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Abstract

The liberalisation of the natural gas markets and the importance
of natural gas as a transition fuel to a low-carbon economy have led to
the development of several large-scale equilibrium models in the last
decade. These models combine long-term market equilibria and invest-
ments in infrastructure while accounting for market power by certain
suppliers. They are widely used to simulate market outcomes given
different scenarios of demand and supply development, environmental
regulations and investment options.

In order to capture the specific characteristics of natural gas pro-
duction, most of these models apply a logarithmic production cost func-
tion. However, no model has so far combined this cost function type
with endogenous investment decisions in production capacity. Given
the importance of capacity constraints in the determination of the nat-
ural gas supply, this is a serious shortcoming of the current literature.
This paper provides a proof that combining endogenous investment
decisions and a logarithmic cost function yields indeed a convex mini-
mization problem, paving the way for an important extension of current
state-of-the-art equilibrium models.

Keywords: natural gas, equilibrium model, endogenous investment, capacity
expansion, logarithmic cost function

JEL Codes: C61, Q41, L71
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1 Introduction

The global natural gas market has changed significantly over the last two
decades. Liberalisation of natural gas markets in Europe has in part led to
the gradual replacement of long-term contracts by short-term spot markets.
Stringent carbon dioxide (CO2) emission constraints are intended to induce
a shift from coal and oil to comparatively clean natural gas (EC, 2011).
Unconventional reserves are a game-changer in North America and maybe
other regions, with the OECD speaking of a “golden age of gas” (IEA, 2011).
Last but not least, the question of supply security and European dependence
on a small number of suppliers for a substantial share of its imports arises
frequently (cf. Leveque et al., 2010).

These factors have led to a considerable interest in modelling the future
development of natural gas markets. A number of equilibrium models have
been developed to provide numerical analysis of different scenarios regarding
supply and demand patterns, environmental regulation and infrastructure
investment options. These efforts were made possible by theoretical and
algorithmic advances in solving such problems (Mathiesen, 1985; Harker
and Pang, 1990; Ferris and Munson, 2000; Facchinei and Pang, 2003). One
early example of applied work can be found in Mathiesen et al. (1987).

Two large-scale natural gas equilibrium models developed in the past
decade stand out in particular: the GASTALE model, developed by ECN
(Lise and Hobbs, 2008), and the World Gas Model (WGM), joint work by
the University of Maryland and DIW Berlin (Egging et al., 2010).1 These
models share a number of characteristics: they are spatial partial equilib-
rium models with a detailed geographic disaggregation, allowing for analysis
and comparison of different pipeline and LNG export/import options; they
consider seasonality within a year and explicitly model storage to shift nat-
ural gas between low- and high-demand seasons; they are multi-year models
and endogenously determine optimal investment in infrastructure; and they
allow for oligopolistic behaviour by (a subset of) suppliers, i.e., Cournot
competition. Both models also apply a logarithmic cost function, as first
proposed by Golombek et al. (1995), in order to capture the specific charac-
teristics of natural gas production: sharply increasing costs when producing
close to full capacity.

However, neither of the models allows for endogenous investment in pro-
duction capacity; instead, the production capacity in future periods is de-
fined exogenously. Given that production capacity is a significant determi-
nant of results and that these models simulate price and quantity trajecto-
ries for several decades into the future, this omission is certainly a major
drawback. It is owed, in all likelihood, to the rather complicated functional

1Both models were published in different versions and used extensively for scenario
simulations; only one recent publication for each model is cited here.
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form when including investment decision variables in the logarithmic cost
function. This paper provides the proof that this extension yields a convex
problem, which is a prerequisite for solving this problem as an equilibrium
model.

Let me also mention two more recent natural gas models: the GaMMES
model was developed by EDF and IFPEN (Abada et al., 2012). In contrast
to the models presented above, it distinguishes between spot market sales
and long-term contracts. It also assumes a slightly different formulation of
the logarithmic cost function: production costs are not increasing relative
to capacity utilization, as in the other models, but relative to remaining
reserves. This is an interesting approach, but differs from what is discussed
in this work. EWI Cologne is currently developing the COLUMBUS model
(Hecking and Panke, 2012). It is – at this stage – formulated as a linear
complementarity problem and does not use a logarithmic cost function.

All these models are formulated as Mixed Complementarity Problem
(MCP). The optimization problems of different players subject to engineer-
ing and other constraints are solved simultaneously by deriving their respec-
tive Karush-Kuhn-Tucker (KKT) conditions, combined with market clearing
constraints. The MCP framework is convenient for this type of exercise, as
it allows to include Cournot market power for certain suppliers, in contrast
to welfare maximization or cost minimization problems. In addition, these
models can easily be extended to include stochasticity (e.g., Gabriel et al.,
2009) or two-level problems such as Stackelberg competition (e.g., Siddiqui
and Gabriel, 2012).

2 Mathematical formulation

Assume a supplier with decision variables qy (production quantity) and ey
(production capacity expansion/investment). The periods are denoted by
y ∈ {1, . . . , y}. In order to keep the notation concise, y denotes both a
period as well as its position in the set. Hence, y stands for both the last
period as well as the number of periods in the set. Following this logic, I use
y′ < y for “all periods y′ prior to period y” in sums and indices, and y′ > y
for the inverse statement. The price at which the produced quantity is sold
is denoted by py, and the initial production capacity is q.

Production costs cy(·) are determined by a logarithmic cost function as
introduced by Golombek et al. (1995) related to capacity utilization (see
Equation (3a) below). This function is illustrated in Figure 1: Marginal
production costs increase sharply when operating close to capacity. Hence,
if capacity is expanded, marginal production costs for the same quantity
decrease.

In line with the literature, capacity investment costs are assumed to be
linear. The parameters of the cost function are denoted by greek letters
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Figure 1: Illustration of the marginal cost function (production capacity q)
without investment ( ) and with additional investment e ( )

and may vary by period: αy, βy, γy are the parameters for the production
cost function; κy is the (linear) unit production capacity investment cost. All
cost parameters are positive. Discounting of future profits may be implicitly
included in the price and cost parameters. For now, I abstract from Cournot
market power and other considerations such as reserve horizon or maximum
investment constraints. These extensions are briefly discussed below.

The profit maximization problem of the supplier can then be written as
follows, converted to a minimization problem:

min
q,e

f(q, e) =
∑
y

−pyqy + cy(qy, e1, . . . , ey−1) + κyey (1)

s.t. q, e ∈ Ry+

This yields the following Karush-Kuhn-Tucker conditions:

−py +
∂cy(·)
∂qy

≥ 0 ⊥ qy ≥ 0 (2a)∑
y′>y

∂cy′(·)
∂ey

+ κy ≥ 0 ⊥ ey ≥ 0 (2b)

It is straightforward to see that there will never be investment in the last
period; the KKT condition reduces to 0 +κy ≥ 0, implying ey = 0 if κy > 0.
This variable and the associated equation can thus be omitted from further
consideration.

The production cost function and its partial derivatives are listed below.
In order to make the notation more concise, the sum of previous investments,
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∑
y′<y ey′ , is replaced by e(y) for the remainder of this work.

cy(·) = (αy + γy)qy + βq2y

+ γy (q + e(y)− qy) ln

(
1− qy

q + e(y)

)
(3a)

∂cy(·)
∂qy

= αy + 2βyqy − γy ln

(
1− qy

q + e(y)

)
(3b)

∂cy(·)
∂eŷ

= γy ln

(
1− qy

q + e(y)

)
+ γy

qy
q + e(y)

if ŷ < y (3c)

∂2cy(·)
∂q2y

= 2βy + γy
1

q + e(y)− qy
(3d)

∂2cy(·)
∂eŷ∂eỹ

= γy
q2y

(q + e(y)− qy) (q + e(y))2
if ŷ < y ∧ ỹ < y (3e)

∂2cy(·)
∂qy∂eŷ

= − γy
qy

(q + e(y)− qy) (q + e(y))
if ŷ < y (3f)

Given this cost function and assuming γy > 0 ∀y, marginal production costs
tend to infinity when the produced quantity tends to initial capacity plus
expansions in previous periods. Hence, production quantity qy is implicitly
bounded by capacity. Mathematically speaking, for any py > 0, there exists
a quantity qy with

∂cy(·)
∂qy

≥ py and qy < q+ e(y). Hence, an explicit produc-
tion capacity condition is not required as a constraint in the optimization
problem (1).

Marginal production costs
∂cy(·)
∂qy

are non-negative, while the effect of an
expansion on costs

∂cy(·)
∂ey

is non-positive.2 A capacity expansion today re-
duces total cost in subsequent periods periods for any fixed quantity (cf. Fig-
ure 1). In contrast, in a model with linear or quadratic production cost func-
tions and endogenous capacity expansion, only the dual (or shadow price) to
the capacity constraint in future periods determines the investment; hence,
only the possibility of producing a higher quantity drives capacity expansion
decisions.

Theorem 1. Any solution to the KKT system (2) is a global optimum of
the supplier profit maximization problem (1).

Proof. Sufficiency of the KKT conditions can be established by showing
convexity of the objective function f(q, e), which is equivalent to its Hessian
matrix being positive semidefinite for any feasible vector (q, e). As shown
earlier, investment in the last period can be omitted. The matrix has the

2Note that capacity utilization
qy

q+e(y)
∈ [0, 1] for any feasible quantity qy.

Since ln(1− x) + x ≤ 0 ∀x ∈ [0, 1], that statement holds.
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following form:

H(f(q, e)) =

(
fqq fqe

(fqe)
T fee

)
= (4)

=



(
∂2ci(·)
∂q2i

)
ij,i=j
i∈{1,..,y}
j∈{1,..,y}

(
∂2ci(·)
∂qi∂ej

)
ij,i>j
i∈{1,..,y}
j∈{1,..,y−1}(

∂2cj(·)
∂ei∂qj

)
ij,i<j
i∈{1,..,y−1}
j∈{1,..,y}

( ∑
k>max{i,j}

∂2ck(·)
∂ei∂ej

)
ij
i∈{1,..,y−1}
j∈{1,..,y−1}

 (5)

This matrix is symmetric and all its diagonal entries are positive, but it
is not necessarily diagonally dominant; hence, we cannot apply a standard
result to show positive semidefiniteness. Nevertheless, the partial derivatives
of the cost function have a certain structure which can be exploited to show
xTMx ≥ 0 for all x ∈ Rn.

Define x ∈ R2y−1 as follows: x = [(ay), (by)]
T . This is to exploit the

different interpretation of the production vs. expansion variables.[
(ay)y∈{1,..,y}
(by)y∈{1,..,y−1}

]T
H(f(q, e))

[
(ay)y∈{1,..,y}
(by)y∈{1,..,y−1}

]
= (6)

=


(
ay

∂2cy(·)
∂q2y

+
∑̂
y<y

bŷ
∂2cy(·)
∂eŷ∂qy

)
y∈{1,..,y}( ∑̂

y>y
aŷ

∂2cŷ(·)
∂qŷ∂ey

+
∑̂
y

bŷ
∑

k>max{y,ŷ}

∂2ck(·)
∂ey∂eŷ

)
y∈{1,..,y−1}


T [

(ay)y∈{1,..,y}
(by)y∈{1,..,y−1}

]
= (7)

=
∑
y
a2y

∂2cy(·)
∂q2y

+
∑
y
ay
∑̂
y<y

bŷ
∂2cy(·)
∂eŷ∂qy

+
∑
y
by
∑̂
y>y

aŷ
∂2cŷ(·)
∂qŷ∂ey

+ 2
∑
y
by
∑̂
y<y

bŷ
∑
k>y

∂2ck(·)
∂ey∂eŷ

+
∑
y
b2y
∑
k>y

∂2ck(·)
∂e2y

(8)

The reduced index set of by is implicitly covered in the summations. Plug-
ging in the partial derivatives stated above and rearranging terms yields the
following:∑
y
a2y

(
2βy + γy

1
q+e(y)−qy

)
− 2

∑
y
ay
∑̂
y<y

bŷ

(
γy

qy
(q+e(y)−qy)(q+e(y))

)
+2
∑
y
by
∑̂
y<y

bŷ
∑̃
y>y

(
γỹ

q2ỹ

(q+e(ỹ)−qỹ)(q+e(ỹ))2

)
+
∑
y
b2y
∑̃
y>y

(
γỹ

q2ỹ

(q+e(ỹ)−qỹ)(q+e(ỹ))2

)
= (9)

= 2
∑
y
a2yβy

+
∑
y

γy
q+e(y)−qy

(
a2y − 2

(
ay
∑̂
y<y

bŷ

)
qy

q+e(y) +
∑̂
y<y

(
2bŷ

∑̃
y<ŷ

bỹ + b2ŷ

)
q2y

(q+e(y))2

)
︸ ︷︷ ︸

~(y)

(10)
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For positive semidefiniteness of the Hessian and hence convexity of the
optimization problem, we require that the above term is non-negative for ev-
ery feasible vector (q, e). For the first part,

∑
y a

2
yβy, that is straightforward

for any vector (a). The term
γy

q+e(y)−qy is non-negative in every period y,

as otherwise the implicit production capacity constraint would be violated.
For the last part, note that this term can actually be written as

~(y) =

(
ay −

(∑̂
y<y

bŷ

)
qy

q+e(y)

)2

,

hence it is always non-negative. Equation (10) is thus non-negative for any
positive cost parameter vectors α, β, γ, κ and any vector x ∈ R2y−1.

The proof allows one additional interesting observation: the upper left
part of the Hessian matrix is positive definite for strictly positive cost pa-
rameters βy, indicating that the quantity produced in equilibrium is unique
in these cases. However, depending on the parameters, the part of the ma-
trix pertaining to the investment decision may be either positive definite or
positive semidefinite, depending on the parameters. This can be interpreted
that there may be cases when the timing of the investment does not matter.

The following three corollaries show that the supplier’s optimization
problem with endogenous expansion decision variables can be easily included
in the framework of the models discussed in the introduction: the assump-
tion of price-taking behaviour (i.e., exogenous price py) may be relaxed and
replaced by Cournot market power; engineering and other constraints may
be considered in the optimization problem; and several suppliers may com-
pete non-cooperatively, possibly in a richer equilibrium model with other
types of players and price-sensitive demand.

Corollary 2. The exogenous price parameter py may be replaced by an
inverse demand function Py(·), if it is linear and negatively sloped. Then
Theorem 1 remains valid.

Proof. The Hessian matrix of this extended problem f̃(q, e) is as follows:

H(f̃(q, e)) = H(f(q, e)) + diag
((
− 2P ′y(·)

)
y∈{1,...,y},

(
0
)
y∈{1,...,y−1}

)
Since P ′y(·) < 0, the second part of the extended Hessian is positive

semidefinite. The sum of two positive semidefinite matrices is again positive
semidefinite.

Corollary 3. Constraints of the form g(q, e) ≤ 0, h(q, e) = 0 may be added
to the supplier’s profit maximization problem (1) if g(q, e) is convex and
h(q, e) is affine. Then Theorem 1 remains valid.
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Proof. The KKT conditions of an optimization problem of the form

min
x
f(x) s.t. g(x) ≤ 0, h(x) = 0,

with f(x), g(x) convex and h(x) affine are both necessary and sufficient.

Corollary 4. Equilibria between several suppliers with endogenous invest-
ment decisions and other players can be solved simultaneously as a MCP by
taking the respective KKT conditions of each player, combined with appro-
priate market-clearing conditions, given that the other players’ optimization
problems are of a form such that their KKT conditions are sufficient for
optimality.

Proof. Cf. Facchinei and Pang (2003).

3 Conclusions and outlook

This work provides a brief overview of current large-scale natural gas equi-
librium models and points out their omission of endogenous investment de-
cisions in production capacity, instead relying on exogenously determined
capacity increases for future periods. I propose a mathematical formulation
to incorporate capacity investments into the state-of-the-literature equilib-
rium models with logarithmic cost functions and show that this formulation
is indeed a convex problem.

Nevertheless, implementing this formulation in a large-scale equilibrium
model will increase the number of non-linear terms in the KKT conditions.
While any solution obtained will indeed be an equilibrium, the logarithmic
terms may lead to numerical problems and increased computation time.
Therefore, the proposed formulation shall be integrated into a large-scale
equilibrium model to test the numerical properties of this approach. In the
future, the endogenous consideration of production capacity expansions may
significantly improve the scope and validity of scenario simulations of the
natural gas as well as other energy and resource markets.
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