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Abstract

Multiplicative growth processes that are subject to random shocks often have an asymmetric dis-

tribution of outcomes. In a series of incentivized laboratory experiments we show that a large

majority of participants either strongly underestimate the asymmetry or ignore it completely. Par-

ticipants misperceive the outcome distribution’s spread to be too narrow-band and they estimate

the median and the mode to lie too close to the distribution’s center, failing to account for the

compound nature of average growth. The observed biases are measured irrespective to risk pref-

erences and they appear under a variety of conditions. The biases are largely consistent with a

behavioral model in which geometric growth is confused with linear growth. This confusion is

a possible driver of investors’ difficulties with real-world financial products like leveraged ETFs

and retirement savings plans.

JEL-Classification: C91, D03, D14, G02

Keywords: Behavioral Economics, Multiplicative Compounding, Skewness Neglect, Exponential Growth Bias

∗We thank Erik Eyster, Dorothea Kübler, Erik Mohlin, Peter Mörters, Tobias Schmidt, Adam Szeidl and Heinrich
Weizsäcker and audiences at DICE, DIW Berlin, ESMT and the IEA World Congress 2014 for helpful comments and we
thank colleagues at the decision laboratories of Technical University Berlin and University College London, especially
Brian Wallace and Mark Henninger, for their excellent contributions in the preparation and conduct of the experiments.
The paper has much benefitted from the editorial work of the Editor, an Associate Editor and three referees. Financial
support by the ERC (Starting Grant 263412) is gratefully acknowledged.
†Rocket Internet and WZB Berlin Social Science Center, ludwig@ensthaler.com
‡IZA Bonn, nottmeyer@iza.org
§Humboldt University Berlin and DIW Berlin, weizsaecker@hu-berlin.de
¶DIW Berlin, czankiewicz@diw.de

1



1 Introduction

Many household investors face a particular mismatch in the time frames of asset return evaluations.
They acquire their most important financial assets with the intention to liquidate them in the relatively
distant future but the available return information concerns much shorter time intervals. Real estate
investments, retirement savings plans or investments in college funds share this feature. In all of
them, the relevant outcomes are the investments’ performances over several decades but the available
information concerns their short-term performances, like 1-year returns. To forecast the return on the
planned (or any plausible) distant selling date, an investor needs to extract the price distribution at the
selling date by compounding the available short-term return distributions. This is a formidable task
for the average person.
Two possibly severe biases may arise when forecasting the distribution of long-run growth. First, one
may fail to compound the effects of multi-period growth. Second, one may ignore the skewness that
arises over time and, e.g., confuse the mean return with the median return. The first of these biases
can also appear in deterministic settings—there it is established as “exponential growth bias”. When
asked to assess the total effect of accumulating 7% growth for ten periods, a substantial fraction of
respondents give an answer that is closer to 70% than to the actual 97%. The analyses of Stango and
Zinman (2009) and Levy and Tasoff (2014) indicate that the bias is empirically relevant as it affects
households’ borrowing and saving decisions.1 The second bias—which we call “skewness neglect”
hereafter—is less well known in the academic literature2 but among investment practitioners and fi-
nancial market regulators there are related discussions of it. Investors apparently need to be made
aware that the compounding of random growth can transform a symmetric 1-period return distribu-
tion into a skewed multi-period return distribution. An important real-world example of this is the
family of leveraged exchange-traded funds (leveraged ETFs). These assets have a highly volatile and
fairly symmetric 1-period volatility; holding them for multiple periods results in severe skew.
This paper presents a series of incentivized laboratory experiments that extend the research on the per-
ception of multiplicative growth to the stochastic domain and accounts for both of the above-described
biases. As an example that demonstrates skewness neglect, consider the stylized experiment of Sec-
tion 3.3. A very volatile asset either increases in value by 70% or decreases in value by 60% in every
period, each growth rate realizing with a chance of one half. If the investor buys the asset she must
hold it for twelve periods. With an initial value of 10,000, what would the asset likely be worth at
the end of period 12? To ask this question in an incentive-compatible way, we let the participants
bet on five possible outcome ranges for the period-12 value of the asset: a) up to 6,400, b) between
6,400 and 12,800, c) between 12,800 and 19,200, d) between 19,200 and 25,600, or e) above 25,600.

1Both Stango and Zinman (2009) and Levy and Tasoff (2014) present survey evidence of a statistical connection
between the bias and respondents’ savings behaviors. Levy and Tasoff (2014) also analyse theoretical implications of the
bias, e.g., an overestimation of future income that arises from too-moderate time discounting of income. The effect can
result in overconsumption if income is shifted to later time periods. Related effects are addressed in the experiments by
McKenzie and Liersch (2011).

2The only other academic study that we are aware of is by Stutzer and Jung Grant (2010), discussed in the next Section.
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We then simulate the random process and if the simulated path ends up in the outcome range that a
participant has bet on, she receives a bonus of 20 Euro. If not, she receives nothing. The most popular
answer is c), chosen by 43% of participants, followed by d) (28%) and b) (17%). Response options
a) and e) come tied bottom with a mere 6% of responses each. However, the optimal response is
a); the median of the resulting distribution is 989 and the probability that the process ends up in the
lowest interval is 80%. A simple reasoning for this is that a value increase of 70% cannot recover a
value decrease by 60%, hence most trajectories have a downward trend and the distribution is highly
skewed already after 12 periods. The participants fail to realize this and instead report answers that
are consistent with a confusion of mean and median. Their average payoff (based on their decisions)
amounts to a meager 2 Euro in this experiment, whereas the optimal response would earn them 16
Euro in expectation.
Our series of experiments examines this kind of mistake systematically, finding that participants’ per-
ception of stochastic growth deviates in predictable ways from the rational prediction. Both of the
above biases are found to be relevant. Overall, the experimental results are in line with a simple model
of misperception of compounding of shocks. This model, which we label “linearity bias model”, for-
mulates the hypothesis that the agent fails to calculate the effects of compounding and that this failure
appears not only in deterministic but also in stochastic settings. The agent perceives a linear evolution
in the sense that she perceives the distributions of absolute changes as constant over time, instead of
the relative changes being constant over time.3 In effect, all multiplicative growth is mistaken as ad-
ditive growth with a constant distribution of increments. The model thereby predicts both exponential
growth bias and skewness neglect.
Importantly, the model also allow predictions about the strength of the two effects. It predicts that the
agent has a fairly rational perception of the growth process in the case that both per-period volatility
and per-period return are low. For larger volatility, skewness neglect becomes relevant and will lead
to an overestimation of the median. Increasing the per-period return to a sufficient degree makes the
exponential growth bias dominate (no matter what the volatility), such that the agent underestimates
the median. This somewhat intricate pattern of predictions cannot be generated by any of the biases
alone but it is confirmed by the experimental data. Section 3.2 shows these effects in our main design,
where we simply ask the participants to predict the most likely outcome of a growth process. In the
binomial-tree processes that we use, the most likely outcome is also the median and thus the responses
can be used for assessing the subjectively perceived medians. All of our experiments are incentivised,
in ways that make truth-telling optimal irrespective of one’s risk attitudes.
The experiments of Sections 3.3, 3.4, 4 and 5 test the predictions of the model in different variations
of the experimental setting. We vary the incentive schemes, the level of feedback as well as the nature
of both the underlying asset and investment strategy that the participants are asked to assess. Thereby,
we can investigate the robustness of the effects and we can also inquire about several other implica-
tions of the linearity bias model. Qualitatively, almost all predictions of the model are borne out in

3The model is akin to that of Levy and Tasoff (2014) albeit developed independently.
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the data, and often with large discrepancies to the rational prediction. For example, in treatments with
a considerably high return volatility, about ninety percent of participants overestimate the median.
The model is also fairly successful in predicting the participants’ misperceptions of the 10th and 90th
percentile of the relevant long-run distributions: the 90-10 spread is generally underestimated. This
holds both for binomial-tree assets and for more realistic assets that we base on the historical returns
of the German DAX index.
The rest of this paper is organized as follows. Section 2 briefly discusses related literatures. Section 3
(Study 1) introduces the linearity bias model and the main experimental design. In Subsection 3.2 we
report four experimental treatments that investigate the perceived medians and produces the above-
described data pattern of exponential growth bias and skewness neglect. In Subsections 3.3 and 3.4
we vary the elicitation method, validating the effect of skewness neglect. Section 4 describes Study 2,
which varies the format of Subsection 3.4 to investigate the perceived 10th and 90th percentiles. This
study also varies the investment horizon. Section 5 (Study 3) reports on the extension to a setting with
a real-world asset based on the German DAX index. Section 6 concludes and the Appendix contains
further experimental treatments.

2 Review of related literature

Classic studies in cognitive psychology discuss quite extensively to what degree the human cognitive
apparatus is able to account for the distinction of linear versus nonlinear relations between variables.
Wagenaar and Sagaria (1975) ask participants to predict an exponential data series representing an
index for pollution. They find that participants strongly underestimate exponential growth. Wagenaar
and Sagaria (1978) show that underestimation of exponential growth is robust to the amount of infor-
mation available to the participants and Wagenaar and Sagaria (1979) show that the effect is robust to
the framing of the information. Kemp (1984) surveys perceptions of changes in the cost of living. Re-
spondents systematically underestimate the increase in cost, which is also in line with a misperception
of exponential growth. Much of the early data analysis uses responses to quiz-type questions, but a
subsequent specialization of this literature more and more focuses on economic contexts, like the per-
ception of of compound growth from interest or loan payments. Eisenstein and Hoch (2005), Stango
and Zinman (2009), Christandl and Fetchenhauer (2009), McKenzie and Liersch (2011) and Levy
and Tasoff (2014) document that participants underappreciate the effects of compound interest and
thereby predictably underestimate the compound effect of growth. Chen and Rao (2007) show that
retailers can strategically use this bias by posting double dip price discounts (a discount of 20% fol-
lowed by another 25% discount is perceived to be a 45% reduction, not the actual 40%). As described
in the Introduction, our paper can be viewed as an extension of this literature to non-deterministic
growth processes.
An important predecessor of our paper is the study by Benartzi and Thaler (1999) who, among other
things, study biases in the compounding of the long term distributions from a given short term dis-
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tribution. Their experimental participants choose different hypothetical retirement plans depending
on whether they are given the historical return distribution of retirement plans for a 1-year period or
a 30-year period. Benartzi and Thaler (1999) relate this bias to the effects of myopic loss aversion
(see also Samuelson (1963), Redelmeier and Tversky (1992), Gneezy and Potters (1997), and Klos,
Weber, and Weber (2005)). While we agree that myopic loss aversion likely plays a role in house-
holds’ long term investment decisions, our experiments suggest that household decisions can also be
misguided by a biased perception of the underlying growth processes.4 This is also consistent with
the only experimental paper on skewness neglect that we found, by Stutzer and Jung Grant (2010).
Their hypothetical investment experiments find an inflated investment rate in treatments where their
participants have to calculate the compound return by themselves.5

Another related literature studies whether experimental participants have a correct understanding of
financial options. We refer the reader to Gneezy (1996) and Abbink and Rockenbach (2006) for pre-
vious results in this—surprisingly small—literature. We note that the assets that we use in Sections
3 and 4 have the same structure as the underlying asset in Cox, Ross, and Rubinstein’s (1979) well-
known model of European call options. A consistent finding of misperceptions of such assets may
therefore indicate a potential mispricing. This is not further studied in our paper, which focuses on
investments in the underlying asset itself.

3 Study 1: Assessments of Median and Mode

Study 1 is composed of the three partial studies 1(a), 1(b), and 1(c), each testing participants’ per-
ceptions of an asset’s mode or median. We consider one of the most elementary asset covered in the
finance literature: the binomial-tree asset with fixed maturity (Cox, Ross and Rubinstein, 1979). This
asset’s multiplicative growth µt is a binary random variable with a constant 50-50 chance of moving
up or down for T periods, i.e. µt ∈ {µh, µl} where the percental uptick µh ≥ 0 and the percental
downtick tick µl ≥ 0 are equiprobable in each t = 1...T .

3.1 The Linearity Bias

We start the analysis by presenting our simple model of biased decision making. Consider a decision
maker who ignores compounding of interest: when asked to predict the accumulated value gain of
an investment that yields a per-period interest of r over T periods, she quotes a total gain of rT .
That is, she wrongly perceives the absolute changes, not the relative changes, to be constant across

4A distinction between our study and the existing experimental work on myopic loss aversion is that the existing papers
largely make use of additive growth processes.

5The experiment by Stutzer and Jung Grant (2010) uses a quite similar experimental wording as the experiment de-
scribed in Section 3.4 and in our paper’s first (2010) version despite having been developed and written independently. A
separate and important experimental literature examines the preferences regarding skewness, see Deck and Schlesinger
(2010), Brünner, Levinsky and Qiu (2011), Ebert and Wiesen (2011), and Eckel and Grossman (2014). We restrict this
paper to the perception of the distribution, not its valuation.
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the periods. This feature is our model’s sole bias—linearization bias hereafter—and we can readily
extend it to the domain of stochastic growth.
Formally, let Y0 denote the known initial price of an asset with a random price series {Y0, Y1, ...}
and let ηt be the random variable describing the absolute price growth in t, e.g. Y1 = Y0 + η1.
The linearization biased (LB) decision maker views the distribution of ηt as constant across t, with
a distribution identical to that of η1. As a result, the LB decision maker misses out on all effects of
multiplicative compounding, which may or may not occur in the true growth process. If multiplicative
growth occurs, ηt’s distribution changes across t but the LB decision maker ignores it. The absolute
change in t = 1 has a special role in that it is assumed to be readily available to the agent. This
assumption reflects our aim of capturing the neglect of compound interest, as t = 1 is the only period
where ηt is known without compounding.6

To investigate the effects of the bias, Study 1 and Study 2 consider binomial-tree price series where
the relative, not absolute, price growth is constant in t by definition. Let µt be the random variable
describing the relative price changes occurring in t, e.g. Y1 = Y0µ1. Binomial-tree models, like many
other natural growth processes, have the distribution of µt i.i.d. across t. An unbiased decision maker
perceives the true distribution of the period-T price as YT = Y0

∏T
t=1 µt, with {µt} i.i.d., whereas the

LB decision maker perceives the final price as ỸT = Y0 +
∑T

t=1 η̃t, with {η̃t} i.i.d. and its distribution
equal to that of η1.
It is easy to see that for binomial-tree models with equiprobable upticks and downticks, the LB model
predicts full skewness neglect: the percentiles of the perceived ỸT are located in a symmetric way
around ỸT ’s median because symmetry is preserved under addition of random variables. With a
strictly positive per-period average growth, the model also predicts the exponential growth bias: the
final distribution’s mean is underestimated, E[ỸT ] < E[YT ].
In the following, we use the LB model to derive qualitative (directed) predictions of biased decision
making in our contexts, generated by simple numerical applications.7 Our main empirical focus lies
on measuring the perception of the median of YT . Under a rational perception of YT ’s distribution,
median and mean differ in binomial trees. LB decision makers, in contrast, perceive them as identical.
Another relevant property is that the median is identical to the mode of YT ’s distribution, to which
both optimal and LB decision makers agree (despite disagreeing on the value). This allows us to
formulate alternative elicitation tasks, equivalently asking for median or mode.

6The assumption is also consistent with the evidence on the exponential growth bias in deterministic settings: it pre-
scribes that the slope of linearly perceived growth is given by the initial slope. Formally, assume a constant multiplicative
growth path such that YT = Y0(1 + r)T , where r is interest. The LB decision maker perceives a constant additive growth
instead, ỸT = Y0 + T η̃ where η̃ = Y1 − Y0 = rY1. For r > 0 and T > 1, we have ỸT < YT .

7We also discuss the model’s point predictions for completeness; but as a model of such simplicity cannot plausibly
capture the precise decision process we focus the statistical analysis on the qualitative predictions.
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3.2 Study 1(a): Biased perception of the mode

3.2.1 Experimental Design

Participants in Study 1(a) are presented with a security whose price is currently at Y0 = 100 and
changes by a factor µ ∈ {µh, µl} with equal probabilities during each period and with all random
draws being independent. The participants’ task is to locate the mode of the security’s outcome distri-
bution after T = 12 periods.8 The task is made incentive compatible as follows. After a participant’s
response, the experimenter simulates a set of 100 values of YT . If at least one of these simulated
values differs by less than 1 from the participant’s stated value she receives a bonus of 20 Euro, oth-
erwise not. The procedure thus prompts the participant to report the location (more precisely, an
interval of length 2) where she perceives YT ’s highest likelihood. The optimal response would be to
report the mode of YT . Notice that reporting the mode is optimal irrespective of risk preferences and
of the nature of the perceived YT : the incentive scheme uses only two possible payments—receive a
bonus versus not—making it optimal for any participant with monotonic preferences to maximize the
subjectively perceived probability of receiving the bonus by stating the price that she thinks is most
likely. The procedure is also simple to understand and allows asking a straightforward question about
the participants’ prediction of the asset’s price evolution.9

There are no repetitions in Study 1 and thus participants only give one statement per security. Each
participant is, however, asked to report a prediction on two different securities, to increase the number
of observations and to allow for within-person comparisons. One of the two responses is randomly
picked to be payoff relevant, at the experiment’s conclusion.
Overall, Study 1(a) covers four different securities that differ in the values {µh, µl}, appearing pair-
wise in two treatments. Participants in treatment 1 assess Security 1’s (µh = 1.7, µl = 0.4) and
Security 2’s (µh = 1.075, µl = 1.025) modes, whereas participants in treatment 2 assess Security 3’s
(µh = 1.4, µl = 0.7) and Security 4’s (µh = 1.8, µl = 1.1) modes. Each participant thus faces one
security which can depreciate as well as appreciate, and one security which can only appreciate. In
treatment 1, the two securities have identical means but different per-period volatilities (as measured
by the spread (µh − µl)) and in treatment 2, the two securities have different means but identical
per-period volatilities. Moreover, the mean of Security 3 is identical to that of Securities 1 and 2.
Participants are randomly assigned to treatments 1 or 2. To account for possible learning effects, the
order of the two securities randomly varies between the participants within a treatment.
All 127 participants (63 in treatment 1 and 64 in treatment 2) are students at Technical University
Berlin. Six sessions, three in each treatment, are conducted in a computer-based format using the
software z-Tree (Fischbacher, 2007). Participants receive a participation fee of 5 Euro in addition to
their possible bonus of 20 Euro.10

8The decision problems are phrased in a financial investment context. Its descriptions begins with the wording: "You
are a manager and have to make a decision..."

9All instructions are in an online appendix.
10Before the experiment starts, participants also face an understanding test which they have to answer correctly before

they may proceed. Questions are carefully chosen to not suggest any responses to the participants.
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3.2.2 Linearity Bias Prediction

The securities in Study 1(a) are specified such that they allow predictions about the relative strengths
of the above-described two effects, exponential growth bias and skewness neglect. To examine
the effect of a large per-period volatility on our participants’ perceptions, we consider Security 1
(µh = 1.7, µl = 0.4) with -60% and +70% as possible percentage changes and predict a strong effect
of skewness neglect. With a perceived constant distribution of absolute changes η̃t ∈ {−60;+70}, the
LB decision maker perceives a symmetric distribution of the period-12 selling price of this security
with mode, mean, and median at E(ỸT ) = Y0+E(

∑T
t=1 η̃t) = 160. Thus, skewness neglect leads to a

strong overestimation of Security 1’s true mode at 9.89. The exponential growth bias by itself makes
no biased prediction for Security 1.
For a relatively lower per-period volatility, as captured by Security 3 (µh = 1.4, µl = 0.7) with -30%
and +40% as possible percentage changes, skewness neglect becomes less extreme and results in a
weaker, but still sizable, overestimation of the median: the LB model predicts a response of 160 in-
stead of the correct 88.58.
Further decreasing per-period volatility, as for Security 2 (µh = 1.075, µl = 1.025), results in the
predictions that the LB decision maker has a fairly rational perception of the growth process: she
perceives the period-12 price of Security 2 at 160 instead of the correct 178.97. That is, even a model
allowing for both skewness neglect and the exponential growth bias is fairly ineffective and predicts
that Security 2’s price is only mildly underestimated.
Security 4 (µh = 1.8, µl = 1.1) allows a strong effect in the opposite direction, which is due to the
exponential growth bias. Here, the LB decision maker perceives the most likely period-12 price at
640, while the true mode of the price distribution lies at 6,025.47. With such high per-period mean
growth, the question of symmetric versus asymmetric percentiles (skewness neglect) becomes less
important than the effect of the exponential growth bias.
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3.2.3 Results
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(a) Security 1 (µh = 1.7, µl = 0.4).
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(b) Security 2 (µh = 1.075, µl = 1.025).
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(c) Security 3 (µh = 1.4, µl = 0.7).
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(d) Security 4 (µh = 1.8, µl = 1.1).

Figure 1: Densities of the subjectively perceived modes for Securities 1 through 4. Dashed lines indicate
rational benchmarks.

Figure 1 illustrates the distributions of subjective mode perceptions for all four securities. The par-
ticipants’ predictions for Security 1 (µh = 1.7, µl = 0.4) are in the figure’s panel 1(a) and show a
substantial degree of overestimation. Consistent with skewness neglect, 87 % of our participants over-
estimate the true mode. The frequency of overestimation lies significantly above 50% (p-value<0.001,
one-sided binomial test). Although the data show a peak in the neighborhood around the optimal
value, most participants’ degree of overestimation is substantial. Half of them predict the distribu-
tion’s mode to lie above 120—more than 12 times the true value.
Figure 1(c) illustrates the subjective mode perceptions for Security 3 (µh = 1.4, µl = 0.7). As for Se-
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curity 1, the data show a notable proportion of participants, 70%, overestimating the mode. While the
frequency of overestimation lies significantly below that of Security 1 (p-value<0.001, two-sample bi-
nomial test), it is still significantly greater than 50% (p-value<0.001, one-sided binomial test). These
observations are consistent with the LB model in the sense that the model predicts an overestimation
for both securities and a larger overestimation for Security 1 than for Security 3. But also apart from
the model, the comparison between Security 1 and Security 3 is relevant as it shows the effect of
skewness neglect in isolation: the mean is constant between them whereas the higher volatility in
Security 1 changes median and mode. The higher proportion of overestimation in Security 1 shows
that participants do not fully appreciate this difference.
The participants’ assessments of Security 2 (µh = 1.075, µl = 1.025) are depicted in Figure 1(b) and
(again consistent with the LB model) show a different picture. Only a minor underestimation of Secu-
rity 2 appears: 57% of participants state mode values below the true mode of 178.97, a proportion that
is not significantly greater than 50% (p-value>0.15, one-sided binomial test). Moreover, the median
response is not significantly different from the optimal value (p-value>0.05, Wilcoxon signed-rank
test). Neither skewness neglect nor the exponential growth bias show to be relevant for this security.
The perceptions for Security 4 (µh = 1.8, µl = 1.1), with a higher average per-period return, are illus-
trated in Figure 1(d) and show a substantial degree of underestimation. 89% of the participants state
responses that lie below the true mode. This share is significantly larger than 50% (p-value<0.001,
one-sided binomial test) and also significantly larger than the share of participants who underestimate
Security 2’s mode value (p-value<0.001, two-sample binomial test). Once again, these observations
are consistent with the much stronger prediction of the LB model for Security 4 than for Security 2.
Moreover, it is notable that the data confirm the LB model’s prediction that the exponential growth is
more relevant than skewness neglect in Security 4.
Security 4 is also well suited to show that participants do not simply confuse median and mean. Stat-
ing the security’s mean value (8,638.06) instead of the median / mode would have resulted in an
overestimation, in contrast to the LB model’s prediction and to the evidence in Figure 1(d).

3.3 Study 1(b), Robustness I: Coarser choice

Study 1(b) elicits the modes of our participants’ subjective distributions using a coarse choice list
design with steep incentives. The task description is also shorter and simpler than in Study 1(a). (This
is the simple design described in the paper’s Introduction.)

3.3.1 Experimental Design and Linearity Bias Prediction

The experimental asset of interest, Security A, follows a binomial-tree +70%/-60% process over 12
periods that is identical to Security 1 in Study 1(a) with the sole exception that its initial price is
10,000. In three experimental sessions, 69 students at Technical University Berlin are presented with
the growth process of Security A and are asked to pick one out of five investment opportunities, la-
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beled Investment 1 through Investment 5, whose return depends on the period-12 price of Security A.
Just as in Study 1(a), Study 1(b) also ensures incentive compatibility under a wide set of preferences
by using only two possible payments per choice problem—receive a bonus of 20 Euro versus not.
Participants are told that Investment 1 “makes a gain” (in effect pays the bonus—see below) iff the
selling price of Security A is between 0 and 6,400. Investment 2 makes a gain iff the selling price of
Security A is between 6,400 and 12,800, Investment 3 makes a gain iff the selling price is between
12,800 and 19,200, Investment 4 makes a gain iff the selling price is between 19,200 and 25,600, and
Investment 5 makes a gain iff the selling price is above 25,600.
Once a participant has chosen his or her investment the computer simulates the period-12 price of
Security A, with a separate simulation for each participant. If the chosen investment makes a gain,
the participant receives the bonus. Under any belief the decision-maker should, evidently, choose
the interval that has the largest probability of containing the period-12 price. Due to the price distri-
bution’s large skew, the rational prediction is to choose Investment 1, whose corresponding interval
[0, 6400] contains the period-12 price with 80% chance. The other intervals thus have a far lower suc-
cess chance and the monetary incentive for a participant to choose one of them is far lower. An LB
decision-maker, however, perceives a symmetric price distribution ỸT with a mode at 16,000. This
implies that the interval containing 16,000 has the highest perceived chance of yielding the bonus. An
LB decision maker therefore chooses Investment 3.

3.3.2 Results

The numbers of participants (and percentages in parentheses) choosing Investments 1 through 5 are
{Inv. 1 : 4 (6%), Inv. 2 : 19 (28%), Inv. 3 : 30 (43%), Inv. 4 : 12 (17%), Inv. 5 : 4 (6%)}. The
distribution is significantly different from uniform choice (p-value<0.001, chi-square test) and indi-
cates no tendency to choose a mode near zero. Overall, with 94% of our participants significantly
more than half of the sample overestimate the true mode (p-value<0.001, one-sided binomial test).
While only 6% make the optimal choice of Investment 1, 43% conform with the linearity bias model
and choose Investment 3. The participants give up significant amounts of money due to the bias:
While the optimal choice would earn 16.12 Euro in expectation, the observed choice distribution on
average earns only 2.07 Euro in expectation per participant.

3.4 Study 1(c), Robustness II: Choice list format and repetitions

In Study 1(c) we use a choice list mechanism to identify bounds on the median of each participant’s
subjectively expected distribution. We also let our participants repeat this task over five rounds.11

11In a further treatment variation of Study 1(c), we additionally provide the participants with an explicit calculation
of the distribution of compound price changes for the respective security and we point out the asymmetry in the price
distribution. The observed choice bias decreases strongly in this treatment, consistent with the presumption that the bias
stems from a cognitive problem and is not driven by the particular choice format. A detailed description of this treatment
is in Appendix A.
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3.4.1 Experimental Design

The experimental responses are bounds on the participants’ subjectively perceived median of returns,
irrespective of risk preferences. As for the two previous studies, Study 1(c) ensures incentive com-
patibility under a wide set of preferences by using only two possible payments per choice problem.
In each round of the experiment, two risky securities are on offer and the selling price of the chosen
security determines whether or not the participant receives the bonus. Security A is identical to the
asset in Study 1(b), with a +70%/-60% price change in each of the 12 periods and an initial price
of 10,000. A participant who chooses this security receives the bonus if the selling price at maturity
exceeds a given threshold tA. The alternative choice is Security B, which yields the bonus with prob-
ability one half. One can immediately see that it is subjectively optimal for a participant to choose
Security A if and only if she believes that Security A yields the bonus with probability more than one
half. A choice for Security A thus reveals that the median of her subjective probability distribution of
Security A’s selling price is above tA.
For a balanced experimental design we describe Security B analogously to Security A, with the dif-
ference that Security B has only a single price equiprobable change of +70% or -60% during the 12
months. A participant who chooses Security B receives the bonus if the selling price of B exceeds a
separate threshold tB. This threshold is fixed at the initial price of 10,000 throughout the experiment
(hence Security B holds a 50-50 chance of receiving the bonus) whereas the threshold tA varies be-
tween 10 different values. Each experimental participant makes a choice between A and B for each of
the 10 possible values of tA, allowing us to infer bounds on her subjective median of the selling price
distribution of Security A. Table 1 lists the 10 choice problems (Task 1, Task 2, etc.) as seen by the
participants. Given that the true median of Security A’s selling price is 989, the rational prediction is
for the participants to choose A in Task 1 and Task 2 and to choose B in all subsequent tasks.

Thresholds for Thresholds for Your decision
Security A Security B (A or B )

Task 1 100 10,000 _
Task 2 500 10,000 _
Task 3 2,000 10,000 _
Task 4 6,000 10,000 _
Task 5 9,000 10,000 _
Task 6 12,000 10,000 _
Task 7 20,000 10,000 _
Task 8 35,000 10,000 _
Task 9 90,000 10,000 _
Task 10 250,000 10,000 _

Table 1: The 10 binary choices.

After the participants make their 10 choices, they receive individual feedback in the form of a sample
pair of selling prices of Securities A and B. This concludes the first round of the experiment. The
experiment is then repeated for four additional rounds of the same nature, each including 10 choices
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and individual feedback.12

Three sessions are conducted in a paper-and-pencil format, with 68 student participants at Technical
University Berlin. Participants receive a participation fee of 5 Euros and a possible bonus of 5 Euros
per round. That is, participants can earn up to five bonuses of 5 Euros each, one per round of the
experiment. After completing all choices, each participant receives five random draws of integers
between 1 and 10 to determine which of the 10 choice problems in each round is payoff relevant
for her. She receives the bonus for a given round if the selling price of the chosen security in the
payoff-relevant problem exceeds its threshold.

3.4.2 Linearity Bias Prediction

Analogous to the previous studies, the LB model predicts that participants overestimate the true me-
dian (989) by an order of magnitude and chooses a switching value in the interval [12, 000− 20, 000).
For notation, let q0.5,i be the elicited lower bound of participant i’s assessment of the median: i invests
in Security A for all values tA ≤ q0.5,i and invests in Security B for all strictly larger tA. For the sake
of simplicity we restrict attention to cases where participants’ choices reveal such a unique switching
value, a property that is true in 93% of our data.13 By analogy, let q0.5 be the rational benchmark
for q0.5,i (dropping the subscript i), i.e. the lower bound of the median that would be elicited from a
decision maker who behaves optimally. Here and elsewhere in the paper, we focus on revealed lower
bounds when applicable.

3.4.3 Results

Range of subjective median Share of participants switching from A to B
Round 1 Round 2 Round 3 Round 4 Round 5

[0 – 100) 0.018 0.000 0.000 0.018 0.000
[100 – 500) 0.000 0.000 0.000 0.000 0.035
[500 – 2, 000) 0.000 0.054 0.072 0.072 0.107

[2, 000 – 6, 000) 0.036 0.145 0.127 0.200 0.303
[6, 000 – 9, 000) 0.107 0.090 0.254 0.309 0.142
[9, 000 – 12, 000) 0.411 0.381 0.309 0.236 0.196

[12, 000 – 20, 000) 0.196 0.181 0.109 0.127 0.142
[20, 000 – 35, 000) 0.179 0.090 0.109 0.036 0.053
[35, 000 – 90, 000) 0.054 0.054 0.000 0.000 0.017
[90, 000 – 250, 000) 0.000 0.000 0.000 0.000 0.000
[250, 000 – ∞) 0.000 0.000 0.018 0.000 0.000

Table 2: Subjective median ranges over the five rounds.

12Each additional round comes with the chance to earn a new bonus but this does not affect the simple optimality
conditions for choice. Independent of other choices it remains optimal to choose A iff the subjective median is above tA,
under a wide set of preferences for choice under uncertainty.

13If a participant has multiple switching points in one round, her answers in the remaining rounds are still considered in
our data analysis. None of our conclusions would change if we dropped all responses by participants who switch strictly
more than once in at least one round (12% of participants), or if we included all data and considered each of the 10 tasks
separately.
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Table 2 lists the implied ranges for the medians of the participants’ subjective distributions of Security
A’s selling price over the five rounds. In round 1, not a single participant reveals a subjective median
between 500 and 2,000 (i.e., optimal switching at Task 3). Instead, with 98% of participants signif-
icantly more than 50% (p-value<0.001, one-sided binomial test) reveal that their subjective medians
are above 2,000. The results of rounds 2 to 5 show that a significant proportion of 86% of partic-
ipants overestimate the median still in round 5 (p-value<0.001, one-sided binomial test for >50%).
The modal choice in round 1 (41% of participants) indicates a subjective median between 9,000 and
12,000, with the next-higher interval [12,000-20,000) attracting 20% of participants’ choices.

4 Study 2: Other Quantiles and Other Growth Processes

In this section we examine the robustness of the linearity bias predictions with respect to variations
of the investment horizon and the choice of quantiles of the participants’ subjective distributions that
we elicit. The results confirm the LB model’s implication that the compound distribution is perceived
as too symmetric and too narrow-band if there is substantial randomness in the growth process.
Subsection 4.1 describes the experimental design in detail. Subsection 4.2 contains the prediction of
the LB model and Subsection 4.3 has the results.

4.1 Experimental Design

There are two treatments in Study 2, both involving assets similar to the processes described in Study
1. Participants can buy Security A at a price of 100. If they buy it they have to sell it after T k pe-
riods, where k indexes the treatment. The price moves by about 20 percent in each period: In both
treatments, High Volatility_Short (HVS) and High Volatility_Long (HVL), the parameters specifying
upticks and downticks are µh,HV S = µh,HV L = 1.212 and µl,HV S = µl,HV L = 0.811. The sole
difference between these two treatments is in the length of time until maturity: THV S = 14 and
THV L = 140.14

As in Study 1(c), a participant of Study 2 who buys Security A receives a fixed bonus if the selling
price at maturity exceeds a given threshold tA. These thresholds differ between treatments and are
listed in Table 3. The alternative choice option is Security B which yields the bonus with a certain
probability.15 To elicit three different quantiles about Security A’s selling price, Security B has three
different specifications. Each participant faces each specification once. Security B1 yields the bonus

14In two further treatments Low Volatility_Short (LVS) and Low Volatility_Long (LVL), with µh,LV S = µh,LV L =
1.012 and µl,LV S = µl,LV L = 1.011, the price motion is approximately deterministic (i.e., the price volatility is very
low) and the price has positive growth with certainty. The number of time periods until maturity is analogous to HVS and
HVL, at TLV S = 14 and TLV L = 140. A further treatment Low Volatility_Long_NoCalculator (LVLNC) is identical to
LVL but does not grant the participants access to calculators. The results can be found in Appendix B.

15Different from Study 1(c), the instructions simply report to the participants the probability with which Security B
yields the bonus, without referring to a separate threshold tB .
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with 90% probability, B2 with 50% and B3 with 10%. Accordingly, each participant faces three
choice lists. First, she chooses between Securities A and B1 for the different thresholds of Security
A. This allows us to infer bounds on her subjective 10th percentile of Security A’s selling price. For
example, suppose that participant i in treatment HVS chooses Security A over Security B1 in Task 1
and Task 2 and chooses Security B1 over Security A in tasks 3 through 10. Inspecting Table 3 (first
column) we see that this is subjectively optimal iff participant i’s subjective 10th percentile for Secu-
rity A’s selling price is between 30 and 45. In line with our previous notation, we would thus record
the elicited lower bound of i’s subjective quantile for Security A’s selling price as qHV S

0.1,i = 30. As
her second set of tasks the participant faces the analogous choices between Securities A and B2 (with
the same list of thresholds for Security A). This allows us to infer a lower bound on her subjective
median of the selling price, qHV S

0.5,i . Finally, she faces the analogous list of choices between Security A
and B3, allowing us to infer a lower bound on the 90th percentile of the same price, qHV S

0.9,i .16

Values of tA Values of tA
HVS HVL

Task 1 15 2
Task 2 30 5
Task 3 45 15
Task 4 65 60
Task 5 95 140
Task 6 125 230
Task 7 155 350
Task 8 190 550
Task 9 225 700
Task 10 265 1,000

Table 3: The thresholds tA by treatment condition.

The computer terminals report feedback to the participants in the form of a sample selling price of
Security A. In each treatment, this concludes the first round of the experiment. The experiment is
then repeated for four additional rounds. Hence, the experiment comprises five identical rounds for
each participant.
All 58 participants are undergraduate students at University College London. Nine sessions are con-
ducted in a computer-based format using the software z-Tree (Fischbacher, 2007). Each of the two
treatment conditions is faced by a random subset of participants in each session, without making them
aware that other participants face different treatment conditions (N=29 in both, HVS and HVL).
In contrast to Study 1, participants in these sessions are supplied with a hand-held calculator that they
can use throughout the experiment. The protocol is fixed across all sessions. First, printed instruc-

16After the elicitation of the subjective quantiles we also ask for the participants’ beliefs of Security A making a profit.
We do not use the resulting data in the analysis but refer to the paper’s previous version (Ensthaler et al., 2013) and to the
instructions for a description of the experimental details and the results.
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tions are distributed and participants have to pass an understanding test.17 Then the computer-based
experiment commences and guides the participants through the five rounds in immediate succession.
For a simpler data analysis, the participants’ computer interfaces restrict responses to satisfy two con-
straints. First, responses must exhibit at most one switching point on a choice list between Security A
and a single B-type security. That is, a participant cannot switch back and forth between Security A
and the respective B-type security. Second, the elicited quantiles must be ordered in a consistent way:
participants cannot switch from Security A to B1 at a threshold that exceeds the threshold at which
she switches from Security A to B2, which in turn cannot exceed the threshold at which she switches
from Security A to B3.18

Participants receive a participation fee of £5 and a possible bonus of £5 per round. In each round,
a single choice is randomly determined to be payoff-relevant, giving an ex-ante incentive to act opti-
mally in each task.19

4.2 Linearity Bias Prediction

The treatment comparison in Study 2 focuses on the effects of an increased time horizon. With a per-
ceived constant distribution of absolute changes η̃t ∈ {−18.9; 21.2}, the LB decision maker perceives
selling price distributions with mode, mean, and median at 116.10 in treatment HVS and 261.00 in
treatment HVL. The LB model thus predicts that participants overestimate the true median (88.64 in
HVS and 29.96 in HVL), mildly for the former treatment and much stronger for the latter. (The LB
model’s lower bound point predictions are qHV S

0.5,i = 95 in treatment HVS with the rational assessment
at 65, and qHV L

0.5,i = 230 in treatment HVL with the rational assessment at 15.)
Moreover, as discussed in Section 3.1, the LB decision maker perceives no skewness in the distribu-
tion of the selling price of Security A. The true distribution of YT is skewed, however, and the LB
model thus predicts a false assessment of the 10th and 90th quantiles. In particular, the LB deci-
sion maker fails to realize that the distribution’s right tail is long, especially with a long investment
horizon. We chose the experimental parameters such that under the LB model this bias would have
no discernible effect in treatment HVS, but predicts an effect in HVL. The model predicts the 90-10
spread is too narrow-band in treatment HVL. (The LB model’s lower bound point predictions are
qHV S
0.1,i = 30 and qHV S

0.9,i = 190 in treatment HVS, and qHV L
0.1,i = 0 and qHV L

0.9,i = 550 in treatment HVL.
Rational quantile assessments are identical in HVS but qHV L

0.9 is at 700 in HVL.)

17All participants passed the understanding test, in a few cases after asking for some additional explanations.
18The instructions explain that violations of these constraints are subjectively suboptimal. Additionally, the experimen-

tal software shows an error message if a participant violates either of the two constraints. Only 2% of the participants’
inputs receive one or more error messages.

19Participant can earn the bonus either through the quantile elicitation task or through the profit probability elicitation
task (see Footnote 16). For each round and each participant, the relevant task type (quantile or profit probability) is
determined by a simulated coin flip at the end of the experiment.
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4.3 Results

We start our data analysis with a descriptive overview. Then, we run interval regressions that impose
a normal decision error assumption and allow us to estimate the underlying quantiles while taking
into account the data’s discrete nature.

4.3.1 Descriptive Statistics

The boxplots in Figures 2 and 3 summarize participants’ perceptions, separately for each treatment
and for each of the five rounds. They depict the distributions of qkj,i across all participants i, for the
three probabilities j ∈ {0.1, 0.5, 0.9} and for treatments k ∈ {HVS, HVL}. The horizontal dashed
lines illustrate the benchmark rational predictions for the respective treatment-specific quantiles of
the price distribution, qkj .
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Figure 2: Elicited distributions of the participants’ subjective quantiles of Security A’s selling price in HVS,
separately for the five rounds. Each boxplot triplet consists of (from left to right): subjective 10th percentiles
(dark grey boxplot), subjective medians (medium grey boxplot), and subjective 90th percentiles (light grey
boxplot). Dashed lines indicate rational benchmarks.

Figure 2 describes the switching points in treatment HVS (14-period time horizon). It shows that
in all five rounds the median observation of qHV S

0.5,i (the solid line in the middle boxplot within each
triplet of boxplots) is strictly above the rational benchmark qHV S

0.5 . Thus in each round at least half
of the participants strictly overestimate the median of the stochastic process in treatment HVS. Pre-
cisely, the proportions of participants revealing that their subjective median is strictly too high are
{Round 1: 55%, Round 2: 65%, Round 3: 55%, Round 4: 69%, Round 5: 62%}. Of all five rounds,
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however, only Round 4’s proportion is significantly greater than 50% (p-values<0.05, one-sided bi-
nomial test), which confirms our LB model prediction of an only marginal median misperception in
this treatment.
The 90-10 spread, as perceived by the participants, can be roughly assessed from the location of
the two boxplots depicting the subjective 10th (first boxplot within each triplet) and 90th percentiles
(third boxplot within each triplet). As predicted by the LB model, these spread perceptions devi-
ate only slightly from the rational prediction. This pattern, too, appears in each of the five rounds.
In specific, the round wise proportions of participants individually underestimating the spread are
{Round 1: 65%, Round 2: 65%, Round 3: 72%, Round 4: 72%, Round 5: 65%}. Of the five rounds,
however, only in Round 3 and Round 4 are these proportions significantly greater than 50% (p-
values<0.05, one-sided binomial test). With regards to perceived skewness, the arrangement of box-
plots within one round also follows the LB model by being only marginally more symmetric than the
rational prediction. Once again, we observe that the corresponding pattern is robust over the rounds.
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Figure 3: Elicited distributions of the participants’ subjective quantiles of Security A’s selling price in HVL,
separately for the five rounds. Each boxplot triplet consists of (from left to right): subjective 10th percentiles
(dark grey boxplot), subjective medians (medium grey boxplot), and subjective 90th percentiles (light grey
boxplot). Dashed lines indicate rational benchmarks.

Supporting the LB model, we get qualitatively the same results for treatment HVL with the 140-period
time horizon (Figure 3) but they are much stronger. Here, the interquartile ranges of the median-
perception boxplots are located strictly above the optimal level in all rounds. Hence, more than 75%
of participants overestimate the median in each round of this treatment. The precise round wise num-
bers are {Round 1: 93%, Round 2: 79%, Round 3: 79%, Round 4: 79%, Round 5: 79%}, all signif-
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icantly greater than 50% (p-values<0.001, one-sided binomial test). Moreover, for all but two rounds
are these proportions significantly greater in HVL than in HVS (p-value<0.05, two-sample binomial
test). Likewise, the perceived price spread in this condition is underestimated by almost all partici-
pants over the rounds. In specific, the proportions for each round are {Round 1: 89%, Round 2: 96%,
Round 3: 100%, Round 4: 96%, Round 5: 93%} (p-values<0.001, one-sided binomial test for >50%).20

For each round these proportions are significantly greater in HVL than in HVS (p-value<0.05, two-
sample binomial test). Moreover, the arrangement of boxplots within each round is obviously much
more symmetric than the rational benchmark.
If we relax our rational benchmark a bit and count a participant as "overestimating the median" only
if she switches more than one step (task) later than rational, we still count proportions of participants
overestimating the median of 79% in the first round and 45% in the last round of treatment HVL. In
HVS, these proportions are 34% and 37% for the first and last round, respectively.

4.3.2 Interval Regressions
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(b) Treatment HVL.

Figure 4: Point estimates enclosed by 95% confidence intervals of the participants’ subjective quantiles of
Security A’s selling price. For each of the five rounds, separate estimates refer to the subjective 10th percentiles
(circle), subjective medians (triangle), and subjective 90th percentiles (square). Dashed lines indicate rational
benchmarks.

The above descriptive analysis is based on the elicited lower bounds of our participants’ perceived
quantiles of Security A’s price distribution. This subsection investigates point estimates instead of

20LB predictions and rational benchmarks for the 10th and 90th percentiles differ only for the latter in HVL. There,
the proportions of those underestimating the 90th percentile range between 72% and 96% over the rounds and are always
significant supporting the LB model (p-values<0.05, one-sided binomial test for >50%). In HVS, where LB and ratio-
nal predictions coincide for the 90th percentiles, the respective proportions are much lower and not significant ranging
between 31% and 58%.
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lower bounds and employs interval regressions—a modified version of the ordered probit regressions
(see e.g. Wooldridge, 2002). The analysis takes into account the interval nature of the data and
assumes that the subjectively perceived quantiles are subject to normally distributed disturbances.
Under this assumption, the mean of the participants’ subjective quantiles can be estimated via maxi-
mum likelihood, and standard hypothesis testing applies. Figure 4 reports the corresponding estimates
of the population means for the subjectively perceived quantiles about Security A’s selling price, sep-
arately for each of the two treatments and for each round. The horizontal dashed lines depict the
benchmark rational predictions for the respective treatment-specific quantiles. The point estimates of
participants’ average perceptions are enclosed by the respective 95% confidence intervals.21

Figure 4 confirms the previous subsection’s descriptive analysis. In HVS (Figure 4(a)), the 95%
confidence intervals of the point estimates for the subjective median are only marginally above the
rational predictions. In accordance with the LB model, in HVL (Figure 4(b)) median perception con-
fidence intervals differ significantly from the rational benchmark for all five rounds representing a
much stronger degree of overestimation compared to HVS.
Overall, Figure 4 nicely sums up the results from Study 2, the elicited quantiles indicate that subjective
skewness and spread perceptions of the outcome distribution tend to be quite accurate in HVS with
a marginal tendency towards underestimation and this effect exacerbates considerably for a longer
investment horizon represented by HVL.

5 Study 3: Linearity Bias in the Perception of Exchange Traded
Funds

In this study we test the robustness of the LB model in a setting where the asset price depends on
real-world historical data. We simulate leveraged and unleveraged exchange-traded funds (ETFs) on
past data of the German stock market index DAX30 to examine how changes in volatility affect the
participants’ perceptions of real-life growth processes.
Leveraged ETFs move by a given multiple relative to an underlying asset, compounded at the end of
each trading day. A triple leveraged ETF on the DAX30 index increases by three per cent on a trading
day if the DAX30 increases by one per cent on that day and it falls by three per cent if the DAX30
falls by one per cent. Leveraged ETFs are a popular asset class amongst household investors but have
come under severe scrutiny as many investors were perplexed when the products made a loss in a
period where the underlying index made a gain.22 Our experiment confirms the prediction derived
from the LB model that skewness and spread are strongly underestimated if the volatility is high.

21For a detailed listing of interval regression estimates, see Appendix C.1.
22Regulatory units and the financial media issued extensive warnings that involve explanations of these counter-intuitive

possibilities. The U.S. securities regulator FINRA issued a note in 2009 (FINRA Regulatory Note 09-31) saying that
"...while such products may be useful in some sophisticated trading strategies, they are highly complex financial instru-
ments that are typically designed to achieve their stated objectives on a daily basis. Due to the effects of compounding,
their performance over longer periods of time can differ significantly from their stated daily objective..."
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Section 5.1 describes the experimental design. Section 5.2 presents the LB model’s predictions and
section 5.3 discusses the results.

5.1 Experimental Design

There are two treatments in this study. In both treatments, Security A is an ETF based on the DAX30.
The two treatments differ only in that their respective versions of Security A differ in per-period
volatility. In treatment ETF_3, the relevant security is a triple-leveraged ETF based on the DAX30.
Its price changes, on each trading day, by three times the daily percentage changes of the underlying
index DAX30. In treatment ETF_1, in contrast, Security A is simply the DAX30 ETF itself.
The time horizon until maturity of the ETF is 2,000 trading days both for ETF_1 and ETF_3. To
generate realized price paths for the two assets, we sample 2,000 consecutive DAX30 closing values,
drawn at random from the time period 1964 to 2012.23 Participants can buy the ETF at a price of 100;
if they buy it, they have to hold it for 2,000 trading days. As in Study 2, in both treatments, a partici-
pant who chooses Security A receives a fixed bonus if the selling price exceeds a given threshold tA.
These thresholds do not differ between ETF_3 and ETF_1. They are listed in Table 4.
To elicit three different quantiles, the alternative choice option Security B has three different specifi-
cations which are equal to those in Study 2, i.e., Security B1 yields the bonus with 90% probability,
B2 with 50% and B3 with 10%. Like in Study 2, each participant faces three choice lists and the
choices allow us to infer the subjectively perceived quantiles.

Thresholds for Security A
in ETF_3 and ETF_1

Task 1 30
Task 2 60
Task 3 90
Task 4 140
Task 5 200
Task 6 260
Task 7 330
Task 8 450
Task 9 650
Task 10 1,000
Task 11 1,600

Table 4: The 11 thresholds.

The computer terminals report feedback to the participants in the form of a sample selling price of
Security A. That is, the computer randomly samples a sequence of 2,000 consecutive trading days

23The instruction in the ETF treatments are analogous to the other treatments in Study 2. Additionally, participants
receive general information about the DAX30 and a data summary of daily DAX30 movements in the relevant time
period. The information is given in the form of a histogram as well as statements specifying the 90% confidence interval
([-1.8%,1.8%]) and the overall average of daily percentage changes (0.03%). Note that the participants are UK-based
students who typically have little knowledge about German stock markets.
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from the set of all available 2,000-day histories of the DAX30 and uses it to simulate the asset price at
maturity. The participants learn the result of the simulation and their payoff. All other aspects of the
protocol are identical to Study 2. In both treatments of Study 3, the basic procedure is repeated four
times, making for five identical rounds for each participant. 59 participants are in one of the treatments
of Study 3 (29 in ETF_3 and 30 in ETF_1), all of them undergraduate students at University College
London. The incentivisation structure contains a participation fee and a possible bonus of £ 5.00 for
each round.

5.2 Linearity Bias Prediction

While Study 2 analysed the effects of an increased time horizon, the treatment comparison in Study
3 focuses on the effects of increasing the per-period volatility. We generate the perceived distribution
of an LB decision maker by means of simulations: we randomly sample 500 price paths of ETF_3
and ETF_1 as perceived by an LB decision maker to generate the perceived distribution. By analogy
to the previous discussion, the LB decision maker is assumed to correctly perceive the distribution of
daily changes in the relevant asset price, but views them as an absolute changes and perceives their
distribution to be constant over time. She therefore neglects all compounding. In detail, we simulate
the perceived selling price of an ETF by first randomly selecting a start date t = 0 at which the price
is fixed (by design of the experiment) at Y0 = 100. For each of the ensuing 2,000 trading days s > t

we consider the relative change in value on that day, µs, and add η̃s = (µs − 1)Y0 to the current per-
ceived price of the asset: Ỹs = Ỹs−1 + η̃s (with correct perception of the starting value, Ỹ0 = Y0). For
example, suppose that t = Jan 2, 1978 was randomly chosen as the starting date and that the DAX30
increased in value by 1.4% on s= Feb 15, 1979. As the perceived absolute increase on the latter date,
the simulation simply adds η̃s = 1.4 to the price of the asset, as perceived by the LB decision maker.
This way the simulation arrives at a perceived selling price at maturity. Repeating this procedure 500
times for random starting dates generates the perceived distribution of selling prices.
Consistent with the results of previous sections, the simulations generate the predictions that the
increased per-period volatility of leveraged ETFs leads to a larger bias concerning median overesti-
mation and concerning the underestimation of the outcome distribution’s skew and spread. This is
intuitive as the neglect of compounding is worse in situations where the proportional growth rates are
further away from 1 and their multiplication is thus more different from a perceived linear growth.

5.3 Results

Figure 5 illustrates the distributions of participants’ perceptions in ETF_1. It shows that all medi-
ans of the median-perception distributions (the solid line in the middle boxplot within each triplet of
boxplots) are above the optimal level. Participants in our experiment are overly optimistic about the
simple index ETF. The arrangement of boxplots also shows that the perceived distributions are quite
symmetric. But we note that with a simple ETF, the true distribution is relatively symmetric as well.
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Figure 5: Elicited distributions of the participants’ subjective quantiles of Security A’s selling price in ETF_1,
separately for the five rounds. Each boxplot triplet consists of (from left to right): subjective 10th percentiles
(dark grey boxplot), subjective medians (medium grey boxplot), and subjective 90th percentiles (light grey
boxplot). Dashed lines indicate rational benchmarks.
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Figure 6: Elicited distributions of the participants’ subjective quantiles of Security A’s selling price in ETF_3,
separately for the five rounds. Each boxplot triplet consists of (from left to right): subjective 10th percentiles
(dark grey boxplot), subjective medians (medium grey boxplot), and subjective 90th percentiles (light grey
boxplot). Dashed lines indicate rational benchmarks.
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Figure 6 captures the participants’ perceptions in treatment ETF_3. Again, perceived medians show a
notable level of overestimation. That is, the median of the perceived median distributions lies strictly
above the optimal level. The arrangement of boxplots within a round also shows that the perceived
spread and the perceived skewness are too small. The participants show at least a mild tendency to
report skewed distributions but they far underappreciate the actual level of skewness.
We now consider interval regressions, in Figure 7. As before, they rely on the assumption of normally
distributed decision errors, and they also confirm the main conclusions drawn from Figure 5 and 6.
That is, in both treatments, ETF_1 and ETF_3, the outcome distributions’ median is significantly
overestimated within each of the five rounds. Supporting the LB model, in treatment ETF_3, which
has a much more skewed and spread out outcome distribution than ETF_1, participants far underap-
preciate the skewness and spread over all rounds.
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(a) Treatment ETF_1.
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(b) Treatment ETF_3.

Figure 7: Point estimates enclosed by 95% confidence intervals of the participants’ subjective quantiles of
Security A’s selling price. For each of the five rounds, separate estimates refer to the subjective 10th percentiles
(circle), subjective medians (triangle), and subjective 90th percentiles (square). Dashed lines indicate rational
benchmarks.

6 Conclusion

This paper investigates how people perceive two important implications of compounding random
growth. First, as has been established in the literature, decision makers have a tendency to neglect ex-
ponential growth. Our experiments add to the evidence of this effect by measuring it in a context with
random growth rates. Second, people underestimate the level of asymmetry in growth processes—
skewness is “hidden”. This is a novel effect in the academic literature (modulo the independent
description in Stutzer and Jung Grant (2010)), which may be especially relevant in the context of
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preferences that consider quantiles of the outcome distribution, like value-at-risk or expected utility
with highly convex utility functions. However, it is important to note that this paper is about misper-
ception, not preferences, and that we measure the effects irrespective of risk attitudes.
Questions about compound interest are, by now, standard procedure in surveys about financial liter-
acy, see e.g. the relevant module in the Health and Retirement Survey documented in Lusardi and
Mitchell (2011). The typical evidence is that calculations of multiplicative growth effects show a
strong downward bias, often to the extent that all compounding is ignored. Our experiments arguably
give the respondents a very good shot at correctly detecting the nonlinear effects of growth, especially
since we use highly selected and quantitatively skilled students and in some of our treatments we pro-
vide them with calculators. It is perhaps all the more notable that we, too, find a strong bias towards
linear perceptions.
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A Study 1(c), Treatment Variation HELP

A.1 Treatment Description and Linearity Bias Prediction

Participants in Study 1(c) are randomly assigned to one of two treatments. Treatment NO_HELP
(N=68), which is described in the main text above, presents only the basic explanation. In treatment
HELP (N=60) we provide the participants with an additional explanation, leaving the remainder of
the instructions unchanged. The additional text (about one written page) gives an explicit calculation
of the distribution of compound price changes after two periods. It also points out the asymmetry in
the selling price distribution and lists the implicit probabilities of receiving the bonus from choosing
Security A for each value of tA. None of the explanations in HELP adds any substantive information
relative to the descriptions in NO_HELP. The only difference is that the relevant distributions are ex-
plicit in HELP and implicit in NO_HELP. Any difference in responses under the two conditions must
stem from differences in the understanding of these implied truths.
Thus, in treatment HELP the linearity bias cannot influence the subjective beliefs without contradict-
ing the available explanations. We therefore expect the misperception to disappear, i.e. qHELP

0.5,i = 500.

A.2 Results

Share of participants switching from A to B

Range of subjective Round 1 Round 2 Round 3 Round 4 Round 5
median for Security A

[0 – 100) 0.000 0.032 0.047 0.046 0.092
[100 – 500) 0.000 0.016 0.000 0.046 0.046
[500 – 2, 000) 0.703 0.612 0.666 0.676 0.661

[2, 000 – 6, 000) 0.109 0.145 0.095 0.138 0.046
[6, 000 – 9, 000) 0.063 0.048 0.063 0.046 0.061
[9, 000 – 12, 000) 0.063 0.064 0.063 0.000 0.030
[12, 000 – 20, 000) 0.031 0.064 0.031 0.462 0.046
[20, 000 – 35, 000) 0.016 0.000 0.015 0.000 0.015
[35, 000 – 90, 000) 0.000 0.000 0.015 0.000 0.000
[90, 000 – 250, 000) 0.000 0.000 0.000 0.000 0.000

[250, 000 – ∞) 0.016 0.016 0.000 0.000 0.000

Table 5: Subjective medians in HELP for rounds 1-5.

Table 5 shows that in HELP 70% of responses are at the optimal switching point of Task 3 already
in round 1. Parametric t-tests as well as non-parametric Wilcoxon rank-sum tests confirm that all
round-by-round treatment comparisons between HELP and NO_HELP are statistically significant at
p<0.001. Performance is poor under the NO_HELP condition and much better in HELP.
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B Study 2, Low Volatility Treatment Variation

Values of tA Values of tA Values of tA
LVS LVL LVL_NC

Task 1 104.0 185 185
Task 2 104.5 210 210
Task 3 105.5 240 240
Task 4 107.0 290 290
Task 5 109.0 340 340
Task 6 111.5 400 400
Task 7 114.5 460 460
Task 8 118.0 520 520
Task 9 122.0 625 625
Task 10 126.5 850 850

Table 6: The thresholds tA by treatment condition.
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Figure 8: Participants’ subjective quantiles of Security A’s selling price in LVS over the five rounds. Each
boxplot triplet consists of (from left to right): subjective 10th percentiles (dark grey boxplot), subjective medi-
ans (medium grey boxplot), and subjective 90th percentiles (light grey boxplot). Dashed line indicates rational
benchmarks.

29



qj
LVL

0

200

400

600

800

1 2 3 4 5
Round

P
er
ce
pt
io
ns

Percentile

10th

50th

90th

Figure 9: Participants’ subjective quantiles of Security A’s selling price in LVL over the five rounds. Each
boxplot triplet consists of (from left to right): subjective 10th percentiles (dark grey boxplot), subjective medi-
ans (medium grey boxplot), and subjective 90th percentiles (light grey boxplot). Dashed line indicates rational
benchmarks.
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Figure 10: Participants’ subjective quantiles of Security A’s selling price in LVLNC over the five rounds.
Each boxplot triplet consists of (from left to right): subjective 10th percentiles (dark grey boxplot), subjective
medians (medium grey boxplot), and subjective 90th percentiles (light grey boxplot). Dashed line indicates
rational benchmarks.
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(a) Treatment LVS.
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(b) Treatment LVL.

Figure 11: Point estimates enclosed by 95% confidence intervals of the participants’ subjective quantiles over
the five rounds, with subjective 10th percentiles (circle), subjective medians (triangle), and subjective 90th
percentiles (square). Dashed lines indicate rational benchmarks.
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Figure 12: Point estimates in LVLNC enclosed by 95% confidence intervals of the participants’ subjective
quantiles over the five rounds, with subjective 10th percentiles (circle), subjective medians (triangle), and sub-
jective 90th percentiles (square). Dashed lines indicate rational benchmarks.

31



C Tables

C.1 Interval regressions

10th Percentile 50th Percentile 90th Percentile
Mean Std.Err. Mean Std.Err. Mean Std.Err.

Rational Model 39.69 88.64 197.98
LB Model 35.90 116.10 196.30

Round 1 83.56 (11.8) 116.56 (12.7) 221.40 (13.5)

Round 2 70.63 (11.8) 108.84 (11.7) 206.84 (11.4)

Round 3 68.74 (11.7) 108.97 (9.5) 191.24 (11.2)

Round 4 62.72 (6.7) 122.41 (9.8) 183.57 (9.2)

Round 5 54.55 (6.3) 120.79 (11.2) 181.92 (11.9)

Table 7: Interval regression estimates for the mean perceptions of the three elicited percentiles in HVS com-
plemented by LB and rational predictions at the top of each column.

10th Percentile 50th Percentile 90th Percentile
Mean Std.Err. Mean Std.Err. Mean Std.Err.

Rational Model 1.20 29.96 745.58
LB Model -59.80 261.00 581.80

Round 1 82.27 (19.2) 229.80 (27.3) 597.49 (53.2)

Round 2 100.65 (28.9) 202.24 (38.9) 442.75 (50.8)

Round 3 53.68 (9.3) 150.07 (18.2) 373.06 (37.4)

Round 4 79.75 (22.9) 175.52 (24.4) 385.44 (40.9)

Round 5 68.90 (23.4) 165.97 (24.8) 420.60 (59.9)

Table 8: Interval regression estimates for the mean perceptions of the three elicited percentiles in HVL com-
plemented by LB and rational predictions at the top of each column.

32



10th Percentile 50th Percentile 90th Percentile
Mean Std.Err. Mean Std.Err. Mean Std.Err.

Rational Model 117.12 117.36 117.59
LB Model 115.90 116.10 116.30

Round 1 112.78 (0.92) 114.61 (0.87) 119.36 (0.82)

Round 2 112.91 (0.83) 115.47 (0.81) 117.93 (0.90)

Round 3 113.99 (0.76) 115.49 (0.64) 118.21 (0.77)

Round 4 115.18 (0.42) 116.28 (0.58) 118.21 (0.73)

Round 5 115.03 (0.67) 115.37 (0.66) 117.26 (0.63)

Table 9: Interval regression estimates for the mean perceptions of the three elicited percentiles in LVS comple-
mented by LB and rational predictions at the top of each column.

10th Percentile 50th Percentile 90th Percentile
Mean Std.Err. Mean Std.Err. Mean Std.Err.

Rational Model 491.79 495.69 499.63
LB Model 260.20 261.00 261.80

Round 1 365.65 (34.9) 483.87 (29.6) 634.18 (37.9)

Round 2 403.14 (35.1) 510.56 (31.8) 613.80 (36.1)

Round 3 395.55 (26.9) 503.36 (22.4) 590.81 (29.4)

Round 4 451.99 (24.7) 489.91 (25.6) 547.23 (29.5)

Round 5 424.01 (24.5) 509.23 (22.0) 559.20 (25.6)

Table 10: Interval regression estimates for the mean perceptions of the three elicited percentiles in LVL com-
plemented by LB and rational predictions at the top of each column.
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10th Percentile 50th Percentile 90th Percentile
Mean Std.Err. Mean Std.Err. Mean Std.Err.

Rational Model 491.79 495.69 499.63
LB Model 260.20 261.00 261.80

Round 1 301.48 (17.8) 381.39 (21.28) 514.08 (32.7)

Round 2 350.25 (24.5) 449.63 (12.76) 557.62 (19.7)

Round 3 382.42 (24.4) 466.01 (14.51) 560.03 (26.2)

Round 4 408.99 (25.8) 484.08 (15.86) 557.55 (22.1)

Round 5 416.87 (22.8) 472.47 (12.39) 540.17 (21.6)

Table 11: Interval regression estimates for the mean perceptions of the three elicited percentiles in LVLNC
complemented by LB and rational predictions at the top of each column.

10th Percentile 50th Percentile 90th Percentile
Sim.Value Bootstr.Conf.Inter. Sim.Value Bootstr.Conf.Inter. Sim.Value Bootstr.Conf.Inter.

Rational Model 98.80 [94.95; 101.25] 152.98 [146.18; 162.40] 310.98 [292.75; 322.40]
LB Model 109.36 [104.21; 113.83] 162.72 [156.63; 169.16] 227.10 [221.59; 230.66]

Mean Std.Err. Mean Std.Err. Mean Std.Err.

Round 1 168.02 (24.2) 316.25 (30.8) 722.22 (95.5)

Round 2 159.65 (17.2) 265.84 (27.7) 513.36 (64.8)

Round 3 151.62 (14.4) 246.15 (21.5) 468.22 (58.2)

Round 4 160.56 (13.5) 315.93 (50.9) 551.12 (75.1)

Round 5 155.61 (14.5) 233.18 (21.7) 477.73 (63.9)

Table 12: Interval regression estimates for the mean perceptions of the three elicited percentiles in ETF_1
complemented by LB and rational predictions at the top of each column.
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10th Percentile 50th Percentile 90th Percentile
Sim.Value Bootstr.Conf.Inter. Sim.Value Bootstr.Conf.Inter. Sim.Value Bootstr.Conf.Inter.

Rational Model 32.39 [29.24; 36.31] 152.14 [123.17; 178.88] 1,359.42 [1,163.44; 1,555.64]
LB Model 128.09 [112.64; 141.51] 288.17 [269.91; 307.49] 481.30 [464.79; 491.98]

Mean Std.Err. Mean Std.Err. Mean Std.Err.

Round 1 134.87 (21.3) 297.83 (55.7) 582.54 (82.7)

Round 2 156.07 (27.8) 302.48 (43.3) 681.32 (93.8)

Round 3 172.03 (22.7) 295.44 (34.4) 605.39 (86.4)

Round 4 155.59 (29.6) 268.41 (35.3) 636.71 (87.7)

Round 5 145.72 (29.7) 248.39 (41.5) 624.07 (93.6)

Table 13: Interval regression estimates for the mean perceptions of the three elicited percentiles in ETF_3
complemented by LB and rational predictions at the top of each column.
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