
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Table 1: Model structure.

Level Time Player(s) and decisions Objectives

I
Network Benevolent planner maximize welfare

expansion transmission capacity investment less investment costs

II

Spot market

Strategic Generators
maximize profit

generation at each node

III

Independent System Operator (ISO)
dispatch of competitive generation, maximize welfare
load, nodal prices, network flows (short-run)
subject to network feasibility

expansion.1 Table 1 illustrates the model structure, involved players and their decisions.
In the following, we explain the stages bottom-up according to the principle of backward
induction and leave the mathematical formulation for the next Section 4.

The spot market

In the third stage, an Independent System Operator (ISO) dispatches competitive fringe
plants and ensures feasible network flows. Taking strategic firms’ generation and network
capacity as given, she assigns locational prices to each node in the system, such that markets
clear and network flows are feasible. As is standard in the literature, we employ a lossless
direct current (DC) load flow approximation explicitly capturing loop flows in meshed net-
works (Schweppe et al., 1988). In the second model stage, the strategic producers, in turn,
anticipate the effect of their generation decisions on the ISO and nodal prices. In particular,
they can potentially generate excess returns by appropriating rents through congesting the
network. Amongst each other, the strategic generators play a Nash-Cournot game; that
is, they anticipate the ISO’s reaction in the third stage, while taking the generation levels
of other strategic firms and the first-stage network expansion decisions as given. By with-
holding capacity or deliberately causing network congestion, they are able to increase prices
above the competitive level.

In our paper, we restrict ourselves to analyzing (Cournot) quantity strategies for firms:
firstly, they constitute an established and convenient workhorse model (cf. Limpaitoon, Chen,
and Oren, 2014), and quantity games were found to capture prevailing data for representing
short-run competition on the electricity spot market as well as more involved supply func-
tion equilibrium concepts featuring price-quantity strategies (Willems, Rumiantseva, and
Weigt, 2009). Secondly, this approach allows us to compare our results to findings from
the theoretical literature (in particular the aforementioned article by Borenstein, Bushnell,
and Stoft, 2000). In this work, we abstain from introducing mixed strategies although those
might deliver theoretical existence results in case pure strategy equilibria fail to exist. We
are, however, not convinced that randomization over quantities provides a solid basis for
understanding electricity markets.

The spot market, therefore, constitutes a two-stage game, with strategic firms on the
“upper level” (II) and the ISO representing the “lower level” (III). We use the notation
of an ISO for convenience, but it is equivalent to the equilibrium in an electricity market

1In a similar three-stage setup, Huppmann and Egerer (2014) analyze the dimension of national-strategic
behavior: they assume a competitive spot market in the third stage, but national entities strategically
deciding on network expansion to maximize national welfare in the second stage. The first stage is constituted
by a supra-national planner deciding on cross-border interconnector investments. Their model is solved
applying the same methodology of reformulating the third-stage constraints as presented here.
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that is perfectly competitive except for the presence of strategic generators. It is furthermore
equivalent to the coupling of nodal markets in the most efficient way. Actual market coupling
procedures are, in some European regions, based on so-called Net Transfer Capacities (NTC),
in which commercial flows may underutilize or overstress existing capacities. In reality,
plants are redispatched after the market clearing process to ensure network feasibility. In
our approach, flows are directed in a welfare-optimal manner, hence we directly render an
upper bound for efficiency and welfare.2

Network expansion

In the first stage of our model, a benevolent social planner maximizes total welfare by
deciding upon the level of transmission grid expansion. While anticipating how changes in
the network topology will influence the Nash equilibrium outcome on the spot market, she
faces a trade-off between the costs of grid expansion and the welfare-enhancing effects of
integration between different nodes: on the one hand, efficiency gains due to a reduction in
congestion and access to less expensive generation capacity; on the other hand, increasing
competition among the strategic generators weakens their potentially dominant positions
and thus reduces the potential to exert market power.

4 Mathematical Formulation

In the following section, we present our model from a mathematical point of view and explain
how we overcome methodologically challenging issues. Throughout the analysis, we assume
a system with welfare-optimal nodal prices and power flows accomplished by the ISO, given
the quantities sold by the strategic generators and network capacity, which includes the line
expansion by the benevolent network planner.

Stage III: A competitive market – or the ISO

In the third model stage, the ISO maximizes welfare (1a) – the sum of consumer surplus,
generator profit and congestion rent, minus variable production costs of utilized plants – over
the dispatch of non-strategic fringe plants at all nodes n, consumed quantities dn and voltage
angles δn, while ensuring feasible network flows. We employ a lossless DC load flow (DCLF)
approximation incorporating loop flows by voltage angles at each node (Schweppe et al.,
1988) – based on H and B matrices, which is equivalent to a power transmission distribution
factor (PTDF) formulation (for a detailed exposition, see for example Leuthold, Weigt, and
v. Hirschhausen, 2012). The constraint set consists of the nodal electricity balances (1b),
feasibility of flows on each line (1c - 1d) as well as maximum generation (1e) and non-
negativity restrictions (1f - 1g), each with its respective dual variable given in parentheses.
The inverse nodal demand function is assumed linear with reservation price an and slope
parameter bn. Individual plants are denoted by index s, where each plant is exogenously
mapped to a node n. An additional superscript F denotes that the respective plant belongs
to the fringe supply dispatched at marginal cost by the ISO. All other plants, indicated
by superscript S, are owned by strategic generators – therefore, their generation is treated
as exogenous by the ISO. Generation quantities for each plant s are given by gSs or gFs ,
respectively. From the ISO’s point of view, line expansion el is an exogenous parameter. For
notational convenience, we introduce set Sn containing all plants at node n, assemble all
fringe plants in F, and all nodes at which non-zero demand is located in N. The optimization

2In an NTC system, a fixed calculatory amount of interconnector capacity between two countries is quoted
in advance, and the cheapest bids from one market to another are accepted until this capacity limit is reached.
Resulting physical power flows, however, may diverge from merchant flows due to alternate current physical
characteristics (Kirchhoff’s laws). See Oggioni et al. (2012) for an analysis of this issue.
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problem reads as follows:

min
d,δ,gF

−
∑
n∈N

[(
an − 1

2bndn
)
dn
]

+
∑
s∈F

cGs g
F
s (1a)

s.t. −
∑
s∈Sn

(
gSs + gFs

)
+
∑
k

Bnkδk + dn = 0 (pn) ∀n (1b)

−f l − el +
∑
k

Hlkδk ≤ 0 (µl) ∀l (1c)

−f l − el −
∑
k

Hlkδk ≤ 0 (µ
l
) ∀l (1d)

−gFs + gFs ≤ 0 (βs) ∀s ∈ F (1e)

−gFs ≤ 0 (ψs) ∀s ∈ F (1f)

−dn ≤ 0 (φn) ∀n ∈ N (1g)

δn̂ = 0 (γ) (1h)

The hub node of the network is given by n̂ (1h). In case there is no demand at node n, we
fix dn and φn at zero. Differentiating yields the respective first order KKT conditions:

0 = cGs − pn,s∈Sn + βs − ψs , gFs (free) ∀s ∈ F (2a)

0 = −an + bndn + pn − φn , dn (free) ∀n ∈ N (2b)

0 =
∑
k

Bknpk +
∑
l

Hln
(
µl − µl

)
+

{
γ if n = n̂

0 else

}
, δn (free) ∀n (2c)

0 =
∑
s∈Sn

(
gSs + gFs

)
−
∑
k

Bnkδk − dn , pn (free) ∀n (2d)

0 ≤ f l + el −
∑
k

Hlkδk ⊥ µl ≥ 0 ∀l (2e)

0 ≤ −f l − el −
∑
k

Hlkδk ⊥ µ
l
≥ 0 ∀l (2f)

0 ≤ gFs − g
F
s ⊥ βs ≥ 0 ∀s ∈ F (2g)

0 ≤ gFs ⊥ ψs ≥ 0 ∀s ∈ F (2h)

0 ≤ dn ⊥ φn ≥ 0 ∀n ∈ N (2i)

0 = δn̂ , γ (free) (2j)

Optimality conditions (2a) - (2j) will be incorporated as constraints in the higher stages
of our model. However, in standard complementarity form, they are bilinear and contain
an either-or requirement, the complementarity condition. Without reformulation, it is chal-
lenging to include the lower-level optimization problem in the upper-level problem.

For resolving this issue, previous research provides three options: firstly, the approach
of a disjunctive constraints reformulation (Fortuny-Amat and McCarl, 1981), expressing
the complementarity constraints with help of binary variables. This is, for example, used by
Gabriel and Leuthold (2010). Secondly, Siddiqui and Gabriel (2013) propose a reformulation
of the bilinearities using Schur’s decomposition and so-called SOS1-type variables. Thirdly,
Ruiz, Conejo, and Smeers (2012) use a reformulation of lower-level optimality based on
strong duality.

The first and second method come with the drawback of introducing additional con-
straints and binary variables, which complicates the analysis computationally. Most impor-
tantly, however, we then would be left with a discretely-constrained Nash-Cournot game.
Here, it is again not possible to derive KKT conditions without further modifications. Al-
though there has been progress in that field – Gabriel et al. (2013) propose a method to
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tackle that issue by relaxing either integrality or complementarity – theoretical research is
still ongoing and does not provide a ready-made toolbox.

We therefore pursue the third option: to solve for the Nash equilibrium of the overall three
stage game, we follow the methodology proposed by Ruiz, Conejo, and Smeers (2012) and
reformulate the ISO’s optimization problem in the lowest stage (III) using strong duality. By
employing an elastic demand curve — an important assumption when it comes to analyzing
market power — we extend their approach from the purely linear case, as the ISO problem
is quadratic in our model. The reformulated third stage optimality constraints then provide
the feasible space for the second stage strategic generators’ Nash-Cournot game.

Generally, the Lagrange dual function is a value function taking the dual variables of the
original primal problem as arguments. It is defined as the infimum of the Lagrange primal
function over the primal decision variables. The Lagrange dual problem then consists of
finding the dual variables that maximize the Lagrangian dual function – that is in detecting
the greatest infimum of the primal problem over all dual variables. Reformulating primal
Problem 1 accordingly, the ISO minimization of negative welfare, straightforward algebra
yields the dual problem for our case:

max
p,µ,µ,β,φ,ψ,γ

− 1
2

∑
n∈N

1

bn
[an − pn + φn]

2 −
∑
l

(f̄l + el)(µl + µ
l
)

−
∑
n

pn

(∑
s∈Sn

gSs

)
−
∑
s∈F

βsḡ
F
s (3a)

s.t. (2a), (2b), (2c) without complementarity, (3b)

µ, µ, φ, β, ψ ≥ 0, p, γ ∈ R (3c)

By definition, the optimal value of the dual problem is no larger than the optimal value of
the primal problem in any case. The difference between these two values is called duality
gap. Under certain conditions, the duality gap collapses to zero – a property referred to
as strong duality. Because the primal’s objective is convex and all constraints are linear,
strong duality holds in our setup. The optimal values of the primal function and the dual
function, thus, are identical. For the same reasons, KKT conditions of the ISO problem are
both necessary and sufficient, given the network and decisions of the strategic generators.

Therefore, both the KKT conditions and the identity of the primal and dual functions
are equivalent descriptions of a global solution of the ISO welfare maximization problem.
Replacing the former by the latter, hence, leaves us with a representation of optimality on
stage three without explicitly incorporating mathematically inconvenient complementarity
conditions. Instead of (2a) - (2j), we utilize:

(1b)− (1h), (2a)− (2c) without complementarity (4a)

−
∑
n∈N

[
(an −

1

2
bndn)dn

]
+
∑
s∈F

cGs g
F
s +

1

2

∑
n∈N

1

bn
[an − pn + φn]2+

+
∑
n

pn

(∑
s∈Sn

gSs

)
+
∑
l

(
f̄l + el

) (
µl + µl

)
+
∑
s∈F

βsḡ
F
s ≤ 0 (4b)

Constraint (4a) ensures feasibility for both the primal and dual problem; (4b) imposes a
zero duality gap and, as a consequence, an optimal solution to both the primal and dual
problem. Note that we do not state an equality here. By definition, the primal objective
is weakly greater than the dual objective value. Requiring the reverse inequality to hold
imposes identity.

Stage II: Strategic firms

Now, we introduce the second model stage: strategic firms own plants s at nodes n. Let Si

denote the set of all plants owned by strategic firm i, while gSi is the respective production
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vector, and D3 the set of Lagrange multipliers from the third-stage ISO problem. Firm i’s
minimization task thus reads:

min
gSi ,g

F ,δ,d,D3
−
∑
n

∑
s∈(Sn∩Si)

(
pn − cGs

)
gSs (5a)

where each firm i faces the following constraints:

−gSs + gSs ≤ 0 (βSs ) ∀s ∈ Si (5b)

−gSs ≤ 0 (ψSs ) ∀s ∈ Si (5c)

and the constraints arising from the ISO problem:

s.t. cGs − pn,s∈Sn + βs − ψs = 0 (ζSsi) ∀s ∈ F (5d)

−an + bndn + pn − φn = 0 (ηSni) ∀n ∈ N (5e)∑
k

Bknpk +
∑
l

Hln
(
µl − µl

)
+

{
γ if n = n̂

0 else

}
= 0 (θSni) ∀n (5f)

−
∑
s∈Sn

(
gSs + gFs

)
+
∑
k

Bnkδk + dn = 0 (ιSni) ∀n (5g)

−f l − el +
∑
k

Hlkδk ≤ 0 (µSli) ∀l (5h)

−f l − el −
∑
k

Hlkδk ≤ 0 (µS
li

) ∀l (5i)

−gFs + gFs ≤ 0 (βSFsi ) ∀s ∈ F (5j)

−gFs ≤ 0 (ψSFsi ) ∀s ∈ F (5k)

−dn ≤ 0 (φSni) ∀n ∈ N (5l)

δn̂ = 0 (γSi ) (5m)

−
∑
n∈N

[
(an −

1

2
bndn)dn

]
+
∑
s∈F

cGs g
F
s +

1

2

∑
n∈N

1

bn
[an − pn + φn]2+

+
∑
n

pn

(∑
s∈Sn

gSs

)
+
∑
l

(
f̄l + el

) (
µl + µl

)
+
∑
s∈F

βsḡ
F
s ≤ 0 (ξSi ) (5n)

As constraints (5d) - (5n) describe the optimality conditions of the ISO on the lower stage
III, firm i faces a Mathematical Program under Equilibrium Constraints (MPEC). Combin-
ing those MPECs for all firms to find a Nash equilibrium between them yields an Equilibrium
Problem under Equilibrium Constraints (EPEC). Due to our duality reformulation of the
third-stage optimality constraints, as derived in the previous section, we resolve difficul-
ties incurred within this type of model; the optimality conditions of the ISO are already
incorporated in the constraint set. Two caveats, however, remain.

Firstly, observe that constraints (5d) - (5n) arising from the ISO problem are identical
for each player whereas, in principle, their valuation may differ across players – the La-
grange multipliers are specific to each firm i. Formally, this constitutes a Generalized Nash
Equilibrium (GNE) due to the shared constraints. Therefore, there are more endogenous
variables than distinct equations. Mathematically, this yields an under-determined system
of equations; the implied degrees of freedom potentially admit a multitude of solutions. As
a remedy, Harker (1991) proposes assigning identical multipliers across players. Implicitly,
this assumes an underlying coordination mechanism like an auction toward the valuation
of shared limiting factors. Alternatively, fixed ratios between multipliers are proposed by
Oggioni et al. (2012), or a multiplicative decomposition into a common endogenous and a
fixed exogenous part (Kunz and Zerrahn, 2013). All these remedies, however, require exoge-
nous assumptions about some form of coordination between players, which we do not see
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sustained here. Instead, we tackle this issue by a disjunctive constraints reformulation as
described below.

As a second caveat, the objective function (5c) and the constraint (5n) are non-convex
such that KKT points of the MPEC are neither necessary nor sufficient for optimality.
Moreover, as in any EPEC-type problem, there may exist multiple Nash equilibria – as
demonstrated by Borenstein, Bushnell, and Stoft (2000) for strategic electricity generators
in constraining networks. We return to both issues below and first derive the KKT conditions
for all firms.

0 = −pn,s∈Sn + cGs + βSs − ψSs − ιSni,s∈Sn,s∈Si
+ ξSi,s∈Si

pn,s∈Sn , g
S
s (free) ∀s /∈ F (6a)

0 = −ιSni,s∈Sn
+ βSFsi − ψSFsi + ξSi

(
cGs + βs

)
, gFs (free) ∀s ∈ F, i (6b)

0 = −
∑

s∈(Sn∩Si)

gSs −
∑

s∈(Sn∩F)

ζSsi + ηSni +
∑
k

θSkiBnk+

+ξSi
1
bn

(pn − an − φn) + ξSi
∑
s∈Sn

gSs , pn (free) ∀n, i (6c)

0 = bnη
S
ni + ιSni − φSni − ξSi (an − bndn) , dn (free) ∀n, i (6d)

0 =
∑
k

Bknι
S
ki +

∑
l

Hln
(
µSli − µ

S

li

)
+

{
γSi if n = n̂

0 else

}
, δn (free) ∀n, i (6e)

0 ≤ ζSsi + ξSi g
F
s ⊥ βs ≥ 0 ∀s ∈ F, i (6f)

0 ≤ −ζSsi ⊥ ψs ≥ 0 ∀s ∈ F, i (6g)

0 ≤ −ηSni + ξSi

[
1
bn

(φn + an − pn)
]
⊥ φn ≥ 0 ∀n, i (6h)

0 ≤
∑
n

θSniHln + ξSi
(
f̄l + el

)
⊥ µl ≥ 0 ∀l, i (6i)

0 ≤ −
∑
n

θSniHln + ξSi
(
f̄l + el

)
⊥ µ

l
≥ 0 ∀l, i (6j)

0 = θSn̂i , γ (free) ∀i (6k)

0 ≤ gSs − g
S
s ⊥ βSs ≥ 0 ∀s /∈ F (6l)

0 ≤ gSs ⊥ ψSs ≥ 0 ∀s /∈ F (6m)

0 = cGs − pn,s∈Sn + βs − ψs , ζSsi (free) ∀s ∈ F, i (6n)

0 = −an + bndn + pn − φn , ηSni (free) ∀n ∈ N, i
(6o)

0 =
∑
k

Bknpk +
∑
l

Hln
(
µl − µl

)
+

{
γ if n = n̂

0 else

}
, θSni (free) ∀n, i (6p)

0 = −
∑
s∈Sn

(
gSs + gFs

)
+
∑
k

Bnkδk + dn , ι
S
ni (free) ∀n, i (6q)

0 ≤ f l + el −
∑
k

Hlkδk ⊥ µSli ≥ 0 ∀l, i (6r)

0 ≤ f l + el +
∑
k

Hlkδk ⊥ µS
li
≥ 0 ∀l, i (6s)

0 ≤ gFs − g
F
s ⊥ βSFsi ∀s ∈ F, i (6t)

0 ≤ gFS ⊥ ψSFsi ∀s ∈ F, i (6u)

0 ≤ dn ⊥ φSni ∀n ∈ N, i (6v)

0 = δn̂ ⊥ γSi (free) ∀i (6w)

0 ≤
∑
n∈N

[
(an −

1

2
bndn)dn

]
−
∑
s∈F

cGs g
F
s −

1

2

∑
n∈Sn

1

bn
[an − pn + φn]2+
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−
∑
n

pn

(∑
s∈Sn

gSs

)
−
∑
l

(
f̄l + el

) (
µl + µl

)
−
∑
s∈F

βsg
F
s ⊥ ξ

S
i ≥ 0 ∀i (6x)

One source of non-convexities are the bilinearities in (6x). Note that we can ignore the
complementarity requirement in (6x) here because the left-hand side cannot be different from
zero in any case; otherwise primal or dual feasibility would be violated. Recalling equivalence
between this strong duality constraint at hand and the ISO’s optimality conditions, we can
replace (6x) by the according first order conditions (2a) - (2j). Let us now discuss the two
caveats in more detail.

Generalized Nash property: Disjunctive constraints reformulation.

As we do not want to rely on exogenous assumptions concerning coordination among multiple
players, we tackle the GNE problem at hand by a disjunctive constraints reformulation of
the complementarity requirements. As an example of how this is implemented, consider
conditions (2i), arising from the replacement of the duality constraint (6x) above, and (6v)
capturing non-negativity of demand at node n and the associated dual variables.

0 ≤ dn ⊥ φn ≥ 0 (7a)

0 ≤ dn ⊥ φSni ≥ 0 ∀i (7b)

In the optimum, either demand is strictly positive with all duals from the ISO’s and all
strategic generators’ perspective zero, or demand is zero with no further requirement except
non-negativity for φn and all φSni. As non-negativity of demand takes effect for both the ISO
and all strategic players, there are fewer distinct equations than distinct variables and the
emerging system is non-square. We can, however, reformulate the system introducing one
binary variable and associated large scalar:

dn ≥ 0, φn ≥ 0, φSni ≥ 0 ∀i (7c)

dn ≤ rφ
S

n KφS

n (7d)∑
i

φSni + φn ≤
(

1− rφ
S

n

)
KφS

n (7e)

Inequalities (7d) and (7e) are linked by the binary variable rφ
S

n and scalar KφS

n . There

are two possible configurations: either, rφ
S

n is zero, forcing the left-hand side of (7d) to be

non-positive such that demand is zero, or rφ
S

n is equals one, preventing the left-hand side
of (7e) from positivity such that the sum over all dual variables is zero. Therefore, at least
one equality required by conditions (7a), (7b) holds, and complementarity condition is im-
plemented for the ISO and all strategic generators. Note that in (7e), we sum over the dual
variable from the ISO’s problem and those for all strategic players i. This procedure is con-
venient as it renders a leaner formulation of the KKT conditions without losing information:
if demand at a node is zero, then it is zero from the perspective of the ISO and all players.

Applying the same logic to all complementarity requirements attached to inequality con-
straints leaves us with a complete set of KKT conditions, which can be found in the Appendix.
By this means, we formally overcome the inconvenient characteristics of the Generalized Nash
property: we do not assign the relative valuation of duals a priori ; instead, the duals are
chosen such that there is an equilibrium between the strategic generators according to the
objective function of the top-level player.

Non-convexity: Algorithmic approach.

We already noted that neither the constraint set nor the objective function of the strategic
players is convex such that both necessity and sufficiency of the KKT conditions cannot
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be guaranteed. Concerning necessity, it may be the case that there are Nash equilibria of
the game that do not fulfill the KKT conditions and, hence, are not found by using our
methodology. In mathematical terms, those may refer to relaxed definitions of the Nash
equilibrium concept such as Nash Bouligand stationarity (Kulkarni and Shanbhag, 2013).
We are aware of this gap; however, alternative approaches such as enumerative or Gauss-
Seidel type diagonalization algorithms are also not guaranteed to find all stationary points.
In this respect, there is one significant advantage of our approach relative to more ad-hoc
approaches: even if we do cannot identify equilibria which are not KKT points: all equilibria
that we find are ranked according to the objective function of the first-level player. We can
therefore claim that there is no equilibrium satisfying the KKT conditions of the strategic
generators, which is better from the point of view of the social planner. In contrast, when
one uses genetic algorithms or diagonalization, one can never guarantee that the equilibrium
found is not dominated by another solution.

Concerning sufficiency, KKT points do not necessarily describe a Nash equilibrium, but
may also constitute saddle points or minima for some strategic players. This issue is much
easier to resolve: we implement an iterative algorithm systematically identifying solution
candidates among the KKT points. Each of those is checked for deviation incentives for
all players, holding the decisions of the network planner and all rivals (strategic generators)
fixed. Thereby, we search for global Nash equilibria and are not restricted to analyzing only
local deviation incentives (local Nash equilibria, Hu and Ralph, 2007). By this algorithm, we
also account for the potential multiplicity of equilibria. We explain the algorithm in greater
detail below.

Sufficiency: Optimistic and pessimistic solutions.

Sufficiency of a KKT point is linked to incentive compatibility for each player. This, in turn,
is affected by an inherent feature of multi-stage equilibrium games: the implicit assumption
on optimism versus pessimism.

Consider the set of all solutions to the lower stage (III) – as it is rendered by the ISO
optimality conditions in our case. Formally, the decision variables become decision variables
on the superordinate stage, here the strategic firms’ optimization programs (II). If this set is
singleton for each possible strategy of the upper-level players, they do not have any discretion
about picking those variables such that it is most profitable to them. If it is not singleton –
a property that is not guaranteed in our case – then firms will decide on variables such as
to maximize their objective. Accordingly, the label optimistic solution applies.

Conversely, it could also be assumed that the lower level player behaves such that it
is detrimental for the upper level player(s) in a situation where she is indifferent between
several options – for example when she is a rival. Then, the lower level player would have the
incentive to behave such that the worst outcome for the upper level players would emerge
when they maximize their objective. As the driving forces within such a model pull in
opposite directions, it is more elaborate to cover in a mathematically sound manner.

In our formulation, we implicitly pursue the optimistic assumption; as both the lower
level ISO and the top-level network planner maximize total welfare, the objectives on these
two stages point into the same direction. This becomes especially relevant in the stability
discussion for solutions found in our sample network below.

Stage I: Welfare-optimal network expansion

Equations and inequalities (10a - 11l) in the Appendix capture all stationary points of the
EPEC spot market model. Among those, global and local maxima, minima, and saddle
points may be found. The first stage now serves as a selection device, in which a benevolent
planner optimizes global welfare deciding on expansion of network capacity (8a). Letting
cEl denote the costs, el the level of network expansion for line l, and assembling all dual
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variables of the second-stage game in set D2, consider her welfare-maximization:

min
e,g,d,δ,D3,D2

−
∑
n∈N

[(
an − 1

2bndn
)
dn
]

+
∑
s∈F

cGs g
F
s +

∑
i

∑
s∈Si

cGs g
S
s +

∑
l

cEl el (8a)

s.t. 0 ≤ el ≤ el ∀l, (8b)

(10a)− (11l) (8c)

where line expansion is bounded between zero and an exogenous maximum el (8b). Program
(8a) - (8c) can be solved as Mixed-Integer Quadratically-Constrained Quadratic Problem
(MIQCQP), which can be solved using solvers such as BARON (Tawarmalani and Sahinidis,
2005) or BONMIN (Bonami et al., 2008).

Iterative algorithm and deviation stability checks.

To address the issues of sufficiency of the KKT conditions and multiplicity of equilibria,
we implement an algorithmic approach systematically exploring the solution space while
checking for incentive compatibility. Consider the steps in detail below, where |Z| is the
exogenously specified number of iterations and ε the difference tolerance level.

1. Find solution candidate. Solve Problem 8 and denote solutions on line expansions
by êl(z), on generation of strategic firms by ĝs(z) respectively, where z ∈ Z is the index
of the iteration.

2. Check for deviation incentives. Fix all variables from the previous solution candi-
date z, except generation choices for strategic player i and re-solve Problem 5 applying
the same disjunctive constraints reformulation of complementarity requirements and
the same substitution of the duality constraint as above; this is the MPEC of one
strategic generator given the network and the rivals’ generation. Loop over all strate-
gic players; if one firm i identifies a profitable deviation from the proposed solution
candidate ĝs(z), discard this candidate as solution; otherwise, keep it as a Nash equi-
librium.

3. Impose difference to previous solutions. Add the following constraints to Prob-
lem 8

gs ≥ Dg+
s (z) (ĝs(z) + ε) ∀s, z (9a)

gs ≤ gs −Dg−
s (z) (gs − ĝs(z) + ε) ∀s, z (9b)

el ≥ De+
l (z) (êl(z) + ε) ∀l, z (9c)

el ≤ el −De−
l (z) (el − êl(z) + ε) ∀l, z (9d)∑

s

[
Dg+
s (z) +Dg−

s (z)
]

+
∑
l

[
De+
l (z) +De−

l (z)
]
≥ 1 ∀z (9e)

where D(z) are binary variables, and ε represents the tolerance distance level for the
next solution to be different from all preceding ones. Inequalities (9a - 9d) implement
that no two solution candidates are alike but differ at least by tolerance ε for at least
one variable (9e).3

4. Termination. Repeat procedure until z = |Z|

The algorithm successively cuts ‘holes’ into the feasible space and delivers a number of
candidate solutions that are ranked according to their welfare objective value. Whether the
proposed KKT point indeed constitutes a solution is checked subsequently (step 2); irrespec-
tive whether the first, second or third candidate is discarded, this procedure enables us to

3Pozo, Contreras, and Sauma (2013a) implement a comparable approach
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find that equilibrium among the KKT points featuring the highest overall welfare. Alterna-
tive solution concepts like diagonalization algorithms crucially depend on starting values and
thus convergence to global optimality cannot be guaranteed. One caveat mentioned above,
however, persists: non-convexity potentially gives rise to equilibria not fulfilling the KKT
conditions, which we cannot identify by our method.

5 Results and Discussion

We demonstrate the prevailing effects of the trade-off concerning welfare-enhancing, but
costly, network expansion when strategic firms are present in a straightforward three-node
network. It represents the simplest possible case capturing loop flows. We deliberately
choose line capacities such that different strategic effects are present in one network setup.
The three nodes are mutually linked by transmission lines with limited capacities of f1 = 0.5,
f2 = 1, and f3 = 2. Each line is symmetric insofar as it exhibits the same capacity for flows in
both directions. Consumption is located at one node, represented by the linear elastic inverse
demand curve p1 = 10−q1, where q1 captures the quantity consumed at that node. The other
two nodes, at each of which one strategic firm with zero marginal costs is located, feature no
consumption. By disregarding potentially asymmetric production costs, we preclude results
that are driven by pure efficiency gains: a welfare increase due to substitution effects from
expensive to previously inaccessible cheap production could flaw the stylized assessment of
reduced market power rents. For convenience, we abstract from competitive fringe generation
for now. Consider Figure 1 depicting the network.

Figure 1: Sample network.

𝑷𝟏 = 𝟏𝟏 − 𝒒𝟏 

𝒄𝟑 = 𝟏 

𝒇�𝟑 = 𝟐 𝒇�𝟐 = 𝟏 

𝒇�𝟏 = 𝟏.𝟓 𝒄𝟐 = 𝟏 

Note: pictograms are under public domain free license.

Benchmark results for strategic firms

To frame the problem, we first calculate results for two benchmark cases with strategic firms
engaging in Cournot competition: Strategic & Copperplate, in which all line capacities are
set to very large values such that they are never binding; and Strategic & No Expansion, in
which network expansion is exogenously set to zero. Table 2 presents the numerical results
of these two cases.
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The Strategic & Copperplate result sets an upper welfare benchmark: if line restrictions
are never binding, the Cournot solution emerges, representing the maximum degree of com-
petition among the two firms in our setting, unconstrained by any network limitations.4

Table 2: Results for the benchmark cases – strategic firms.

Strategic & Copperplate Strategic & No Expansion
highest welfare lowest welfare

Generation
firm 2 3.33 1.9 0
firm 3 3.33 0.55 1.5

Price all nodes 3.33 7.55 8.5

Demand node 1 6.67 2.45 1.5

Network flows
line 1 0 0.45 −0.5
line 2 3.33 1 1
line 3 −3.33 −1.45 −0.5

Consumer rent total 22.22 3 1.13

Profit
firm 2 11.11 14.33 0
firm 3 11.11 4.16 12.75

Congestion rent total 0 0 0
Welfare total 44.44 21.49 13.88

Note: results rounded to two decimals.

The lower benchmarks – or status quo results for strategic players in a given network –
arise if line upgrades are restricted to zero, see Strategic & No Expansion in Table 2. As there
are multiple equilibria, we report the two extreme cases: the one yielding the highest overall
welfare, and the one featuring the lowest welfare. We discuss the highest-welfare type first.
By being able to produce a greater amount, g2 = 1.9, which can be transported to demand
via line l3, firm 2 is located in a dominant position and congests the transmission line that
connects the passive firm 3 to the demand node. By that strategy, a stable passive-aggressive
equilibrium emerges as discussed by Borenstein, Bushnell, and Stoft (2000) in a two-node
case. A qualitatively parallel but more extreme configuration emerges in the lowest-welfare
Strategic & No Expansion benchmark. Here, firm 3 behaves aggressively, actively congesting
the transmission line that connect the now passive firm 2 to the demand node. Thereby, it
drives the rival generator out of the market. Both solutions are stable Nash equilibria in
which no firm has an incentive to deviate unilaterally. The mechanism how firms coordinate
on one of the equilibria – be it some economic dominance concept, or drivers exogenous to
the model like path dependences, policy or regulatory reasons – is beyond the scope of this
paper. In any case, from an overall welfare perspective, there is scope for network expansion
to enhance welfare.

Investment results

Let us now turn to the three-stage model featuring welfare-optimal network expansion. As-
suming expansion costs of cEl = 1 ∀ l, the benevolent network planner (stage I) selects
candidates for optimal solutions; Table 3 presents three distinct types. Note that from this

4Note that transmission lines are directed in a counter-clockwise fashion. A negative flow, for example
−3.33 on line l3 in benchmark case Strategic & Copperplate represents 3.33 units flowing from node 2 to
node 1.
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point on, we only aim at finding welfare-optimal equilibria – there may exist more subopti-
mal solutions to the model similar to the “lowest welfare” equilibrium in the Strategic & No
Expansion case. These are, however, not in our scope of interest, both for modeling reasons
and economic interpretation.

Table 3: Results for the network expansion model.

Optimal Optimal
Myopic Expansion Expansion

Expansion (M) Unstable (Õ) Stable (O)

Generation
firm 2 1.75 3.33 3.33
firm 3 2.50 3.33 3.33

Price all nodes 5.75 3.33 3.33

Demand node 1 4.25 6.67 6.67

Network capacity
(initial + expansion)

line 1
0.5 0.5 0.77

(0.5 + 0) (0.5 + 0) (0.5 + 0.27)

line 2
2.25 3.33 3.33

(1 + 1.25) (1 + 2.33) (1 + 2.33)

line 3
2 3.33 3.33

(2 + 0) (2 + 1.33) (2 + 1.33)

Network flows
line 1 −0.25 0 0
line 2 2.25 3.33 3.33
line 3 −2 −3.33 −3.33

Consumer rent total 9.03 22.22 22.22

Profit
firm 2 10.07 11.11 11.11
firm 3 14.36 11.11 11.11

Congestion rent total 0 0 0
Expansion cost total 1.25 3.67 3.94

Welfare total 32.21 40.78 40.50

Note: results rounded to two decimals.

To begin with, closer inspection of the flow pattern in the Strategic & No Expansion
benchmark case reveals that the only bottleneck in the network present in all cases is line
l2 – flows on the other lines constrain the dispatch only in some cases. As thus suggested,
we firstly restrict expansion to be only possible with regard to this line and myopically
constrain upgrades of the other lines l1 and l3 to zero. The first column of Table 3 renders
the result, the type of which we denote by Myopic Expansion (M): line l2 is expanded by 1.27
units. Compared to the welfare-optimal Strategic & No Expansion benchmark, now firm 3
is connected to demand by the “larger” link and enters into the aggressive position whereas
firm 2 is pushed into the passive position (relative to the “highest welfare” equilibrium in the
Strategic & No Expansion case). While the firms’ roles switch, the quality of this equilibrium
is of the same passive-aggressive nature as in the Strategic & No Expansion benchmark,
despite an overall welfare increase from 21.49 to 32.33. The check for deviation stability
indicates incentive compatibility for both strategic players. One interesting implication of
this solution, thus, is the following: if network expansion myopically focuses on bottlenecks
only, the outcome may be suboptimal in terms of welfare when strategic firms are present;
there may be better investment decisions, which are ignored by the network planner due to
its focus on the existing bottlenecks.

16



In this myopic investment case, only line l2 is expanded, because it was the only congested
line in all benchmark cases. Although an increase in welfare is achieved by providing relief
to that bottleneck, this type of expansion does not prevent strategic firms from gaming the
network and extracting rents. The basic mechanism remains unchanged.

Next, let us turn to the Strategic & Copperplate benchmark. Inspection of the prevailing
flows, see Table 2, shows that only lines l2 and l3 have to be upgraded in order to accommo-
date this solution. Following this suggestion, we restrict expansion of line l1, run the model
and arrive at the KKT point Optimal Expansion Unstable (Õ), see second column of Table 3.
This solution candidate renders the lowest level of line capacities necessary to accommodate
the prevailing flows in the Cournot solution, in which competition is never curbed by any
congestion. Thus, it would deliver the theoretically highest amount of social welfare that
could be attained in this setup. This KKT point, however, turns out to be unstable against
deviations of the strategic firms. Therefore, it does not constitute a Nash equilibrium and
must be discarded as solution for the model. To illustrate the point, consider the deviation
analysis: holding network expansion and firm 3’s generation fixed at gS3 = 3.33, and letting
firm 2 re-optimize, the MPEC stability check finds a profitable deviation, as summarized
in Table 4. Due to symmetry, holding network expansion and firm 2’s generation fixed and
letting firm 3 re-optimize delivers a parallel result.

Table 4: MPEC stability check: for solution candidate Õ, firm 2 deviates to 1.83.

Firm 2 Firm 3 n1 n2 n3 l1 l2 l3 Total

Generation 1.83 3.33
Demand 5.17 0 0

Price 4.83 9.67 0
Network capacity 0.5 3.33 3.33

Network flows −0.5 2.83 −2.33

Consumer rent 13.35 13.35
Profit 17.72 0 17.72

Congestion rent 10.92
Expansion costs 0 2.33 1.33 3.67

Welfare 38.82

Note: results rounded to two decimals.

Firm 2 deviates by lowering its generation to gS2 = 1.83, and increases its profits from
11.11 to 17.72, while the profits of firm 3 fall to 0. This outcome is induced by the emerging
price pattern, p2 = 9.67 and p3 = 0. The re-optimizing player picks a generation level such
that an equilibrium is reached that is most profitable to her.

In order to identify stable solution candidates, we widen the focus on all lines in the
network. Result Optimal Expansion Stable (O) in Table 3 reveals that line 1 has to be
expanded as well, by e1 = 0.27 to 0.77. This solution is stable against deviations. Incen-
tive compatibility holds in this equilibrium: line l1 now has sufficient capacity such that a
unilateral reduction of generation does not evoke a congested equilibrium with substantially
differentiated prices, as in Õ. This is reminiscent of the thin line-effect (Borenstein, Bush-
nell, and Stoft, 2000): although connection line l1 between the two firms does actually not
accommodate a positive or negative net flow in equilibrium – as can be seen in Table 3 – its
expansion is required to prevent firms from gaming the network and to guarantee stability
of the Cournot equilibrium.
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Redistribution of rents

We now turn to the distributional implications: Figure 2 indicates the outcomes for the three
model cases. We first compare the “highest welfare” equilibrium identified in the Strategic
& No Expansion benchmark case (black bars) with the Myopic Expansion equilibrium (light
gray bars). This illustrates that the welfare gain is accompanied by higher producer and
consumer rents, where both effects are of comparable size. Observe that the previously
aggressive generator (firm 2) is now in the passive position and loses rents; the gain in
producer surplus fully accrues for firm 3, which benefits from entering into the aggressive
role.

Figure 2: Distribution of rents.
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For the stable Cournot equilibrium in the Optimal Expansion case O (dark gray bars),
total welfare increases further compared to the Myopic Expansion solution M. The distri-
bution of rents, however, reveals that consumer surplus increases whereas total producer
surplus decreases. We thus detect a shift of rents from suppliers toward the demand side,
mirroring the lowered potential of firms to extract rents due to exploiting a dominant posi-
tion within the network. Contrasting the Strategic & No Expansion benchmark directly with
the Optimal Expansion equilibrium, the welfare gains accrue for consumers and producers –
the former, however, profiting to a considerably higher extent, thus entailing a relative shift
of rents.

The effect of network expansion on welfare when strategic firms are present, therefore,
is twofold: on the one hand, overall rents increase due to the availability of transmission
capacity; both consumers and producers benefit. On the other hand, at some point, the
network has sufficient capacity to accommodate the Cournot solution, the highest degree
of competition in this sample case. Along with the creation of additional rents, there is a
redistribution from generators toward consumers – network expansion, thus, has the potential
to limit the exertion of market power, and prevents firms from extracting rents that arise
due to limited transmission capacity.

Strategic versus competitive firms

Finally, we want to highlight the impact of modeling firms as strategic players compared
to a perfectly competitive market. To this end, we contrast the results of our model with
a case in which generators act as price-takers: we remove stage II from our setup, and
assign both firms to the competitive fringe being optimized by the ISO while leaving all
other parameters unchanged. Table 5 shows the results regarding overall welfare for the
No Expansion, Myopic Expansion, and stable Optimal Expansion cases for competitive and
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strategic markets. For illustrative purposes, we include the “lowest welfare” equilibrium in
the Strategic & No Expansion benchmark case in the comparison.

Table 5: Comparison of welfare results for competitive market vs. strategic firms.

Competitive market Strategic firms
highest welfare lowest welfare

No expansion 21.87 21.49 13.88
Myopic Expansion (M) 37.5 32.21
Optimal Expansion (O) 43.37 40.50

Note: results rounded to two decimals.

Consider first the case when network expansion is suppressed (first row of Table 5): in
a competitive market, the ISO dispatches both firms at marginal cost cG2 = cG3 = 0, until
lines are fully utilized. As the ISO appropriates arbitrage profits, relatively low consumer
surplus and high congestion rents emerge. Total welfare amounts to 21.87. The presence
of strategic firms, in any case, reduces overall surplus; by ending up in a passive-aggressive
equilibrium, they appropriate a certain share of rents. The variance of outcomes in terms of
welfare is, however, non-negligible, ranging between 21.49 in the welfare-optimal and 13.88 in
the lowest-welfare case. As it is unclear a priori which of these equilibria would be attained
and thus the wedge between the competitive and strategic outcomes varies, the detection of
market power is non-trivial from a regulatory perspective.

Secondly, consider welfare-optimal network expansion by a benevolent planner (second
and third row of Table 5): for a Competitive Market, lines are upgraded as long as the cost
for the next unit of expansion would exceed its benefits, yielding increases in overall welfare
to 37.5 for Myopic Expansion, and 43.37 for Optimal Expansion, respectively. As discussed
above, a qualitatively analogous outcome holds true when generators are assumed strategic;
welfare rises to 32.21, or 40.50, respectively, at the same time relatively redistributing the
additional surplus from producers to consumers.

Finally, examine the relative sizes of the numerical results. If we compare the effect of
network expansion on a competitive market with that on a market on which firms behave
strategically, two further result emerge: firstly, without expansion the wedge between welfare
outcomes can be considerably larger. The presence of strategic firms can lower total welfare
up to roughly 60 % (first row, lowest welfare case) if lines cannot be upgraded. If we allow
for network expansion, however, welfare on a strategic market is pushed quite close to the
competitive benchmark (third row). Network expansion can thus be regarded as a means
to approach a first best solution by weakening the position of dominant players. Secondly,
myopically focusing on congested lines only can exacerbate the relative welfare-detrimental
impact of strategic firm behavior: when analyzing the welfare-optimal market outcomes,
without expansion, the wedge between the strategic and the competitive result can be as
low as 21.49 compared to 21.87. Under welfare-optimal but myopic line upgrades, this gap
widens in absolute and relative terms, compare 32.21 to 37.5.

We conclude that when designing network expansion, a careful analysis of the status quo
has to be carried out whether and to which extent strategic firm behavior is present – and
how network expansion may affect gaming opportunities of market participants.

Proactive planning

These findings also mirror the proactive or anticipative transmission planning paradigm by
Sauma and Oren (2006) and Pozo, Contreras, and Sauma (2013a): taking strategic behavior
of dominant producers into account alters welfare-optimal expansion decisions. To cross-
check this argument within our framework, we examine the counterfactual: taking Optimal
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Expansion transmission investments arising from the competitive setup as given, we re-run
the model for strategic firms without allowing for further line upgrades. The result is that
no stable equilibrium can be identified, as strategic firms always find profitable deviations.
Assessing the welfare-optimal expansion decisions for a competitive market, this outcome is
as expected: investments in lines l2 and l3 amount to 3.5 units and 2 units, respectively, and
create more capacity than necessary to absorb flows in a Cournot equilibrium – 2.33 and
1.33 units would suffice. Although they are not detrimental in terms of evoking additional
gaming opportunities, the incurred costs of expansion reduce welfare.

However, as there is no investment into line l1, which connects the two strategic gen-
erators, its capacity remains too low at 0.5 units to accommodate a stable equilibrium.
The same deviation incentives as for the unstable solution candidate Õ above emerge: each
strategic firm finds it profitable to lower production, evoke congestion on line l1 and benefit
from the emerging price pattern. Disregarding the presence of strategic players, thus, may
yield a network investment pattern triggering disequilibrium outcomes.

In terms of solution concepts, this points at directions for further research: theoretical
solutions may be found by extending the Cournot approach to mixed strategies or Edgeworth
cycles. Alternatively, other forms of strategic interactions can be analyzed in our three-stage
approach like price competition (cf. Dastidar, 1995), supply function equilibria or auctions
(cf. Fabra, von der Fehr, and Harbord, 2006).

Computational issues

In any reformulation using disjunctive constraints, the choice of the large scalars K and the
bounds on the variables is fraught with difficulty: choosing a value too small may overly
restrict the problem and therefore yield “wrong” solutions (cf. Huppmann, Gabriel, and
Leuthold, 2013), while large values may lead to numerical problems. In our three-stage
model, this difficulty is exacerbated by the need to provide bounds on the dual variables for
the solvers to operate efficiently. In this work, we used both the BARON (Tawarmalani and
Sahinidis, 2005) and the BONMIN (Bonami et al., 2008) solvers as implemented in GAMS,
and obtained identical results.

To address this issue, we set upper and lower bounds for each dual variable. According
to those the required minimum absolute value of the associated large scalars in constraints
(11a) - (11l) is determined. For example, in eq. (11g)

gSs ≤ rψ
S

s KψS

s , ψSs ≤
(

1− rψ
S

s

)
KψS

s ∀s /∈ F,

the large scalar KψS

s needs to be no greater than max
{
gSs , ψ

S

s

}
. We conducted an extensive

sensitivity analysis and sanity checks on both the bounds for the dual variables and the large
scalars for the disjunctive constraints reformulation. We are confident that the bounds and
the scalars were chosen sufficiently large so as not to inadvertently restrict the problem.

6 Conclusions

Insufficient transmission grid capacities may impede reaping the full benefits of an integrated
electricity market. To assess whether and to what extent network expansion promotes social
welfare due to enhanced competition above and beyond mere efficiency gains, we set up a
three-stage model mimicking the interplay of electricity grid expansion and strategic gen-
eration: in the third stage, an ISO sets nodal prices, dispatches competitive fringe plants
and ensures feasible flows. Reformulating her KKT conditions with help of strong duality
yields the feasible region for the profit-maximization problems of strategic firms engaging
in Cournot competition. The first-order KKT conditions of this EPEC capture the set of
stationary points for an equilibrium of the spot market game. To choose the welfare-optimal
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outcome out of these, a benevolent planner forms the first stage (top-level) of the model.
She maximizes total welfare by deciding on network expansion. To ensure that the KKT
points found are indeed equilibria of the spot market game (i.e., incentive compatibility holds
for each strategic generator), we implement an algorithm exploring the solution space in an
iterative procedure, and check deviation incentives for each strategic player.

Numerical findings using a three-node network illustrate the strategic effects. Three ma-
jor results emerge: firstly, by mitigating market power, network expansion has the potential
to enhance welfare beyond efficiency gains. Firms are prevented from ending up in equilibria
where they deliberately congest transmission lines to appropriate excess rents; consequently,
competition is fostered. Myopically focusing on investment options in congested lines only
does not guarantee evoking the full extent of competition and may leave leeway for firms
to game the network. Comparisons to competitive benchmarks further reveal that network
expansion can push welfare considerably closer to a first-best solution.

Secondly, transmission grid expansion, when preventing asymmetric passive-aggressive
equilibria as described by Borenstein, Bushnell, and Stoft (2000), can induce a relative shift
of rents from generation toward the demand side. Thus, the overall welfare gains coincide
with a redistribution of the economic surplus.

Thirdly, spuriously neglecting firms’ strategic behavior yields a misjudgment of invest-
ment needs regarding transmission: while some lines are upgraded at great costs beyond
need, others are not expanded to the level required for a stable solution; this may trigger
disequilibrium outcomes.

We contribute to the literature by developing a model that endogenizes the trade-off
between welfare-beneficial effects of network expansion when strategic generators are present;
they anticipate their impact on the transmission grid operation. By application of recent
advances in solving EPEC games, we do not have to rely on exogenous variations in relevant
parameters or neglect the strategic interactions between generators and network operation.

The model is, so far, limited to analyzing static one-shot games. Dynamic effects from
supergame strategies could uphold equilibria benefiting dominant firms, although network
capacities would accommodate more intense competition (cf. Gebhardt and Höffler, 2013).
We do not capture varying resistance parameters arising from a changed network topology,
and line expansions are decided by a benevolent planner maximizing overall welfare. The
strategic dimension thereof, for example when national governments or regulators are in
charge, is left open in this contribution.

This paper opens several avenues for future research: for instance, an application of the
model to a representation of the European electricity system, based on the aggregation of
realistic data, will be able to assess benefits of further electricity market integration in terms
of the welfare-enhancing effects of more vigorous competition. A further elaboration on
the distributional implications can, moreover, allow for an analysis of gains and losses from
integration, which is, in turn, connected to the question of incentive compatibility when it
comes to integration among sovereign states pursuing own agendas. Nevertheless, we provide
a novel framework that delivers insights on strategic effects for competition in constraining
networks.
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A Appendix

A.1 KKT conditions of the strategic players

The following equations and inequalities constitute the set of KKT conditions for all strategic
players. Each vector fulfilling (10a) - (11l) constitutes a stationary point of the spot market
equilibrium problem. First all KKT conditions without complementarity requirements.

−pn,s∈Sn + cGs + βSs − ψSs − ιSni,s∈Sn,s∈Si
+ ξSi,s∈Si
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Next, we list all complementarity requirements which are replaced by disjunctive constraints.
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